Ilkka Mellin (2006) 1/1
|
|
- Kimmo Ahola
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Mat-.60 Sovellettu todeäkösyyslasketa B Mat-.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Mtta-astekot Havatoaesto kuvaame ja otostuusluvut Avasaat: Artmeette keskarvo, Frekvess, Frekvessjakauma, Geometre keskarvo, Harmoe keskarvo, Hstogramm, Itervallastekko, Järjestysastekko, Järjestystuusluvut, Keskarvo, Keskhajota, Kvaltatvset muuttujat, Kvattatvset muuttujat, Laatueroastekko, Luokteltu frekvessjakauma, Maksm, Medaa, Mm, Mttaame, Mtta-astekot, Mttart, Nomaalastekko, Ordaalastekko, Otos, Otoskeskhajota, Otosvarass, Perusjoukko, Pylväsdagramm, Suhdeastekko, Suhteelle frekvess, t-jakauma Tlastolle aesto, Tlastolle muuttuja, Vahteluväl, Vahteluväl ptuus, Välmatka-astekko Tlastollste aestoje kerääme ja mttaame Tlastollset aestot Tlastollse tutkmukse kakk mahdollset kohteet muodostavat tutkmukse (kohde-) perusjouko. Tutkmukse kohteta tarkastellaa aa jok perusjouko muodostamassa kehkossa. Tutkmukse kohteks valttuja perusjouko alkota kutsutaa havatoyksköks. Tlastolle aesto koostuu havatoyksköde omasuuksa ja olosuhteta kuvaavsta umeerssta ta kvattatvssta tedosta. Havatoykskötä koskeva umeersa ta kvattatvsa tetoja kutsutaa havatoarvoks ta havaoks. Tlastollste aestoje kerääme Muutetaako tutkmuksessa tutkmukse kohtede olosuhteta aktvsest? () Tutkmus o koe, jos tutkmukse tavotteea o selvttää, mte kohtede olosuhtede aktve muuttame vakuttaa tutkmukse kohtes. () Tutkmus perustuu suor havatoh, jos tutkmukse tavotteea o va seurata, mte kohtede olosuhteet ja ssä tapahtuvat muutokset vakuttavat kohtes. Kohdstuuko tutkmus kakk perusjouko alkoh va johok perusjouko osaa? () Tutkmusta kutsutaa kokoastutkmukseks, jos kakk perusjouko alkot tutktaa. () Tutkmusta kutsutaa otatatutkmukseks, jos tutkmus kohdstuu johok perusjouko osajoukkoo. Mttaame ja mttart Tlastollse tutkmukse kohtede omasuuksa ja olosuhteta sekä de muutoksa kuvaavat umeerset ta kvattatvset tedot saadaa selvlle mttaamalla. Mttaame tarkottaa umeerste arvoje lttämstä tutkmukse kohtede omasuuks ja olosuhtes. Ilkka Mell (006) /
2 Mat-.60 Sovellettu todeäkösyyslasketa B Mttara vodaa ptää fuktoa, joka lttää umeerset arvot tutkmukse kohtede omasuuks ja olosuhtes. Mttaukse tulos vodaa aa lmasta jok tutkmukse kohtee omasuutta ta olosuhdetta kuvaava muuttuja arvoa. Ste tutkmukse kohtede omasuuksa ja olosuhteta kuvataa mttaustapahtumassa aa umeerslla muuttujlla. Mttar valdteett ja tarkkuus Mttar o vald el okea, jos se esttää mttaukse kohteea olevaa omasuutta oke, merktyksellsest ja tarkotuksemukasest. Mttar o tarkka, jos se o harhato ja relaabel: () Mttar o harhato, jos se e systemaattsest al- ta ylarvo mtattava omasuude määrää. () Mttar o relaabel el luotettava, jos mttaustulos e muutu, ku mttausta tostetaa. Mtta-astekot Mttaus o tehty omaal- el laatueroastekolla, jos mttaus kertoo mh luokkaa mttaukse kohde kuuluu. Mttaus o tehty ordaal- el järjestysastekolla, jos mttaus kertoo oko mttaukse kohteella mtattavaa omasuutta eemmä ta vähemmä ku jollak tosella kohteella. Mttaus o tehty tervall- el välmatka-astekolla, jos mttaus kertoo kuka paljo kahde mtattava kohtee omasuudet eroavat tosstaa. Mttaus o tehty suhdeastekolla, jos mttaus kertoo kuka mota kertaa eemmä ta vähemmä mttaukse kohteella o mtattavaa omasuutta ku jollak tosella kohteella. Kvaltatvset ja kvattatvset muuttujat Omasuutta ja stä kuvaavaa muuttujaa kutsutaa kvaltatvseks, jos mttaukse kohteet vodaa luoktella mttaukse perusteella tosstaa eroav kategoroh ta luokk. Kvaltatvsa omasuuksa kuvataa laatueroastekollslla muuttujlla. Omasuutta ja stä kuvaavaa muuttujaa kutsutaa kvattatvseks, jos mttaus tuottaa omasuude määrällse arvo. Kvattatvsa omasuuksa kuvataa välmatka- ta suhdeastekollslla muuttujlla. Dskreett ja jatkuvat muuttujat Mtattavaa omasuutta vastaava muuttuja o dskreett, jos se vo saada va erllsä arvoja. Dskreettejä muuttuja ovat esmerkks kakk laatueroastekollste ja järjestysastekollste muuttuje lsäks myös sellaset kvattatvset muuttujat kute lukumäärämuuttujat. Mtattavaa omasuutta vastaava muuttuja o jatkuva, jos se vo saada kakk arvot joltak välltä. Jatkuva muuttuja ovat esmerkks usemmat fyskaalset suureet kute ptuus, pta-ala, tlavuus, pao, aka, opeus ja pae sekä myös moet talouselämää kuvaavat suureet kute rahamäärä ja korko. Ilkka Mell (006) /
3 Mat-.60 Sovellettu todeäkösyyslasketa B Huomautus: Muuttuje mtta-astekollslla omasuukslla (kvaltatvsuudella/kvattatvsuudella ta dskreettydellä/jatkuvuudella) o syvälle vakutus she, mtä tlastollsa meetelmä kysesessä tlateessa o luvallsta soveltaa. Ilkka Mell (006) 3/3
4 Mat-.60 Sovellettu todeäkösyyslasketa B Tlastollste aestoje kuvaame Frekvess Olkoo muuttuja dskreett ja oletetaa, että se mahdollset arvot ovat Olkoot y, y,, y m,,, muuttuja havatut arvot. Muuttuja mahdollse arvo y k, k =,,, m frekvess f k kertoo kuka mota kertaa y k estyy havatoarvoje,,, joukossa. Frekvessjakauma Muuttuja mahdollset arvot y, y,, y m yhdessä de frekvesse f, f,, f m kassa muodostavat muuttuja havattuje arvoje,,, frekvessjakauma. Huomaa, että f + f + + f m = jossa o havatoje kokoaslukumäärä. Pylväsdagramm Frekvessjakaumaa (y k, f k ), k =,,, m vodaa kuvata graafsest pylväsdagrammlla, jossa muuttuja mahdollse arvo y k havatoarvoje,,, joukossa esttää pylväs, joka korkeus vastaa frekvessä f k. Huomautus: Pylväsdagramm tulkta o aaloge dskreet todeäkösyysjakauma pstetodeäkösyysfukto tulka kassa. Luokkafrekvess Olkoo muuttuja jatkuva ja oletetaa, että se mahdollset arvot ovat välllä (a, b) jossa vo olla a =, b = +. Jaetaa väl (a, b) pstellä psteveras osaväleh a = a < a < a < < a < a = b 0 m (a k, a k ], k =,,, m m Ilkka Mell (006) 4/4
5 Mat-.60 Sovellettu todeäkösyyslasketa B Olkoot,,, muuttuja havatut arvot. Muuttuja havattuje arvoje frekvess f k luokassa k kertoo de havatoarvoje,,, lukumäärä, jotka kuuluvat väl (a k, a k ], k =,,, m Luokteltu frekvessjakauma Luokkavält (a k, a k ], k =,,, m yhdessä vastaave luokkafrekvesse f, f,, f m kassa muodostavat muuttuja havattuje arvoje,,, luoktellu frekvessjakauma. Huomaa, että f + f + + f m = jossa o havatoje kokoaslukumäärä. Hstogramm Luokteltua frekvessjakaumaa ((a k, a k ], f k ), k =,,, m vodaa kuvata graafsest hstogrammlla, jossa muuttuja havattuje arvoje,,, frekvessä f k luokassa (a k, a k ], esttää suorakade, joka kataa o väl (a k, a k ] ja joka pta-ala vastaa luokkafrekvessä f k. Huomautus: Hstogramm tulkta o aaloge jatkuva todeäkösyysjakauma theysfukto tulka kassa. Ilkka Mell (006) 5/5
6 Mat-.60 Sovellettu todeäkösyyslasketa B Suhdeastekollste muuttuje tuusluvut Artmeette keskarvo Olkoot,,, välmatka- ta suhdeastekollse muuttuja havattuja arvoja. Lukuje,,, artmeette keskarvo saadaa kaavalla = = Artmeette keskarvo o havatoarvoje paopste ja kuvaa havatoarvoje keskmäärästä arvoa. Varass Olkoot,,, välmatka- ta suhdeastekollse muuttuja havattuja arvoja. Lukuje,,, (otos-) varass saadaa kaavalla s ( ) = = = jossa = = o lukuje,,, artmeette keskarvo. Otosvarass kuvaa havatoarvoje hajaatuesuutta (ta keskttyesyyttä) de artmeettse keskarvo (paopstee) ympärllä. Artmeettse keskarvo ja varass laskeme Olkoot,,, välmatka- ta suhdeastekollse muuttuja havattuja arvoja. Jos havatoarvoje,,, artmeette keskarvo ja varass joudutaa laskemaa käs ta laskta käyttäe, kaattaa laskut järjestää alla oleva tauluko muotoo ja käyttää de veressä estettyjä kaavoja. Ilkka Mell (006) 6/6
7 Mat-.60 Sovellettu todeäkösyyslasketa B Summa = s = Keskhajota Olkoot,,, välmatka- ta suhdeastekollse muuttuja havattuja arvoja. Lukuje,,, (otos-) keskhajota o jossa s = ( ) = = = s = = o lukuje,,, artmeette keskarvo ja s o lukuje,,, (otos-) varass. Otoskeskhajota kuvaa (kute otosvarass) havatoarvoje hajaatuesuutta (ta keskttyesyyttä) de artmeettse keskarvo (paopstee) ympärllä. Stadardot Olkoo välmatka- ta suhdeastekollse muuttuja havattuje arvoje,,, artmeette keskarvo ja s de varass. Tällö stadardotuje havatoarvoje z =, =,,, s artmeette keskarvo ja varass ovat z = z = 0 sz = ( z z) = Ilkka Mell (006) 7/7
8 Mat-.60 Sovellettu todeäkösyyslasketa B Tlastolle etäsyys Olkoot välmatka- ta suhdeastekollse muuttuja havattuje arvoje,,, artmeette keskarvo ja s de varass. Tällö havatoarvoje k ja l tlastolle etäsyys o Orgomomett Olkoot d kl =,,, k s l välmatka- ta suhdeastekollse muuttuja havattuja arvoja. Lukuje,,, k. orgomomett o k a =, k =,, Keskusmomett Olkoot k,,, = välmatka- ta suhdeastekollse muuttuja havattuja arvoja. Lukuje,,, k. keskusmomett o jossa k k ( ) = m = = = o lukuje,,, artmeette keskarvo. Vous Olkoot,,, välmatka- ta suhdeastekollse muuttuja havattuja arvoja. Havatoarvoje,,, jakauma voutta vodaa kuvata otostuusluvulla jossa c = m 3 3/ m m =. keskusmomett luvulle,,, m 3 = 3. keskusmomett luvulle,,, Ilkka Mell (006) 8/8
9 Mat-.60 Sovellettu todeäkösyyslasketa B Hupukkuus Olkoot,,, välmatka- ta suhdeastekollse muuttuja havattuja arvoja. Havatoarvoje,,, jakauma hupukkuutta vodaa kuvata otostuusluvulla jossa c m = 4 m m =. keskusmomett luvulle,,, m 4 = 4. keskusmomett luvulle,,, Geometre keskarvo Olkoot,,, postvsa lukuja. Lukuje,,, geometre keskarvo o G = Lukuje,,, geometrse keskarvo logartm o lukuje,,, logartme artmeette keskarvo: log( ) + log( ) + + log( ) log( G) = = log( ) = Huomaa, että G = va, jos = = = Harmoe keskarvo Olkoot,,, postvsa lukuja. Lukuje,,, harmoe keskarvo o H = Lukuje,,, harmose keskarvo käätesluku o lukuje,,, kääteslukuje artmeette keskarvo: = H Ilkka Mell (006) 9/9
10 Mat-.60 Sovellettu todeäkösyyslasketa B Huomaa, että va, jos H = = = = Järjestysastekollste muuttuje tuusluvut Järjestystuusluvut Olkoot,,, järjestys-, välmatka- ta suhdeastekollse muuttuja havattuja arvoja. Järjestetää havatoarvot,,, suuruusjärjestyksee pemmästä suurmpaa ja olkoot z, z,, z järjestyksee asetetut havatoarvot. Suuruusjärjestyksessä k. havatoarvoa z k kutsutaa k. järjestystuusluvuks. Mm, maksm, vahteluväl Olkoot z, z,, z järjestys-, välmatka- ta suhdeastekollse muuttuja havatut arvot järjestettyä suuruusjärjestyksee pemmästä suurmpaa. Tällö Prosettpsteet Olkoot z = mmarvo z = maksmarvo (z, z ) = vahteluväl z z = vahteluväl ptuus z, z,, z järjestys-, välmatka- ta suhdeastekollse muuttuja havatut arvot järjestettyä suuruusjärjestyksee pemmästä suurmpaa. Havatoarvoje p. prosettpste z (p), p =,,, 99 o pste, joka jakaa havatoaesto kahtee osaa: () p % havatoarvosta o lukua z (p) peempä ta korketaa yhtä suura ku z (p). () (00 p) % havatoarvosta o lukua z (p) suurempa. Ilkka Mell (006) 0/0
11 Mat-.60 Sovellettu todeäkösyyslasketa B Medaa Olkoot z, z,, z järjestys-, välmatka- ta suhdeastekollse muuttuja havatut arvot järjestettyä suuruusjärjestyksee pemmästä suurmpaa. Medaa Me o havatoarvoje 50. prosettpste: Me = z (50) Medaa jakaa havatoaesto kahtee yhtä suuree osaa, että tosessa kakk havatoarvot ovat medaaa peempä, tosessa kakk havatoarvot ovat medaaa suurempa. Havatoarvoje medaa Me vodaa määrätä seuraavalla tavalla: () Järjestetää havatoarvot suuruusjärjestyksee pemmästä suurmpaa. (a) Jos havatoarvoje lukumäärä o parto, medaa o järjestetystä havatoarvosta keskmmäe. (b) Jos havatoarvoje lukumäärä o parlle, medaa o järjestetystä havatoarvosta kahde keskmmäse artmeette keskarvo. Oletetaa, että artmeette keskarvo M ja medaa Me määrätää samasta jatkuva muuttuja havattuje arvoje luoktellusta frekvessjakaumasta. Jos havatoarvoje jakauma o ykshuppue, pätee seuraava: Vasemmalle volla jakaumlla M < Me Symmetrsllä jakaumlla M Me Okealle volla jakaumlla Kvartlt Olkoot Me < M z, z,, z järjestys-, välmatka- ta suhdeastekollse muuttuja havatut arvot järjestettyä suuruusjärjestyksee pemmästä suurmpaa. Tällö Q = Alakvartl = 5. prosettpste = z (5) Q = Keskkvartl = 50. prosettpste = z (50) Q 3 = Yläkvartl = 75. prosettpste = z (75) Kvartlt Q, Q, Q 3 jakavat suuruusjärjestyksee asetetu havatoaesto eljää yhtä suuree osaa. Ilkka Mell (006) /
12 Mat-.60 Sovellettu todeäkösyyslasketa B Ertysest: Alakvartl Q Keskkvartl Q Yläkvartl Q 3 Kvartlt, kvartlväl, kvartlpokkeama = Havatoarvoje medaaa Me peempe havatoarvoje medaa = Havatoarvoje medaa Me Olkoot havatoarvoje kvartlt Q, Q, Q 3. Tällö (Q, Q 3 ) = kvartlväl = Havatoarvoje medaaa Me suurempe havatoarvoje medaa Q 3 Q = IQR = kvartlväl ptuus (Q 3 Q )/ = IQR/ = kvartlpokkeama Kvartlvälä, kvartlväl ptuutta (IQR = terquartle rage) ja kvartlpokkeamaa vodaa käyttää kuvaamaa havatoarvoje hajaatuesuutta (keskttyesyyttä). Jos havatoarvoje jakaumaa kuvaavaa kesklukua o käytetty medaaa, hajotalukua käytetää use kvartlpokkeamaa. Laatueroastekollste muuttuje tuusluvut Frekvess Olkoo otoskoko el kerättyje havatoarvoje lukumäärä. Olkoo A jok perusjouko osajoukko ja olkoo f otoksee kuuluve A-tyyppste havatoarvoje frekvess el lukumäärä. Tällö A-tyyppste havatoarvoje suhteelle frekvess el osuus otoksessa o f Mood Frekvessjakauma mood el tyypparvo Mo o yles havatoarvo. Luoktellu frekvessjakauma mood el tyypparvo Mo o sä luokassa, jossa luokteltua frekvessjakaumaa vastaava hstogramm saavuttaa maksmsa. Huomautuksa: Jos käytetty luoktus o tasaväle, luoktellu frekvessjakauma mood o sä luokassa, jota vastaava frekvess o suur. Jos käytetty luoktus e ole tasaväle, luoktellu frekvess jakauma mood e välttämättä ole sä luokassa, jota vastaava frekvess o suur. Ilkka Mell (006) /
13 Mat-.60 Sovellettu todeäkösyyslasketa B Oletetaa, että artmeette keskarvo M, medaa Me ja mood Mo määrätää samasta jatkuva muuttuja havattuje arvoje luoktellusta frekvessjakaumasta. Jos havatoarvoje jakauma o ykshuppue, pätee seuraava: Vasemmalle volla jakaumlla M < Me < Mo Symmetrsllä jakaumlla M Me Mo Okealle volla jakaumlla Mo < Me < M Ilkka Mell (006) 3/3
14 Mat-.60 Sovellettu todeäkösyyslasketa B Tehtävä 7.. Alla o lueteltu joukko tlastollsa muuttuja.. Maskode C-vtamptosuus; ykskkö: mg/00 g. Alvar aukolta löydety kasv laj 3. Pae, joka vaadtaa teräksse sälö murtumsee; kg/cm 4. Heklöde reakto vätteesee Suome o ltyttävä NATO:o mtattua astekolla: täys er meltä, yhde tekevää, täys samaa meltä 5. Jokerede sjotus jääkekkolgassa; astekkoa,, 6. Teekkar koulutusohjelma 7. Teekkar älykkyysosamäärä; ykskkö: äo-pste 8. Teekkar pstemäärä kurss. välkokeessa; astekkoa 0,,,, Letokoee opeus; ykskkö: km/h (a) Mtkä ovat muuttuje -9 mtta-astekot? (b) Mtkä muuttujsta -9 ovat kvaltatvsa ja mtkä kvattatvsa? (c) Mtkä muuttujsta -9 ovat dskreettejä ja mtkä jatkuva? Tehtävä 7.. Mtä opmme? Tehtävässä tarkastellaa tlastollste muuttuje mtta-astekollsa omasuuksa sekä tlastollste muuttuje luokttelua tosaalta kvaltatvs ja kvattatvs muuttuj ja tosaalta dskreetteh ja jatkuv muuttuj. Tehtävä 7.. Ratkasu: (a) Laatueroastekollsa muuttuja:, 6 Järjestysastekollsa muuttuja: 4, 5, 7, 8 Suhdeastekollsa muuttuja:, 3, 9 (b) Kvaltatvsa muuttuja:, (4), (5), 6 Kvattatvsa muuttuja:, 3, (4), (5), 7, 8, 9 Kvaltatvste ja kvattatvste muuttuje välmaastossa olevat järjestysastekollset muuttujat o merktty sulkuh. (c) Dskreettejä muuttuja:, 4, 5, 6, 7, 8 Jatkuva muuttuja:, 3, 9 Ilkka Mell (006) 4/4
15 Mat-.60 Sovellettu todeäkösyyslasketa B Tehtävä 7.. Erää talo asukkalla o seuraavat kuukaustulot ( /kk): Määrää aestosta seuraavat tuusluvut: (a) mm, maksm (b) vahteluväl, vahteluväl ptuus (c) medaa (d) kvartlväl, kvartlväl, kvartlväl ptuus, kvartlpokkeama Tehtävä 7.. Mtä opmme? Tehtävässä tarkastellaa järjestystuuslukuje määräämstä. Tehtävä 7.. Ratkasu: Kakk määrättävks pyydetyt tuusluvut ovat järjestystuuslukuja ta h perustuva tuuslukuja. Järjestetää havatoarvot suuruusjärjestyksee pemmästä suurmpaa järjestystuuslukuje määräämstä varte: (a) Mm ja maksm: M = 4300, Ma = 500 (b) Vahteluväl: (M, Ma) = (4300, 500) Vahteluväl ptuus: Ma M = = Ilkka Mell (006) 5/5
16 Mat-.60 Sovellettu todeäkösyyslasketa B (c) Etstää havatoje medaa Me. Medaa Me jakaa havatoaesto kahtee yhtä suuree osaa ste, että puolet stä havatoarvosta, jotka evät ole yhtä suura ku medaa, ovat medaaa peempä, ja puolet stä havatoarvosta, jotka evät ole yhtä suura ku medaa, ovat medaaa suurempa. Oletetaa, että havatoa o järjestetty suuruusjärjestyksee pemmästä suurmpaa. () Jos o parto, medaaks valtaa havatoarvo, joka löytyy pakasta ( + )/ () Jos o parlle, medaaks valtaa kahde keskmmäse havao artmeette keskarvo. Koska havatoje lukumäärä o tässä parlle, Me = ( )/ = 300 (d) Etstää es havatoje kvartlt Q, Q, Q 3. Kvartlt Q, Q, Q 3 jakavat suuruusjärjestyksee asetetu havatoaesto eljää yhtä suuree osaa. Keskkvartl Q o sama ku medaa. Alakvartl Q o medaaa peempe havatoarvoje medaa ja yläkvartl Q 3 o medaaa suurempe havatoarvoje medaa. Ste Q = Me = 300 Q = ( )/ = 000 Q 3 = ( )/ = 8050 Kvartlväl o (Q,Q 3 ) = (000,8050) Kvartlväl ptuus o IQR = Q 3 Q = = 7850 Kvartlpokkeama o IQR/ = (Q 3 Q )/ = 7850/ = 395 Ilkka Mell (006) 6/6
17 Mat-.60 Sovellettu todeäkösyyslasketa B Tehtävä 7.3. Muodosta tehtävä 7.. aestosta luokteltu frekvessjakauma, joka luokkaväleä ovat (4000,000] (00, 8000] (8000,60000] Määrää myös frekvessjakaumaa vastaava hstogrammkuvo suorakatede korkeudet, ku luokkavälä [4000,000] vastaava suorakatee korkeudeks valtaa 5 ykskköä. Hahmottele myös ko. hstogrammkuvo ruudullselle paperlle. Mssä luokassa o jakauma mood? Tehtävä 7.3. Mtä opmme? Tehtävässä tarkastellaa luoktellu frekvessjakauma ja stä vastaava graafse estykse el hstogramm muodostamsta. Tehtävä 7.3. Ratkasu: Hstogrammkuvo muodostuu suorakatesta, jode pta-alat suhtautuvat tossa kute vastaavat luokkafrekvesst (ta suhteellset luokkafrekvesst). Tehtävä 7.. aestosta saadaa seuraava luokteltu frekvessjakauma, ku luokkaväleä ovat (4000,000], (00, 8000], (8000,60000] : Luokkaväl Luokkafrekvess Suorakatee korkeus (ykskköä) (4000,000] 5 5 (000,8000] 9 9/ = 9.5 (8000,60000] /4 = 0.5 Hstogrammkuvo suorakatede korkeukse määrääme: () Valtaa luokkaväl (4000,000] lttyvä suorakatee korkeudeks 5 ykskköä. () Luokkaväl (000,8000] o kaks kertaa ptemp ku luokkaväl (4000,000]. Sks luokkaväl (000,8000] lttyvä suorakatee korkeus saadaa jakamalla luokkavälä vastaava frekvess 9 luvulla. (3) Luokkaväl (8000,60000] o eljä kertaa ptemp ku luokkaväl (4000,000]. Sks luokkaväl (8000,60000] lttyvä suorakatee korkeus saadaa jakamalla luokkavälä vastaava frekvess luvulla 4. Ilkka Mell (006) 7/7
18 Mat-.60 Sovellettu todeäkösyyslasketa B Alla oleva kuvo esttää yo. luokteltua frekvessjakaumaa vastaavaa hstogramma. 5 f/ Jakauma mood o luokassa (4000,000], koska sä hstogramm saavuttaa maksmsa. Huomaa, että mood e ole luokassa (000,8000], vakka stä vastaava frekvess o suur. Huomautuksa: () Hstogrammssa suorakatede pta-alat evät ss korkeudet ovat suhteessa luokkafrekvesseh. () Hstogrammssa suorakatede korkeudet ovat suhteessa luokkafrekvesseh va, jos luoktus o tasaväle. () Okea laatu pystyaksellle o tehtävä 7.3. tapauksessa frekvess/ : Vaaka-aksel laatu: Pystyaksel laatu: frekvess/ Suorakatee pta-ala: frekvess/ = frekvess Ilkka Mell (006) 8/8
19 Mat-.60 Sovellettu todeäkösyyslasketa B Tehtävä 7.4. Määrää tehtävä 7.. aesto kahde esmmäse sarakkee 8:sta luvusta artmeette keskarvo, otosvarass ja otoskeskhajota. Tehtävä 7.4. Mtä opmme? Tehtävässä tarkastellaa artmeettse keskarvo, otosvarass ja otoskeskhajoa määräämstä. Tehtävä 7.4. Ratkasu: Laskutomtukset vodaa suorttaa kahdella tavalla. Tapa : Tapa : = s = s = s ( ) = s = s = s Jos havatoarvoje artmeettse keskarvo ja varass laskemsta varte laadtaa tetokoeohjelma, laskutomtukset vodaa järjestää laskutavassa, että havaot käydää läp va kerra, ku taas laskutavassa havaot o käytävä läp kaks kertaa. Se sjaa laskutava kaavat ovat umeersest vakaampa ku laskutavassa. Alla o kopo laskutomtuste tekemsessä apua käytetty Mcrosoft Ecel taulukosta. Ilkka Mell (006) 9/9
20 Mat-.60 Sovellettu todeäkösyyslasketa B Taulukosta saadaa: 8 8 = = = s = = ( ) = s = ( ) = s 8 8 = = s = Palkka -Ka (-Ka)^ ^ Summa Ka = 96.5 Tapa : Var = Hajota = Tapa : Var = Hajota = Ilkka Mell (006) 0/0
21 Mat-.60 Sovellettu todeäkösyyslasketa B Tehtävä 7.5. Olkoo = = lukuje,,, artmeette keskarvo. (a) Todsta, että (b) ( ) = 0 Todsta, että mmo elösumma ( a) parametr a suhtee. Tehtävä 7.5. Mtä opmme? Tehtävässä tutktaa artmeettse keskarvo karakterstsa omasuuksa. Okea keskluku tehtävä ogelma ratkasemsee o tässä geometre keskarvo. Tehtävä 7.5. Ratkasu: Olkoo = = lukuje,,, artmeette keskarvo. (a) Tällö ( ) = = = = 0 Ilkka Mell (006) /
22 Mat-.60 Sovellettu todeäkösyyslasketa B (b) Todstus : ( a) = ( + a) [( ) ( )( a) ( a) ] ( ) ( a) ( ) ( a) ( ) 0 = ( ) + ( a) = + + = + + = ( ) ja lsäks alaraja ( ) saavutetaa, ku a = (a)-kohda mukaa Todstus : Etstää fukto f ( a) = ( a) äärarvot parametr a suhtee dervomalla fuktota f(a). Dervodaa fukto f(a), merktää dervaatta ollaks ja ratkastaa saatu ormaalyhtälö parametr a suhtee: f a = a = a = + a = + a = ( ) ( ) ( ) 0 a = = = = = Ratkasuks saadaa = a = = Ratkasu vastaa fukto f(a) mmä, koska f a = a = > ( ) ( ) 0 a Ilkka Mell (006) /
23 Mat-.60 Sovellettu todeäkösyyslasketa B Lsäks fukto f(a) mmarvoks saadaa f ( ) = ( ) = ( ) s jossa s o lukuje,,, otosvarass. Ilkka Mell (006) 3/3
24 Mat-.60 Sovellettu todeäkösyyslasketa B Tehtävä 7.6. Hetetää oppaa 30 kertaa. Olkoo tuloksea seuraava slmälukuje joo:, 4, 4,, 5, 4,,, 6, 5, 3, 3, 5, 4, 4,, 6,, 5, 4, 4, 3, 3, 3, 5, 5, 3, 4, 5, 4 (a) Määrää slmälukuje frekvesst ja suhteellset frekvesst. (b) Määrää slmälukuje frekvessjakauma mood. Tehtävä 7.6. Mtä opmme? Tehtävässä tarkastellaa laatueroastekollste muuttuje tuuslukuje määräämstä. Tehtävä 7.6. Ratkasu: Kakk määrättävks pyydetyt tuusluvut ovat laatueroastekollste muuttuje tuuslukuja ta h perustuva tuuslukuja. Olemme hettäeet oppaa 30 kertaa ja tuloksea o seuraava slmälukuje joo:, 4, 4,, 5, 4,,, 6, 5, 3, 3, 5, 4, 4,, 6,, 5, 4, 4, 3, 3, 3, 5, 5, 3, 4, 5, 4 (a) Määrätää slmälukuje frekvesst f ja suhteellset frekvesst f/. Tehtävää helpottaa, jos järjestämme joo luvut suuruusjärjestyksee. Saamme tällö joo,,,,,, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6 Ste slmälukuje frekvesse ja suhteellste frekvesse jakaumat vodaa esttää alla oleva tauluko muodossa: Slmäluku Summa Frekvess f Suhteelle frekvess f/ 5/30 /30 6/30 9/30 7/30 /30 (b) Kohda (a) frekvesstaulukosta vomme lukea, että frekvessjakauma mood o Mo = 4 koska slmäluvu 4 frekvess o suur. Ilkka Mell (006) 4/4
25 Mat-.60 Sovellettu todeäkösyyslasketa B Tehtävä 7.7. Olet ottaut paksta 0000 euro laa, jota e saa lyhetää kahde esmmäse vuode akaa. Alkuperäse sopmukse mukae korko o. vuotea 0 % ja. vuotea 0 %, jollo takas maksettava laapääoma kasvaa kahdessa vuodessa %. Oletetaa, että pak vaatmuksesta sopmusta muutetaa, että kahde esmmäse vuode akaa käytetää samaa korkoprosetta, joka määrätää, että laapääoma kasvaa tää akaa samaks ku alkuperäse sopmukse mukaa. (a) Määrää. (b) Näytä, että uude sopmukse korkoa e saada kaavalla (0 + 0)/ % (c) Näytä, että uude sopmukse korko saadaa kaavalla jossa (.. ) 00 %.. o lukuje. ja. geometre keskarvo. Tehtävä 7.7. Mtä opmme? Tehtävässä äytetää, että artmeette keskarvo e ole aa käypä tuusluku. Okea keskluku tehtävä ogelma ratkasemsee o tässä geometre keskarvo. Tehtävä 7.7. Ratkasu: (a) Olkoo korko. vuotea 0 % ja. vuotea 0 %. Laapääoma. vuode lopussa: ( + 0/00) 0000 = ( + 0.) 0000 = = 000 Laapääoma. vuode lopussa: ( + 0/00) 000 = ( + 0.) 000 =. 000 = 300 Ste laapääoma kasvaa kahdessa vuodessa 00 ( )/0000 % = 3 % jote = 3 Ilkka Mell (006) 5/5
26 Mat-.60 Sovellettu todeäkösyyslasketa B (b) Määrätää. ja. vuode korkoprosette artmeette keskarvo: % = 5% Olkoo korko ss molempa vuosa 5 %. Laapääoma. vuode lopussa: ( + 5/00) 0000 = ( + 0.5) 0000 = = 500 Laapääoma. vuode lopussa: ( + 5/00) 500 = ( + 0.5) 500 = = 35 Ste laapääoma kasvaa kahdessa vuodessa 00 ( )/0000 % = 3.5 % > 3 % Huomaa, että okea korkoprosett e ole myöskää 3 % = 6% (c) Määrätää korkoprosett kaavalla (.. ) 00 % jossa.. o lukuje. ja. geometre keskarvo: (.. ) Olkoo korko ss molempa vuosa %. Laapääoma. vuode lopussa: ( /00) 0000 = ( ) 0000 = = Ilkka Mell (006) 6/6
27 Mat-.60 Sovellettu todeäkösyyslasketa B Laapääoma. vuode lopussa: ( /00) = ( ) = Ste laapääoma kasvaa kahdessa vuodessa 00 ( )/0000 % = 3 % kute ptääk. Huomautus: Olkoo korko. vuotea p % ja tosea vuotea q %. Ylesest pätee: p q p q = mutta ( p + q)/ ( p+ q)/ p q pats, jos p = q Ilkka Mell (006) 7/7
28 Mat-.60 Sovellettu todeäkösyyslasketa B Tehtävä 7.8. Pakkakute A ja B välmatka o 0 km. Heklö ajaa A:sta B:he keskopeudella 60 km/h ja B:stä A:ha keskopeudella 0 km/h. (a) Määrää keskopeus edestakasella matkalla. (b) Näytä, että keskopeutta edestakasella matkalla e saada kaavalla (60 + 0)/ = 90 km/h (c) Näytä, että okea keskopeus saadaa määräämällä lukuje 60 ja 00 harmoe keskarvo Tehtävä 7.8. Mtä opmme? Tehtävässä äytetää, että artmeette keskarvo e ole aa käypä tuusluku. Okea keskluku tehtävä ogelma ratkasemsee o tässä harmoe keskarvo. Tehtävä 7.8. Ratkasu: (a) A: ja B: välmatka: 0 km Ajoaka A:sta B:he (60 km/h): 0/60 = h Ajoaka B:stä A:ha (0 km/h): 0/0 = h Matka edestakas: 40 km Ajoaka edestakas: + = 3 h Keskopeus edestakasella matkalla: 40/3 = 80 km/h (a) Määrätää keskopeukse artmeette keskarvo: (60 + 0) km/h = 90 km/h 80 km/h Ilkka Mell (006) 8/8
29 Mat-.60 Sovellettu todeäkösyyslasketa B (b) Määrätää keskopeukse harmoe keskarvo: km/h = 80 km/h Ilkka Mell (006) 9/9
30 Mat-.60 Sovellettu todeäkösyyslasketa B Tehtävä 7.7. (a) (b) Koe valmstaa kuulalaaker kuula, jode halkasjat vahtelevat satuasest oudattae ormaaljakaumaa parametre µ = 0 mm, σ = 0.0 mm Pomtaa kuule joukosta ykskertae satuasotos, joka koko = 0. Olkoot X ja s kuule halkasjode artmeette keskarvo ja otosvarass otoksessa. Mtkä ovat artmeettse keskarvo X ja otosvarass s muuokse ( )s /σ jakaumat otoksessa? Ääestäjstä 5 % kaattaa puoluetta ABC. Pomtaa ääestäje joukosta ykskertae satuasotos, joka koko = 000. Mkä o puoluee ABC kaattaje suhteellse osuude f/ approksmatve jakauma otoksessa? Tehtävä 7.7. Mtä opmme? Tehtävä (a)-kohdassa tarkastellaa artmeettse keskarvo ja otosvarass otosjakauma. Tehtävä (b)-kohdassa tarkastellaa suhteellse osuude (approksmatvsta) otosjakaumaa. Tehtävä 7.7. Ratkasu: (a) Oletukse mukaa havaot X, X,, X muodostavat ykskertase satuasotokse ormaaljakaumasta N(µ,σ ), jossa = 0 µ = 0 mm σ = 0.0 mm = mm Ste kuule halkasjode artmeette keskarvo X oudattaa otoksessa ormaaljakaumaa N(µ,σ /), jossa µ = E( X ) = 0 mm σ = Var( X) = D ( X) = = mm 0 Olkoo s kuule halkasjode varass otoksessa. Tällö satuasmuuttuja ( )s /σ oudattaa otoksessa χ -jakaumaa vapausaste = 0 = 9 Ilkka Mell (006) 30/30
31 Mat-.60 Sovellettu todeäkösyyslasketa B (b) Olkoo A = satuasest valttu ääestäjä kaattaa puoluetta ABC Oletukse mukaa Pr(A) = p = 0.5 Pomtaa ääestäje joukosta ykskertae satuasotos, joka koko o = 000. Puoluetta ABC kaattave ääestäje suhteelle frekvess pˆ = f / otoksessa oudattaa suurssa otoksssa approksmatvsest ormaaljakaumaa: p pq ˆ a N p, jossa ss p = Pr(A) = 0.5 q = Pr(A c ) = Pr(A) = p = 0.75 Ste puoluee ABC kaattaje suhteelle frekvess pˆ = f / otoksessa oudattaa suurssa otoksssa approksmatvsest ormaaljakaumaa parametre E( pˆ ) = p = 0.5 pq pˆ = pˆ = = = = Var( ) D ( ) Ilkka Mell (006) 3/3
32 Mat-.60 Sovellettu todeäkösyyslasketa B Tehtävä 7.8. (a) (b) Meste ptuus eräässä maassa vahtelee satuasest oudattae ormaaljakaumaa parametre µ = 80 cm, σ = 5 cm Pomtaa meste joukosta ykskertae satuasotos, joka koko = 00. Olkoot X ja s ptuukse artmeette keskarvo ja otosvarass otoksessa. Mtkä ovat artmeettse keskarvo X ja otosvarass s muuokse ( )s /σ jakaumat otoksessa? Koee valmstamsta mutteresta 5 % o vallsa. Pomtaa mutterede joukosta ykskertae satuasotos, joka koko = 00. Mkä o vallste mutterede suhteellse osuude f/ approksmatve jakauma otoksessa? Tehtävä 7.8. Mtä opmme? Tehtävä (a)-kohdassa tarkastellaa artmeettse keskarvo ja otosvarass otosjakauma. Tehtävä (b)-kohdassa tarkastellaa suhteellse osuude (approksmatvsta) otosjakaumaa. Tehtävä 7.8. Ratkasu: (a) Oletukse mukaa havaot X, X,, X muodostavat ykskertase satuasotokse ormaaljakaumasta N(µ,σ ), jossa = 00 µ = 85 cm σ = 5 cm = 5 cm Ste meste ptuukse artmeette keskarvo X oudattaa otoksessa ormaaljakaumaa N(µ, σ /), jossa µ = E( X ) = 85 cm σ 5 = Var( X) = D ( X) = = 0.5 cm 00 Olkoo s meste ptuukse varass otoksessa. Tällö satuasmuuttuja ( )s /σ oudattaa otoksessa χ -jakaumaa vapausaste = 00 = 99 Ilkka Mell (006) 3/3
33 Mat-.60 Sovellettu todeäkösyyslasketa B (b) Olkoo A = satuasest valttu mutter o valle Oletukse mukaa Pr(A) = p = 0.05 Pomtaa muuterede joukosta ykskertae satuasotos, joka koko o = 00. Vallste mutterede suhteelle frekvess pˆ = f / otoksessa oudattaa suurssa otoksssa approksmatvsest ormaaljakaumaa: p pq ˆ a N p, jossa ss p = Pr(A) = 0.05 q = Pr(A c ) = Pr(A) = p = 0.95 Ste vallste mutterede suhteelle frekvess pˆ = f / otoksessa oudattaa suurssa otoksssa approksmatvsest ormaaljakaumaa parametre E( pˆ ) = p = 0.05 kasvaa. pˆ pq = pˆ = = = = Var( ) D ( ) Ilkka Mell (006) 33/33
34 Mat-.60 Sovellettu todeäkösyyslasketa B Huomautuksa tehtäv 7.7. ja 7.8.: () Tehtäve 7.7. ja 7.8. deaa o kertoa stä, mllasa ovat tavaomaste havaosta laskettave otostuuslukuje jakaumat perusjoukossa, jos havatoje jakauma perusjoukossa tuetaa. () Otostuuslukuje jakauma koskevat tulokset ovat kutek epäoperatoaalsa, koska jakaume parametreja e yleesä tueta. (3) Jos havatoje jakauma parametreja e tueta, e vodaa pyrkä estmomaa el arvomaa otoksesta saatuje tetoje perusteella; ks. lukua Tlastollste malle parametre estmot. (4) Perusjouko parametre arvosta tehtyjä oletuksa vodaa pyrkä testaamaa tlastollsest otoksesta saatuje tetoje perusteella; ks. lukua Tlastollste hypoteese testaus. (5) Myös perusjouko jakauma tyyppä koskeva oletuksa vodaa pyrkä testaamaa tlastollsest otoksesta saatuje tetoje perusteella; ks. lukua Yhteesopvuude, homogeesuude ja rppumattomuude testaame. Ilkka Mell (006) 34/34
TKK @ Ilkka Mellin (2008) 1/24
Mat-.60 Sovellettu todeäkösyyslasketa B Mat-.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Mtta-astekot Havatoaesto kuvaame ja otostuusluvut Avasaat: Artmeette keskarvo, Frekvess, Frekvessjakauma,
Mat Sovellettu todennäköisyyslaskenta B 8. harjoitukset / Ratkaisut Aiheet: Otos ja otosjakaumat Avainsanat:
Mat-1.60 Sovellettu todeäkösyyslasketa Mat-1.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Otos ja otosjakaumat Avasaat: Artmeette keskarvo, Beroull-jakauma, Beroull-koe, χ -jakauma, Frekvess, Frekvessjakauma,
Tilastollisten aineistojen kerääminen ja mittaaminen Tilastolliset aineistot
Todeäkösyyslaskea ja talstotetee peruskurssesmerkkkokoelma 4 Todeäkösyyslaskea ja tlastotetee peruskurss Esmerkkkokoelma 4 Aheet: Tlastollste aestoje kerääme ja mttaame Tlastollste aestoje kuvaame Otokset
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 4
MS-A Todeäkösyyslaskea ja tlastotetee peruskurss Vkko Tlastollste aestoje kerääme ja mttaame; tlastollste aestoje kuvaame; Otokset ja otosjakaumat; Estmot; Estmotmeetelmät; Vällestmot Mtä tlastotede o?
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemaalyys laboratoro Mat-.9 Sovellettu todeäkösyyslasku A Nordlud Harjotus 8 (vko 45/3) (Ahe: Raja-arvolauseta, otostuuslukuja, johdatusta estmot, Lae luvut 9.5,.-.6). Olkoo X ~ p(λ), mssä λ
1.4. Aritmeettisen keskiarvon otosjakauma: Suurten otosten tuloksia
Tlastolle päättely. Otosjakaumat Tlastolle päättely. Otosjakaumat.. Otos, otostuusluvut ja de otosjakaumat Arvota, Havato, Havatoarvo, Otos, Otosjakauma, Otostuusluku, Rppumattomuus, Satuasmuuttuja, Satuasotos,
1.2. Aritmeettisen keskiarvon ja otosvarianssin otosjakaumat: Odotusarvot ja varianssit
Tlastolle päättely. Otosjakaumat Tlastolle päättely. Otosjakaumat.. Otos, otostuusluvut ja de otosjakaumat Arvota, Havato, Havatoarvo, Otos, Otosjakauma, Otostuusluku, Rppumattomuus, Satuasmuuttuja, Satuasotos,
Mat Koesuunnittelu ja tilastolliset mallit. Yhden selittäjän lineaarinen regressiomalli. Avainsanat:
Mat-.3 Koesuuttelu ja tlastollset mallt 4. harjotukset Mat-.3 Koesuuttelu ja tlastollset mallt 4. harjotukset / Ratkasut Aheet: Avasaat: Yhde selttäjä leaare regressomall Artmeette keskarvo, Estmaatt,
2-suuntainen vaihtoehtoinen hypoteesi
Mat-.6 Sovellettu todeäkösyyslasketa. harjotukset Mat-.6 Sovellettu todeäkösyyslasketa B. harjotukset / Ratkasut Aheet: Tlastollset testt Avasaat: Artmeette keskarvo, Beroull-jakauma, F-jakauma, F-test,
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 5 Aiheet: Tilastolliset testit Avainsanat:
MS-A5 Todeäkösyyslaskea ja tlastotetee peruskurss Esmerkkkokoelma 5 MS-A5 Todeäkösyyslaskea ja tlastotetee peruskurss Esmerkkkokoelma 5 Aheet: Tlastollset testt Avasaat: Artmeette keskarvo Beroull-jakauma
Tilastolliset menetelmät: Otokset, otosjakaumat ja estimointi. 4. Otokset ja otosjakaumat 5. Estimointi 6. Estimointimenetelmät 7.
Tlastollset meetelmät Otokset, otosjakaumat ja estmot Tlastollset meetelmät: Otokset, otosjakaumat ja estmot 4. Otokset ja otosjakaumat 5. Estmot 6. Estmotmeetelmät 7. Välestmot Ilkka Mell 5 Tlastollset
Mat Sovellettu todennäköisyyslaskenta B 9. harjoitukset / Ratkaisut Aiheet: Estimointi Estimointimenetelmät Väliestimointi Avainsanat:
Mat-.60 Sovellettu todeäkösyyslasketa B Mat-.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Estmot Estmotmeetelmät Välestmot Avasaat: Artmeette keskarvo, Beroull-jakauma, Beroull-koe, Estmaatt, Estmaattor,
Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 2
Todeäkösyyslaskea ja tlastotetee peruskurss Esmerkkkokoelma Aheet: Satuasmuuttujat ja todeäkösyysjakaumat Kertymäfukto Jakaume tuusluvut Dskreettejä jakauma Jatkuva jakauma Avasaat: Bomjakauma Desl Dskreett
Konvergenssikäsitteet ja raja-arvolauseet. Konvergenssikäsitteet ja raja-arvolauseet. Konvergenssikäsitteet ja raja-arvolauseet: Mitä opimme?
TKK (c) Ilkka Mell (004) Kovergesskästteet ja raja-arvolauseet Kovergesskästtetä Suurte lukuje lat Keskee raja-arvolause Keskese raja-arvolausee seurauksa Johdatus todeäkösyyslasketaa Kovergesskästteet
MTTTP1 SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN
MTTTP SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN Aesto kaavoje () (3), (9) ja () esmerkkeh Lepakot pakallstavat hyötesä lähettämällä korkeataajusta äätä Ne pystyvät pakallstamaa hyöteset
Mat-2.090 Sovellettu todennäköisyyslasku A
Mat-.090 Sovellettu todeäköiyylaku A Mat-.090 Sovellettu todeäköiyylaku A / Ratkaiut Aiheet: Avaiaat: Tilatollite aieito keräämie ja mittaamie Tilatollite aieitoje kuvaamie Oto ja otojakaumat Aritmeettie
Kaksiulotteinen normaalijakauma Mitta-asteikot Havaintoaineiston kuvaaminen ja otostunnusluvut
Mat-2.09 Sovellettu todeäköisyyslasku /Ratkaisut Aiheet: Kaksiulotteie ormaalijakauma Mitta-asteikot Havaitoaieisto kuvaamie ja otostuusluvut Avaisaat: Ehdollie jakauma, Ehdollie odotusarvo, Ehdollie variassi,
Ilkka Mellin. Sovellettu todennäköisyyslasku: Kaavat ja taulukot
Mat-.09 Sovellettu todeäkösyyslasku Systeemaalyys laboratoro Teklle korkeakoulu SYKSY 00 Ilkka Mell Sovellettu todeäkösyyslasku: Kaavat ja taulukot f XY x X x X y Y ( x, y) exp XY ( XY ) XY XY X X Y Tomttaut
Muuttujien välisten riippuvuuksien analysointi
Mat-.4 Tlastollse aalyys peusteet, kevät 7 5. lueto: Tlastolle ppuvuus ja koelaato Muuttuje välste ppuvuukse aalysot Tlastollsssa aalyysessä tutktaa use muuttuje välsä ppuvuuksa Työttömyysastee ppuvuus
= E(Y 2 ) 1 n. = var(y 2 ) = E(Y 4 ) (E(Y 2 )) 2. Materiaalin esimerkin b) nojalla log-uskottavuusfunktio on l(θ; y) = n(y θ)2
HY / Matematka ja tlastotetee latos Tlastolle päättely II, kevät 28 Harjotus 3A Ratkasuehdotuksa Tehtäväsarja I Olkoot Y,, Y ja Nθ, ) Osota, että T T Y) Y 2 o parametr gθ) θ 2 harhato estmaattor Laske
Tilastollinen riippuvuus ja korrelaatio. Tilastollinen riippuvuus ja korrelaatio. Tilastollinen riippuvuus ja korrelaatio: Esitiedot
TKK (c) Ilkka Mell (4) Tlastolle rppuvuus ja korrelaato Tlastolle rppuvuus, korrelaato ja regresso Kahde muuttuja havatoaesto kuvaame Pearso korrelaatokertome estmot ja testaus Järjestyskorrelaatokertomet
Tilastollinen riippuvuus ja korrelaatio
Tlastollset meetelmät Osa 4: Leaare regressoaalyys Tlastolle rppuvuus ja korrelaato KE (204) Tlastolle rppuvuus ja korrelaato >> Tlastolle rppuvuus, korrelaato ja regresso Kahde muuttuja havatoaesto kuvaame
Tilastollinen päättely. 2. Datan redusoinnin periaatteet Tyhjentävyys Uskottavuus
Mat.36 Tlastolle päättely. Data reduso peraatteet Tlastolle päättely. Data reduso peraatteet.. Tyhjetävyys Asllaarsuus, Basu teoreema, Data redusot, Faktorotteoreema, Iformaato, Mmaale tyhjetävyys, Otos,
Mat Koesuunnittelu ja tilastolliset mallit
Mat-.03 Koeuuttelu tlatollet mallt. harjotuket Mat-.03 Koeuuttelu tlatollet mallt. harjotuket / Ratkaut Aheet: Avaaat: Tlatollte aetoje kuvaame Oto otokaumat Etmot Etmotmeetelmät Väletmot Artmeette kekarvo,
Tilastollinen päättely. 3. Piste-estimointi Johdanto Estimointimenetelmät Estimaattoreiden ominaisuudet
Mat-1.361 Tlastolle päättely 3. Pste-estmot Tlastolle päättely 3. Pste-estmot 3.1. Johdato Estmaattor, Estmaatt, Estmot, Havato, Havatopste, Otos, Otostuusluku, Parametr, Pste-estmot, Pstetodeäkösyysfukto,
Tilastollinen päättely. 2. Datan redusoinnin periaatteet Tyhjentävyys Uskottavuus
Mat-1.361 Tlastolle päättely. Data reduso peraatteet Tlastolle päättely. Data reduso peraatteet.1. Tyhjetävyys Asllaarsuus, Basu teoreema, Data redusot, Faktorotteoreema, Iformaato, Mmaale tyhjetävyys,
Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava: Esitiedot
TKK (c) Ilkka Mell (2004) Kokoastodeäkösyys ja Kokoastodeäkösyys ja : Johdato Kokoastodeäkösyyde ja Bayes kaavoje systeemteoreette tulkta Johdatus todeäkösyyslasketaa Kokoastodeäkösyys ja TKK (c) Ilkka
Tilastollinen päättely. 3. Piste estimointi Johdanto Estimointimenetelmät Estimaattoreiden ominaisuudet
Mat.36 Tlastolle päättely 3. Pste estmot Tlastolle päättely 3. Pste estmot 3.. Johdato Estmaattor, Estmaatt, Estmot, Havato, Havatopste, Otos, Otostuusluku, Parametr, Pste estmot, Pstetodeäkösyysfukto,
1. (Monisteen teht. 5.16) Eräiden kuulalaakereiden kestoa (miljoonaa kierrosta) on totuttu kuvaamaan Weibull-jakaumalla, jonka tiheysfunktio on
HY MTO / Matemaattste tetede kadohjelma Tlastolle päättely II kevät 019 Harjotus 7B Ratkasuehdotuksa Tehtäväsarja I 1 Mostee teht 516 Eräde kuulalaakerede kestoa mljooaa kerrosta o totuttu kuvaamaa Webull-jakaumalla
Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto
Kynä-paper -harjotukset Tana Lehtnen 8.8.07 Tana I Lehtnen Helsngn ylopsto Etelä-Suomen ja Lapn lään, 400 opettajaa a. Perusjoukon (populaaton) muodostvat kakk Etelä-Suomen ja Lapn läänn peruskoulun opettajat
HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 7B Ratkaisuehdotuksia.
HY, MTO / Matemaattste tetede kadohjelma Tlastolle päättely II, kevät 208 Harjotus 7B Ratkasuehdotuksa Tehtäväsarja I Olkoo Y, Y rppumato otos Pareto jakaumasta, fy; θ θc θ y θ+ { y > c } tuetulla vakolla
Generoidaan tiedostoon BINORM satunnaislukuja jakaumasta N(0,1) muuttujiksi U, V: (U, V): N 2 (0, 0, 1, 1, 0)
Mat-2.04 Tlastollse aalyys perusteet / Ratkasut Aheet: Avasaat Korrelaato ja assosaato Hypotees, Järjestyskorrelaatokertomet, χ 2 -rppumattomuustest, Korrelaatokerro, Pstedagramm, Päätössäätö, Nollahypotees,
Luento 6 Luotettavuus Koherentit järjestelmät
Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Lueto 6 Luotettavuus Koherett ärestelmät Aht Salo Systeemaalyys laboratoro Matematka a systeemaalyys latos Aalto-ylosto erustetede korkeakoulu
Tilastolliset menetelmät: Otokset, otosjakaumat ja estimointi
Tlastollset meetelmät Otokset, otosjakaumat ja estmot Tlastollset meetelmät: Otokset, otosjakaumat ja estmot 4. Otokset ja otosjakaumat 5. Estmot 6. Estmotmeetelmät 7. Välestmot TKK @ Ilkka Mell (006)
Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 6
Todeäkösyyslaskea ja tlastotetee peruskurss Esmerkkkokoelma 6 Todeäkösyyslaskea ja tlastotetee peruskurss Esmerkkkokoelma 6 Aheet: Tlastolle rppuvuus ja korrelaato Yhde selttäjä leaare regressomall Regressoaalyys
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemaalyys laboratoro Mat-.090 Sovellettu todeäkösyyslasku A Nordlud Harotus (vko 49/003) (Ahe: Tlastollsa testeä, regressoaalyysä Lae luvut 5.5, 6) HUOM! Laskarede palautukse takaraa o pokkeuksellsest
on tavanomainen yhden selittäjän lineaarinen regressiomalli, jossa jäännöstermit ε i toteuttavat seuraavat oletukset:
Mat-.03 Koesuuttelu ja tlastollset mallt 5. harjotukset Mat-.03 Koesuuttelu ja tlastollset mallt 5. harjotukset / Ratkasut Aheet: Avasaat: Yhde selttäjä leaare regressomall Ylee leaare mall Artmeette keskarvo,
13. Lineaariset ensimmäisen kertaluvun differentiaalisysteemit
68 3. Leaarset esmmäse kertaluvu dfferetaalsysteemt Tarkastelemme systeemejä () x () t = A() t x() t + b () t, jossa matrs A kertomet ja b ovat välllä I jatkuva. Jatkuve vektorarvoste fuktode avaruutta
9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli
lueto9.ppt S-38.45 Lkeeteora perusteet Kevät 5 Ykskertae lkeeteoreette mall Puhdas jakojärjestelmä Asakkata saapuu keskmäär opeudella asakasta per akayks. / keskmääräe asakkade välaka Asakkata palvellaa
Mat Sovellettu todennäköisyyslaskenta B 8. harjoitukset / Ratkaisut Aiheet: Otos ja otosjakaumat Avainsanat:
Mt-1.60 Sovellettu todeäkösyyslsket 8. hrjotukset Mt-1.60 Sovellettu todeäkösyyslsket B 8. hrjotukset / Rtksut Aheet: Otos j otosjkumt Avst: Artmeette keskrvo, Beroull-jkum, Beroull-koe, χ -jkum, Frekvess,
Lohkoasetelmat. Lohkoasetelmat. Lohkoasetelmat: Mitä opimme? Lohkoasetelmat. Lohkoasetelmat. Satunnaistettu täydellinen lohkoasetelma 1/4
TKK (c) lkka Melln (005) Koesuunnttelu TKK (c) lkka Melln (005) : Mtä opmme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Mten varanssanalyysssa tutktaan yhden tekän vakutusta vastemuuttujaan, kun
9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli
Ssältö Kertausta: ykskertae lkeeteoreette mall M/M/-PS asakasta palvelja asakaspakkaa M/M/-PS asakasta palveljaa asakaspakkaa Sovellus elastse datalketee malltamsee vuotasolla M/M//k/k-PS k asakasta palvelja
Todennäköisyyden aksioomat. Todennäköisyyden aksioomat. Todennäköisyyden aksioomat: Mitä opimme? 2/2. Todennäköisyyden aksioomat: Mitä opimme?
TKK () Ilkka Mell (2004) 1 Todeäkösyyde aksoomat Suhteelle rekvess, klasse todeäkösyys ja ehdolle todeäkösyys Johdatus todeäkösyyslasketaa Todeäkösyyde aksoomat TKK () Ilkka Mell (2004) 2 Todeäkösyyde
Turingin kone on kuin äärellinen automaatti, jolla on käytössään
4 TUINGIN KONEET Ala Turg 1935 36 auha Koe vo srtää auha: T U I N G auhapää: ohjausykskkö: Turg koe o ku äärelle automaatt, jolla o käytössää auhapäätä vasemmalle ta okealle; se vo myös lukea ta krjottaa
Tilastolliset menetelmät: Lineaarinen regressioanalyysi
Tlastollset meetelmät Leaare regressoaalyys Tlastollset meetelmät: Leaare regressoaalyys 3. Tlastolle rppuvuus ja korrelaato 4. Johdatus regressoaalyys 5. Yhde selttäjä leaare regressomall 6. Ylee leaare
3.5 Generoivat funktiot ja momentit
3.5. Generovat funktot ja momentt 83 3.5 Generovat funktot ja momentt 3.5.1 Momentt Eräs tapa luonnehta satunnasmuuttujan jakaumaa, on laskea jakauman momentt. Ne määrtellään odotusarvon avulla. Määrtelmä
Tilastollinen päättely. 4. Hypoteesien testaus Johdanto Testien konstruointi Testien vertailu
Mat.36 Tlastolle päättely 4. Hypoteese testaus Tlastolle päättely 4. Hypoteese testaus 4.. Johdato Hylkäysalue, Hypotees, Hyväksymsalue, Krtte alue, Nollahypotees, Otos, Parametr, Parametravaruus, Perusjoukko,
1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä
Johdatus dskreettn matematkkaan Harjotus 3, 30.9.2015 1. Luvut 1, 10 on latettu ympyrän kehälle. Osota, että löytyy kolme verekkästä lukua, joden summa on vähntään 17. Ratkasu. Tällasa kolmkkoja on 10
Moniulotteiset jakaumat ja havaintoaineistot
Momuuttujameetelmät: Ilkka Mell. Moulotteset jakaumat.. Satuasmuuttujat ja todeäkösyysjakaumat.. Yhtesjakaumat.3. Reuajakaumat ja satuasmuuttuje rumattomuus.4. Ehdollset jakaumat.5. Yhtesjakaume tuusluvut.6.
1. PARAMETRIEN ESTIMOINTI
Mat-.04 Tlastollse aalyys perusteet Mat-.04 Tlastollse aalyys perusteet / Ratkasut Aheet: Avasaat: Yhde selttäjä leaare regressomall Estmaatt, Estmaattor, Estmot, Jääöselösumma, Jääösterm, Jääösvarass,
Tilastolliset menetelmät: Lineaarinen regressioanalyysi
Tlastollset meetelmät Leaare regressoaals Tlastollset meetelmät: Leaare regressoaals 3. Tlastolle rppuvuus ja korrelaato 4. Johdatus regressoaals 5. Yhde selttäjä leaare regressomall 6. Ylee leaare mall
Tilastollinen päättely. 4. Hypoteesien testaus Johdanto Testien konstruointi Testien vertailu
Mat-1.361 Tlastolle päättely 4. Hypoteese testaus Tlastolle päättely 4. Hypoteese testaus 4.1. Johdato Hylkäysalue, Hypotees, Hyväksymsalue, Krtte alue, Nollahypotees, Otos, Parametr, Parametravaruus,
Osa 2: Otokset, otosjakaumat ja estimointi
Ilkka Melli Tilastolliset meetelmät Osa : Otokset, otosjakaumat ja estimoiti Otokset ja otosjakaumat TKK (c) Ilkka Melli (007) 1 Otokset ja otosjakaumat >> Satuaisotata ja satuaisotokset Otostuusluvut
Jakaumien tunnusluvut. Jakaumien tunnusluvut. Jakaumien tunnusluvut: Mitä opimme? 2/2. Jakaumien tunnusluvut: Mitä opimme? 1/2
TKK (c) Ila Mell (4) Jaaume tuusluvut Johdatus todeäösyyslasetaa Jaaume tuusluvut Marov ja Tshebyshev epäyhtälöt Momett Vous ja hupuuus Suurte luuje la TKK (c) Ila Mell (4) Jaaume tuusluvut: Mtä opmme?
Johdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2004) 1
Johdatus tilastotieteesee Otos ja otosjakaumat TKK (c) Ilkka Melli (004) 1 Otos ja otosjakaumat Yksikertaie satuaisotos Otostuusluvut ja otosjakaumat Aritmeettise keskiarvo otosjakauma Otosvariassi otosjakauma
8. laskuharjoituskierros, vko 11, ratkaisut
Mat-2.091 Sovellettu todeäköisyyslasku, kevät -05 Heliövaara, Palo, Melli 8. laskuharjoituskierros, vko 11, ratkaisut D1. Oletetaa, että havaiot X i, i = 1, 2,..., 100 muodostavat yksikertaise satuaisotokse
Satunnaismuuttujat ja todennäköisyysjakaumat
Satuasmuuttujat ja todeäkösyysjakaumat Todeäkösyyslasketa: Satuasmuuttujat ja todeäkösyysjakaumat 9. Satuasmuuttujat ja todeäkösyysjakaumat 0. Kertymäfukto. Jakaume tuusluvut. Moulotteset satuasmuuttujat
Todennäköisyyslaskennan kertausta
Todeäkösyyslaskea kertausta Todeäkösyyslaskea kertausta 1. Joukko-opp Alko, Erotus, Joukko, Komplemett, Lekkaus, Perusjoukko, Psteveraus, Tyhjä joukko, Uo, Yhdste. Todeäkösyys ja se määrtteleme Alkestapahtuma,
Raja-arvot. Osittaisderivaatat.
1 MAT-13440 LAAJA MATEMATIIKKA 4 Tamperee teklle ylopsto Rsto Slveoe Kevät 2010 Luku 3 Raja-arvot Osttasdervaatat 1 Fuktode raja-arvot Tarkastelemme fuktota f : A, jode määrttelyjoukko A T Muuttujat ovat
Mat Tilastollinen päättely 7. harjoitukset / Tehtävät. Hypoteesien testaus. Avainsanat:
Mat-.36 Tlastollnen päättely 7. harjotukset Mat-.36 Tlastollnen päättely 7. harjotukset / Tehtävät Aheet: Avansanat: ypoteesen testaus. lajn vrhe,. lajn vrhe, arhaton test, ylkäysalue, ylkäysvrhe, ypotees,
Satunnaismuuttujat ja todennäköisyysjakaumat
Satuasmuuttujat ja todeäkösyysjakaumat Todeäkösyyslasketa: Satuasmuuttujat ja todeäkösyysjakaumat 9. Satuasmuuttujat ja todeäkösyysjakaumat 0. Kertymäfukto. Jakaume tuusluvut. Moulotteset satuasmuuttujat
Suoran sovittaminen pistejoukkoon
Suora sovttame pstejoukkoo Ku halutaa tutka kahde tlastollse muuttuja rppuvuutta tosstaa, käytetää use leaarsta regressota el suora sovttamsta havatojoukkoo. Sä o aettu joukko havatopareja (x, y ), ja
Jaksolliset ja toistuvat suoritukset
Jaksollset ja tostuvat suortukset Korkojakson välen tostuva suortuksa kutsutaan jaksollsks suortuksks. Tarkastelemme tässä myös ylesempä tlanteta jossa samansuurunen talletus tehdään tasavälen mutta e
Yhteensopivuuden, homogeenisuuden ja riippumattomuuden testaaminen. Yhteensopivuuden, homogeenisuuden ja riippumattomuuden testaaminen
TKK () Ila Mell (004) Yhteesopvuude, hoogeesuude a rppuattouude testaae Johdatus tlastoteteesee Yhteesopvuude, hoogeesuude a rppuattouude testaae TKK () Ila Mell (004) Yhteesopvuude, hoogeesuude a rppuattouude
Johdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteesee Otos ja otosjakaumat TKK (c) Ilkka Melli (005) 1 Otos ja otosjakaumat Yksikertaie satuaisotos Otostuusluvut ja otosjakaumat Aritmeettise keskiarvo ja otosvariassi otosjakaumat
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-2.204 Tlastollsen analyysn perusteet, kevät 2007 5. luento: Tlastollnen rppuvuus ja korrelaato Ka Vrtanen Muuttujen välsten rppuvuuksen analysont Tlastollsssa analyysessä tutktaan usen muuttujen välsä
7.5. Yleinen lineaarinen malli ja suurimman uskottavuuden menetelmä
Mat.36 Tlastolle päättely 7. Suurmma uskottavuude meetelmä ja asymptootte teora Tlastolle päättely 7. Suurmma uskottavuude meetelmä ja asymptootte teora 7.. Suurmma uskottavuude estmotmeetelmä Akasarja,
Mittausepävarmuus. Mittaustekniikan perusteet / luento 7. Mittausepävarmuus. Mittausepävarmuuden laskeminen. Epävarmuuslaskelma vai virhearvio?
Mttausteknkan perusteet / luento 7 Mttausepävarmuus Mttausepävarmuus Mttaustulos e ole koskaan täysn oken Mttaustulos on arvo mtattavasta arvosta Mttaustuloksen ja mtattavan arvon ero on mttausvrhe Mkäl
Tchebycheff-menetelmä ja STEM
Tchebycheff-menetelmä ja STEM Optmontopn semnaar - Kevät 2000 / 1 1. Johdanto Tchebycheff- ja STEM-menetelmät ovat vuorovakuttesa menetelmä evät perustu arvofunkton käyttämseen pyrkvät shen, että vahtoehdot
Varianssianalyysi. Varianssianalyysi. Varianssianalyysi. Varianssianalyysi: Mitä opimme? Varianssianalyysi: Johdanto
TKK (c Ila Mell (004 Varassaalyys Varassaalyys: Johdato Johdatus tlastoteteesee Varassaalyys TKK (c Ila Mell (004 Varassaalyys: Mtä opmme? Tarastelemme tässä luvussa seuraavaa ysymystä: Mte tavaomae ahde
7. laskuharjoituskierros, vko 10, ratkaisut
7. laskuharjoituskierros, vko 10, ratkaisut D1. a) Oletetaan, että satunnaismuuttujat X ja Y noudattavat kaksiulotteista normaalijakaumaa parametrein E(X) = 0, E(Y ) = 1, Var(X) = 1, Var(Y ) = 4 ja Cov(X,
Testit laatueroasteikollisille muuttujille
Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit laatueroasteikollisille muuttujille >> Laatueroasteikollisten
Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö:
Puupntasen sandwchkattoelementn lujuuslaskelmat. Ssältö: Sandwch kattoelementn rakenne ja omnasuudet Laatan laskennan kulku Tulosten vertalua FEM-malln ja analyyttsen malln välllä. Elementn rakenne Puupntasa
10.5 Jaksolliset suoritukset
4.5 Jaksollset suortukset Tarkastellaa tlaetta, jossa asakas tallettaa pakktllle tostuvast yhtäsuure rahasumma k aa korkojakso lopussa. Asakas suorttaa talletukse kertaa. Lasketaa tlllä oleva pääoma :e
Biostatistiikka (3 opintopistettä)
Bostatstkka (3 optopstettä) Opettaja lehtor Kar Maurae, sähköpost maurae@uef.f URL: http://cs.uef.f/~maurae Kurss kotsvu: http://cs.uef.f/~maurae/bostatstkka/ LUENNOT: (4 tuta) lueot evät ole pakollsa.
Hallin ilmiö. Laatija - Pasi Vähämartti. Vuosikurssi - IST4SE. Tekopäivä 2005-9-14 Palautuspäivä 2005-9-28
Jyväskylän Aattkorkeakoulu, IT-nsttuutt IIF00 Sovellettu fyskka, Syksy 005, 4.5 ETS Opettaja Pas epo alln lö Laatja - Pas Vähäartt Vuoskurss - IST4SE Tekopävä 005-9-4 Palautuspävä 005-9-8 8.9.005 /7 LABOATOIOTYÖ
Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia: Mitä opimme?
TKK (c) Ilkka Melli (4) Johdato Johdatus todeäköisyyslasketaa TKK (c) Ilkka Melli (4) : Mitä opimme? / Tutustumme tässä luvussa seuraavii ormaalijakaumasta (ks. lukua Jatkuvia jakaumia) johdettuihi jakaumii:
Monte Carlo -menetelmä
Monte Carlo -menetelmä Helumn perustlan elektron-elektron vuorovakutuksen laskemnen parametrsodulla yrteaaltofunktolla. Menetelmän käyttökohde Monen elektronn systeemen elektronkorrelaato oteuttamnen mulla
Todennäköisyys, että yhden minuutin aikana saapuu 2 4 autoa.
Testimuuttuja kriittie arvo 5 %: merkitsevyystasolla katsotaa taulukosta. Kriittie arvo o 9,488. Koska laskettu arvo 4,35 o pieempi kui taulukosta saatu kriittie arvo 9,488, ii ollahypoteesi jää voimaa.
TILASTOMATEMATIIKKA I
TILASTOMATEMATIIKKA I Srkku Parvae 1. JOHDANTO MIHIN TILASTOTIEDETTÄ TARVITAAN? suure havatomäärä (data) keräämsee, tetoje tvstämsee ja kuvaluu (deskrptvset meetelmät, data-aalyys) johtopäätöste tekemsee
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 7: Lagrangen kertojat. Pienimmän neliösumman menetelmä.
MS-A0205/MS-A0206 Dfferentaal- ja ntegraallaskenta 2 Luento 7: Lagrangen kertojat. Penmmän nelösumman menetelmä. Jarmo Malnen Matematkan ja systeemanalyysn latos 1 Aalto-ylopsto Kevät 2016 1 Perustuu Antt
COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT
COUOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT SISÄTÖ: Coulombn voma Sähkökenttä Coulombn voman a sähkökentän laskemnen pstevaaukslle Jatkuvan vaauksen palottelemnen pstevaauksks
Baltian Tie 2001 ratkaisuja
Balta Te 001 ratkasuja 1. Olkoot tehtävät T, = 1,,..., 8. Eräs mahdollsuus jakaa tehtävät kahdeksalle opskeljalle O j, j =1,,..., 8 o ohesessa taulukossa T 1 T T T 4 T T 6 T 7 T 8 O 1 O O O 4 O O 6 O 7
Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille: Esitiedot
TKK (c Ilkka Melli (004 Johdatus tilastotieteesee TKK (c Ilkka Melli (004 : Mitä opimme? Tarkastelemme tässä luvussa seuraavia järjestysasteikolliste muuttujie testejä: ja merkkitesti parivertailuille
Väliestimointi (jatkoa) Heliövaara 1
Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).
TILASTOMATEMATIIKKA I
TILASTOMATEMATIIKKA I Srkku Parvae 1. JOHDANTO MIHIN TILASTOTIEDETTÄ TARVITAAN? suure havatomäärä (data) keräämsee, tetoje tvstämsee ja kuvaluu (deskrptvset meetelmät, data-aalyys) johtopäätöste tekemsee
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo
Bernoullijakauma. Binomijakauma
Beroulljaauma Beroull oe o ahde mahdollse ulostulo oe, jossa taahtumsta äytetää mtysä ostume ja eäostume. Esmerejä: rahahetto (ruua ta laava), lase sytymä (tyttö ta oa), helö verryhmä ( ta c ), oselja
Mat Lineaarinen ohjelmointi
Mat-.4 Lneaarnen ohelmont 8..7 Luento 6 Duaaltehtävä (kra 4.-4.4) S ysteemanalyysn Lneaarnen ohelmont - Syksy 7 / Luentorunko Motvont Duaaltehtävä Duaalteoreemat Hekko duaalsuus Vahva duaalsuus Täydentyvyysehdot
Mittausvirhe. Mittaustekniikan perusteet / luento 6. Mittausvirhe. Mittausepävarmuus ja siihen liittyvää terminologiaa
Mttausteknkan perusteet / luento 6 Mttausepävarmuus ja shen lttyvää termnologaa Mttausepävarmuus = mttaustulokseen lttyvä parametr, joka kuvaa mttaussuureen arvojen odotettua vahtelua Mttauksn lttyvä kästtetä
Voiman momentti. Momentin yksikkö on [M] = [F] [r] = 1 Nm (newtonmetri) Voiman F vaikutussuora
Voa oett Moett o oa ja oa ae tulo Täsällse ääteltä oa F oett (aksel A suhtee) o M A = F, ssä o oa akutussuoa (kohtsuoa) etäss akselsta A Voa ae sjasta odaa kättää ös oa akutuspstee ja akselpstee lhtä etästtä,
Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut
Harjotus, esmerkkratkasut K 1. Olkoon f : C C, f(z) z z. Tutk, mssä pstessä f on dervotuva. Ratkasu 1. Jotta funkto on dervotuva, on sen erotusosamäärän f(z + ) f(z) raja-arvon 0 oltava olemassa ja ss
Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1
Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2004) 1 Testit laatueroasteikollisille muuttujille Laatueroasteikollisten muuttujien testit Testi suhteelliselle
Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt
FYSP103 / 1 KAASUTUTKIMUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oppa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttauspöytäkrjan ja työselostuksen laatmsta Luento-
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-.4 Tlastollse aals perusteet, evät 7 8. lueto: Usea selttää leaare regressomall Usea selttää leaare regressomall Seltettävä muuttua havattue arvoe vahtelu halutaa selttää selttäve muuttue havattue
Osa 2: Otokset, otosjakaumat ja estimointi
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 18. lokakuuta 2007 Antti Rasila () TodB 18. lokakuuta 2007 1 / 19 1 Tilastollinen aineisto 2 Tilastollinen malli Yksinkertainen satunnaisotos 3 Otostunnusluvut
Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1
Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin
Mat Tilastollisen analyysin perusteet, kevät 2007
Mitä tilastotiede o? Mat-.04 Tilastollise aalyysi perusteet, kevät 007. lueto: Johdato Tilastotiede kehittää ja soveltaa meetelmiä: reaalimaailma ilmiöistä johtopäätökset ilmiöitä kuvaavie tietoje perusteella
Kokonaislukuoptimointi
Kokonaslukuotmont Robust dskreett otmont ysteemanalyysn Laboratoro Teknllnen korkeakoulu Ar-Pekka Perkkö ovelletun matematkan tutkasemnaar Kevät 28 sältö Robustn lneaarsen kokonasluku- sekä sekalukuotmontongelman