Mittausvirhe. Mittaustekniikan perusteet / luento 6. Mittausvirhe. Mittausepävarmuus ja siihen liittyvää terminologiaa
|
|
- Pertti Hukkanen
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 Mttausteknkan perusteet / luento 6 Mttausepävarmuus ja shen lttyvää termnologaa Mttausepävarmuus = mttaustulokseen lttyvä parametr, joka kuvaa mttaussuureen arvojen odotettua vahtelua Mttauksn lttyvä kästtetä Mttatarkkuuden ylläpto Mttausvrhe Mttaustulos e ole koskaan oken. Mttaustulos on arvo mtattavasta arvosta. Mttaustuloksen ja mtattavan arvon ero on mttausvrhe. Yksttäsen mttauksen mttausvrhe jakaantuu systemaattseen ja satunnaseen vrheeseen. Systemaattnen vrhe Pysyy samana ta muuttuu säännönmukasella tavalla. Osa systemaattsesta vrheestä vo olla tunnettua. Satunnasvrhe Aheutuu usesta, usen rppumattomsta, tekjöstä. Usen normaaljakautunutta. Mttausvrhe Mttaustulosten kästtely Suureen okea arvo, tosarvo Arvo, joka on ykslödyn suureen määrtelmän mukanen Mtattava arvo Vrhe Systemaattnen vrhe Jakauman keskpste Mtattu arvo Satunnasvrhe Mttaukssta saadaan joukko mttaustuloksna saatuja estmaatteja. ästä etstään mttausten kästtelyllä mahdollsmman todennäkönen arvo mtattavalle suureelle. Kästtelyn tarkotus: Laskea mttaukssta ykskästtenen tulos Selvttää mttausepävarmuus
2 Mttausepävarmuus Mttaustuloksa lmotettaessa mttausvrhettä e tedetä käytetään mttausepävarmuutta Mttausepävarmuus ssältää systemaattset ja satunnaset vrheet (yleensä σ ta 95 % luottamusväl σ Mttaustulos lman kästystä tulokseen lttyvästä mttausepävarmuudesta on merktyksetön Mttausepävarmuus vodaan lmottaa joko absoluuttsena ta suhteellsena: Absoluuttnen u ( x x Suhteellnen Suhteellnen vrhe mttausvrhe jaettuna mttaussuureen tosarvolla Mttausepävarmuuden lmottamnen Yksnkertasmmassa tapauksessa mttaustulos saadaan yhdestä mttauksesta. Lopullnen tulos on usen funkto monesta parametrsta: Y = f ( X, X,..., X n Parametrt X n ssältävät kakk tulokseen oleellsest vakuttavat tekjät, kuten: Mtatut arvot Korjaustermt, latteden omnasuudet, näytteet (Mttaajan, pävän, laboratoron Funkto vo ss kuvata koko mttausprosessa, ekä pelkkää fyskan laka. Korjattu mttaustulos Mttaustulos systemaattsen vrheen korjaamsen jälkeen Mttausepävarmuuden lmottamnen Mttattavan arvon estmaatt y saadaan tällön yhtälöstä: y = f (x,x,...,x n käyttämällä estmaatteja x yhtälön parametrena X. Mttausepävarmuus aheutuu tällön epävarmuudesta estmaatessa x. Estmaatten epävarmuus aheutuu systemaattsesta ja satunnasesta vrheestä. Mttausepävarmuuden lmottamnen Systemaattsen ja satunnasen vrheen erottamnen mttaustulokssta on kutenkn vakeaa. Tämän vuoks epävarmuus jaetaan määrtystavan mukaan: Tyypn A mttausepävarmuus Määrtetään mttaussarjan tlastollsten omnasuuksen perusteella. Tyypn B mttausepävarmuus Määrtellään mttaustulokssta mulla tavon.
3 Mttausepävarmuuden lmottamnen Sekä tyypn A että tyypn B epävarmuus, mten tahansa määrtettykn, lmotetaan standardepävarmuutena u. Standardepävarmuus u on estmotu keskhajonta el σ (estmodun varanssn u nelöjuur. σ Jakauman keskpste Tyypn A mttausepävarmuuden arvont Tyypn A mttausepävarmuuden arvont vo perustua mhn tahansa sopvaan tlastollseen menetelmään. Esmerkkejä: Mttaussarjan keskarvon keskhajonta Penmmän nelösumman sovtus... σ 95 % luottamusväl Tyypn A mttausepävarmuuden arvont Keskarvo ja keskarvon keskhajonta: (Otoskeskarvo: µ (Otoskeskhajonta: σ lm lm x ( x µ x = x = Otoskeskhajonta = kokeellnen keskhajonta Keskarvon vrhearvo vodaan laskea yhden mttaussarjan perusteella keskarvon keskhajonta u = s u = = s = ( x x ( = ( x x Tyypn B mttausepävarmuuden arvont Tyypn B epävarmuuden määrttämnen perustuu saatavssa olevan tedon perusteella tehtävään teteellseen päättelyyn. Tärkeätä nformaatota ovat mm. Akasemmat mttaukset Kokemus mttaukseen lttyvstä lattesta ja materaalesta Latevalmstajen spesfkaatot Referenssessä annettujen vastaaven mttausten lmotetut epävarmuudet.
4 Epävarmuuksen yhdstämnen Mttaustuloksen y = f (x,x,...,x n yhdstetty standardepävarmuus u c (y saadaan yhtälöstä: u c ( y = = df dx u ( x + = j = + u ( x joka saadaan mttausta kuvaavasta yhtälöstä ensmmäsen asteen Taylorn approksmaaton avulla psteessä x,x,,x n. df dx df dx j, x Rstkorrelaatoterm, joka on usen 0 j Epävarmuuksen yhdstämnen Esmerkk: Mttaustulos on summa vakolla a kerrotusta parametresta x : Mttaustulos yhtälöstä: y = a x + a x a x n n Dervodaan x :den suhteen, kerrotaan dervaatat epävarmuukslla, lasketaan nelösumma josta otetaan nelöjuur Epävarmuus: u c ( y = a u ( x + au ( x +... anu ( xn Epävarmuuksen yhdstämnen Esmerkk: Mttaustulos on tulo parametresta x korotettuna potenssehn a,b,,p ja kerrottuna vakolla A. a b p Mttaustulos yhtälöstä: y = Ax x... x n Vodaan laskea kuten edellä, mutta tässä tapauksessa on hyödyllstä käyttää normalsotua epävarmuutta: uc, rel ( y = uc( y / y Jollon tulokseks saadaan: u ( y = a u ( x + b u ( x +... p u ( n c, rel rel rel + rel x Epävarmuuden tulknta Jos mttaustulosta kuvaava jakauma on (lkman normaal ja standardepävarmuus u c (y on luotettavast määrtetty, vo väln y-u c (y, y+u c (y odottaa ssältävän 68 % todennäkösyydellä okean arvon Y. Jakauman σ keskpste σ GZ ( = e π x µ z = σ z mssä u ( x = u( x / x rel 95 % luottamusväl
5 Epävarmuuksen yhdstämnen Mttausepävarmuus Joskus etstään maksmvrhettä (00 % luottamusväl (vrt. Fyskan laboratorotyöt. Funkton herkkyyttä penlle muutokslle sen parametressa (= mttausvrhelle arvodaan kokonasdervaatan avulla. y = x + x + x Etstään maksmvrhettä, jollon kakk vrheet vakuttavat samaan suuntaan: y = x + x + x Pokkeama mljoonasosssa Vuoden 986 arvo 9, Elektronn massan mttauksa ja lmotettuja mttausepävarmuuksa 50- ja 60-luvulla Vuos Stablus ja epästablus Stablus ja epästablus Stablus Mttauslatteen kyky sälyttää metrologset omnasuutensa muuttumattomna ajan kuluessa Termejä epästablus ja stablus käytetään usen rstn Stablus rppuu käytetystä ajanjaksosta ja käyttöolosuhtesta. Valmstajat lmottavat stabluden er tavon, esmerkks µv/vuos, tms. Allan-varanss: Standardepävarmuuden laskemnen e välttämättä mahdollsta, jos akarppuvuus on määräävä Allan-varanss Stablus on ertysen merkttävä Estmaatt kahden näytteen välsestä varansssta näytteden välsen ajan funktona äyttämän muutos Aka σ (τ = Y ( y k= ( y k+ yk Antaa tetoa mttaukseen vakuttavsta kohnaprosessesta sekä ryömnnästä (epästablus (yleensä nelöjuur
6 Frequency dfference [MHz] Stablus ja epästablus Allan-varanssa käytetään (yleensä aka- ja taajuusmetrologassa Esmerkk: stablomattoman lasern taajuusmuutos tunnn mttauksen akana Tme [s] σ(,τ Measurable quantty - suure Kästtetä Omnasuus, joka vodaan laadultaan tunnstaa ja määrältään mtata Measurand - mttaussuure Ykslöty suure, jota mtataan Measurement - mttaus Tomntojen sarja, jonka tarkotuksena on suureen arvon määrttämnen Measurng nstrument - mttauslate Late, joka on tarkotettu mttausten tekemseen yksn ta yhdessä lsälatteen/lsälatteden kanssa Result of a measurement - mttaustulos Mttauksen avulla mttaussuureelle saatu arvo 0, Integraton tme τ [s] Kästtetä Measurement standard - mttanormaal Kntomtta, mttauslate, vertaluane ta mttausjärjestelmä, jolla määrtellään, toteutetaan/realsodaan, sälytetään ta tostetaan suureen mttaykskkö ta suureen yks ta useamp referenssarvo Kuva: MIKES Mttausstandard Mttauksa kästtelevä norm Kästtetä Prmary standard - prmäärnormaal Mttanormaal, joka on sovttu ta ylesest tunnustettu korkemman metrologsen laadun omaavaks ja jonka arvo on hyväksyttävssä vertaamatta stä muhn saman suureen mttanormaalehn Secondary standard - sekundäärnormaal Mttanormaal, jonka arvo määrtetään/ saadaan vertaamalla stä saman suureen prmäärnormaaln Reference standard - referenssnormaal Mttanormaal, jolla on tetyssä pakassa ta organsaatossa yleensä paras saatavssa oleva metrolognen laatu ja johon sellä tehtävät mttaukset perustuvat SIykskön määrtelmä SI- Kansallnen mttanormaal Akkredtodun kalbrontlaboratoron referenssnormaal Yrtyksen referenssnormaal
7 Kästtetä Accuracy - tarkkuus (pakkansaptävyys Mttauslatteen kyky antaa vasteta, jotka ovat lähellä tosarvoa Precson Ylesterm joka kuvaa mttauksen rppumattomuutta satunnassta vahtelusta. Reproducblty - uusttavuus Saman mttaussuureen tulosten yhtäptävyys, kun mttaukset suortetaan muuttunessa olosuhtessa Repeatablty - tostuvuus Saman mttaussuureen peräkkästen mttaustulosten yhtäptävyys, kun mttaukset suortetaan samossa olosuhtessa Kuva: A. S. Morrs, The Essence of Measurement Traceablty - jäljtettävyys Kästtetä Mttaustuloksen ta mttanormaaln yhteys lmotettuhn referenssehn, yleensä kansallsn ta kansanvälsn mttanormaalehn, sellasen aukottoman vertaluketjun vältyksellä, jossa kaklle vertalulle on lmotettu epävarmuudet. Calbraton - kalbront Tomenpteet, joden avulla spesfodussa olosuhtessa saadaan mttauslatteen ta mttausjärjestelmän näyttämen ta kntomtan ta vertaluaneen edustamen arvojen ja vastaaven mttanormaalella realsotujen arvojen välnen yhteys. Adjustment - vrtys Kalbronnn tulos dokumentodaan asakrjaks, jota kutsutaan kalbronttodstukseks Tomenpde, jonka avulla mttauslatteen suortuskyky saadaan käyttöön sopvaks. Muta kästtetä Dynaamnen alue Mttausalueen alarajan ja ylärajan välnen suhde Mttausalueen alaraja Penn mtattavssa oleva mttaussuureen arvo. Määräytyy järjestelmän härötasosta, esmerkks kohnasta Mttausalueen yläraja Suurn mtattavssa oleva mttaussuureen arvo. Määräytyy järjestelmän setokyvystä Erottelukyky Mttauslatteen kyky reagoda mttaussuureen penn muutoksn. Herkkyys äyttämän muutoksen suhde mttaussuureen muutokseen, esm. lämpötla-anturlle Ω / ºC. Hysterees Mttauslatteen näyttämen ero, kun mtataan suureen samaa arvoa muutossuunnan ollessa tosaalta suureneva ja tosaalta penenevä (Epälneaarsuus äyttämä epälneaarsuus Muta kästtetä kalbrontkäyrä Suureen arvo
8 Tarkkuuden ylläptämnen Mllon late ols kalbrotava? Mllanen tarkkuus on taloudellsn? Tarkkuuden ylläptämnen Kalbronnssa verrataan mttalatteen näyttämää ta kntomtan arvoa mttanormaaln Mttalatteelle vertalu tehdään usen useassa psteessä määrätyn mttausalueen ssällä Kalbronnn jälkeen mttalatteen näyttämän (ta kntomtan arvon yhteys suureen tosarvoon tunnetaan annetulla epävarmuudella Ajan kuluessa epävarmuus kasvaa Ympärstöolosuhteet Ajautuma (Drft Mekaannen kulumnen Lka, pöly, höyryt, kemkaalt Ikääntymnen Latevalmstajat antavat yleensä epävarmuuden, jonka saavuttamseks late on kalbrotava määrätyn välajon. Tarkkuuden ylläptämnen Mttalatteen omnasuuksa e vo parantaa kalbromalla Rppuvuudet ympärstöolosuhtesta Epästablus ym. El: Kalbronnlla e vo postaa epävarmuutta, joka aheutuu latteen käyttöympärstöstä. Lämpötla, asento, tärnä, kosteus Tarkkuuden valvonta Prrettäessä kalbronten tulokset ajan funktona saadaan mttalatteen epävarmuus selvlle mahdollsmman hyvn. Jossan tapauksssa saadaan ennustettua mttalatteen trendsuora. Jos käytettävssä on useta samanlasa latteta, vodaan vanhenemsta seurata Ennusteen ja latteta vertaamalla. kalbrodun arvon ero Tarkkuuden seuranta paljastaa myös mttalatteden penä vkoja, jotka näkyvät suortuskyvyn Trendsuora muutoksna. Pokkeama Kuva: Hewlett-Packard, applcaton note A-00- Aka
9 Tarkkuuden valvonta Tarkkuuden ylläptämnen 35 Kalbrontväl Frequency dfference [khz] Laser-taajuusnormaalen kesknänen vertalu Change of laser tube of MRI3 MRI3 - MRI MRI3 - MRI Change of laser vacty and MRI - MRI electroncs of Laser MRI 09/94 0/95 07/95 /95 05/96 0/96 03/97 08/97 0/98 06/98 /98 Rppuu tarvttavasta epävarmuustasosta Valmstajan suostus tyypllsest kk (tavallsmmat elektronset mttalatteet Latteet vodaan luoktella: ana kalbrotu, kalbrotava ennen käyttöä, kalbromaton Suuret yrtykset: latteden tarkastelu ryhmnä Kalbrontpakka Kalbrontlaboratorolla korkea palveluhnta Kallt tarkkuuslatteet, jota käytetään harvon Suureden jäljtettävyys Henklöstövaatmukset Oma kalbrontlaboratoro varteenotettava van suurssa yrtyksssä Kuva: MIKES Mttatarkkuuden valnta ja kalbront Mttatarkkuuden valnta ja kalbront Kustannusesmerkk Latteden & kalbronnn hnta Mttausepävarmuuden hnta Sellun myynttulot vaakaa koht ~ 300 Mmk/vuos. Vaakaan syntyy helpost 0, % systemaattnen vrhe. Tällön vuotunen kustannus on ~ 300 kmk/vuos. Kustannukset [mk/vuos] Epävarmuuden kustannus sama = sama pääomavrta Epävarmuuskustannukset Kalbrontkustannukset 0, 0 Kalbronten väl [vuos]
Mittausepävarmuus. Mittaustekniikan perusteet / luento 7. Mittausepävarmuus. Mittausepävarmuuden laskeminen. Epävarmuuslaskelma vai virhearvio?
Mttausteknkan perusteet / luento 7 Mttausepävarmuus Mttausepävarmuus Mttaustulos e ole koskaan täysn oken Mttaustulos on arvo mtattavasta arvosta Mttaustuloksen ja mtattavan arvon ero on mttausvrhe Mkäl
LisätiedotMittausvirhe. Mittaustekniikan perusteet / luento 7. Mittausvirhe. Mittausepävarmuus ja siihen liittyvää terminologiaa
Mttausteknkan perusteet / luento 7 Mttausepävarmuus ja shen lttyvää termnologaa Mttausepävarmuus = mttaustulokseen lttyvä parametr, joka kuvaa mttaussuureen arvojen odotettua vahtelua Mttauksn lttyvä kästtetä
LisätiedotTyön tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt
FYSP103 / 1 KAASUTUTKIMUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oppa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttauspöytäkrjan ja työselostuksen laatmsta Luento-
LisätiedotMittaustulosten käsittely
Mttaustulosten kästtely Vrhettä ja epävarmuutta lmasevat kästteet Tostokoe ja satunnasten vrheden tlastollnen kästtely. Mttaustulosten jakaumaa kuvaavat tunnusluvut. Normaaljakauma 7. Tostokoe ja suurmman
Lisätiedot3.5 Generoivat funktiot ja momentit
3.5. Generovat funktot ja momentt 83 3.5 Generovat funktot ja momentt 3.5.1 Momentt Eräs tapa luonnehta satunnasmuuttujan jakaumaa, on laskea jakauman momentt. Ne määrtellään odotusarvon avulla. Määrtelmä
LisätiedotTyön tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt
FYSP103 / 1 KAASUTUTKIUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttausöytäkrjan ja työselostuksen laatmsta Luento-
LisätiedotMonte Carlo -menetelmä
Monte Carlo -menetelmä Helumn perustlan elektron-elektron vuorovakutuksen laskemnen parametrsodulla yrteaaltofunktolla. Menetelmän käyttökohde Monen elektronn systeemen elektronkorrelaato oteuttamnen mulla
Lisätiedot4. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman
4. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento 7..008 Thomas Hackman 4. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus Akasarja-anals 4. Tähtteteellsten
Lisätiedot3. Datan käsittely lyhyt katsaus
3. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento..0 Thomas Hackman HTTPK I, kevät 0, luento 3 3. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus
LisätiedotTyössä tutustutaan harmonisen mekaanisen värähdysliikkeen ominaisuuksiin seuraavissa
URUN AMMAIKORKEAKOULU YÖOHJE (7) FYSIIKAN LABORAORIO V.2 2.2 38E. MEKAANISEN VÄRÄHELYN UKIMINEN. yön tavote 2. eoraa yössä tutustutaan harmonsen mekaansen värähdyslkkeen omnasuuksn seuraavssa tapauksssa:
Lisätiedotr i m i v i = L i = vakio, (2)
4 TÖRMÄYKSET ILMATYYNYPÖYDÄLLÄ 41 Erstetyn systeemn sälymslat Kun kaks kappaletta törmää tosnsa ne vuorovakuttavat keskenään tetyn ajan Vuorovakutuksella tarkotetaan stä että kappaleet vahtavat keskenään
LisätiedotAquaPro 3-10 11-18 19-26 27-34. Bedienungsanleitung Operating instructions Gebruiksaanwijzing Käyttöohje FIN. 046.01.00 Rev.0607
046.01.00 Rev.0607 D GB NL FIN Bedenungsanletung Operatng nstructons Gebruksaanwjzng Käyttöohje 3-10 11-18 19-26 27-34 120 Automaattnen pyörvä laser kallstustomnnolla: Itsetasaus vaakasuorassa tasossa
LisätiedotFYSA220/2 (FYS222/2) VALON POLARISAATIO
FYSA220/2 (FYS222/2) VALON POLARSAATO Työssä tutktaan valoaallon tulotason suuntasen ja stä vastaan kohtsuoran komponentn hejastumsta lasn pnnasta. Havannosta lasketaan Brewstern lan perusteella lasn tatekerron
LisätiedotTilastollisen fysiikan luennot
Tlastollsen fyskan luennot Tvstelmät luvuttan I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ Lämpö on systeemen mkroskooppsten osen satunnasta lkettä Lämpöenerga vrtaa kuumemmasta kappaleesta kylmempään Jos kaks kappaletta
LisätiedotLohkoasetelmat. Lohkoasetelmat. Lohkoasetelmat: Mitä opimme? Lohkoasetelmat. Lohkoasetelmat. Satunnaistettu täydellinen lohkoasetelma 1/4
TKK (c) lkka Melln (005) Koesuunnttelu TKK (c) lkka Melln (005) : Mtä opmme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Mten varanssanalyysssa tutktaan yhden tekän vakutusta vastemuuttujaan, kun
LisätiedotKuluttajahintojen muutokset
Kuluttajahntojen muutokset Samu Kurr, ekonomst, rahapoltkka- ja tutkmusosasto Tutkmuksen tausta ja tavotteet Tavaroden ja palveluden hnnat evät muutu jatkuvast, vaan ovat ana jossan määrn jäykkä lyhyellä
Lisätiedot5. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman
5. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento 7.4.006 Thomas Hackman 5. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus Akasarja-anals 5. Tähtteteellsten
LisätiedotHallin ilmiö. Laatija - Pasi Vähämartti. Vuosikurssi - IST4SE. Tekopäivä 2005-9-14 Palautuspäivä 2005-9-28
Jyväskylän Aattkorkeakoulu, IT-nsttuutt IIF00 Sovellettu fyskka, Syksy 005, 4.5 ETS Opettaja Pas epo alln lö Laatja - Pas Vähäartt Vuoskurss - IST4SE Tekopävä 005-9-4 Palautuspävä 005-9-8 8.9.005 /7 LABOATOIOTYÖ
LisätiedotTchebycheff-menetelmä ja STEM
Tchebycheff-menetelmä ja STEM Optmontopn semnaar - Kevät 2000 / 1 1. Johdanto Tchebycheff- ja STEM-menetelmät ovat vuorovakuttesa menetelmä evät perustu arvofunkton käyttämseen pyrkvät shen, että vahtoehdot
LisätiedotFYSIIKAN LABORATORIOTYÖT 1 761121P
FYSIIKAN LABORATORIOTYÖT 76P Espuhe Fyskassa pyrtään löytämään luonnosta lanalasuuksa, jota vodaan mtata kokeellsest ja kuvata matemaattsest. Tässä kurssssa tutustutaan yksnkertasten mttausvälneden käyttöön
LisätiedotSähkökiukaan kivimassan vaikutus saunan energiankulutukseen
LAPPEENRANNAN ENILLINEN YLIOPISO eknllnen tedekunta LU Energa Sähkökukaan kvmassan vakutus saunan energankulutukseen Lappeenrannassa 3.6.009 Lass arvonen Lappeenrannan teknllnen ylopsto eknllnen tedekunta
Lisätiedot3 Tilayhtälöiden numeerinen integrointi
3 Tlayhtälöden numeernen ntegront Alkuarvotehtävässä halutaan ratkasta lopputla xt f ) sten, että tlayhtälöt ẋ = fx,u, t) toteutuvat, kun alkutla x 0 on annettu Tlayhtälöden numeernen ntegront vodaan suorttaa
LisätiedotMittalaitteet. M. Kuisma, T. Torttila, J. Tyster. Elektroniikan laboratoriotyöt 1 - Mittalaitteet 1
Elektroka laboratorotyöt - Mttalatteet Mttalatteet M. Kusma, T. Torttla, J. Tyster Tvstelmä Laboratorotyössä tutustutaa sovelletu elektroka laboratoroo, laboratorossa olev mttalattes sekä laboratoro työsketelytapoh.
LisätiedotTKK @ Ilkka Mellin (2008) 1/24
Mat-.60 Sovellettu todeäkösyyslasketa B Mat-.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Mtta-astekot Havatoaesto kuvaame ja otostuusluvut Avasaat: Artmeette keskarvo, Frekvess, Frekvessjakauma,
LisätiedotYrityksen teoria ja sopimukset
Yrtyksen teora a sopmukset Mat-2.4142 Optmontopn semnaar Ilkka Leppänen 22.4.2008 Teemoa Yrtyksen teora: tee va osta? -kysymys Yrtys kannustnsysteemnä: ylenen mall Työsuhde vs. urakkasopmus -analyysä Perustuu
LisätiedotPPSS. Roolikäyttäytymisanalyysi 28.03.2011. Tämän raportin on tuottanut: MLP Modular Learning Processes Oy Äyritie 8 A FIN 01510 Vantaa info@mlp.
PP Roolkäyttäytymsanalyys Roolkäyttäytymsanalyys Rool: Krjanptäjä Asema: Laskentapäällkkö Organsaato: Mallyrtys Tekjä: Matt Vrtanen 8.0.0 Tämän raportn on tuottanut: MLP Modular Learnng Processes Oy Äyrte
LisätiedotUuden eläkelaitoslain vaikutus allokaatiovalintaan
TEKNILLINEN KORKEAKOULU Systeemanalyysn laboratoro Mat-2.108 Sovelletun matematkan erkostyö Uuden eläkelatoslan vakutus allokaatovalntaan Tmo Salmnen 58100V Espoo, 14. Toukokuuta 2007 Ssällysluettelo Johdanto...
LisätiedotBL20A0600 Sähkönsiirtotekniikka
BLA6 Sähkönsrtoteknkka Tehonaon laskenta Jarmo Partanen LT Energy Electrcty Energy Envronment Srtoverkkoen laskenta Verkon tehonaon laskemnen srron hävöt ännteolosuhteet ohtoen kuormttumnen verkon käyttäytymnen
LisätiedotJohdatus tekoälyn taustalla olevaan matematiikkaan
Johdatus tekoälyn taustalla olevaan matematkkaan Informaatoteknologan tedekunta Jyväskylän ylopsto 4. luento 24.11.2017 Neuroverkon opettamnen - gradenttmenetelmä Neuroverkkoa opetetaan syöte-tavote-parella
Lisätiedot3.3 Hajontaluvuista. MAB5: Tunnusluvut
MAB5: Tunnusluvut 3.3 Hajontaluvusta Esmerkk 7 Seuraavat kolme kuvaa osottavat, että jakaumlla vo olla sama keskarvo ja stä huolmatta ne vovat olla avan erlaset. Kakken kolmen keskarvo on 78,0! Frekvenss
Lisätiedot5. Datan käsittely lyhyt katsaus
5. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento 4..0 Thomas Hackman HTTPK I, kevät 0, luento 5 5. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus
LisätiedotSisällysluettelo Laitteen asennus Toiminnot Tekniset tiedot Asetukset Viestikoodit Huolto Takuu Turvallisuusohjeet Toiminnot
DEWALT DW03201 Ssällysluettelo Latteen asennus - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 Johdanto- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 Yleskuva -
LisätiedotYksikköoperaatiot ja teolliset prosessit
Ykskköoperaatot ja teollset prosesst 1 Ylestä... 2 2 Faasen välnen tasapano... 3 2.1 Neste/höyry-tasapano... 4 2.1.1 Puhtaan komponentn höyrynpane... 4 2.1.2 Ideaalnen seos... 5 2.1.3 Epädeaalnen nestefaas...
LisätiedotPuupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö:
Puupntasen sandwchkattoelementn lujuuslaskelmat. Ssältö: Sandwch kattoelementn rakenne ja omnasuudet Laatan laskennan kulku Tulosten vertalua FEM-malln ja analyyttsen malln välllä. Elementn rakenne Puupntasa
LisätiedotKOHTA 1. AINEEN/SEOKSEN JA YHTIÖN/YRITYKSEN TUNNISTETIEDOT
Käyttöturvallsuustedote Tekjänokeuden haltja vuonna 2015, 3M Company Kakk okeudet pdätetään. Tämän tedon kopomnen ja/ta lataamnen on sallttua anoastaan 3M tuotteden käyttämstä varten, mkäl (1) tedot on
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 7: Lagrangen kertojat. Pienimmän neliösumman menetelmä.
MS-A0205/MS-A0206 Dfferentaal- ja ntegraallaskenta 2 Luento 7: Lagrangen kertojat. Penmmän nelösumman menetelmä. Jarmo Malnen Matematkan ja systeemanalyysn latos 1 Aalto-ylopsto Kevät 2016 1 Perustuu Antt
Lisätiedot1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä
Johdatus dskreettn matematkkaan Harjotus 3, 30.9.2015 1. Luvut 1, 10 on latettu ympyrän kehälle. Osota, että löytyy kolme verekkästä lukua, joden summa on vähntään 17. Ratkasu. Tällasa kolmkkoja on 10
Lisätiedot6. Stokastiset prosessit (2)
Ssältö Markov-prosesst Syntymä-kuolema-prosesst luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 6 Markov-prosess Esmerkk Tark. atkuva-akasta a dskreetttlasta stokaststa prosessa X(t) oko tla-avaruudella
LisätiedotModerni portfolioteoria
Modern portfoloteora Helsngn Ylopsto Kansantalousteteen Kanddaatntutkelma 4.12.2006 Juho Kostanen (013297143) juho.kostanen@helsnk.f 2 1. Johdanto... 3 2. Sjotusmarkknat... 4 2.1. Osakemarkknat... 4 2.2.
LisätiedotKOHTA 1. AINEEN/SEOKSEN JA YHTIÖN/YRITYKSEN TUNNISTETIEDOT
Käyttöturvallsuustedote Tekjänokeuden haltja vuonna 2015, 3M Company Kakk okeudet pdätetään. Tämän tedon kopomnen ja/ta lataamnen on sallttua anoastaan 3M tuotteden käyttämstä varten, mkäl (1) tedot on
Lisätiedoton määritelty tarkemmin kohdassa 2.3 ja pi kohdassa 2.2.
SU/Vakuutusmatemaattnen ykskkö 7.8.08 (7) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan täydennyskertomen,
LisätiedotLIGNIININ RAKENNE JA OMINAISUUDET
16006 LIGNIININ RAKENNE JA INAISUUDET Hlatomen nmeämnen γ 16006 6 α 1 β 5 3 4 e Lgnnn prekursort (monomeert) Lgnnn bosyntees e e e Peroksdaasn ja vetyperoksdn läsnäollessa prekursorsta muodostuu resonanssstablotu
LisätiedotKollektiivinen korvausvastuu
Kollektvnen korvausvastuu Sar Ropponen 4.9.00 pävtetty 3..03 Ssällysluettelo JOHDANTO... KORVAUSVASTUUSEEN LIITTYVÄT KÄSITTEET VAHINKOVAKUUTUKSESSA... 3. MERKINNÄT... 3. VAHINGON SELVIÄMINEN JA KORVAUSVASTUU...
LisätiedotTietojen laskentahetki λ α per ,15 0,18 per ,15 0,18 per tai myöhempi 0,20 0,18
SU/Vakuutusmatemaattnen ykskkö 6.3.07 (6) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan täydennyskertomen,
LisätiedotTyöllistääkö aktivointi?
Jyväskylän ylopsto Matemaatts-luonnonteteellnen tedekunta Työllstääkö aktvont? Vakuttavuusanalyys havannovassa tutkmuksessa Elna Kokkonen tlastoteteen pro gradu tutkelma 31. elokuuta 2007 Tlastoteteen
LisätiedotABTEKNILLINEN KORKEAKOULU
ABTEKNILLINEN KORKEAKOULU Tetoverkkolaboratoro 6. Stokastset prosesst () Luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 5 6. Stokastset prosesst () Ssältö Markov-prosesst Syntymä-kuolema-prosesst
LisätiedotTaustaa. Sekventiaalinen vaikutuskaavio. Päätöspuista ja vaikutuskaavioista. Esimerkki: Reaktoriongelma. Johdantoa sekventiaalikaavioon
Taustaa Sekventaalnen vakutuskaavo Sekventaalnen päätöskaavo on 1995 ovalun ja Olven esttämä menetelmä päätösongelmen mallntamseen, fomulontn ja atkasemseen. Päätöspuun omnasuukssta Hyvää: Esttää eksplsttsest
LisätiedotAamukatsaus 13.02.2002
Indekst & korot New Yorkn päätöskursst, euroa Muutos-% Päätös Muutos-% Helsnk New York (NY/Hel) Dow Jones 9863.7-0.21% Noka 26.21 26.05-0.6% S&P 500 1107.5-0.40% Sonera 5.05 4.99-1.1% Nasdaq 1834.2-0.67%
LisätiedotRahastoonsiirtovelvoitteeseen ja perustekorkoon liittyvät laskentakaavat. Soveltaminen
SU/Vakuutusmatemaattnen ykskkö 0.4.05 Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä perusteta sovelletaan täydennyskertomen,
LisätiedotMat Lineaarinen ohjelmointi
Mat-.4 Lneaarnen ohelmont 8..7 Luento 6 Duaaltehtävä (kra 4.-4.4) S ysteemanalyysn Lneaarnen ohelmont - Syksy 7 / Luentorunko Motvont Duaaltehtävä Duaalteoreemat Hekko duaalsuus Vahva duaalsuus Täydentyvyysehdot
LisätiedotMat Sovellettu todennäköisyyslasku A
TKK / Systeemaalyys laboratoro Mat-.9 Sovellettu todeäkösyyslasku A Nordlud Harjotus 8 (vko 45/3) (Ahe: Raja-arvolauseta, otostuuslukuja, johdatusta estmot, Lae luvut 9.5,.-.6). Olkoo X ~ p(λ), mssä λ
LisätiedotLeica DISTO TM S910 The original laser distance meter
Leca DISTO TM S910 The orgnal laser dstance meter Ssällysluettelo Latteen asennus- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 Johdanto - - - - - - - - - - - - - - - - - - - - - -
LisätiedotEpätäydelliset sopimukset
Eätäydellset somukset Matt Rantanen 15.4.008 ysteemanalyysn Laboratoro Teknllnen korkeakoulu Estelmä 16 Matt Rantanen Otmonton semnaar - Kevät 008 Estelmän ssältö Eätäydellset somukset ja omstusokeus alanén
LisätiedotPaperikoneiden tuotannonohjauksen optimointi ja tuotefokusointi
TEKNILLINEN KORKEAKOULU Teknllsen fyskan koulutusohjelma ERIKOISTYÖ MAT-2.108 Sovelletun matematkan erkostyöt 22.4.2003 Paperkoneden tuotannonohjauksen optmont ja tuotefokusont Jyrk Maaranen 38012p 1 Ssällysluettelo
LisätiedotMekaniikan jatkokurssi Fys102
Mekankan jatkokurss Fys102 Syksy 2009 Jukka Maalamp LUENTO 2 Alkuverryttelyä Vääntömomentt Oletus: Vomat tasossa, joka on kohtsuorassa pyörmsaksela vastaan. Oven kääntämseen tarvtaan er suurunen voma
Lisätiedot1, x < 0 tai x > 2a.
PHYS-C020 Kvanttmekankka Laskuharotus 2, vkko 45 Tarkastellaan ptkn x-aksela lkkuvaa hukkasta, onka tlafunkto on (x, t) Ae x e!t, mssä A, a! ovat reaalsa a postvsa vakota a) Määrtä vako A sten, että tlafunkto
LisätiedotJYVÄSKYLÄN YLIOPISTO Taloustieteiden tiedekunta
JYVÄSKYLÄN YLIOPISTO Talousteteden tedekunta AIKA- IKÄ- JA KOHORTTIVAIKUTUKSET KOTITALOUKSIEN RAHOITUSVARALLISUUDEN RAKENTEISIIN SUOMESSA VUOSINA 1994 2004 Kansantaloustede Pro gradu -tutkelma Maalskuu
LisätiedotRahastoonsiirtovelvoitteeseen, perustekorkoon ja vakuutusmaksukorkoon liittyvät laskentakaavat ja periaatteet
SU/Vakuutusmatemaattnen ykskkö 3..209 (7) Rahastoonsrtovelvotteeseen, perustekorkoon ja vakuutusmaksukorkoon lttyvät laskentakaavat ja peraatteet Soveltamnen. Rahastosrtovelvote RSV 2. Täydennyskerron
LisätiedotMat Tilastollisen analyysin perusteet, kevät 2007
Mat-2.204 Tlastollsen analyysn perusteet, kevät 2007 5. luento: Tlastollnen rppuvuus ja korrelaato Ka Vrtanen Muuttujen välsten rppuvuuksen analysont Tlastollsssa analyysessä tutktaan usen muuttujen välsä
LisätiedotSU/Vakuutusmatemaattinen yksikkö (5)
SU/Vakuutusmatemaattnen ykskkö 0..06 (5) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan täydennyskertomen,
LisätiedotHASSEN-WEILIN LAUSE. Kertausta
HASSEN-WEILIN LAUSE Kertausta Käytetään seuraava merkntjä F = F/F q on sukua g oleva funktokunta Z F (t = L F (t (1 t(1 qt on funktokunnan F/F q Z-funkto. α 1, α 2,..., α 2g ovat polynomn L F (t nollakohten
LisätiedotHanna-Kaisa Hurme Teräksen tilastollinen rakenneanalyysi Diplomityö
Hanna-Kasa Hurme Teräksen tlastollnen rakenneanalyys Dplomtyö Tarkastajat: professor Kejo Ruohonen (TUT) ja dosentt Esko Turunen (TUT) Tarkastajat ja ahe hyväksytty Luonnonteteden ja ympärstöteknkan tedekuntaneuvoston
LisätiedotKansainvälisen konsernin verosuunnittelu ja tuloksenjärjestely
Kansanvälsen konsernn verosuunnttelu ja tuloksenjärjestely Kansantaloustede Pro gradu -tutkelma Talousteteden latos Tampereen ylopsto Toukokuu 2007 Pekka Kleemola TIIVISTELMÄ Tampereen ylopsto Talousteteden
LisätiedotLIITE 2 SUORAN SOVITTAMINEN HAVAINTOPISTEISIIN
Oulun ylopsto Fyskan opetuslaboratoro Fyskan laboratorotyöt LIITE SUORA SOVITTAMIE HAVAITOPISTEISII Tarkastelemme fyskan tössä usen eteen tulevaa tlannetta, jossa olemme mtanneet kpl pstepareja ( X, Y
LisätiedotX310 The original laser distance meter
TM Leca DISTO touch TMD810 Leca DISTO X10 The orgnal laser dstance meter The orgnal laser dstance meter The orgnal laser dstance meter Ssällysluettelo Latteen asennus- - - - - - - - - - - - - - - - - -
LisätiedotMoraalinen uhkapeli: N:n agentin tapaus eli moraalinen uhkapeli tiimeissä
Moraalnen uhkapel: N:n agentn tapaus el moraalnen uhkapel tmessä Mat-2.4142 Optmontopn semnaar Ismo Räsänen 4.3.2008 S ysteemanalyysn Laboratoro Teknllnen korkeakoulu Estelmä 11 - Ismo Räsänen Optmontopn
LisätiedotLASITETTUJEN PARVEKKEIDEN ÄÄNENERISTÄVYYDEN SUUNNITTELUOHJE
LASITETTUJEN PARVEKKEIDEN ÄÄNENERISTÄVYYDEN SUUNNITTELUOHJE Vlle Kovalanen 1, Mkko Kyllänen 2, Tmo Huhtala 1 1 A-Insnöört Suunnttelu Oy Satakunnankatu 23 A 33210 Tampere etunm.sukunm@ans.f 2 Tampereen
LisätiedotMat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut
Harjotus, esmerkkratkasut K 1. Olkoon f : C C, f(z) z z. Tutk, mssä pstessä f on dervotuva. Ratkasu 1. Jotta funkto on dervotuva, on sen erotusosamäärän f(z + ) f(z) raja-arvon 0 oltava olemassa ja ss
LisätiedotVesipuitedirektiivin mukainen kustannustehokkuusanalyysi maatalouden vesienhoitotoimenpiteille Excel sovelluksena
Vesputedrektvn mukanen kustannustehokkuusanalyys maatalouden vesenhototomenptelle Excel sovelluksena En Kunnar Helsngn ylopsto Talousteteen latos Ympärstöekonoma Pro gradu tutkelma Maaluu 2008 Tedekunta/Osasto
LisätiedotLuento 6 Luotettavuus Koherentit järjestelmät
Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Lueto 6 Luotettavuus Koherett ärestelmät Aht Salo Systeemaalyys laboratoro Matematka a systeemaalyys latos Aalto-ylosto erustetede korkeakoulu
LisätiedotFDS-OHJELMAN UUSIA OMINAISUUKSIA
FDS-OHJELMAN UUSIA OMINAISUUKSIA Smo Hostkka VTT PL 1000, 02044 VTT Tvstelmä Fre Dynamcs Smulator (FDS) ohjelman vdes verso tuo mukanaan joukon muutoksa, jotka vakuttavat ohjelman käyttöön ja käytettävyyteen.
LisätiedotIlmanvaihdon lämmöntalteenotto lämpöhäviöiden tasauslaskennassa
Y m ä r s t ö m n s t e r ö n m o n s t e 122 Ilmanvahdon lämmöntalteenotto lämöhävöden tasauslaskennassa HELINKI 2003 Ymärstömnsterön monste 122 Ymärstömnsterö Asunto- ja rakennusosasto Tatto: Lela Haavasoja
LisätiedotTarkastellaan kuvan 8.1 (a) lineaarista nelitahoista elementtiä, jonka solmut sijaitsevat elementin kärkipisteissä ja niiden koordinaatit ovat ( xi
Elementtmenetelmän erusteet 8. 8 D-SOLIDIRKEEE 8. ohdanto Kolmulottesa soldelementtejä tartaan kolmulottesten kaaleden mallntamseen. ällön tarkasteltaan kaaleen geometralla e ole ertsrtetä jotka teksät
LisätiedotJaksolliset ja toistuvat suoritukset
Jaksollset ja tostuvat suortukset Korkojakson välen tostuva suortuksa kutsutaan jaksollsks suortuksks. Tarkastelemme tässä myös ylesempä tlanteta jossa samansuurunen talletus tehdään tasavälen mutta e
LisätiedotKorkealämpötilakemia
Korkealämpötlakema Johdanto reaktoknetkkaan Ma 6.11.2017 klo 10-12 SÄ114 Oulun ylopsto Tavote Oppa reaktoknetkan laskennallsta mallnnusta Tutustua pyrometallurgsssa ja mussa korkealämpötlaprosessessa esntyven
LisätiedotJaetut resurssit. Tosiaikajärjestelmät Luento 5: Resurssien hallinta ja prioriteetit. Mitä voi mennä pieleen? Resurssikilpailu ja estyminen
Tosakajärjestelmät Luento : Resurssen hallnta ja prorteett Tna Nklander Jaetut resursst Useat tapahtumat jakavat ohjelma-/lattesto-olota, jossa kesknänen possulkemnen on välttämätöntä. Ratkasuja: Ajonakanen
LisätiedotMarkov-prosessit (Jatkuva-aikaiset Markov-ketjut)
J. Vrtamo Lkenneteora a lkenteenhallnta / Markov-prosesst 1 Markov-prosesst (Jatkuva-akaset Markov-ketut) Tarkastellaan (statonaarsa) Markov-prosessea, oden parametravaruus on atkuva (yleensä aka). Srtymät
LisätiedotEpälineaaristen pienimmän neliösumman tehtävien ratkaiseminen numeerisilla optimointimenetelmillä (valmiin työn esittely)
Epälneaarsten penmmän nelösumman tehtäven ratkasemnen numeerslla optmontmenetelmllä valmn työn esttely Lar Pelkola 9.9.014 Ohjaaja/valvoja: Prof. Harr Ehtamo yön saa tallentaa ja julkstaa Aalto-ylopston
Lisätiedot1. YLEISKATSAUS MYYNTIPAKKAUKSEN SISÄLTÖ. ZeFit USB -latausklipsi Käyttöohje. Painike
Suom USER GUIDE YLEISKATSAUS LATAAMINEN KIINNITTÄMINEN KÄYTÖN ALOITTAMINEN TIETOJEN SYNKRONOINTI NÄYTTÖTILAT AKTIIVISUUSMITTARI UNITILA TAVOITTEET MUISTUTUKSET TEKNISET TIEDOT 6 8 10 12 16 18 20 21 22
LisätiedotYleistä. Teräsrakenteiden liitokset. Liitos ja kiinnitys
Ylestä Teäsakenteden ltokset (EC3-1-8, EC3-1-8-NA) Teäsakenteden lttämsessä tosnsa vodaan käyttää seuaava menetelmä: uuv-, ntt- ja nveltappltokset htsausltokset lmaltokset Ltos ja knntys Ltosta asttavan
LisätiedotMaanhintojen vikasietoisesta mallintamisesta
Maanmttaus 8:-2 (2006) 5 Maanmttaus 8:-2 (2006) Saapunut 0.8.2005 ja tarkstettuna.4.2006 Hyväksytty 30.6.2006 Maanhntojen vkasetosesta mallntamsesta Marko Hannonen Teknllnen korkeakoulu, Kntestöopn laboratoro
LisätiedotSU/Vakuutusmatemaattinen yksikkö (6)
SU/Vakuutusmatemaattnen ykskkö 28.0.206 (6) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV 2. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan
LisätiedotVATT-TUTKIMUKSIA 124 VATT RESEARCH REPORTS. Tarmo Räty* Jussi Kivistö** MITATTAVISSA OLEVA TUOTTAVUUS SUOMEN YLIOPISTOISSA
VATT-TUTKIMUKSIA 124 VATT RESEARCH REPORTS Tarmo Räty* Juss Kvstö** MITATTAVISSA OLEVA TUOTTAVUUS SUOMEN YLIOPISTOISSA Valton taloudellnen tutkmuskeskus Government Insttute for Economc Research Helsnk
LisätiedotKuntoilijan juoksumalli
Rakenteden Mekankka Vol. 42, Nro 2, 2009, s. 61 74 Kuntoljan juoksumall Matt A Ranta ja Lala Hosa Tvstelmä. Urhelututkmuksen melenknnon kohteena ovat yleensä huppu-urheljat. Tuokon yksnkertastettu juoksumall
Lisätiedot- Keskustelu symbolein. i
- Keskustelu symbolen Mukana KESY:ä kehttelemässä Anu Uuskylä, Martnnemen koulu, Oulun ylopsto Sar Haapakangas, Suomen Vanhempanltto Mar Joktalo-Trebs, Leea Paja ja Annukka Auto, Valter Ida Lndström, Jun
LisätiedotDEE Polttokennot ja vetyteknologia
DEE-54020 Polttokennot ja vetyteknologa Polttokennon hävöt 1 Polttokennot ja vetyteknologa Rsto Mkkonen Polttokennon tyhjäkäyntjännte Teoreettnen tyhjäkäyntjännte E z g F Todellnen kennojännte rppuu er
Lisätiedotd L q i = V = mc 2 q i 1 γ = = p i. = V = γm q i + QA i. ṗ i + Q A i + Q da i t + j + V + Q φ
TTKK/Fyskan latos FYS-1640 Klassnen mekankka syksy 2009 Laskuharjotus 5, 16102009 1 Ertysessä suhteellsuusteorassa Lagrangen funkto vodaan krjottaa muodossa v L = m 2 u t 1! ṙ 2 V (r) Osota, että tämä
LisätiedotS , FYSIIKKA III (ES), Syksy 2002, LH 4, Loppuviikko 39. Partitiofunktiota käyttäen keskiarvo voidaan kirjoittaa muotoon
S-11435, FYSIIKKA III (ES), Syksy 00, LH 4, Loppuvkko 39 LH4-1* Käyttän Maxwll-Boltzmann-jakauman parttofunktota määrtä a) nrgan nlön kskarvo (E ) skä b) nrgan nlöllnn kskpokkama kskarvosta l nrgan varanss,
LisätiedotAINEIDEN OMINAISUUKSIIN PERUSTUVA SEOSTEN LUOKITUS JA VAARAA OSOITTAVAT LAUSEKKEET
N:o 979 3731 te 2 AINEIDEN OMINAISUUKSIIN ERUSTUVA SEOSTEN UOKITUS JA VAARAA OSOITTAVAT AUSEKKEET JOHDANTO Vaarallsa aneta ssältävä seoksa luokteltaessa ja merkntöjä valttaessa aneden ptosuuksen perusteella
LisätiedotGalerkin in menetelmä
hum.9.3 Galerkn n menetelmä Galerknn menetelmän soveltamnen e ole rajottunut van ongelmn, jotka vodaan pukea sellaseen varaatomuotoon, joka on seurauksena funktonaaln mnmomsesta, kuten potentaalenergan
Lisätiedot= E(Y 2 ) 1 n. = var(y 2 ) = E(Y 4 ) (E(Y 2 )) 2. Materiaalin esimerkin b) nojalla log-uskottavuusfunktio on l(θ; y) = n(y θ)2
HY / Matematka ja tlastotetee latos Tlastolle päättely II, kevät 28 Harjotus 3A Ratkasuehdotuksa Tehtäväsarja I Olkoot Y,, Y ja Nθ, ) Osota, että T T Y) Y 2 o parametr gθ) θ 2 harhato estmaattor Laske
LisätiedotKynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto
Kynä-paper -harjotukset Tana Lehtnen 8.8.07 Tana I Lehtnen Helsngn ylopsto Etelä-Suomen ja Lapn lään, 400 opettajaa a. Perusjoukon (populaaton) muodostvat kakk Etelä-Suomen ja Lapn läänn peruskoulun opettajat
LisätiedotKUVIEN LAADUN ANALYSOINTI
KUVIEN LAADUN ANALYSOINTI Lasse Makkonen 1.7.2003 Joensuun Ylopsto Tetojenkästtelytede Pro gradu tutkelma Tvstelmä Tutkelmassa luodaan katsaus krjallsuudessa esntyvn dgtaalsten kuven laadullsen analysonnn
Lisätiedot13. Lineaariset ensimmäisen kertaluvun differentiaalisysteemit
68 3. Leaarset esmmäse kertaluvu dfferetaalsysteemt Tarkastelemme systeemejä () x () t = A() t x() t + b () t, jossa matrs A kertomet ja b ovat välllä I jatkuva. Jatkuve vektorarvoste fuktode avaruutta
LisätiedotEsitä koherentin QAM-ilmaisimen lohkokaavio, ja osoita matemaattisesti, että ilmaisimen lähdöstä saadaan kantataajuiset I- ja Q-signaalit ulos.
Sgnaalt ja järjestelmät Laskuharjotukset Svu /9. Ampltudmodulaato (AM) Spektranalysaattorlla mtattn 50 ohmn järjestelmässä ampltudmodulaattorn (AM) lähtöä, jollon havattn 3 mpulssa spektrssä taajuukslla
LisätiedotKOHTA 3. KOOSTUMUS JA TIEDOT AINEOSISTA
Ssältää 3% aneosa, joden vaaroja vesympärstölle e tunneta. Lsätetoja Vaaralauseketta H304 e sovelleta aerosolelle. Nota P: 64742-48-9. 2.3 Muut vaarat E tunneta. KOHTA 3. KOOSTUMUS JA TIEDOT AINEOSISTA
LisätiedotCOULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT
COUOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT SISÄTÖ: Coulombn voma Sähkökenttä Coulombn voman a sähkökentän laskemnen pstevaaukslle Jatkuvan vaauksen palottelemnen pstevaauksks
LisätiedotPalkanlaskennan vuodenvaihdemuistio 2014
Palkanlaskennan vuodenvahdemusto 2014 Pkaohje: Tarkstettavat asat ennen vuoden ensmmästä palkanmaksua Kopo uudet verokortt. Samat arvot kun joulukuussa käytetyssä, lman kumulatvsa tetoja. Mahdollsest muuttuneet
LisätiedotAB TEKNILLINEN KORKEAKOULU
B TEKNILLINEN KORKEKOULU Tetoverkkolaboratoro luento05.ppt S-38.45 - Lkenneteoran perusteet - Kevät 00 Ssältö eruskästteet Dskreett satunnasmuuttujat Dskreett jakaumat lkm-jakaumat Jatkuvat satunnasmuuttujat
Lisätiedot5. KVANTTIMEKANIIKKAA
5. KVANTTIMEKANIIKKAA Bohrn atommallsta samme jonknlasen kuvan atomn rakenteesta. Kutenkaan Bohrn atommall e pysty selttämään kakka kokeellsa havantoja spektrestä: Mks osa spektren vvosta on tosa vomakkaampa
Lisätiedot