Bernoullijakauma. Binomijakauma
|
|
- Reijo Sariola
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 Beroulljaauma Beroull oe o ahde mahdollse ulostulo oe, jossa taahtumsta äytetää mtysä ostume ja eäostume. Esmerejä: rahahetto (ruua ta laava), lase sytymä (tyttö ta oa), helö verryhmä ( ta c ), oselja tet lääseme (yllä ta e) je.. Beroull oeessa oe tehdää erra ja ollaa ostueta stä saadaao tuloses taahtuma (ostume, todeäösyys ) va e (todeäösyys 1- ). Koee tulosta vodaa uvata satuasmuuttujalla X: P(X ostume ) P(X1) P(X eäostume )P(X0) 1-, mssä 0 < < 1 Jaauma ss: P(Xx) x (1-) 1-x, x0,1. E(X) Var(X) (1-) Bomjaauma Beroulloee ylestys: tostetaa B-oetta ertaa ja lasetaa ua mota ertaa saadaa ostume. Esmer: Hetetää rahaa 10 ertaa ja halutaa tetää mä t o saada 4 ruuaa. X ~ B(,), mssä o oee tostoje luumäärä Jaauma: P(X) ( ) (1-) - E(X) Var(X) (1-) Esmer: Oloo eljä geeä jota tuottavat samaa rotea P. Oletetaa että yhde gee mutaatotodeäösyys solu elaaa o ja solu tarvtsee tomasee vähtää ahde gee oeata tomtaa. Mä o todeäösyys että solu tom oe? P({solu tom}) P(X>2) 1-P(X<2) ( 4 )
2 Geometre jaauma Tehdää havatoja sarjasta rumattoma Ber() oeta ja ollaa ostueta stä mllo estyy esmmäe ostuut oetulos S-muuttuja X, joa saa arvosee esmmäse ostuee oee järjestestysumero, oudattaa geometrsta jaaumaa X~Geom() P(X) (1-) -1, E(X) 1/ Var(X) (1-)/ 2 1,2, Esmer: Teear Bra Kottarae o äättäyt jataa DN sevess mostamsta aua ues hä saa mostamse ostumaa. Oletetaa että mostame ostuu 50%: todeäösyydellä. Moeeo mostamsee häe o varauduttava jotta hä vo tyytyä 95%: varmuutee mostamse ostumsesta? Ratasu erustuu Geom() jaauma ertymäfutoo F(x)P(X<x) Koelemalla F(4)0.937 ja F(5)0.968 havataa että o Bra o hyvä varautua 5:tee mostamsyrtysee. Posso jaauma Satuasmuuttuja X oudattaa Posso jaaumaa (λ 0) jos P(X) e -λ λ /!, mssä 0,1,2, X~Posso(λt) mttaa jo dmeso t (esm. aja) ysövälllä sattuede (harvaste) taauste luumäärää. ESIM: Vauutusyhtöö saauve, tetystä oettomuustyystä aheutuede, orvausvaatmuste luumäärä tetyllä aavälllä. Parametr t vo olla myös tuus, ta-ala, tlavuus ta muu dmeso Posso jaaumaa vodaa äyttää dyaamste satuaslmöde matemaattsea malla. Dyaamste lmöde yhteydessä äytetää termä rosess Posso rosess o ylesest äytetty stoaste rosess mm. erlaste alvelutlatede malla 2
3 Posso jaauma ESIM: saata saauu tettyy alvelusteesee satuasest ja tosstaa rumatta esmäär 4 asaasta muutssa. Oletetaa että saaume oudattaa Posso rosessa. Lase t että muut aaa tulee aa ys asaas. Ratasu: P(X 1 asaas muut aaa) 1-P(X0) Mtä o yt λ? Vastaus λ 4 El 1-P(X0) 1 e -(λt) (λt) 0 /0! 1-e Posso jaaumalle: E(X) λ Var(X) λ Posso jaauma ESIM: saata saauu tettyy alvelusteesee satuasest ja tosstaa rumatta esmäär 5 asaasta muutssa. Jos asaasalveluste ystyy alvelemaa masmssaa 8 asaasta muutssa, mä o todeäösyys että alveluste e ysty muut aaa alvelemaa aa saauva asaata? Ratasu: P(X>8) 1- P(X 8) e -λ λ /!, Mtä o yt λ? Vastaus λ 5 El P(X>8)1-P(X 8)
4 Posso vs. bomjaauma Taausssa jossa bomjaaumaa lttyvä Beroull oee ostumstodeäösyys o e ja tostooede luumäärä suur -> Posso jaaumalla vodaa arosmoda bomjaaumaa Todstus: Noudattaoo X~B(,) jollo P(X) ( ) (1-) - Oloo λ/, jollo u ->0 ->0 u E[X] λ ysyy vaoa. Tällö u -> P(X ) λ λ 1! λ λ 1 - λ λ 1! λ 1 -! ( - )! λ e! -λ λ 1 osa (1-(λ/)) lähestyy : asvaessa oht termä e -λ seä (1-(λ/)) - ja haasulossa oleva term lähestyvät yhtä. - Posso vs. bomjaauma ESIM: Lase todeäösyys että oretaa 2 geeä havataa vallses 500 gee jouosta, jos tedetää yhde gee mutaatotodeäösyyde oleva Ratasussa äytetää Posso arosmaatota bomjaaumalle. Mtä o λ? λ 500(0.001) 0.5 Nyt ss P(X 2) x 2 0 (e x )/x!
5 Mota dsreettä s-muuttujaa Tarastellaa dsreettä satuasmuuttujaa: X 1,,X Satuasvetor X(X 1,,X ) vodaa lttää yhdstetty todeäösyysjaauma: (x)p(x 1 x 1,, X x ), mssä x(x 1,,x ) o satuasvetor X realsaato. TPUS 1: S-muuttujat X 1,,X rumattoma Satuasmuuttujlla jaaumat (x )P(X x ), 1,,. Tällö (x) (x ) Jos satuasmuuttujat X 1,,X ovat samasta jaaumasta ja tosstaa rumattoma tällö äee äytettävä lyheettä d (deedetly ad detcally dstrbuted). Multomjaauma TPUS 2: Dsreett s-muuttujat X 1,,X tosstaa ruva Tarastellaa tälläse taause erostaausta, joa johtaa multomjaaumaa (bomjaauma ylestys) Oletetaa että tehdää tostooe ertaa että joasella tostolla mellä o mahdollsta ulostuloa todeäösyysllä, 1,, ESIM: Noahetto ertaa, jollo 6 ja 1/6. Määrtellää X : atava ulostulo, 1,,, estymsluumäärä tostolla. Tällö todeäösyys että X x (el (x)p(x 1 x 1,, X x )) saadaa multomjaaumasta ( x)! (x!) mssä 1,, ja x(x 1,,x ) o ss satuasvetor X realsaato. x Mtä o x? Vastaus el selväst X :t ruva tosstaa. 5
6 Muutama jatuva jaauma Normaaljaauma X~N(µ,σ 2 ) Stadartot Y (X- µ)/ σ 2 johtaa Y~N(0,1). HUOM! Jos X~B(,) ja ->, tällö satuasmuuttuja Y(X-)/sqrt((1-)) ~ N(0,1). Tasajaauma: X~ Tas(a,b), (x)1/(b-a), u a x b, muute 0. E[X](a+b)/2 ja Var[X](b-a) 2 /12 Gammajaauma: X~Gamma(α,β), (x)1/((β α )Γ(α)) x α-1 ex(-x/β), u x,α,β>0, u x<0 (x)0. E[X] αβ ja Var[X] αβ 2 Esoettjaauma X~Ex(β) Gamma(1,β). Gammajaauma Gammajaauma theysfuto er α arvolla u β alfa1 alfa2 alfa
7 χ 2 jaauma χ 2 jaauma o Gammajaauma erostaaus, joa saadaa valtsemalla αv/2, (v>0) ja β2: (x)1/((2 v/2 )Γ(v/2)) x v/2-1 ex(-x/2), u x >0 (x)0, u x<0. Parametr v saotaa atava χ 2 jaaumaa oudattava satuasmuuttuja X~Ch2(v/2) vaausastede luumäärä. E[X] v ja Var[X] 2v Seuraavat teoreemat ätevät χ 2 jaaumaa: Teoreema 1: Jos X 1 ja X 2 ovat rumattoma χ 2 jaautueta satuasmuuttuja vaausaste v 1 ja v 2 äde s-muuttuje summasatuasmuuttuja XX 1 + X 2 oudattaa X~Ch2((v 1 + v 2 )/2). Teoreema 2: Jos X~N(µ,σ 2 ) ja X 1,,X o äyttee satuasotus X:sta, tällö satuasmuuttuja Y ( 1 (X - µ))/σ 2 oudattaa χ 2 jaaumaa vaausaste : Y ~ Ch2(/2). χ 2 jaauma χ 2 jaauma o Gammajaauma erostaaus, joa saadaa valtsemalla αv/2, (v>0) ja β2: 0.6 (x)1/((2 v/2 )Γ(v/2)) x v/2-1 ex(-x/2), u x >0 (x)0, u x<0. Parametr 0.5 v saotaa atava χ 2 jaaumaa oudattava satuasmuuttuja X~Ch2(v/2) vaausastede luumäärä. 0.4 E[X] v ja Var[X] 2v v1 v2 v3 v
8 χ 2 jaauma ESIM: Oletetaa että X o X~N(10, σ 2 ), mssä σ 2 tutemato. Estmodaa σ 2 X: satuasotosesta oo 30 äytettä. Mllä t:llä tämä otosestmaatt s 2 e ole 20% elessä oeasta varasssta σ 2 Ratasu: Otosestmaatt s 2 ( 1 (X - 10))/. Ehto ss 0.8σ 2 < ( 1 (X - 10))/ < 1.2 σ 2, josta 30 < ( 1 (X - 10))/ σ 2 < 36, mssä satuasmuuttuja Y ( 1 (X - 10))/ σ 2 oudattaa Y~Ch2(30/2) vaausaste 30. P(Y<30) 0.25 ja P(Y>36) 0.26, el P(30<Y<36) Huomo teoreemaa 2: Jos µ o tutemato ja se joudutaa estmodaa äyttestä s(x 1 + +X )/ satuasmuuttuja Y ( 1 (X - s))/σ 2 oudattaa χ 2 jaaumaa vaausaste -1: Y ~ Ch2((-1)/2). Ylesest: estmotavaa suuretta udottaa vaausastee -:tee. χ 2 test Tarastellaa tlastollsta χ 2 test ahde jaauma vertalemsee Teoreema: Jos 1,, ja e 1, e ovat havatut ( ) ja odotetut (e ) määrät yrtyse satuastostooeessa jossa mahdollsta ulostuloa, tällö u -> summa 2 ( - e ) 1 jaauma oudattaa χ 2 jaaumaa -1 vaausaste. e ESIM: Ylosto asvtetee latosella rsteytett ruusuja, ja tulosea saat 120 uasta, 48 eltasta, 36 sstä ja 13 voletta ruusua. Tutmusta johtava rofessor olett että väre suhteet ovat 9:3:3:1. Oo testtulos oeava rofessor teorasta? RTK: Hyotees H 0 : 1 9/16, 2 3/16, 3 3/16, 4 1/16 ovat t:t multomjaaumalle jossa 4 ulostuloa ja e Nyt y 1 {( - e ) 2 /e } 1.9, osa Y~Ch2(3/2) ja F χ2 (1.9)0.41 jote 59%: todeäösyydellä teora ätee (rtte arvo F χ2 (7.81)0.95) 8
9 Parametre estmosta Oloo satuasmuuttuja X jaauma (x θ), mssä θ määrtellää :lla arametrlla θ(θ 1,, θ ). Oloo edellee x(x 1,, x ) oo oleva satuasotos X:stä. Tämä havatoaesto malla o satuasvetor (X 1,,X ). Havattu otos x(x 1,, x ) o (X 1,,X ): realsaato Estmossa arametre θ arvot el estmaatt θ^(θ^1,, θ^ ) saadaa sjottamalla havaot estmotaavaa t(x 1,, x ): θ^ t(x 1,, x ) rvo θ^ o satuasmuuttuja θ * t(x 1,, x ) realsaato. Satuasmuuttuja θ * o arametr θ estmaattor Estmaatt o todelle, lasettu arvo, estmaattor o mall Estmaattor θ * hyvyyttä mtattaessa tarastellaa ua lähellä todellsta (tutematota) arvoa θ saatu estmaatt θ^ o. Hyvä estmaattor: Parametre estmosta 1) HRHTTOMUUS: taa esmäär oeta arvoja 2) MINIMI VRINSSI: rvoje varass o e 4) TRKENTUVUUS: Havatoje määrä asvaessa estmaattor atamat arvot taretuvat HRHTTOMUUS: E[ θ * ] θ TRKENTUVUUS: lm -> P( E[θ * ]- θ )0)1 Suurmma usottavuude meetelmä (maxmum lelhood; ML) o eräs suostummsta estmotmeetelmstä 9
10 Suurmma usottavuude meetelmä Maxmum lelhood, ML-meetelmä Meetelmässä satuasmuuttuja X odotetaa oudattava jaaumaa (x;θ), mssä θ(θ 1,, θ ) ( arametra) ML estmaattort evät aa ole ysästtesä ja harhattoma, e ute ovat yleesä taretuva LÄHTÖKOHT: Se mall (x;θ) X:lle o aras, joa teee X:stä havatu otose (x 1,, x ) todeäösemmäs. Jos X-dsreett: Tällö todeäösyys saada otos (x 1,, x ) u äytteet ovat samo jaautueta ja tosstaa rumattoma o L(θ) 1 (x ;θ), mssä L (θ) o usottavuusfuto (lelhoodfuto). Suurmma usottavuude meetelmässä etstää sellaset arametrarvot θ^ jota masmovat lelhoodfuto L(θ) L(θ^) max θ L(θ) Suurmma usottavuude meetelmä Laseallssta systä use L(θ):sta otetaa logartm, jollo saadaa l(θ) (log L(θ) log 1 (x ;θ) 1 (x ;θ), mssä l(θ) :aa utsutaa logartmses usottavuusfutos (log lelhood) max θ L(θ) ja max θ l(θ) tuottavat sama ratasu estmaates. ESIM: Lasetaa DN sevessstä emäste,g,c,t: estymserrat, G, C ja T ( 1 ). Määrtä ML estmaattorlla : estymstodeäösyys P(X). RTKISU: Satuasmuuttuja X~B(, ). El saadaa havaolla X usottavuusfutos L() (1 ) c 10
11 Suurmma usottavuude meetelmä josta edellee l() log log + log (1 + c ) c log(1 Dervomalla l() : suhtee ja asettamalla dl()/d 0 saadaa ) dl() d c 1 0, josta (1 ) c El suurmma usottavuude (ML) estmaats :lle saadaa ^ /. MP estmaattor Masmum Posteror (MP) meetelmässä estmaatt θ^ saadaa osterorjaaumasta (θ x): (θ^ x) max (θ x), mssä (θ x) (x θ)(θ)/(x) Bayes aava muaa. El otmaalset arametrt θ^ ovat Bayeslasessa melessä todeäösemmät arametrarvot havaolla x ja etuätestetämysellä (θ). MP vastaa ML: 1) MP, masmodaa (θ x) arametre θ suhtee. 2) ML, masmodaa usottavuusfutota (x θ ) arametre θ suhtee MP:ssa max (θ x) saadaa dervaattaehdosta d(θ x) /d θ 0, joa dette ehdo d log (x θ )/d θ + d log (θ )/d θ 0, joa yhtälö ratasu ataa MP estmaat θ^ arametrelle θ. Jos (θ) tasajaautuut, d log (θ )/d θ 0, jollo MP estmaattor vastaa ML estmaattora (el masmodaa usottavuusfutota (x θ)) 11
Jakaumien tunnusluvut. Jakaumien tunnusluvut. Jakaumien tunnusluvut: Mitä opimme? 2/2. Jakaumien tunnusluvut: Mitä opimme? 1/2
TKK (c) Ila Mell (4) Jaaume tuusluvut Johdatus todeäösyyslasetaa Jaaume tuusluvut Marov ja Tshebyshev epäyhtälöt Momett Vous ja hupuuus Suurte luuje la TKK (c) Ila Mell (4) Jaaume tuusluvut: Mtä opmme?
= E(Y 2 ) 1 n. = var(y 2 ) = E(Y 4 ) (E(Y 2 )) 2. Materiaalin esimerkin b) nojalla log-uskottavuusfunktio on l(θ; y) = n(y θ)2
HY / Matematka ja tlastotetee latos Tlastolle päättely II, kevät 28 Harjotus 3A Ratkasuehdotuksa Tehtäväsarja I Olkoot Y,, Y ja Nθ, ) Osota, että T T Y) Y 2 o parametr gθ) θ 2 harhato estmaattor Laske
KUNTIEN ELÄKEVAKUUTUS 30.10.2008 VARHAISELÄKEMENOPERUSTEISESSA MAKSUSSA 1.1.2009 LÄHTIEN NOUDATETTAVAT LASKUPERUSTEET
KUNTIN LÄKVKUUTU 328 VRHILÄKMNORUTI MKU 29 LÄHTIN NOUDTTTVT LKURUTT Valtuusuta ahstaa arhaseläemeoperustese masu eaode yhtesmäärä uodelle euromääräsest Tämä ahstettu masu o samalla lopullste masue yhtesmäärä
HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 6A Ratkaisuehdotuksia.
HY, MTO / Matemaattiste tieteide adiohjelma Tilastollie päättely II, evät 2018 Harjoitus 6A Rataisuehdotusia Tehtäväsarja I 1. (Moistee tehtävä 5.4) Kauppias myy mäysiemeiä, joide itävyyde väitetää oleva
7. Menetysjärjestelmät
lueto7.ppt S-38.45 Leeteora perusteet Kevät 25 Ssältö Kertausta: ysertae leeteoreette mall Posso-mall asaata, palvelota Sovellus vrtaava dataletee malltamsee vuotasolla Erlag-mall asaata, palvelota < Sovellus
4.7 Todennäköisyysjakaumia
MAB5: Todeäöisyyde lähtöohdat.7 Todeäöisyysjaaumia Luvussa 3 Tuusluvut perehdyimme jo jaauma äsitteesee yleesä ja ormaalijaaumaa vähä taremmi. Lähdetää yt tutustumaa biomijaaumaa ja otetaa se jälee ormaalijaauma
Terveytemme Termisanasto ja tilastolliset menetelmät
Terveytemme Termsaasto a tlastollset meetelmät Termsaasto Tlastollset meetelmät Lädevtteet Termsaasto Elaaodote Estyvyys Ilmaatuvuus Iävaot Koortt Luottamusväl Mallvaot PYLL el potetaalsest meetetyt elvuodet
VÄRÄHTELYMEKANIIKKA SESSIO 24: Usean vapausasteen vaimenematon ominaisvärähtely osa 2
/ ÄRÄHELYMEKANIIKKA SESSIO : Usea vapausastee vaeeato oasvärähtely osa MONINKERAISE OMINAISAAJUUDE Sesso MS oreeratu oasuodo { lasetaeetelässä oletett, että o ysertae oasulataauus. arastellaa velä tapausta,
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemaalyys laboratoro Mat-.9 Sovellettu todeäkösyyslasku A Nordlud Harjotus 8 (vko 45/3) (Ahe: Raja-arvolauseta, otostuuslukuja, johdatusta estmot, Lae luvut 9.5,.-.6). Olkoo X ~ p(λ), mssä λ
Luento 6 Luotettavuus Koherentit järjestelmät
Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Lueto 6 Luotettavuus Koherett ärestelmät Aht Salo Systeemaalyys laboratoro Matematka a systeemaalyys latos Aalto-ylosto erustetede korkeakoulu
Matematiikan ja tilastotieteen laitos Johdatus diskreettiin matematiikkaan (Syksy 2008) 4. harjoitus Ratkaisuja (Jussi Martin)
Matematan ja tlastoteteen latos Johdatus dsreettn matemataan (Sysy 28 4. harjotus Ratasuja (Juss Martn 1. Kertomus Hotell Kosmosesta jatuu: Hotellyhtymän johdolta tul määräys laata luettelo asta mahdollssta
MAB7 Talousmatematiikka. Otavan Opisto / Kati Jordan
3.3 Laiat MAB7 Talousmatematiia Otava Opisto / Kati Jorda Laia ottamie Suuri osa ihmisistä ottaa laiaa jossai elämävaiheessa. Pailaiaa tarvitaa yleesä vauusia ja/tai taausia. Laiatulle pääomalle masetaa
1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ).
HY, MTO / Matemaattiste tieteide adiohjelma Tilastollie päättely II, evät 019 Harjoitus 5B Rataisuehdotusia Tehtäväsarja I 1. (Jatoa Harjoitus 5A tehtävää 4). Moistee esimeri 3.3.3. muaa momettimeetelmä
1. (Monisteen teht. 5.16) Eräiden kuulalaakereiden kestoa (miljoonaa kierrosta) on totuttu kuvaamaan Weibull-jakaumalla, jonka tiheysfunktio on
HY MTO / Matemaattste tetede kadohjelma Tlastolle päättely II kevät 019 Harjotus 7B Ratkasuehdotuksa Tehtäväsarja I 1 Mostee teht 516 Eräde kuulalaakerede kestoa mljooaa kerrosta o totuttu kuvaamaa Webull-jakaumalla
HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 7B Ratkaisuehdotuksia.
HY, MTO / Matemaattste tetede kadohjelma Tlastolle päättely II, kevät 208 Harjotus 7B Ratkasuehdotuksa Tehtäväsarja I Olkoo Y, Y rppumato otos Pareto jakaumasta, fy; θ θc θ y θ+ { y > c } tuetulla vakolla
Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava: Esitiedot
TKK (c) Ilkka Mell (2004) Kokoastodeäkösyys ja Kokoastodeäkösyys ja : Johdato Kokoastodeäkösyyde ja Bayes kaavoje systeemteoreette tulkta Johdatus todeäkösyyslasketaa Kokoastodeäkösyys ja TKK (c) Ilkka
13. Lineaariset ensimmäisen kertaluvun differentiaalisysteemit
68 3. Leaarset esmmäse kertaluvu dfferetaalsysteemt Tarkastelemme systeemejä () x () t = A() t x() t + b () t, jossa matrs A kertomet ja b ovat välllä I jatkuva. Jatkuve vektorarvoste fuktode avaruutta
TKK @ Ilkka Mellin (2008) 1/24
Mat-.60 Sovellettu todeäkösyyslasketa B Mat-.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Mtta-astekot Havatoaesto kuvaame ja otostuusluvut Avasaat: Artmeette keskarvo, Frekvess, Frekvessjakauma,
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-.04 Tlastollsen analyysn perusteet, evät 007. luento: Johdatus varanssanalyysn S ysteemanalyysn Laboratoro Ka Vrtanen Kertaus: ahden rppumattoman otosen t-test () () Perusjouo oostuu ahdesta ryhmästä
9 Lukumäärien laskemisesta
9 Luumäärie lasemisesta 9 Biomiertoimet ja osajouoje luumäärä Määritelmä 9 Oletetaa, että, N Biomierroi ilmaisee, uia mota -alioista osajouoa o sellaisella jouolla, jossa o aliota Meritä luetaa yli Lasimesta
Mat Lineaarinen ohjelmointi
Mat-.4 Lneaarnen ohelmont 8..7 Luento 6 Duaaltehtävä (kra 4.-4.4) S ysteemanalyysn Lneaarnen ohelmont - Syksy 7 / Luentorunko Motvont Duaaltehtävä Duaalteoreemat Hekko duaalsuus Vahva duaalsuus Täydentyvyysehdot
C (4) 1 x + C (4) 2 x 2 + C (4)
http://matematiialehtisolmu.fi/ Kombiaatio-oppia Kuia mota erilaista lottoriviä ja poeriättä o olemassa? Lotossa arvotaa 7 palloa 39 pallo jouosta. Poeriäsi o viide orti osajouo 52 orttia äsittävästä paasta.
MTTTP1 SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN
MTTTP SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN Aesto kaavoje () (3), (9) ja () esmerkkeh Lepakot pakallstavat hyötesä lähettämällä korkeataajusta äätä Ne pystyvät pakallstamaa hyöteset
Mat Sovellettu todennäköisyyslaskenta B 8. harjoitukset / Ratkaisut Aiheet: Otos ja otosjakaumat Avainsanat:
Mat-1.60 Sovellettu todeäkösyyslasketa Mat-1.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Otos ja otosjakaumat Avasaat: Artmeette keskarvo, Beroull-jakauma, Beroull-koe, χ -jakauma, Frekvess, Frekvessjakauma,
Tehtävä 2 Todista luennoilla annettu kaava: jos lukujen n ja m alkulukuesitykset. ja m = k=1
Luuteoria Harjoitus 1 evät 2011 Alesis Kosi 1 Tehtävä 1 Näytä: jos a ja b ovat positiivisia oonaisluuja joille (a, b) = 1 ja a c, seä lisäsi b c, niin silloin ab c. Vastaus Kosa a c, niin jaollisuuden
Jaksolliset ja toistuvat suoritukset
Jaksollset ja tostuvat suortukset Korkojakson välen tostuva suortuksa kutsutaan jaksollsks suortuksks. Tarkastelemme tässä myös ylesempä tlanteta jossa samansuurunen talletus tehdään tasavälen mutta e
Varianssianalyysi. Varianssianalyysi. Varianssianalyysi. Varianssianalyysi: Mitä opimme? Varianssianalyysi: Johdanto
TKK (c Ila Mell (004 Varassaalyys Varassaalyys: Johdato Johdatus tlastoteteesee Varassaalyys TKK (c Ila Mell (004 Varassaalyys: Mtä opmme? Tarastelemme tässä luvussa seuraavaa ysymystä: Mte tavaomae ahde
Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa
S-4.7 Fysiia III (EST) Tetti..6. Tarastellaa systeemiä, jossa ullai hiuasella o olme mahdollista eergiatasoa, ε ja ε, missä ε o eräs vaio. Oletetaa, että systeemi oudattaa Maxwell-Boltzma jaaumaa ja, että
Differentiaali- ja integraalilaskenta 1 Ratkaisut 1. viikolle /
MS-A8 Differentiaali- ja integraalilasenta, V/27 Differentiaali- ja integraalilasenta Rataisut. viiolle /. 3.4. Luujonot Tehtävä : Mitä ovat luujonon viisi ensimmäistä termiä, un luujono on a) (a n ) n=,
Viime kerralta: Puheentuotto (vokaalit)
Vme elt: Puheetuotto volt Solle glottheäte Äätöväylä Suodtue tuloe ytyvä ää Vme elt: Kelly-Lochbum yhtälöt Mllet äätöväylää tuje ute vull: 3 Vme elt: Rtooetee ll ole -uod Kelly-Lochbum yhtälöde mue toetee
9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli
lueto9.ppt S-38.45 Lkeeteora perusteet Kevät 5 Ykskertae lkeeteoreette mall Puhdas jakojärjestelmä Asakkata saapuu keskmäär opeudella asakasta per akayks. / keskmääräe asakkade välaka Asakkata palvellaa
6. Stokastiset prosessit (2)
Ssältö Markov-prosesst Syntymä-kuolema-prosesst luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 6 Markov-prosess Esmerkk Tark. atkuva-akasta a dskreetttlasta stokaststa prosessa X(t) oko tla-avaruudella
Tchebycheff-menetelmä ja STEM
Mat-2.142 Optmontopn semnaar K-2000 Montavoteopmont Semnaarestelmän tvstelmä Pentt Säynätjo 22.3.2000 Tchebycheff-menetelmä ja STEM 1. Johdanto Tchebycheff-menetelmä ja STEM ovat vuorovauttesa montavoteoptmontmenetelmä.
1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ).
HY / Matematiika ja tilastotietee laitos Tilastollie päättely II, kevät 018 Harjoitus 5B Ratkaisuehdotuksia Tehtäväsarja I 1. (Jatkoa Harjoitus 5A tehtävää ). Moistee esimerki 3.3.3. mukaa momettimeetelmä
9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli
Ssältö Kertausta: ykskertae lkeeteoreette mall M/M/-PS asakasta palvelja asakaspakkaa M/M/-PS asakasta palveljaa asakaspakkaa Sovellus elastse datalketee malltamsee vuotasolla M/M//k/k-PS k asakasta palvelja
2 Taylor-polynomit ja -sarjat
2 Taylor-polynomit ja -sarjat 2. Taylor-polynomi Taylor-polynomi P n (x; x 0 ) funtion paras n-asteinen polynomiapprosimaatio (derivoinnin annalta) pisteen x 0 lähellä. Maclaurin-polynomi: tapaus x 0 0.
ABTEKNILLINEN KORKEAKOULU
ABTEKNILLINEN KORKEAKOULU Tetoverkkolaboratoro 6. Stokastset prosesst () Luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 5 6. Stokastset prosesst () Ssältö Markov-prosesst Syntymä-kuolema-prosesst
tehtävän n yleinen muoto
t-.474 tettste lgorte ohelot Sple-eetel eetelä lsellset tet. lueto: P-tehtävä ylee uoto S ysteelyys bortoro Telle oreoulu tettste lgorte ohelot Kevät 008 / P-teht tehtävä ylee uoto Stdrduoto selle uoto
Ilkka Mellin. Sovellettu todennäköisyyslasku: Kaavat ja taulukot
Mat-.09 Sovellettu todeäkösyyslasku Systeemaalyys laboratoro Teklle korkeakoulu SYKSY 00 Ilkka Mell Sovellettu todeäkösyyslasku: Kaavat ja taulukot f XY x X x X y Y ( x, y) exp XY ( XY ) XY XY X X Y Tomttaut
funktiojono. Funktiosarja f k a k (x x 0 ) k
SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 3 4. Funtiosarjat Tässä luvussa esitettävissä funtiosarjojen tulosissa yhdistämme luujen 3 teoriaa. Esimeri 4.. Geometrinen sarja x suppenee aiilla x ], [ ja hajaantuu
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-.4 Tlastollse aals perusteet, evät 7 8. lueto: Usea selttää leaare regressomall Usea selttää leaare regressomall Seltettävä muuttua havattue arvoe vahtelu halutaa selttää selttäve muuttue havattue
Yrityksen teoria ja sopimukset
Yrtyksen teora a sopmukset Mat-2.4142 Optmontopn semnaar Ilkka Leppänen 22.4.2008 Teemoa Yrtyksen teora: tee va osta? -kysymys Yrtys kannustnsysteemnä: ylenen mall Työsuhde vs. urakkasopmus -analyysä Perustuu
Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 1. laskuharjoitus, ratkaisuehdotukset
Todennäöisyyslasenta IIa, syys loauu 019 / Hytönen 1. lasuharjoitus, rataisuehdotuset 1. ( Klassio ) Oloot A ja B tapahtumia. Todista lasuaavat (a) P(A B) P(A) + P(B \ A), (b) P(B) P(A B) + P(B \ A), (c)
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 7: Lagrangen kertojat. Pienimmän neliösumman menetelmä.
MS-A0205/MS-A0206 Dfferentaal- ja ntegraallaskenta 2 Luento 7: Lagrangen kertojat. Penmmän nelösumman menetelmä. Jarmo Malnen Matematkan ja systeemanalyysn latos 1 Aalto-ylopsto Kevät 2016 1 Perustuu Antt
S Laskennallinen systeemibiologia
S-4250 Laskeallie systeemibiologia Harjoitus Mittaustuloksea o saatu havaitoparia (x, y ),, (x, y ) Muuttuja y käyttäytymistä voidaa selittää muuttuja x avulla esimerkiksi yksikertaise lieaarise riippuvuude
[ ] [ 2 [ ] [ ] ( ) [ ] Tehtävä 1. ( ) ( ) ( ) ( ) ( ) ( ) 2( ) = 1. E v k 1( ) R E[ v k v k ] E e k e k e k e k. e k e k e k e k.
ehtävä. x( + ) x( y x( + e ( y x( + e ( E v E e ( ) e ( R E[ v v ] E e e e e e e e e 6 estimointivirhe: ~ x( x( x$( x( - b y ( - b y ( estimointivirheen odotusarvo: x( - b x( - b e ( - b x( - b e ( ( -
Naulalevylausunto Kartro PTN naulalevylle
LAUSUNTO NRO VTT-S-04256-14 1 (6) Tilaaja Tilaus Yhteyshenilö ITW Construction Products Oy Jarmo Kytömäi Timmermalmintie 19A 01680 Vantaa 18.9.2014 Jarmo Kytömäi VTT Expert Services Oy Ari Kevarinmäi PL
8.2 Luokat L ja NL. Ohjelmistotekniikan laitos OHJ-2300 Johdatus tietojenkäsittelyteoriaan, syksy
283 8.2 Loat L ja NL Aavaatvsaalyysssä e ole järevää tarastella alleaarsa vaatvsloa, osa oo syötettä e yetä lemaa alle leaarsessa ajassa e sjaa oo syötettä e välttämättä tarvtse tallettaa, jote o meleästä
Kiinteätuottoiset arvopaperit
Mat-.34 Ivestoititeoria Kiiteätuottoiset arvopaperit 6..05 Lähtöohtia Lueolla tarasteltii tilateita, joissa yyarvo laseassa äytettävä oro oli aettua ja riippuato aiaperiodista Käytäössä orot äärittyvät
Turingin kone on kuin äärellinen automaatti, jolla on käytössään
4 TUINGIN KONEET Ala Turg 1935 36 auha Koe vo srtää auha: T U I N G auhapää: ohjausykskkö: Turg koe o ku äärelle automaatt, jolla o käytössää auhapäätä vasemmalle ta okealle; se vo myös lukea ta krjottaa
Todennäköisyysjakaumat 1/5 Sisältö ESITIEDOT: todennäköisyyslaskenta, määrätty integraali
Todennäöissjaaumat /5 Sisältö ESITIEDOT: lasenta, määrätt Haemisto KATSO MYÖS: tilastomatematiia P (X = )=p. Nämä ovat 0 ja niiden summa on p =. Pistetodennäöisdet voidaan graafisesti esittää pstsuorien
POIKKILEIKKAUKSEN GEOMETRISET SUUREET
KLEKKUKEN GEMETRET UUREET d Pleause gemetrset suureet määrtellää melvaltase pstee (, hdalla leva ptaelemet d avulla. Tässä ästeltävä ptasuureta lasettaessa vdaa ättää hteelasuperaatetta (mös väheslasuperaate
3.5 Generoivat funktiot ja momentit
3.5. Generovat funktot ja momentt 83 3.5 Generovat funktot ja momentt 3.5.1 Momentt Eräs tapa luonnehta satunnasmuuttujan jakaumaa, on laskea jakauman momentt. Ne määrtellään odotusarvon avulla. Määrtelmä
, sanotaan niiden sääntöjen ja menetelmien kokonaisuutta, joilla otos poimitaan määritellystä perusjoukosta.
Y - Otatameetelmät / Sysy 009 (Risto Letoe) TEKIE YTEEVETO I Otata-asetelmat ja estimoitiasetelmat Perusjouo ja muuttujat Äärellie perusjouo U = {,...,,..., } Tulosmuuttuja y tutemattomat arvot Y,,Y,,Y
V. POTENSSISARJAT. V.1. Abelin lause ja potenssisarjan suppenemisväli. a k (x x 0 ) k M
V. POTENSSISARJAT Funtioterminen sarja V.. Abelin lause ja potenssisarjan suppenemisväli P a x x, missä a, a, a 2,... R ja x R ovat vaioita, on potenssisarja, jona ertoimet ovat luvut a, a,... ja ehitysesus
Monte Carlo -menetelmä
Monte Carlo -menetelmä Helumn perustlan elektron-elektron vuorovakutuksen laskemnen parametrsodulla yrteaaltofunktolla. Menetelmän käyttökohde Monen elektronn systeemen elektronkorrelaato oteuttamnen mulla
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todeäköisyyslaskea ja tilastotietee peruskurssi 4A Satuaisotata ja parametrie estimoiti Lasse Leskelä Matematiika ja systeemiaalyysi laitos Perustieteide korkeakoulu Aalto-yliopisto Syksy 2016,
Muuttujien välisten riippuvuuksien analysointi
Mat-.4 Tlastollse aalyys peusteet, kevät 7 5. lueto: Tlastolle ppuvuus ja koelaato Muuttuje välste ppuvuukse aalysot Tlastollsssa aalyysessä tutktaa use muuttuje välsä ppuvuuksa Työttömyysastee ppuvuus
3.6 Su-estimaattorien asymptotiikka
3.6 Su-estimaattorien asymptotiikka su-estimaattorit ovat usein olleet puutteellisia : ne ovat usein harhaisia ja eikä ne välttämättä ole täystehokkaita asymptoottisilta ominaisuuksiltaan ne ovat yleensä
Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt
FYSP103 / 1 KAASUTUTKIUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttausöytäkrjan ja työselostuksen laatmsta Luento-
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 1, MALLIRATKAISUT
JOHDATUS LUKUTEORIAAN (sysy 2017) HARJOITUS 1, MALLIRATKAISUT Tehtävä 1. (i) Etsi luvun 111312 aii teijät. (ii) Oloot a ja b positiivisia oonaisluuja joilla a b ja b a. Osoita, että silloin a = b. Rataisu
Olkoot X ja Y riippumattomia satunnaismuuttujia, joiden odotusarvot, varianssit ja kovarianssi ovat
Mat-.3 Koesuunnittelu ja tilastolliset mallit. harjoituset Mat-.3 Koesuunnittelu ja tilastolliset mallit. harjoituset / Rataisut Aiheet: Avainsanat: Satunnaismuuttujat ja todennäöisyysjaaumat Kertymäfuntio
Naulalevylausunto LL13 naulalevylle
LAUSUNTO NRO VTT-S-3259-12 1 (4) Tilaaja Tilaus Yhteyshenilö Lahti Levy Oy Asonatu 11 151 Lahti 27.4.212 Simo Jouainen VTT Expert Services Oy Ari Kevarinmäi PL 11, 244 VTT Puh. 2 722 5566, Fax. 2 722 73
tasapainotila saavutetaan kun vuo aukon läpi on sama molempiin suuntiin
S-445 FYSIIKKA III (Sf) Sysy 4, LH, Rataisut LHSf-* Kaasusäiliö o jaettu ahtee osaa, joide välisee eristävää seiämää o tehty iei ymyrämuotoie auo, joa halaisija o D Säiliö molemmissa osissa o helium aasua
Mat Koesuunnittelu ja tilastolliset mallit
Mat-.03 Koeuuttelu tlatollet mallt. harjotuket Mat-.03 Koeuuttelu tlatollet mallt. harjotuket / Ratkaut Aheet: Avaaat: Tlatollte aetoje kuvaame Oto otokaumat Etmot Etmotmeetelmät Väletmot Artmeette kekarvo,
Tilastollinen päättely. 3. Piste-estimointi Johdanto Estimointimenetelmät Estimaattoreiden ominaisuudet
Mat-1.361 Tlastolle päättely 3. Pste-estmot Tlastolle päättely 3. Pste-estmot 3.1. Johdato Estmaattor, Estmaatt, Estmot, Havato, Havatopste, Otos, Otostuusluku, Parametr, Pste-estmot, Pstetodeäkösyysfukto,
Tilastolliset menetelmät: Varianssianalyysi
Variassiaalsi Tilastolliset meetelmät: Variassiaalsi 0. Ysisuutaie variassiaalsi. asisuutaie variassiaalsi. olmi a useampisuutaie variassiaalsi T @ Ila Melli (006) 433 Variassiaalsi T @ Ila Melli (006)
Vakuutusmatematiikan sovellukset 20.11.2008 klo 9-15
SHV-tutinto Vauutusmatematiian sovelluset 20.11.2008 lo 9-15 1(7) Y1. Seuraava tauluo ertoo vauutusyhtiön masamat orvauset vahinovuoden ja orvausen masuvuoden muaan ryhmiteltynä (tuhansina euroina): Vahinovuosi
Mat Koesuunnittelu ja tilastolliset mallit. Yhden selittäjän lineaarinen regressiomalli. Avainsanat:
Mat-.3 Koesuuttelu ja tlastollset mallt 4. harjotukset Mat-.3 Koesuuttelu ja tlastollset mallt 4. harjotukset / Ratkasut Aheet: Avasaat: Yhde selttäjä leaare regressomall Artmeette keskarvo, Estmaatt,
Talousmatematiikan verkkokurssi. Koronkorkolaskut
Sivu 1/7 oronorolasuja sovelletaan tapausiin, joissa aia on pidempi uin ysi oonainen orojaso, eli aia, jolle oroanta ilmoittaa oron määrän. orolasu: enintään yhden orojason pituisille oroajoille; oronorolasu:
Johdatus lukuteoriaan Harjoitus 1 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma
Johdatus luuteoriaan Harjoitus 1 ss 008 Eemeli Blåsten Rataisuehdotelma Tehtävä 1 Oloot a ja b positiivisia oonaisluuja. Osoita, että on olemassa siäsitteinen luu h ('luujen a ja b pienin hteinen jaettava',
Tavoitteet skaalaavan funktion lähestymistapa eli referenssipiste menetelmä
Tavotteet skaalaavan funkton lähestymstapa el referensspste menetelmä Optmontopn semnaar - Kevät 2000 / 1 Estelmän ssältö Panotetun metrkan ongelmen havatsemnen Referensspste menetelmän dean esttely Referensspste
Todennäköisyysjakaumia
8.9.26 Kimmo Vattulainen Todennäköisyysjakaumia Seuraavassa esitellään kurssilla MAT-25 Todennäköisyyslaskenta esille tulleita diskreettejä todennäköisyysjakaumia Diskreetti tasajakauma Bernoullijakauma
Sattuman matematiikkaa III
Sattuman matematiiaa III Kolmogorovin asioomat ja frevenssitulinta Tommi Sottinen Tutija Matematiian ja tilastotieteen laitos, Helsingin yliopisto Laboratoire de Probabilités et Modèles Aléatoires, Université
8 USEAN VAPAUSASTEEN SYSTEEMIN VAIMENEMATON PAKKOVÄRÄHTELY
Värähelymeaa 8. 8 USEAN VAPAUSASEEN SYSEEMIN VAIMENEMAON PAKKOVÄRÄHELY 8. Normaalmuoomeeelmä Usea vapausasee syseem leyhälöde (7.) raaseme vaa aava (7.7) a (7.8) homogeese yhälö ylese raasu { } lsäs paovomaveora
Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto
Kynä-paper -harjotukset Tana Lehtnen 8.8.07 Tana I Lehtnen Helsngn ylopsto Etelä-Suomen ja Lapn lään, 400 opettajaa a. Perusjoukon (populaaton) muodostvat kakk Etelä-Suomen ja Lapn läänn peruskoulun opettajat
Parametrien oppiminen
38 Parametrie oppimie Tilastollise malli (Bayes-verkko rakee o kiiitetty, se umeeriste parametrie (ehdolliste todeäköisyyksie arvot pyritää määräämää Oletamme havaitoe oleva täydellisiä; s.o., okaise datapistee
Maximum likelihood-estimointi Alkeet
Maximum likelihood-estimointi Alkeet Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Maximum likelihood-estimointi p.1/20 Maximum Likelihood-estimointi satunnaismuuttujan X
Flow shop, työnvaiheketju, joustava linja, läpivirtauspaja. Kahden koneen flow shop Johnsonin algoritmi
Flow shop önvaheeju jousava lnja läpvrauspaja Flow shopssa önvaheden järjess on sama alla uoella Kosa vahea vo edelää jono vova ö olla vaheleva ja ö vova ohaa osensa äl ö evä oha osaan puhuaan permuaaoaaaulusa
Laskennallisen kombinatoriikan perusongelmia
Laseallise obiatoriia perusogelia Varsi oissa tehtävissä, joissa etsitää tietylaiste järjestelyje, jouoje ts luuääriä, o taustalla joi uutaista peruslasetatavoista tai lasetaogelista Tässä esitelläälyhyesti
Raja-arvot. Osittaisderivaatat.
1 MAT-13440 LAAJA MATEMATIIKKA 4 Tamperee teklle ylopsto Rsto Slveoe Kevät 2010 Luku 3 Raja-arvot Osttasdervaatat 1 Fuktode raja-arvot Tarkastelemme fuktota f : A, jode määrttelyjoukko A T Muuttujat ovat
Mat Sovellettu todennäköisyyslaskenta B 9. harjoitukset / Ratkaisut Aiheet: Estimointi Estimointimenetelmät Väliestimointi Avainsanat:
Mat-.60 Sovellettu todeäkösyyslasketa B Mat-.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Estmot Estmotmeetelmät Välestmot Avasaat: Artmeette keskarvo, Beroull-jakauma, Beroull-koe, Estmaatt, Estmaattor,
KURSSIN TILASTOMATEMATIIKKA KAAVOJA
KURSSIN TILASTOMATEMATIIKKA KAAVOJA X = S = s = Otossuureita X i tai x = x i (otoskeskiarvo) (X i X) = (x i x) = Xi x i E(X) =µ, var(x) = σ X x tai, E(S )=σ (otosvariassi) Normaalijakautuee populaatio
Ilmari Juva. Jalkapallo-ottelun lopputuloksen stokastinen mallintaminen
Ilmar Juva 45727R Mat-2.108 Sovelletun matematkan erkostyö Jalkaallo-ottelun loutuloksen stokastnen mallntamnen 1 Johdanto Jalkaallo-ottelun loutuloksen mallntamsesta tlastollsn ja todennäkösyyslaskun
Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 139 Päivitetty a) 402 Suplementtikulmille on voimassa
Pyramidi Analyyttinen geometria tehtävien rataisut sivu 9 Päivitetty 9..6 4 a) 4 Suplementtiulmille on voimassa b) a) α + β 8 α + β 8 β 6 c) b) c) α 6 6 + β 8 β 8 6 β 45 β 6 9 α 9 9 + β 8 β 8 + 9 β 7 Pyramidi
Esitä koherentin QAM-ilmaisimen lohkokaavio, ja osoita matemaattisesti, että ilmaisimen lähdöstä saadaan kantataajuiset I- ja Q-signaalit ulos.
Sgnaalt ja järjestelmät Laskuharjotukset Svu /9. Ampltudmodulaato (AM) Spektranalysaattorlla mtattn 50 ohmn järjestelmässä ampltudmodulaattorn (AM) lähtöä, jollon havattn 3 mpulssa spektrssä taajuukslla
Joulukuun vaativammat valmennustehtävät ratkaisut
Jouluuun vaativammat valmennustehtävät rataisut. Tapa. Pätee z = x + y, joten z = (x + y = x + y, josta sieventämällä seuraa xy 4x 4y + 4 = 0. Siispä (x (y =. Tästä yhtälöstä saadaan suoraan x =, y = 4
Videokoulu PASSE LEI TA VI NKKE JÄ TA RIN A N K E RT OJ A L L E
Vdeool PASSE LEI TA VI NKKE JÄ TA RIN A N K E RT OJ A L L E v 1.0 29.10.2015 Mely j ome m Te o e m m oll eem j m. M l ed j vdeo? Keelle vdeo oll eem? M vdeoll l d e? Mllo olemme vee pee, jollo vomme o
III. SARJATEORIAN ALKEITA. III.1. Sarjan suppeneminen. x k = x 1 + x 2 + x ,
III. SARJATEORIAN ALKEITA Sarja on formaali summa III.. Sarjan suppeneminen = x + x 2 + x 3 +..., missä R aiilla N (merintä ei välttämättä taroita mitään reaaliluua). Luvut x, x 2,... ovat sarjan yhteenlasettavat
Ortogonaalisuus ja projektiot
MA-3450 LAAJA MAEMAIIKKA 5 amperee teillie yliopisto Risto Silveoie Kevät 2007 äydeämme Lama 2: lieaarialgebraa oheisella Ortogoaalisuus ja projetiot Olemme aiaisemmi jo määritelleet, että asi vetoria
S , FYSIIKKA III (ES), Syksy 2002, LH 4, Loppuviikko 39. Partitiofunktiota käyttäen keskiarvo voidaan kirjoittaa muotoon
S-11435, FYSIIKKA III (ES), Syksy 00, LH 4, Loppuvkko 39 LH4-1* Käyttän Maxwll-Boltzmann-jakauman parttofunktota määrtä a) nrgan nlön kskarvo (E ) skä b) nrgan nlöllnn kskpokkama kskarvosta l nrgan varanss,
DEE Lineaariset järjestelmät Harjoitus 5, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset
DEE- Lineaariset järjestelmät Harjoitus 5, harjoitustenpitäjille taroitetut rataisuehdotuset Tämän harjoitusen ideana on opetella -muunnosen äyttöä differenssiyhtälöiden rataisemisessa Lisäsi äytetään
Markov-prosessit (Jatkuva-aikaiset Markov-ketjut)
J. Vrtamo Lkenneteora a lkenteenhallnta / Markov-prosesst 1 Markov-prosesst (Jatkuva-akaset Markov-ketut) Tarkastellaan (statonaarsa) Markov-prosessea, oden parametravaruus on atkuva (yleensä aka). Srtymät
Matematiikan tukikurssi
Matematiian tuiurssi Kurssierta 5 Sarjojen suppeneminen Kiinnostusen ohteena on edelleen sarja a n = a + a 2 + a 3 + a 4 + n= Tämä summa on mahdollisesti äärellisenä olemassa, jolloin sanotaan että sarja
Hanoin tornit. Merkitään a n :llä pienintä tarvittavaa määrää siirtoja n:lle kiekolle. Tietysti a 1 = 1. Helposti nähdään myös, että a 2 = 3:
Hanoin tornit Oloot n ieoa asetettu olmeen tanoon uvan osoittamalla tavalla (uvassa n = 7). Siirtämällä yhtä ieoa errallaan, ieot on asetettava toiseen tanoon samaan järjestyseen. Isompaa ieoa ei missään
Harjoituksen pituus: 90min 3.10 klo 10 12
Pallollse puolustae: Sokea ja ta käspallo/ Lppupallo Tavote: aalteo estäe sjottue puolustavalle puolelle, potku ta heto estäe, syöttäse estäe rstäe taklaus, pae tla vottase estäe sjottue puolustavalle
Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt
FYSP103 / 1 KAASUTUTKIMUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oppa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttauspöytäkrjan ja työselostuksen laatmsta Luento-
Naulalevylausunto LL13 Combi naulalevylle
LAUSUNTO NRO VTT-S-0361-1 1 (5) Tilaaja Tilaus Yhteyshenilö Lahti Levy Oy Asonatu 11 15100 Lahti 7.4.01 Simo Jouainen VTT Expert Services Oy Ari Kevarinmäi PL 1001, 0044 VTT Puh. 00 7 5566, ax. 00 7 7003
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 5 Aiheet: Tilastolliset testit Avainsanat:
MS-A5 Todeäkösyyslaskea ja tlastotetee peruskurss Esmerkkkokoelma 5 MS-A5 Todeäkösyyslaskea ja tlastotetee peruskurss Esmerkkkokoelma 5 Aheet: Tlastollset testt Avasaat: Artmeette keskarvo Beroull-jakauma
Mat-2.108 Sovelletun matematiikan erikoistyö. Sijoitussalkun optimointi Black-Litterman -mallilla
Mat-2.8 Sovelletu matematka erkostyö Sjotussalku optmot Black-Ltterma -malllla Kar Vatae (4753V) 9.5.24 Ssällysluettelo Johdato...2 2 Sjotussalku optmot Markowtz malllla...3 2. Sjotussalku optmot...5 2.2