3.5 Generoivat funktiot ja momentit
|
|
- Emma Jääskeläinen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 3.5. Generovat funktot ja momentt Generovat funktot ja momentt Momentt Eräs tapa luonnehta satunnasmuuttujan jakaumaa, on laskea jakauman momentt. Ne määrtellään odotusarvon avulla. Määrtelmä 3.10 Olkoon r postvnen kokonasluku. Jos odotusarvo α r = E(X r ) on olemassa, se on satunnasmuuttujan X (ta X:n jakauman) r. momentt. Vastaavast X:n r. keskusmomentt on mssä µ = E(X) = α 1. µ r = E[(X µ) r ], Momentta α r kutsutaan joskus myös orgomomentks. Jakauman keskarvo on ss 1. orgomomentt ja varanss 2. keskusmomentt. Satunnasmuuttujan X tekjämomentt g r, r = 1, 2,... määrtellään seuraavast: g r = E[X (r) ] = E[X(X 1) (X r + 1)]. Ensmmäset kaks tekjämomentta ovat g 1 = E(X) = α 1 = µ, g 2 = E[X(X 1)] = E(X 2 X) = E(X 2 ) E(X) = α 2 α 1. Koska σ 2 = α 2 µ 2, nn σ 2 = g 2 + µ µ 2. Keskus- ja orgomomentten välnen yhteys ja µ r = E[(X µ) r ] = E[ = =0 =0 E[X r ]( µ) = X r ( µ) ] =0 α r = E[(X µ + µ) r ] = E[ (X µ) r µ ] = =0 ( 1) ( r =0 ) α r µ µ r µ.
2 84 Luku 3. Satunnasmuuttujat, ehdollstamnen ja rppumattomuus Nästä dentteetestä seuraavat esmerkks tulokset α 2 = µ 2 + µ 2, µ 2 = α 2 µ 2, α 3 = µ 3 + 3µ 2 µ + µ 3, µ 3 = α 3 3α 2 µ + 2µ 3, α 4 = µ 4 + 4µ 3 µ + 6µ 2 µ 2 + µ 4, µ 4 = α 4 4α 3 µ + 6α 2 µ 2 3µ 4, mssä α 1 = µ ja µ 1 = 0. Esmerkk Jos X Ber(p), nn Sllon µ = p ja α r = p, r = 1, 2,.... µ 2 = p p 2, µ 3 = p 3p 2 + 2p 3 ja µ 4 = p 4p 2 + 6p 3 3p 4. Huomattakoon, että mnkä tahansa satunnasmuuttujan postvnen osa on X + = max(x, 0) ja negatvnen osa X = max( X, 0). Sllon Nyt ss X = X + X ja X = X + + X. E(X) = E(X + ) E(X ). Olkoon X:n todennäkösyysfunkto f(x). Sllon X:n jakauma on symmetrnen psteen a suhteen, jos f(a x) = f[ (a x)] kaklla x:n arvolla. Jos E(X) on olemassa, nn sllon E(X) = a. Jos jakauma on symmetrnen, nn E(X µ) + = E(X µ). Sllon X:n kakk parttomat keskusmomentt ovat nolla. Jakauman vnouskerron, josta käytetään merkntää γ 1, määrtellään seuraavast: ) ] 3 (3.5.1) γ 1 = E [ (X µ σ = µ 3 σ 3, mssä µ 3 on jakauman 3. keskusmomentt ja σ = Var(X) on hajonta. Symmetrsen jakauman vnouskerron on nolla. Jos jakaumalla on ptkä häntä okealle, kuten Possonn jakaumalla ja geometrsella jakaumalla, nn jakauma on postvsest vno ja γ 1 > 0. Jos jakaumalla on ptkä häntä vasemmalle, nn γ 1 < 0. Jakaumalla on tetyst oltava 3. momentt, jotta vnouskerron vodaan laskea. Hupukkuuskerronta merktään γ 2 ja se määrtellään 4. keskusmomentn avulla seuraavast: ) ] 4 (3.5.2) γ 2 = E [ (X µ mssä µ 4 on X:n 4. keskusmomentt. σ = µ 4 σ 4,
3 3.5. Generovat funktot ja momentt Momenttfunkto Esttelemme nyt uuden todennäkösyysjakaumaan lttyvän funkton, momentteja generovan funton, jota kutsutaan lyhyest momenttfunktoks (mf). Momenttfunkto tarjoaa erään ylesen menetelmän momentten laskemseks, vakka se e ana ole shen tarkotukseen helpon ta tehokkan menetelmä. Momentten laskemsta tärkeämpää on se, että jakaumat vodaan luonnehta käteväst momenttfunkton avulla (mkäl se on olemassa). Määrtelmä 3.11 Olkoon X dskreett satunnasmuuttuja, jonka todennäkösyysfunkto on f(x) ja arvoavaruus S. Sllon reaalmuuttujan t funkto M(t) = E(e tx ) on satunnasmuuttujan X (ta X:n jakauman) momenttfunkto (mf), jos odotusarvo E(e tx ) = e tx f(x) x S on olemassa jollan avomella välllä a < t < a, mssä a > 0. Momenttfunkton omnasuuksa Olkoot satunnasmuuttujen X ja Y momenttfunktot M X (t) ja M Y (t). (Mf1) Satunnasmuuttujan Y = ax +b momenttfunkto M Y (t) = e bt M X (at), mssä a ja b ovat annettuja vakota. Jos ertysest a = 0 ja Y = b (todennäkösyydellä 1), nn M Y (t) = e bt. (Mf2) Jos M X (t) = M Y (t) kaklla t jossan nollan ympärstössä, nn X:llä ja Y :llä on sama jakauma. (Mf3) Jos X ja Y ovat rppumattomat, nn nden summan Z = X + Y momenttfunkto on M Z (t) = M X (t)m Y (t). (Mf4) X:n momenttfunkton r. dervaatan (t:n suhteen) arvo psteessä t = 0 on X:n r. momentt: M(0) (r) = E(X r ) = α r. Satunnasmuuttujen summan määrttämnen momenttfunkton avulla on ertysen kätevää. Omnasuus (Mf 3) ylestyy nduktolla usean satunnasmuuttujantapaukseen. (Mf3 ) Jos X 1,...,X n ovat rppumattomat, nn nden summan S n = X 1 + X X n momenttfunkto on M Sn (t) = M X1 (t)m X2 (t)...m Xn (t).
4 86 Luku 3. Satunnasmuuttujat, ehdollstamnen ja rppumattomuus Esmerkk Mf1 Hetetään punasta ja mustaa noppaa. Olkoon X 1 punasen ja X 2 mustan nopan slmäluku ja slmäluvut ovat tosstaan rppumattomat. Mkä on slmälukujen summan X = X 1 + X 2 jakauma? Johdetaan jakauma momenttfunktoden avulla. Kummankn nopan slmäluku X Tasd(1, 6), = 1, 2 tosstaan rppumatta. Slmäluvun momenttfunkto on määrtelmän mukaan M X (t) = E(e tx ) = 1 6 e1 t e2 t e6 t, = 1, 2. Koska X 1 ja X 2 ovat rppumattomat, nn nden summan momenttfunkto on M X (t) = M X1 (t)m X2 (t) = ( 1 6 e t ) 2 = = j=1 e (+j)t 7 (s 1)e st (12 s + 1)e st. 36 s=2 Nyt ss X:n todennäkösyysfunkto on s=8 P(X = s) = { s 1 36, kun 2 s 7; 12 s+1 36, kun 8 s 12. Esmerkk Mf2 Johdetaan Bernoulln jakaumaa noudattaven rppumattomen satunnasmuuttujen X 1,...,X n summan S n = X 1 + +X n jakauma. Koska jokanen X Ber(p), nn X :tten momenttfunktot ovat M X (t) = e t p + q, = 1,...,n, mssä q = 1 p (Katso Esmerkk 3.17). Sllon omnasuuden (Mf3 ) mukaan summan S n momenttfunkto on Jos esmerkks n = 3, nn M Sn (t) = (e t p + q) n. n ( ) n = (e t p) q n. =0 M S3 (t) = q 3 + 3e t pq 2 + 3e 2t p 2 q + e 3t p 3. Sllon M S3 (0) = q 3 + 3pq 2 + 3p 2 q + p 3 = 1 ja S 3 :n todennäkösyysfunkto on P(S 3 = ) = ( 3 ) p q 3, = 0, 1, 2, 3. Ylesessä tapauksessa S n :n todennäkösyysfunkto on ( ) n P(S n = ) = p q n, 0 n,
5 3.5. Generovat funktot ja momentt 87 joka saadaan lausekkeesta M Sn (0). Nän olemme saaneet bnomjakauman todennäkösyysfunkton.
6 3.5. Generovat funktot ja momentt Todennäkösyydet generova funkto (tgf) Dskreetn satunnasmuuttujan X todennäkösyydet generova funkto (tgf) G(t) määrtellään seuraavast: G(t) = E(t X ) = f(x )t x. Nähdään helpost, että G(1) = f(x ) = 1. Sarja suppenee anakn sllon, kun t < 1. Kun sarja dervodaan termettän, saadaan G (t) = x f(x )t x 1. Jos G(t) on olemassa jollan välllä ( h 1, h + 1), h > 0, nn ja ylesest G (1) = E(X) G (r) (1) = E(X (r) ) = E[X(X 1) (X r + 1)] kaklla postvslla kokonasluvulla r. Todennäkösyydet generova funkto lttyy lähesest momenttfunktoon, sllä G(e t ) = E(e tx ) = M(e t ).
7 92 Luku 3. Satunnasmuuttujat, ehdollstamnen ja rppumattomuus Todennäkösyydet generovan funkton omnasuuksa Olkoon X satunnasmuuttuja, jonka todennäkösyysfunkto on P(Y = y ) = f(y ), mssä S Y = {y 1, y 2,...} on Y:n arvojoukko. Sllon G Y (t) = f(y )t y f(y ) t y = f(y ) = 1 kaklla t 1. Sarja ss suppenee kaklla t [0, 1] ja G Y (t) on määrtelty koko välllä [0, 1]. Tavallsest dskreett satunnasmuuttujat saavat kokonaslukuarvoja. Määrtellään kokonaslukuarvonen satunnasmuuttuja X sten, että P(X = x r ) = p r, r = 0, 1, 2,.... Sllon X:n todennäkösyydet generova funkto on G X (t) = E(t X ) = p r t r, kun t 1. (Tgf1) G X (t) = M X (e t ). r=0 (Tgf2) Jos M X (t) = M Y (t) kaklla t jossan nollan ympärstössä, nn X:llä ja Y :llä on sama jakauma. (Tgf3) Jos X ja Y ovat rppumattomat, nn nden summan Z = X + Y tgf on G Z (t) = G X (t)g Y (t). (Tgf4) X:n momenttfunkton r. dervaatan (t:n suhteen) arvo psteessä t = 1 on X:n r. tekjämomentt: G(1) (r) = E(X (r) ).
AB TEKNILLINEN KORKEAKOULU
B TEKNILLINEN KORKEKOULU Tetoverkkolaboratoro luento05.ppt S-38.45 - Lkenneteoran perusteet - Kevät 00 Ssältö eruskästteet Dskreett satunnasmuuttujat Dskreett jakaumat lkm-jakaumat Jatkuvat satunnasmuuttujat
1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä
Johdatus dskreettn matematkkaan Harjotus 3, 30.9.2015 1. Luvut 1, 10 on latettu ympyrän kehälle. Osota, että löytyy kolme verekkästä lukua, joden summa on vähntään 17. Ratkasu. Tällasa kolmkkoja on 10
6. Stokastiset prosessit (2)
Ssältö Markov-prosesst Syntymä-kuolema-prosesst luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 6 Markov-prosess Esmerkk Tark. atkuva-akasta a dskreetttlasta stokaststa prosessa X(t) oko tla-avaruudella
Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut
Harjotus, esmerkkratkasut K 1. Olkoon f : C C, f(z) z z. Tutk, mssä pstessä f on dervotuva. Ratkasu 1. Jotta funkto on dervotuva, on sen erotusosamäärän f(z + ) f(z) raja-arvon 0 oltava olemassa ja ss
ABTEKNILLINEN KORKEAKOULU
ABTEKNILLINEN KORKEAKOULU Tetoverkkolaboratoro 6. Stokastset prosesst () Luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 5 6. Stokastset prosesst () Ssältö Markov-prosesst Syntymä-kuolema-prosesst
Markov-prosessit (Jatkuva-aikaiset Markov-ketjut)
J. Vrtamo Lkenneteora a lkenteenhallnta / Markov-prosesst 1 Markov-prosesst (Jatkuva-akaset Markov-ketut) Tarkastellaan (statonaarsa) Markov-prosessea, oden parametravaruus on atkuva (yleensä aka). Srtymät
d L q i = V = mc 2 q i 1 γ = = p i. = V = γm q i + QA i. ṗ i + Q A i + Q da i t + j + V + Q φ
TTKK/Fyskan latos FYS-1640 Klassnen mekankka syksy 2009 Laskuharjotus 5, 16102009 1 Ertysessä suhteellsuusteorassa Lagrangen funkto vodaan krjottaa muodossa v L = m 2 u t 1! ṙ 2 V (r) Osota, että tämä
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-2.204 Tlastollsen analyysn perusteet, kevät 2007 5. luento: Tlastollnen rppuvuus ja korrelaato Ka Vrtanen Muuttujen välsten rppuvuuksen analysont Tlastollsssa analyysessä tutktaan usen muuttujen välsä
Mittausvirhe. Mittaustekniikan perusteet / luento 6. Mittausvirhe. Mittausepävarmuus ja siihen liittyvää terminologiaa
Mttausteknkan perusteet / luento 6 Mttausepävarmuus ja shen lttyvää termnologaa Mttausepävarmuus = mttaustulokseen lttyvä parametr, joka kuvaa mttaussuureen arvojen odotettua vahtelua Mttauksn lttyvä kästtetä
x 4 e 2x dx Γ(r) = x r 1 e x dx (1)
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta IIA, syksy 217 217 Harjoitus 6 Ratkaisuehdotuksia Tehtäväsarja I 1. Laske numeeriset arvot seuraaville integraaleille: x 4 e 2x dx ja 1
1 0 2 x 1 a. x 1 2x c b 2a c a. Alimmalta riviltä nähdään että yhtälöyhmällä on ratkaisu jos ja vain jos b 3a + c = 0.
BM20A5800 - Funktot, lneaaralgebra, vektort Tentt, 26.0.206. (a) Krjota yhtälöryhmä x + 2x 3 = a 2x + x 2 + 5x 3 = b x x 2 + x 3 = c matrsmuodossa Ax = b ja ratkase x snä erkostapauksessa kun b = 0. Mllä
7. Modulit Modulit ja lineaarikuvaukset.
7. Modult Vektoravaruudet ovat vahdannasa ryhmä, jossa on määrtelty jonkn kunnan skalaartomnta. Hyväksymällä kerronrakenteeks kunnan sjaan rengas saadaan rakenne nmeltä modul. Moduln käste on ss vektoravaruuden
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 21. syyskuuta 2007 Antti Rasila () TodB 21. syyskuuta 2007 1 / 19 1 Satunnaismuuttujien riippumattomuus 2 Jakauman tunnusluvut Odotusarvo Odotusarvon ominaisuuksia
Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio
Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio
11. Vektorifunktion derivaatta. Ketjusääntö
7 Vektorfunkton dervaatta Ketjusääntö Täydennämme ja kertaamme seuraavassa dfferentaallaskennan teoraa kursslta Laaja matematkka Palautetaan meln dervaatan määrtelmä reaalfunktolle: Funkton f : R R dervaatta
HASSEN-WEILIN LAUSE. Kertausta
HASSEN-WEILIN LAUSE Kertausta Käytetään seuraava merkntjä F = F/F q on sukua g oleva funktokunta Z F (t = L F (t (1 t(1 qt on funktokunnan F/F q Z-funkto. α 1, α 2,..., α 2g ovat polynomn L F (t nollakohten
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 7: Lagrangen kertojat. Pienimmän neliösumman menetelmä.
MS-A0205/MS-A0206 Dfferentaal- ja ntegraallaskenta 2 Luento 7: Lagrangen kertojat. Penmmän nelösumman menetelmä. Jarmo Malnen Matematkan ja systeemanalyysn latos 1 Aalto-ylopsto Kevät 2016 1 Perustuu Antt
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita
1. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden heittojen lukumäärä, joilla tuli 1, 2, 3 tai 4.
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 206 Kurssikoe 28.0.206 Ratkaisuehdotuksia. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden
Reaaliarvoinen funktio f : on differentioituva pisteessä x, jos f:lle on siinä voimassa kehitelmä. h h. eli. Silloin
MAT-3440 LAAJA MATEMATIIKKA 4 Tampereen teknllnen ylopsto Rsto Slvennonen Kevät 00 4. Vektorfunkton dervaatta. Ketjusääntö.. Reaalarvosen funkton dervaatta Tässä luvussa estetään dervaattakäste ensn reaalarvoselle
1, x < 0 tai x > 2a.
PHYS-C020 Kvanttmekankka Laskuharotus 2, vkko 45 Tarkastellaan ptkn x-aksela lkkuvaa hukkasta, onka tlafunkto on (x, t) Ae x e!t, mssä A, a! ovat reaalsa a postvsa vakota a) Määrtä vako A sten, että tlafunkto
Lohkoasetelmat. Lohkoasetelmat. Lohkoasetelmat: Mitä opimme? Lohkoasetelmat. Lohkoasetelmat. Satunnaistettu täydellinen lohkoasetelma 1/4
TKK (c) lkka Melln (005) Koesuunnttelu TKK (c) lkka Melln (005) : Mtä opmme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Mten varanssanalyysssa tutktaan yhden tekän vakutusta vastemuuttujaan, kun
Kokonaislukuoptimointi
Kokonaslukuotmont Robust dskreett otmont ysteemanalyysn Laboratoro Teknllnen korkeakoulu Ar-Pekka Perkkö ovelletun matematkan tutkasemnaar Kevät 28 sältö Robustn lneaarsen kokonasluku- sekä sekalukuotmontongelman
MO-teoria ja symmetria
MO-teora ja symmetra () Kaks atomorbtaaa vovat muodostaa kaks moekyyorbtaaa - Stova orbtaa - ajottava orbtaa () Atomorbtaaen energoden otava keskenään samansuurusa () Atomorbtaaen symmetravaatmukset LCAO
COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT
COUOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT SISÄTÖ: Coulombn voma Sähkökenttä Coulombn voman a sähkökentän laskemnen pstevaaukslle Jatkuvan vaauksen palottelemnen pstevaauksks
Pyörimisliike. Haarto & Karhunen.
Pyörmslke Haarto & Karhunen www.turkuamk.f Pyörmslke Lttyy jäykän kappaleen pyörmseen akselnsa ympär Pyörmsenerga on pyörmsakseln A ympär pyörvän kappaleen osasten lke-energoden summa E r Ek mv mr mr www.turkuamk.f
Raja-arvot. Osittaisderivaatat.
1 MAT-13440 LAAJA MATEMATIIKKA 4 Tamperee teklle ylopsto Rsto Slveoe Kevät 2010 Luku 3 Raja-arvot Osttasdervaatat 1 Fuktode raja-arvot Tarkastelemme fuktota f : A, jode määrttelyjoukko A T Muuttujat ovat
Pro gradu -tutkielma. Whitneyn upotuslause. Teemu Saksala
Pro gradu -tutkelma Whtneyn upotuslause Teemu Saksala Helsngn ylopsto Matematkan ja tlastoteteen latos 5. maalskuuta 2013 0.1 Johdanto Topologset monstot ovat melenkntosa, koska ne ovat määrtelmänsä nojalla
Tilastollisen fysiikan luennot
Tlastollsen fyskan luennot Tvstelmät luvuttan I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ Lämpö on systeemen mkroskooppsten osen satunnasta lkettä Lämpöenerga vrtaa kuumemmasta kappaleesta kylmempään Jos kaks kappaletta
Mittausepävarmuus. Mittaustekniikan perusteet / luento 7. Mittausepävarmuus. Mittausepävarmuuden laskeminen. Epävarmuuslaskelma vai virhearvio?
Mttausteknkan perusteet / luento 7 Mttausepävarmuus Mttausepävarmuus Mttaustulos e ole koskaan täysn oken Mttaustulos on arvo mtattavasta arvosta Mttaustuloksen ja mtattavan arvon ero on mttausvrhe Mkäl
T p = 0. λ n i T i B = Käytetään kohdan (i) identiteetin todistamiseen induktiotodistusta. : Oletetaan, että väite on totta, kun n = k.
Olkoot A R n n ja T R n n sten, että on olemassa ndeks p N jolle T p = Tällästä matrsa kutsutaa nlpotentks Näytä, että () () () Olkoot Määrtä matrs B n (λi + A) n = (λi + T ) n = B = n mn n,p ( ) n λ n
Tavoitteet skaalaavan funktion lähestymistapa eli referenssipiste menetelmä
Tavotteet skaalaavan funkton lähestymstapa el referensspste menetelmä Optmontopn semnaar - Kevät 2000 / 1 Estelmän ssältö Panotetun metrkan ongelmen havatsemnen Referensspste menetelmän dean esttely Referensspste
Painotetun metriikan ja NBI menetelmä
Panotetun metrkan ja NBI menetelmä Optmontopn semnaar - Kevät / 1 Estelmän ssältö Paretopsteden generont panotetussa metrkossa Panotettu L p -metrkka Panotettu L -metrkka el panotettu Tchebycheff -metrkka
Mat Sovellettu todennäköisyyslaskenta B 8. harjoitukset / Ratkaisut Aiheet: Otos ja otosjakaumat Avainsanat:
Mat-1.60 Sovellettu todeäkösyyslasketa Mat-1.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Otos ja otosjakaumat Avasaat: Artmeette keskarvo, Beroull-jakauma, Beroull-koe, χ -jakauma, Frekvess, Frekvessjakauma,
Kanoniset muunnokset
Kanonset muunnokset Koordnaatstomuunnokset Lagrangen formalsmssa pstemuunnoksa: Q = Q (q, t) nopeudet saadaan nästä dervomalla Kanonnen formalsm: p:t ja q:t samanarvosa 2n-ulottesen faasavaruuden muuttuja
S , FYSIIKKA III (ES), Syksy 2002, LH 4, Loppuviikko 39. Partitiofunktiota käyttäen keskiarvo voidaan kirjoittaa muotoon
S-11435, FYSIIKKA III (ES), Syksy 00, LH 4, Loppuvkko 39 LH4-1* Käyttän Maxwll-Boltzmann-jakauman parttofunktota määrtä a) nrgan nlön kskarvo (E ) skä b) nrgan nlöllnn kskpokkama kskarvosta l nrgan varanss,
2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 208 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I. Satunnaismuuttuja U Exp(2) ja V = U/(3 + U). Laske f V käyttämällä muuttujanvaihtotekniikkaa.
Jäykän kappaleen liike
aananta 9.9.014 1/17 Jäykän kappaleen lke Tähän ast tarkasteltu massapstemekankkaa : m, r, v Okeast fyskaalset systeemt ovat äärellsen kokosa, esm. jäykät kappaleet r r j = c j =vako, j elastset kappaleet
Määritelmä 3.1 (Ehdollinen todennäköisyys) Olkoot A ja B otosavaruuden Ω tapahtumia. Jos P(A) > 0, niin tapahtuman B ehdollinen todennäköisyys
Luku 3 Satunnaismuuttujat, ehdollistaminen ja riippumattomuus Tässä luvussa käsitellään satunnaismuuttujien ominaisuuksia ja täydennetään todennäköisyyslaskennan tietoja. Erityisesti satunnaismuuttujien
Yksikköoperaatiot ja teolliset prosessit
Ykskköoperaatot ja teollset prosesst 1 Ylestä... 2 2 Faasen välnen tasapano... 3 2.1 Neste/höyry-tasapano... 4 2.1.1 Puhtaan komponentn höyrynpane... 4 2.1.2 Ideaalnen seos... 5 2.1.3 Epädeaalnen nestefaas...
Mat Lineaarinen ohjelmointi
Mat-2.340 Lneaarnen ohjelmont 3.9.2007 Luento Johdanto (krja.-.4) S ysteemanalyysn Laboratoro eknllnen korkeakoulu Eeva Vlkkumaa Lneaarnen ohjelmont - Syksy 2007 / Luentorunko Hstoraa Lneaarnen optmonttehtävä
Monte Carlo -menetelmä
Monte Carlo -menetelmä Helumn perustlan elektron-elektron vuorovakutuksen laskemnen parametrsodulla yrteaaltofunktolla. Menetelmän käyttökohde Monen elektronn systeemen elektronkorrelaato oteuttamnen mulla
Hanna-Kaisa Hurme Teräksen tilastollinen rakenneanalyysi Diplomityö
Hanna-Kasa Hurme Teräksen tlastollnen rakenneanalyys Dplomtyö Tarkastajat: professor Kejo Ruohonen (TUT) ja dosentt Esko Turunen (TUT) Tarkastajat ja ahe hyväksytty Luonnonteteden ja ympärstöteknkan tedekuntaneuvoston
V ar(m n ) = V ar(x i ).
Mat-.3 Stokastiset prosessit Syksy 007 Laskuharjoitustehtävät 6 Poropudas/Kokkala. Olkoon M n = X +... + X n martingaali ja M 0 = 0. Osoita, että V ar(m n ) = n V ar(x i ). i= Huomattavaa on, että muuttujia
HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 7B Ratkaisuehdotuksia.
HY, MTO / Matemaattste tetede kadohjelma Tlastolle päättely II, kevät 208 Harjotus 7B Ratkasuehdotuksa Tehtäväsarja I Olkoo Y, Y rppumato otos Pareto jakaumasta, fy; θ θc θ y θ+ { y > c } tuetulla vakolla
3.3 Hajontaluvuista. MAB5: Tunnusluvut
MAB5: Tunnusluvut 3.3 Hajontaluvusta Esmerkk 7 Seuraavat kolme kuvaa osottavat, että jakaumlla vo olla sama keskarvo ja stä huolmatta ne vovat olla avan erlaset. Kakken kolmen keskarvo on 78,0! Frekvenss
Äärellisten ryhmien hajotelmat suoriksi tuloiksi
TAMPEREEN YLIOPISTO Pro gradu -tutkelma Vel-Matt Nemnen Äärellsten ryhmen hajotelmat suorks tuloks Informaatoteteden ykskkö Matematkka Kesäkuu 2016 Tampereen ylopsto Informaatoteteden ykskkö NIEMINEN,
Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella:
8.1 Satunnaismuuttuja Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: Esim. Nopanheitossa (d6) satunnaismuuttuja X kertoo silmäluvun arvon. a) listaa kaikki satunnaismuuttujan arvot b)
4. A priori menetelmät
4. A pror menetelmät 4. Arvofunkto-menetelmä 4.2 Lekskografnen järjestämnen 4.3 Tavoteohjelmont Tom Bäckström Optmontopn semnaar - Kevät 2000 / 4. Arvofunkto-menetelmä Päätöksentekjä antaa eksplsttsen
BL20A0600 Sähkönsiirtotekniikka
BLA6 Sähkönsrtoteknkka Tehonaon laskenta Jarmo Partanen LT Energy Electrcty Energy Envronment Srtoverkkoen laskenta Verkon tehonaon laskemnen srron hävöt ännteolosuhteet ohtoen kuormttumnen verkon käyttäytymnen
Ilkka Mellin. Sovellettu todennäköisyyslasku: Kaavat ja taulukot
Mat-.09 Sovellettu todeäkösyyslasku Systeemaalyys laboratoro Teklle korkeakoulu SYKSY 00 Ilkka Mell Sovellettu todeäkösyyslasku: Kaavat ja taulukot f XY x X x X y Y ( x, y) exp XY ( XY ) XY XY X X Y Tomttaut
Jaksolliset ja toistuvat suoritukset
Jaksollset ja tostuvat suortukset Korkojakson välen tostuva suortuksa kutsutaan jaksollsks suortuksks. Tarkastelemme tässä myös ylesempä tlanteta jossa samansuurunen talletus tehdään tasavälen mutta e
= E(Y 2 ) 1 n. = var(y 2 ) = E(Y 4 ) (E(Y 2 )) 2. Materiaalin esimerkin b) nojalla log-uskottavuusfunktio on l(θ; y) = n(y θ)2
HY / Matematka ja tlastotetee latos Tlastolle päättely II, kevät 28 Harjotus 3A Ratkasuehdotuksa Tehtäväsarja I Olkoot Y,, Y ja Nθ, ) Osota, että T T Y) Y 2 o parametr gθ) θ 2 harhato estmaattor Laske
6. Stokastiset prosessit
luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät Ssältö Peruskästtetä Posson-prosess Markov-prosesst Syntymä-kuolema-prosesst Stokastset prosesst () Tarkastellaan otakn (lkenneteoran kannalta ta stten
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 3. marraskuuta 2007 Antti Rasila () TodB 3. marraskuuta 2007 1 / 18 1 Varianssin luottamusväli, jatkoa 2 Bernoulli-jakauman odotusarvon luottamusväli 3
Eräs Vaikutuskaavioiden ratkaisumenetelmä
Mat-2.142 Optmontopn semnaar, s-99 28.9. 1999 Semnaarestelmän referaatt Joun Ikonen Lähde: Ross D. Schachter: Evaluatng nfluence dagrams, Operatons Research, Vol 34, No 6, 1986 Eräs Vakutuskaavoden ratkasumenetelmä
Galerkin in menetelmä
hum.9.3 Galerkn n menetelmä Galerknn menetelmän soveltamnen e ole rajottunut van ongelmn, jotka vodaan pukea sellaseen varaatomuotoon, joka on seurauksena funktonaaln mnmomsesta, kuten potentaalenergan
13. Lineaariset ensimmäisen kertaluvun differentiaalisysteemit
68 3. Leaarset esmmäse kertaluvu dfferetaalsysteemt Tarkastelemme systeemejä () x () t = A() t x() t + b () t, jossa matrs A kertomet ja b ovat välllä I jatkuva. Jatkuve vektorarvoste fuktode avaruutta
Satunnaismuuttujien muunnokset ja niiden jakaumat
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja
1. (Monisteen teht. 5.16) Eräiden kuulalaakereiden kestoa (miljoonaa kierrosta) on totuttu kuvaamaan Weibull-jakaumalla, jonka tiheysfunktio on
HY MTO / Matemaattste tetede kadohjelma Tlastolle päättely II kevät 019 Harjotus 7B Ratkasuehdotuksa Tehtäväsarja I 1 Mostee teht 516 Eräde kuulalaakerede kestoa mljooaa kerrosta o totuttu kuvaamaa Webull-jakaumalla
Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1
Todennäköisyyslaskun kertaus Vilkkumaa / Kuusinen 1 Satunnaismuuttujat ja todennäköisyysjakaumat Vilkkumaa / Kuusinen 2 Motivointi Kokeellisessa tutkimuksessa tutkittaviin ilmiöihin liittyvien havaintojen
Satunnaismuuttujien tunnusluvut
Sisältö 1 Johdanto 1 1.1 Todennäköisyys ja tilastotiede.................. 1 1.2 Havaitut frekvenssit ja empiiriset jakaumat........... 1 1.3 Todennäköisyysmallit....................... 4 1.3.1 Satunnaiskoe.......................
4.0.2 Kuinka hyvä ennuste on?
Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki
Luento 6 Luotettavuus Koherentit järjestelmät
Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Lueto 6 Luotettavuus Koherett ärestelmät Aht Salo Systeemaalyys laboratoro Matematka a systeemaalyys latos Aalto-ylosto erustetede korkeakoulu
(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio.
Todennäköisyyslaskenta I, kesä 7 Harjoitus 4 Ratkaisuehdotuksia. Satunnaismuuttujalla X on ns. kaksipuolinen eksponenttijakauma eli Laplacen jakauma: sen tiheysfunktio on fx = e x. a Piirrä tiheysfunktio.
Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1,
Todennäköisyyslaskenta, 2. kurssikoe 7.2.22 Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu.. Satunnaismuuttujien X ja Y yhteistiheysfunktio on
Mekaniikan jatkokurssi Fys102
Mekankan jatkokurss Fys102 Syksy 2009 Jukka Maalamp LUENTO 2 Alkuverryttelyä Vääntömomentt Oletus: Vomat tasossa, joka on kohtsuorassa pyörmsaksela vastaan. Oven kääntämseen tarvtaan er suurunen voma
Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto
Kynä-paper -harjotukset Tana Lehtnen 8.8.07 Tana I Lehtnen Helsngn ylopsto Etelä-Suomen ja Lapn lään, 400 opettajaa a. Perusjoukon (populaaton) muodostvat kakk Etelä-Suomen ja Lapn läänn peruskoulun opettajat
Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Tehtävät -5 perustuvat monisteen kappaleisiin..7 ja tehtävä 6 kappaleeseen.8..
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-.04 Tlastollsen analyysn perusteet, evät 007. luento: Johdatus varanssanalyysn S ysteemanalyysn Laboratoro Ka Vrtanen Kertaus: ahden rppumattoman otosen t-test () () Perusjouo oostuu ahdesta ryhmästä
Tchebycheff-menetelmä ja STEM
Tchebycheff-menetelmä ja STEM Optmontopn semnaar - Kevät 2000 / 1 1. Johdanto Tchebycheff- ja STEM-menetelmät ovat vuorovakuttesa menetelmä evät perustu arvofunkton käyttämseen pyrkvät shen, että vahtoehdot
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemaalyys laboratoro Mat-.9 Sovellettu todeäkösyyslasku A Nordlud Harjotus 8 (vko 45/3) (Ahe: Raja-arvolauseta, otostuuslukuja, johdatusta estmot, Lae luvut 9.5,.-.6). Olkoo X ~ p(λ), mssä λ
on määritelty tarkemmin kohdassa 2.3 ja pi kohdassa 2.2.
SU/Vakuutusmatemaattnen ykskkö 7.8.08 (7) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan täydennyskertomen,
3 Tilayhtälöiden numeerinen integrointi
3 Tlayhtälöden numeernen ntegront Alkuarvotehtävässä halutaan ratkasta lopputla xt f ) sten, että tlayhtälöt ẋ = fx,u, t) toteutuvat, kun alkutla x 0 on annettu Tlayhtälöden numeernen ntegront vodaan suorttaa
SU/Vakuutusmatemaattinen yksikkö (5)
SU/Vakuutusmatemaattnen ykskkö 0..06 (5) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan täydennyskertomen,
Rahastoonsiirtovelvoitteeseen ja perustekorkoon liittyvät laskentakaavat. Soveltaminen
SU/Vakuutusmatemaattnen ykskkö 0.4.05 Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä perusteta sovelletaan täydennyskertomen,
Mittaustulosten käsittely
Mttaustulosten kästtely Vrhettä ja epävarmuutta lmasevat kästteet Tostokoe ja satunnasten vrheden tlastollnen kästtely. Mttaustulosten jakaumaa kuvaavat tunnusluvut. Normaaljakauma 7. Tostokoe ja suurmman
Mat Lineaarinen ohjelmointi
Mat-2.340 Lneaarnen ohjelmont 22..2007 Luento 0 Ssäpstemenetelmät ja kokonaslukuoptmont (krja 0.-0.4) Ssäpstemenetelmät luvut 8 ja 9, e tarvtse lukea Lneaarnen ohjelmont - Syksy 2007 / Luentorunko Sananen
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2017 Harjoitus 1 Ratkaisuehdotuksia
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Osa tämän viikon tehtävistä ovat varsin haastavia, joten ei todellakaan
Odotusarvo. Odotusarvon ominaisuuksia Satunnaismuuttujien ominaisuuksia 61
3.3. Satunnaismuuttujien ominaisuuksia 61 Odotusarvo Määritelmä 3.5 (Odotusarvo) Olkoon X diskreetti satunnaismuuttuja, jonka arvojoukko on S ja todennäköisyysfunktio f X (x). Silloin X:n odotusarvo on
Johdatus tekoälyn taustalla olevaan matematiikkaan
Johdatus tekoälyn taustalla olevaan matematkkaan Informaatoteknologan tedekunta Jyväskylän ylopsto 4. luento 24.11.2017 Neuroverkon opettamnen - gradenttmenetelmä Neuroverkkoa opetetaan syöte-tavote-parella
Tietojen laskentahetki λ α per ,15 0,18 per ,15 0,18 per tai myöhempi 0,20 0,18
SU/Vakuutusmatemaattnen ykskkö 6.3.07 (6) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan täydennyskertomen,
Rahastoonsiirtovelvoitteeseen, perustekorkoon ja vakuutusmaksukorkoon liittyvät laskentakaavat ja periaatteet
SU/Vakuutusmatemaattnen ykskkö 3..209 (7) Rahastoonsrtovelvotteeseen, perustekorkoon ja vakuutusmaksukorkoon lttyvät laskentakaavat ja peraatteet Soveltamnen. Rahastosrtovelvote RSV 2. Täydennyskerron
Tuotteiden erilaistuminen: hintakilpailu
Tuotteden erlastumnen: hntaklalu Lass Smlä 19.03.003 Otmonton semnaar - Kevät 003 / 1 Johdanto Yrtykset evät yleensä halua tuottaa saman tuoteavaruuden tlan täyttävä tuotteta (syynä Bertrandn aradoks)
Usean muuttujan funktioiden integraalilaskentaa
Usean muuttujan funktoden ntegraallaskentaa Pntantegraaln määrtelmä Yhden muuttujan tapaus (kertausta) Olkoon f() : [a, b] R jatkuva funkto Oletetaan tässä ksnkertasuuden vuoks, että f() Remann-ntegraal
MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen
MAT-5 Todennäköisyyslaskenta Tentti.. / Kimmo Vattulainen Vastaa jokainen tehtävä eri paperille. Funktiolaskin sallittu.. a) P A). ja P A B).6. Mitä on P A B), kun A ja B ovat riippumattomia b) Satunnaismuuttujan
W Hz. kohinageneraattori. H(f) W Hz. W Hz. ELEC-A7200 Signaalit ja järjestelmät Laskuharjoitukset. LASKUHARJOITUS 5 Sivu 1/7
ELEC-A700 LASKUHARJOIUS 5 Svu /7. Satunnassgnaaln x ( t ) keskarvo on V ja keskhajonta 4 V. Mttaukslla on todettu, että x ( t ) ja x ( t + τ ) ovat rppumattoma, kun τ 5µ s. Lsäks tedetään, että x ( t )
Mat Tilastollinen päättely 7. harjoitukset / Tehtävät. Hypoteesien testaus. Avainsanat:
Mat-.36 Tlastollnen päättely 7. harjotukset Mat-.36 Tlastollnen päättely 7. harjotukset / Tehtävät Aheet: Avansanat: ypoteesen testaus. lajn vrhe,. lajn vrhe, arhaton test, ylkäysalue, ylkäysvrhe, ypotees,
Satunnaismuuttujat ja todennäköisyysjakaumat
Satuasmuuttujat ja todeäkösyysjakaumat Todeäkösyyslasketa: Satuasmuuttujat ja todeäkösyysjakaumat 9. Satuasmuuttujat ja todeäkösyysjakaumat 0. Kertymäfukto. Jakaume tuusluvut. Moulotteset satuasmuuttujat
Sähkön- ja lämmöntuotannon kustannussimulointi ja herkkyysanalyysi
Sähkön- ja lämmöntuotannon kustannussmulont ja herkkyysanalyys Pekka Nettaanmäk Osmo Schroderus Jyväskylän ylopsto Tetoteknkan latos 2010 1 2 Tvstelmä Raportn tarkotuksena on esttää pelkstetyn matemaattsen
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Satunnaismuuttujien summa ja keskihajonta Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemianalyysin laboratorio Nordlund Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 7 (vko 44/003) (Aihe: odotusarvon ja varianssin ominaisuuksia, satunnaismuuttujien lineaarikombinaatioita,
Kvanttimekaanisten joukkojen yhteys termodynamiikkaan
Kvanttmekaansten joukkojen yhteys termodynamkkaan Hukkaslukumäärän sälyttävä systeem vo vahtaa energaa ympärstönsä kanssa kahdella tavalla: työnä ta lämpönä. Termodynamkassa entropan muutos lttyy lämmön
Jakaumien tunnusluvut. Jakaumien tunnusluvut. Jakaumien tunnusluvut: Mitä opimme? 2/2. Jakaumien tunnusluvut: Mitä opimme? 1/2
TKK (c) Ila Mell (4) Jaaume tuusluvut Johdatus todeäösyyslasetaa Jaaume tuusluvut Marov ja Tshebyshev epäyhtälöt Momett Vous ja hupuuus Suurte luuje la TKK (c) Ila Mell (4) Jaaume tuusluvut: Mtä opmme?
Epälineaaristen pienimmän neliösumman tehtävien ratkaiseminen numeerisilla optimointimenetelmillä (valmiin työn esittely)
Epälneaarsten penmmän nelösumman tehtäven ratkasemnen numeerslla optmontmenetelmllä valmn työn esttely Lar Pelkola 9.9.014 Ohjaaja/valvoja: Prof. Harr Ehtamo yön saa tallentaa ja julkstaa Aalto-ylopston
Johdatus tn-laskentaan perjantai 17.2.2012
Johdatus tn-laskentaan perjantai 17.2.2012 Kahden diskreetin muuttujan yhteisjakauma On olemassa myös monen muuttujan yhteisjakauma, ja jatkuvien muuttujien yhteisjakauma (jota ei käsitellä tällä kurssilla;
JATKUVAT JAKAUMAT Laplace-muunnos (Laplace-Stieltjes-muunnos)
J. Virtamo 38.3143 Jonoteoria / Jatkuvat jakaumat 1 JATKUVAT JAKAUMAT Laplace-muunnos (Laplace-Stieltjes-muunnos) Määritelmä Ei-negatiivisen satunnaismuuttujan X 0, jonka tiheysfunktio on f(x), Laplace-muunnos
Käytetään säteille kompleksiesitystä. Tuleva säde on Ee 0 iw t ja peräkkäisiä heijastuneita säteitä kuvaaviksi esityksiksi saadaan kuvasta: 3 ( 2 )
58 Yhtälön (0.4.) mukaan peräkkästen hejastuneen säteen optnen matkaero on D= n tcosqt ja vahe-eroks tulee (kun r = 0) p = kd= D. (.3.) l ässä on huomattava, että hejastuksssa tapahtuvat mahollset p :
9. Muuttuva hiukkasluku
Statstnen fyskka, osa B (FYSA242) Tuomas Lapp tuomas.v.v.lapp@jyu.f Huone: FL240. E kntetä vastaanottoakoja. kl 2016 9. Muuttuva hukkasluku 1 Kertaus: lämpökylpy Mustetaan kurssn A-osasta Mkrokanonnen
Mat Lineaarinen ohjelmointi
Mat-.4 Lneaarnen ohelmont 8..7 Luento 6 Duaaltehtävä (kra 4.-4.4) S ysteemanalyysn Lneaarnen ohelmont - Syksy 7 / Luentorunko Motvont Duaaltehtävä Duaalteoreemat Hekko duaalsuus Vahva duaalsuus Täydentyvyysehdot