LUKION FYSIIKKAKILPAILU , ratkaisut PERUSSARJA

Koko: px
Aloita esitys sivulta:

Download "LUKION FYSIIKKAKILPAILU 10.11.2009, ratkaisut PERUSSARJA"

Transkriptio

1 LUKION FYSIIKKAKILPAILU , ratkaiut PERUSSARJA Vataa huolellieti ja iititi! Kirjoita tektaten koepaperiin oa niei, kotiooitteei, ähköpotiooite, opettajai nii ekä koului nii. Kilpailuaikaa on 00 inuuttia. Sekä tehtävä- että koepaperit palautetaan kilpailun loputtua.. Lentokone, jonka aa on tonnia, nouee 0 ekunnia,0 k korkeuteen. Tällöin e aavuttaa nopeuden 770 k/h. a) Kuinka uuren työn en oottorit ovat vähintään tehneet? b) Mikä on ollut oottorien yhteenlakettu vähiäiteho? c) Kuinka paljon on polttoaineena käytettyä petrolia vähintään kulunut? Käytännöä lentokone kuluttaa nouun aikana 450 kg lentopetrolia. Pohdi itä ero johtuu. RATKAISU a) Kone aa ekä liike- että potentiaalienergiaa nouun aikana: 9 W = Wk + Wp = v + gh= 000kg (4 ) +000kg 9,8 000=5,9 0 J p 9 W 5,84 0 J 6 b) Teho P = = = 3,6 0 W = 3,6MW p t 0 9 MJ W 5,84 0 J c) Petrolin läpöarvo LA = 43, petrolin kulutu on = = 0kg p kg LA 6 J 43 0 kg Lakettua polttoaineen kulututa on pidettävä pienenä. Polttooottorin hyötyuhde on 0,3 uuruuluokkaa, ikä notaa kulutuken 400 kilograaan. Vatuvoiien tekeän työn arviointi on vaikeapaa, utta jo en ouu olii 0%, niin aiie polttoaineen kulutukeki noin 450 kg. pohdinta p

2 LUKION FYSIIKKAKILPAILU , ratkaiut. Optien kuidun päähän aapuu valonäde ilata kuvan ukaieti. Tapahtuuko kuidun iällä kokonaiheijatuinen, kun tulokula on 60? Kuidun taitekerroin on,3. Ratkaiu n n Kokonaiheijatuken rajakula rajapinnaa kuitu -> ila β α in β n n,0 toteuttaa ehdon =, toiin anoen in β = =, α in90 n n,3 jota aadaan β = 50,8º. ( p) Kopleenttikulana α = 90 - β = 39,7. Kuidun päädyä tapahtuvaa taittuiea n inα = n inα : ( p kuvio) n,3 inα = inα = in 39, 7, jota aadaan α = 56,7 56,. ( p) n,0 Suurin tulokula kuituun on 56,. Vatau: Kokonaiheijatuta ei tapahdu. ( p) β Tehtävän voi ratkaita yö lakealla tulokulaa 60 vataavan taitekulan ja en avulla tutkia tapahtuuko kokonaiheijatuinen rajapinnaa kuitu -> ila.

3 LUKION FYSIIKKAKILPAILU , ratkaiut 3. Oheinen kuvaaja eittää Cernin CMS-koeaean hiin liikettä. Kuvaaja on aatu tietokoneeeen liitetyn kiihtyvyyanturin avulla. Anturin poitiivinen uunta on valittu ylöpäin. a) Päättele kuvaajan peruteella, iten ja ihin uuntaan hii liikkuu. b) Mikä on hiin nopeu taaien liikkeen aikana? c) Kuinka pitkän atkan hii kaikkiaan kulki? Ratkaiu a) Hii lähtee alhaalta ylöpäin kiihdyttäen n. 4,7. aikavälin 4,7 66 hii kulkee taaieti. Hii jarruttaa ylhäällä aikavälillä Ajan hetketä 69 > hii on paikallaan. p b) Levota liikkeelle lähtevän hiin nopeu lähtökiihdytyken jälkeen aadaan kiihtyvyyden kuvaajan ja aika-akelin välienä fyikaaliena pinta-alana, joka aadaan likiain kolion alana 4,7 0,65 =, 53, 5. Hiin nopeu on taaien liikkeen aikana,5 /. p c) Koka kiihdytykeä kiihtyvyy kavaa yhtä nopeati kuin pieneneekin, on nopeuden kuvaaja enin ylöpäin aukeava paraabeli ja itten yhtä kaarevati alapäin aukeava paraabeli. Tätä euraa, että kiihdytyken aikana nopeuden kuvaajan alle jäävä pinta-ala eli kuljettu atka voidaan lakea nopeuden kekiäien arvon avulla. Näin ollen hiin kiihdytykeä kulkea, 53 v atka on likiain = v kt = t = 4,7 = 3,59 3,6. Taaien liikkeen aikana kuljettu atka on = vt =,53 (66-4,7 ) = 93,8. Jarrutukea hii kulkee atkan, 53 v = v kt = t = 3,0 =,30,3 (aa perutelu kuin kiihdytykeä). Hiin kulkea atka on kaikkiaan 3, ,8 +,30 = 99,7 00. p

4 LUKION FYSIIKKAKILPAILU , ratkaiut 4. Monivalintatehtävä. Valite kuakin kohdaa ieletäi opivin vaihtoehto (vain yki). Perutele valintai. A. Kaki aanlaita jouipyyä laukaitaan yhtä aikaa uoraan alapäin. Toiea jouipyyä on tavallinen nuoli, toien nuoli on varutettu liäpainolla. a) Tavallinen nuoli ouu enin aahan. Tavalliella nuolella on uurepi nopeu, kun e irtoaa joueta, illä vaikka nuoliin kohdituvat jouivoiat ovat yhtä uuret, on tavallien jouen aa pienepi, jolloin jouivoian ille aiheuttaa kiihtyvyy on uurepi. Joueta irrottuaan nuolilla on yhtä uuret kiihtyvyydet (putoaikiihtyvyy g). B. Leena roikkuu yhdellä kädellä kuvan ukaieti köydeä, joka on katkeaaiillaan. Kupi puoli köydetä todennäköiein pettää? b) oikea puoli Köyden puolikojen jännityvoiien täytyy yhdeä taapainottaa Leenan paino. Kun Leenan painon uuruinen, utta vatakkaiuuntainen voia jaetaan köyien uuntaiiki jännityvoiiki, huoataan, että oikean puoleieen köyteen kohdituu uurepi voia. C. Maaa oleva atronautti huoaa, että hänen jääpalana kelluu vedeä iten, että noin 9/0 jääpalata on uponneena veteen. Jo hän olii lakeutuneena kuuodulia Kuun pinnalle, jäätä olii uponnut veteen b) 9/0 tilavuudeta Jääpalan, kuten uidenkin kappaleiden, kelluinen riippuu kappaleen painota ja en yrjäyttään neteen painota. Kuatkin ovat uoraan verrannolliia putoaikiihtyvyyteen g. Tään takia jääpala kelluu yhtä yvällä vedeä kuuodulia Kuua.kuin Maaa. D. Kun pingpong-pallo tiputetaan riittävän korkealta, e aavuttaa lopulta rajanopeuden ja putoaa taaieti. Oletetaan, että aa pallo heitetään ylöpäin uurealla nopeudella kuin ko. rajanopeu. Sillä hetkellä, kun ylöpäin liikkuvan pallon nopeu on yhtä uuri kuin rajanopeu, en kiihtyvyy on d) uurepi kuin g. Kun pallo liikkuu ylöpäin ja en nopeu on aa kuin rajanopeu pudotea, palloon kohdituu ekä paino alapäin että painon uuruinen ilanvatu alapäin. Kokonaivoian eli näiden yhdeä aiheuttaa kiihtyvyy on tällöin kaki kertaa putoaikiihtyvyyden g uuruinen eli elväti eneän kuin g. Piteyty: ½ p oikeata valinnata ja p peruteluta.

5 LUKION FYSIIKKAKILPAILU , ratkaiut 5. Ydinvoialaitoken käytetyn polttoaineen varatoa on varatoituna reaktoria olleita polttoainenippuja yviin veialtaiiin. Altaia on vettä Nipuia on huoattavat äärät radioaktiiviia aineita, jotka tuottavat hajoteaan läpöenergiaa. Kaikkien nippujen yhteinen läpöteho on 0,80 MW ja niiä olevan uraaniokidin kokonaiaa on t. Tää läpöteho poitetaan oninkertaieti varitetuilla järjetelillä, jotka pitävät veialtaat 0 C läpötilaa. a) Oletetaan, että kaikki polttoaineen jälkiläpöä poitavat järjetelät auvat eikä ihinkään toienpiteiiin ryhdytä. Oletetaan, ettei altaita iirry läpöenergiaa rakenteiiin eikä ilaan. Kuinka kauan ketää, että altaitten vei kiehuu? Voit olettaa, että veihöyry poituu ilatoinnin kautta. b) Erään tällaien nipun teho on 30 W. Nippu ijoitetaan tutkiulaitteeeen, joa nipun alaoaan yötetään vettä putketa, jonka halkaiija on,0 c. Oletetaan, että alapäähän tulevan veden läpötila on 0 C. Nipun yläpäää veden läpötila on C. Mikä on veden virtaunopeu yöttöputkea? Ratkaiu a) V vei = P uraani = 0,80 MW c vei = 4,9 0 3 J/(kgK) T = 93 K (tai 0 ºC) T = 373 K (tai 00 ºC) Veden oinailäpökapaiteetti on niin paljon uurepi kuin uraaniokidin tai etallioien, ettei niitä tarvite huoioida. Veden oletetaan vataanottavan kaiken uraaninippujen luovuttaan läön. cδt E luovutettu = E vataanotettu eli P uraani t = cδt, jota aadaan t =, iä = ρ vei Vvei. p J kg kgk (373K 93K) 6 t = =,57 0 5d W b) T = 93 K (tai 0 ºC) T = 94 K (tai ºC) P nippu = 30 W d = 0,00 Tarkatellaan ajanjakoa Δt. Jotta nippu ei läpenii, on virtaavan veden vataanotettava kaikki uraaninippujen luovuttaa läpö. E = eli Δ t = cδt. Sijoitetaan tähän veden aalle aatava laueke luovutettu E vataanotettu P nippu d ( ) vei vei = ρ veivvei = ρvei Avei = ρveiπ, iä vei on veipötkön pituu. Nyt aadaan d P vei nippu PnippuΔt = cρ veiπ ( ) veiδt, jota ratkaitaan virtaunopeu eli =. t d Δ cvei ρveiπ ( ) ΔT vei 30W v = 0,6989 kg 0,70 Δt = J 0, π (94K 93K) ( ) kgk 3 Piteyty a-kohta: p. p äilyilaita, p tuloketa. b-kohta: 4p. p äilyilaita, p aata, p virtaunopeudeta, p tuloketa.

6 LUKION FYSIIKKAKILPAILU , ratkaiut AVOIN SARJA Kirjoita tektaten koepaperiin oa niei, kotiooitteei, ähköpotiooitteei, opettajai nii ekä koului nii. Kilpailuaikaa on 00 inuuttia. Sekä tehtävä- että koepaperit palautetaan kilpailun loputtua.. Kokeellinen tehtävä. Määritä pyykkipojan jouen jouivakio. Arvioi, itä virhelähteitä ittaukea voi olla. Välineet: ittanauha, talouvaaka, pyykkipoika. Ratkaiu Aetetaan pyykkipoika vaa an päälle ja viivain jouen kohdalle. Painetaan pyykkipojan päätä orella ja luetaan vaa an lukea ekä aalla lukea, kuinka paljon jouen pää nouee.p Taapainoehto; Σ M o = 0 Fa = Fb Fa p F = b Oletetaan, että jouivoia on haroninen: Tällöin F = kx, joa x on pyykkipojan jouen poikkeaa taapainokohdata kun pyykkipoikaa painetaan. Fa kx = b p Fa k = bx Mittaukia on aatu euraavia tulokia kun a = 4,0 c, b =,0 c x () vaa an lukea (g) F (N) 5,9 6,8 8,43 0, k (N/) vain yki ittau p ueapia ittaukia p Virhettä aiheutuu vaa an lukeieta, koka puritaien aikana lukea uuttuu. Pyykkipojan paikka aattaa uuttua yö puritaien aikana jo tehdään ueapia ittaukia. Jouen venyän lukea aiheuttaa yö virhettä. p

7 LUKION FYSIIKKAKILPAILU , ratkaiut. Optien kuidun päähän aapuu valonäde ilata kuvan ukaieti 40 ateen tulokulaa. Kuinka onta kertaa valonäde kokonaiheijatuu uoraa valokaapelia, jonka pituu on,0 ja halkaiija 00 µ? Kuidun taitekerroin on,3. Ratkaiu Tutkitaan enin, tapahtuuko kokonaiheijatuta: in β n Kokonaiheijatuken rajakula toteuttaa ehdon =, n n in90 n β α n,0 toiin anoen in β = =, jota aadaan β = 50,8 º. α n,3 ( p) Kopleenttikulina α = 90 - β = 39,7. Kuidun päädyä tapahtuvaa taittuiea n inα = n inα : ( p kuvio) n,3 inα = inα = in 39, 7, jota aadaan α = 56,7 56,. ( p) n,0 Kokonaiheijatuken rajakula on 56,, t. kokonaiheijatu tapahtuu. β Laketaan tään jälkeen, kuinka kaukana kuidun päätä eniäinen kokonaiheijatu tapahtuu. n in 40 inα = inα = = 0,495, itä euraa että α = 9,7. ( p),3 n 6 d / Eniäinen kokonaiheij. tapahtuu etäiyydellä 75,3 0 l = = =. tan α tan 9,7 L Kokonaiheijatuten lukuäärä on l = 75,3 0 = ( p) ( p)

8 LUKION FYSIIKKAKILPAILU , ratkaiut 3. Monivalintatehtävä. Valite kuakin kohdaa ieletäi opivin vaihtoehto (vain yki). Perutele valintai. Piteyty: ½ p oikeata valinnata ja p peruteluta. A. Kun arjaan kytketyt laput X ja Y yhditetään paritoon, lappu X hehkuu kirkkaain kuin lappu Y. Kun lappujen järjety vaihdetaan, a) lappu X hehkuu jälleen kirkkaain. Lappujen järjety ei vaikuta ähkövirran uuruuteen lapuia vaan kuaakin on edelleen yhtä uuri ähkövirta, joten X hehkuu edelleen kirkkaain. (Erilainen kirkkau aiheutuu iitä, että laput ovat erilaiia: P X = R X I ja P Y = R Y I, joten voidaan päätellä, että R X > R Y.) B. Kun aat laput X ja Y kytketään rinnan paritoon, b) lappu Y hehkuu kirkkaain. U U Rinnankytkettyinä lapuilla on aa jännitehäviö. Tällöin aadaan PX = ja PY =, RX RY joten jo oletetaan, että uuttuneita ja kekenäänkin erilaiita ähkövirroita huoliatta R X > R Y, niin tällä kertaa P Y > P X. C. Ohea on eitetty kaki virtapiiriä, joia on aanlaiet jännitelähteet. c) Sähkövirta on yhtä uuri virtapiireiä ja. Piirien kokonaireitanit ovat yhtä uuret. Kun yhditetään piirin oikeanpuoleiet arjaankytketyt Ω:n vatuket, aadaan niiden yhteieki reitaniki Ω. Nää ovat taa rinnankytkettyjä Ω:n vatuken kana, jolloin yhteieki reitaniki tulee Ω, jne. D. Muovailuvahata pyöritetään ylinterin uotoinen pötkö, jonka päiden välinen reitani itataan yleiittarilla. Kun aa uovailuvaha pyöritetään pituudeltaan kakinkertaieki pötköki, en reitani c) nelinkertaituu. Kun aa uovailuvaha pyöritetään pituudeltaan kakinkertaieki pötköki, en poikkipinta-ala puolittuu, illä tilavuuden täytyy äilyä aana. Tällöin reitaniki aadaan l l R = ρ = 4ρ = 4R 0. A A Piteyty: ½ p oikeata valinnata ja p peruteluta.

9 LUKION FYSIIKKAKILPAILU , ratkaiut 4. Ydinvoialaitoken käytetyn polttoaineen varatoa on varatoituna reaktoria olleita polttoainenippuja yviin veialtaiiin. Altaia on vettä Nipuia on huoattavat äärät radioaktiiviia aineita, jotka tuottavat hajoteaan läpöenergiaa. Kaikkien nippujen yhteinen läpöteho on 0,80 MW ja niiä olevan uraaniokidin kokonaiaa on t. Tää läpöteho poitetaan oninkertaieti varitetuilla järjetelillä, jotka pitävät veialtaat 0 C läpötilaa. a) Oletetaan, että kaikki polttoaineen jälkiläpöä poitavat järjetelät auvat eikä ihinkään toienpiteiiin ryhdytä. Oletetaan, ettei altaita iirry läpöenergiaa rakenteiiin eikä ilaan. Kuinka kauan ketää, että altaitten vei kiehuu? Voit olettaa, että veihöyry poituu ilatoinnin kautta. b) Erään tällaien nipun teho on 30 W. Nippu ijoitetaan tutkiulaitteeeen, joa nipun alaoaan yötetään vettä putketa, jonka halkaiija on,0 c. Oletetaan, että alapäähän tulevan veden läpötila on 0 C. Nipun yläpäää veden läpötila on C. Nipua vallitee noraali ilanpaine. Mikä on veden virtaunopeu yöttöputkea? Ratkaiu a) V vei = P uraani = 0,80 MW c vei = 4,9 0 3 J/(kgK) T = 93 K (tai 0 ºC) T = 373 K (tai 00 ºC) Veden oinailäpökapaiteetti on niin paljon uurepi kuin uraaniokidin tai etallioien, ettei niitä tarvite huoioida. Veden oletetaan vataanottavan kaiken uraaninippujen luovuttaan läön. cδt E luovutettu = E vataanotettu eli P uraani t = cδt, jota aadaan t =, iä = ρ vei Vvei. p J kg kgk (373K 93K) 6 t =,57 0 5d W b) T = 93 K (tai 0 ºC) T = 94 K (tai ºC) P nippu = 30 W d = 0,00 Tarkatellaan ajanjakoa Δt. Jotta nippu ei läpenii, on virtaavan veden vataanotettava kaikki uraaninippujen luovuttaa läpö. E = eli Δ t = cδt. Sijoitetaan tähän veden aalle aatava laueke P luovutettu E vataanotettu vei nippu = P nippu d ( ) vei = ρ veivvei = ρ vei Avei = ρ veiπ, iä vei on veipötkön pituu. Nyt aadaan d P vei nippu Δt = cρ veiπ ( ) veiδt, jota ratkaitaan virtaunopeu eli =. Δt c ρ π = 30W vei v 0,6989 kg 0, 70 J Δt 0, ( ) kgk π (94K 93K) vei vei d ( ) ΔT Piteyty a-kohta: p. p äilyilaita, p tuloketa. b-kohta: 4p. p äilyilaita, p aata, p virtaunopeudeta, p tuloketa.

10 LUKION FYSIIKKAKILPAILU , ratkaiut 5. Oppitunnilla tutkittiin heilurin liikettä. Heilurin langan pituu oli 96 c ja en päää oli pieni utta raka punnu, jonka aa oli 90 graaa. Heiluri oli kiinnitetty voia-anturiin. Mitattaea aatiin oheinen kuvaaja langan jännityvoiata ajan funktiona. RATKAISU Määritä kuvaajan peruteella a) heilurin taajuu. b) heilurin nopeu ala-aeaa c) heilurin kiihtyvyy ääriaeaa. a) Punnuken ohittaea ratana alian kohdan on langan jännityvoia uuriillaan. Jo punnu on eniäien jännityakiin kohdalla enoa ei. vaealle, niin toien akiin kohdalla e on palaaaa vaeanpuoleieta ääriaennota ja on enoa oikeanpuoleieen äärikohtaana. Vata kolannen jännityakiin kohdalla on punnu palannut lähtökohtaana ja on atkalla alkuperäieen uuntaana. Eniäien ja kolannen jännityakiin aikaero on,0 jota taajuudeki aadaan f = =0,50Hz T =,0. p. (Ratkaiu, joa on käytetty ateaattien heilurin heilahduajan kaavaa eikä kuvaajaa p.) b) Punnu on kekeiliikkeeä ala-aeaa ja en uuur ur uur uur r uur uur liikeyhtälö on Tala + G = at + an = 0 + an = an (alaaeaa punnukeen ei vaikuta ikään liikkeen uuntainen uur r voia, joten a T = 0 )

11 LUKION FYSIIKKAKILPAILU , ratkaiut Siirrytään iteiarvoihin: Tala G an l v = =, jota aadaan punnuken nopeudeki alaaeaa (,8N-0,090kg 9,8 ) 0,96 ( T ) ala G l v = = =,8 p. 0,090kg c) Punnuken liikeyhtälö ääriaennoa on ur ur uur uur uur r uur T + g = a + a = a + 0 = a (ääriaennoa punnukella ei ole T N T T vauhtia, joten en noraalikiihtyvyy a N = v 0 0 L = L = ). Jaetaan voia g ur koponentteihin coθ g ja inθ g. a T ur ur T + g inθ g = = = inθ g = ( θ ) co g. Määritetään coθ : T ääriaennoa langan uunnaa T coθ g = 0, jota coθ =. g Kuvaajata luetaan jännityvoia T = 0,69N, jolloin kiihtyvyy T 0, 69N at = ( co θ ) g = g = g 0,6 g 6, g = =. p. 0,090kg 9,8 T 0 (Liätulo: akii heilahdukula on arcco = 39 ) g (Jo käytetty energian äilyilakia kulan θ äärittäieki, eikä kuvaajaa ½p.)

LUKION FYSIIKKAKILPAILU 8.11.2005 avoimen sarjan vast AVOIN SARJA

LUKION FYSIIKKAKILPAILU 8.11.2005 avoimen sarjan vast AVOIN SARJA LKION FYSIIKKAKILPAIL 8..5 avoien arjan vat AVOIN SARJA Kirjoita tektaten koepaperiin oa niei, kotiooitteei, ähköpotiooitteei, opettajai nii ekä koului nii. Kilpailuaikaa on inuuttia. Sekä tehtävä- että

Lisätiedot

RATKAISUT: 3. Voimakuvio ja liikeyhtälö

RATKAISUT: 3. Voimakuvio ja liikeyhtälö Phyica 9. paino (8) 3. Voiakuvio ja liikeyhtälö : 3. Voiakuvio ja liikeyhtälö 3. a) Newtonin I laki on nieltään jatkavuuden laki. Kappale jatkaa liikettään uoraviivaieti uuttuattoalla nopeudella tai pyyy

Lisätiedot

RATKAISUT: 8. Momentti ja tasapaino

RATKAISUT: 8. Momentti ja tasapaino Phyica 9. paino (7) : 8. Voian vari r on voian vaikutuuoran etäiyy pyöriiakelita. Pyöriiakeli on todellinen tai kuviteltu akeli, jonka ypäri kappale pyörii. Voian oentti M kuvaa voian vääntövaikututa tietyn

Lisätiedot

Kertaustehtäviä. Luku 1. Physica 3 Opettajan OPAS

Kertaustehtäviä. Luku 1. Physica 3 Opettajan OPAS (4) Luku 57. a) Mekaaniea poikittaiea aaltoliikkeeä aineen rakenneoat värähtelevät eteneiuuntaan vataan kohtiuoraa uunnaa. Eierkkejä ovat uun uaa jouen poikittainen aaltoliike tai veden pinnan aaltoilu.

Lisätiedot

b) Laskiessani suksilla mäkeä alas ja hypätessäni laiturilta järveen painovoima tekee työtä minulle.

b) Laskiessani suksilla mäkeä alas ja hypätessäni laiturilta järveen painovoima tekee työtä minulle. nergia. Työ ja teho OHDI JA TSI -. Opettaja ja opikelija tekevät hyvin paljon aanlaita ekaanita työtä, kuten liikkuinen, kirjojen ja eineiden notainen, liikkeellelähtö ja pyähtyinen. Uuien aioiden oppiinen

Lisätiedot

RATKAISUT: 17. Tasavirtapiirit

RATKAISUT: 17. Tasavirtapiirit Phyica 9. paino 1(6) ATKAST 17. Taavirtapiirit ATKAST: 17. Taavirtapiirit 17.1 a) Napajännite on laitteen navoita mitattu jännite. b) Lähdejännite on kuormittamattoman pariton napajännite. c) Jännitehäviö

Lisätiedot

1. Oheinen kuvio esittää kolmen pyöräilijän A, B ja C paikkaa ajan funktiona.

1. Oheinen kuvio esittää kolmen pyöräilijän A, B ja C paikkaa ajan funktiona. Fotoni 4 Kertau - 1 Kertautehtäviä Luku 1 1. Oheinen kuvio eittää kolen pyöräilijän A, B ja C paikkaa ajan funktiona. a) Kuka on kulkenut piiän atkan aikavälinä 0...7? b) Milloin B aavuttaa C:n? c) Kenellä

Lisätiedot

Fy07 Koe Kuopion Lyseon lukio (KK) 1 / 5

Fy07 Koe Kuopion Lyseon lukio (KK) 1 / 5 y07 Koe 8.9.05 Kuopion yeon lukio (KK) / 5 Vataa kolmeen tehtävään. Vatuken reitani on 60, käämin induktani on 0,60 H ja reitani 8 ja kondenaattorin kapaitani on 80. Komponentit ovat arjaan kytkettyinä

Lisätiedot

RATKAISUT: 7. Gravitaatiovoima ja heittoliike

RATKAISUT: 7. Gravitaatiovoima ja heittoliike Phyica 9. paino () 7. Gaitaatiooia ja heittoliike : 7. Gaitaatiooia ja heittoliike 7. a) Gaitaatiooia aikuttaa kaikkien kappaleiden älillä. Gaitaatiooian uuuu iippuu kappaleiden aoita ja niiden älietä

Lisätiedot

4.3 Liikemäärän säilyminen

4.3 Liikemäärän säilyminen Tämän kappaleen aihe liikemäärän äilyminen törmäykiä. Törmäy on uora ja kekeinen, jo törmäävät kappaleet liikkuvat maakekipiteitten kautta kulkevaa uoraa pitkin ja jo törmäykohta on tällä amalla uoralla.

Lisätiedot

RATKAISUT: Kertaustehtäviä

RATKAISUT: Kertaustehtäviä Phyica 1 uuditettu paino OPETTAJAN OPAS 1(9) Kertautehtäiä RATKAISUT: Kertautehtäiä LUKU 3. Luua on a) 4 eriteää nueroa b) 3 eriteää nueroa c) 7 eriteää nueroa. 4. Selitetään erieen yhtälön olepien puolien

Lisätiedot

Kertausosa. 2. Kuvaan merkityt kulmat ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia, kulmat ovat yhtä suuria.

Kertausosa. 2. Kuvaan merkityt kulmat ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia, kulmat ovat yhtä suuria. 5. Veitoken tilavuu on V,00 m 1,00 m,00 m 6,00 m. Pienoimallin tilavuu on 1 V malli 6,00 m 0,06m. 100 Mittakaava k aadaan tälötä. 0,06 1 k 6,00 100 1 k 0,1544... 100 Mitat ovat. 1,00m 0,408...m 100 0,41

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2010

MAOL-Pisteitysohjeet Fysiikka kevät 2010 MAOL-Piteityohjeet Fyiikka kevät 010 Tyypilliten virheiden aiheuttaia piteenetykiä (6 piteen kaalaa): - pieni lakuvirhe -1/3 p - lakuvirhe, epäielekä tulo, vähintään - - vataukea yki erkitevä nuero liikaa

Lisätiedot

Physica 9 1. painos 1(8) 20. Varattu hiukkanen sähkö- ja magneettikentässä

Physica 9 1. painos 1(8) 20. Varattu hiukkanen sähkö- ja magneettikentässä Phyica 9 aino (8) 0 Varattu hiukkann ähkö- ja agnttikntää : 0 Varattu hiukkann ähkö- ja agnttikntää 0 a) Sähköknttä aikuttaa arattuun hiukkan oialla F = QE Poitiiiti aratull hiukkall oian uunta on ähkökntän

Lisätiedot

Metallikuulan vieriminen kaltevalla tasolla

Metallikuulan vieriminen kaltevalla tasolla 1 Metallikuulan vieriinen kaltevalla taolla Mikko Vetola Koulun nii Fyiikka luonnontieteenä FY1-Projektityö 4.6.2002 Arvoana: K+ (10) 2 1. Työn tarkoitu Tehtävänä oli tutkia illaiia liikeiliöitä eiintyy

Lisätiedot

Intensiteettitaso ja Doplerin ilmiö

Intensiteettitaso ja Doplerin ilmiö Inteniteettitao ja Doplerin ilmiö Tehtävä Erkki työkentelee airaalaa. Sairaalalta 6,0 km päää on tapahtunut tieliikenneonnettomuu ja onnettomuupaikalta lähteneen ambulanin ireenin ääni kuuluu Erkille 60,0

Lisätiedot

KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoski, professori. Lappeenrannan teknillinen yliopisto

KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoski, professori. Lappeenrannan teknillinen yliopisto KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoki, proeori Lappeenrannan teknillinen yliopito Näin uuden vuoden alkaea ueat meitä miettivät ijoitualkkuna kootumuta. Yki kekeiitä kyymykitä on päätö eri

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2004

MAOL-Pisteitysohjeet Fysiikka kevät 2004 MAOL-Piteityohjeet Fyiikka kevät 004 Tyypilliten virheiden aiheuttaia piteenetykiä (6 piteen kaalaa): - pieni lakuvirhe -1/3 p - lakuvirhe, epäielekä tulo, vähintään - - vataukea yki erkitevä nuero liikaa

Lisätiedot

Äänen nopeus pitkässä tangossa

Äänen nopeus pitkässä tangossa IXPF24 Fyiikka, ryhälaboratoriotyö IST4S1 / E1 / A Okanen Janne, Vaitti Mikael, Vähäartti Pai Jyväkylän Aattikorkeakoulu, IT-intituutti IXPF24 Fyiikka, Kevät 2005, 6 ECTS Opettaja Pai Repo Äänen nopeu

Lisätiedot

Viikkotehtävät IV, ratkaisut

Viikkotehtävät IV, ratkaisut Viikkotehtävät IV, ratkaiut. 7,40 V (pariton napajännite) I 7 ma (lampun A ähkövirta rinnankytkennää) I 5 ma (lampun B ähkövirta rinnankytkennää) a) eitani on, joten lamppujen reitanit voidaan lakea tehtävää

Lisätiedot

LUKION FYSIIKKAKILPAILU 8.11.2005 perussarjan vastaukset PERUSSARJA

LUKION FYSIIKKAKILPAILU 8.11.2005 perussarjan vastaukset PERUSSARJA PERUSSARJA Vataa hulellieti ja iititi iiteen tehtäään! Kirjita tetaten epaperiin a niei, tiitteei, ähöptiite, pettajai nii eä ului nii. Kilpailuaiaa n 00 inuuttia. Seä tehtää- että epaperit palautetaan

Lisätiedot

Fysiikkakilpailu 6.11.2007, avoimen sarjan vastaukset AVOIN SARJA

Fysiikkakilpailu 6.11.2007, avoimen sarjan vastaukset AVOIN SARJA Fyiikkakilpailu 6.11.007, avoimen ajan vatauket AVOIN SARJA Kijoita tektaten koepapeiin oma nimei, kotiooitteei, ähköpotiooitteei, opettajai nimi ekä koului nimi. Kilpailuaikaa on 100 minuuttia. Sekä tehtävä-

Lisätiedot

( ) ( ) 14 HARJOITUSTEHTÄVIÄ SÄHKÖISET PERUSSUUREET SÄHKÖVERKON PIIRIKOMPONENTIT

( ) ( ) 14 HARJOITUSTEHTÄVIÄ SÄHKÖISET PERUSSUUREET SÄHKÖVERKON PIIRIKOMPONENTIT 4 HAJOTUSTHTÄVÄ SÄHKÖST PUSSUUT -auton akku (84 V, 700 mah on ladattu täyteen Kuinka uuri oa akun energiata kuluu enimmäien viiden minuutin aikana, kun oletetaan moottorin ottavan vakiovirran 5 A? Oletetaan

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2002

MAOL-Pisteitysohjeet Fysiikka kevät 2002 MAOL-Piteityhjeet Fyiikka kevät 00 Tyypilliten virheiden aiheuttaia piteenetykiä (6 piteen kaalaa): - pieni lakuvirhe -/3 p - lakuvirhe, epäielekä tul, vähintään - - vataukea yki erkitevä nuer liikaa -0

Lisätiedot

S-55.1220 Piirianalyysi 2 Tentti 4.1.2007

S-55.1220 Piirianalyysi 2 Tentti 4.1.2007 S-55.2 Piirianalyyi 2 Tentti 4..07. Piiriä yöttää kaki lähdettä, joilla on eri taajuudet. Kuinka uuri on lämmöki muuttuva teho P? Piiri on jatkuvuutilaa. J 2 00 Ω 5µH 0 pf 0/0 V J 2 00/0 ma f MHz f 2 2MHz.

Lisätiedot

rad s rad s km s km s

rad s rad s km s km s otoni 5 6- Ketautehtävien atkaiut Luku. Satelliitti kietää Maata päiväntaaajataoa 50 k Maan pinnan yläpuolella. Sen kietoaika on 90 in. Määitä atelliitin kulanopeu ja atanopeu. Maan ekvaattoiäde on noin

Lisätiedot

PD-säädin PID PID-säädin

PD-säädin PID PID-säädin -äädin - äätö on ykinkertainen äätömuoto, jota voidaan kutua myö uhteuttavaki äädöki. Sinä lähtöignaali on uoraa uhteea tuloignaalin. -äätimen uhdealue kertoo kuinka paljon mittauuure aa muuttua ennen

Lisätiedot

7. Pyörivät sähkökoneet

7. Pyörivät sähkökoneet Pyörivät ähkökoneet 7-1 7. Pyörivät ähkökoneet Mekaanien energian muuntamieen ähköenergiaki ekä ähköenergian muuntamieen takaiin mekaanieki energiaki käytetään ähkökoneita. Koneita, jotka muuntavat mekaanien

Lisätiedot

RATKAISUT: 9. Pyörimisen peruslaki ja pyörimismäärä

RATKAISUT: 9. Pyörimisen peruslaki ja pyörimismäärä Phyic 9. pino (9) 9. Pyöiien peulki j pyöiiäää : 9. Pyöiien peulki j pyöiiäää 9. ) Hituoentti on uue, jok kuv kppleen pyöiihitutt, toiin noen itä, iten vike kppleen pyöiitä on uutt. b) Syteein pyöiiäää

Lisätiedot

PERUSSARJA. nopeus (km/h) aika (s) 2,0 4,0 6,0 7,0 10,0 12,0 13,0 16,0 22,0

PERUSSARJA. nopeus (km/h) aika (s) 2,0 4,0 6,0 7,0 10,0 12,0 13,0 16,0 22,0 PERUSSARJA Vastaa huolellisesti ja siististi! Kirjoita tekstaten koepaperiin oa niesi, kotiosoitteesi, sähköpostiosoite, opettajasi nii sekä koulusi nii. Kilpailuaikaa on 100 inuuttia. Sekä tehtävä- että

Lisätiedot

12. laskuharjoituskierros, vko 16, ratkaisut

12. laskuharjoituskierros, vko 16, ratkaisut 1. lakuharjoitukierro, vko 16, ratkaiut D1. Muuttujien x ja Y havaitut arvot ovat: x 1 3 4 6 8 9 11 14 Y 1 4 4 5 7 8 9 a) Määrää regreiomallin Y i = α +βx i +ǫ i regreiokertoimien PNS-etimaatit ja piirrä

Lisätiedot

POSITIIVISEN LINSSIN POLTTOVÄLI

POSITIIVISEN LINSSIN POLTTOVÄLI S-108110 OPTIIKKA 1/6 POSITIIVISEN LINSSIN POLTTOVÄLI Laboratoriotyö S-108110 OPTIIKKA /6 SISÄLLYSLUETTELO 1 Poitiivien linin polttoväli 3 11 Teoria 3 1 Mittauken uoritu 5 LIITE 1 6 Mittaupöytäkirja 6

Lisätiedot

S Piirianalyysi 2 2. välikoe

S Piirianalyysi 2 2. välikoe S-55.22 Piirianalyyi 2 2. välikoe 6.5.23 Lake tehtävät 2 eri paperille kuin tehtävät 3 5. Muita kirjoittaa jokaieen paperiin elväti nimi, opikelijanumero, kurin nimi ja koodi. Epäelvät vataupaperit voidaan

Lisätiedot

KERTAUSTEHTÄVIÄ. LUKU v k = 12 m/s, x = 3,0 km, t =? x. LUKU v = 90 km/h = (90/3,6) m/s = 25 m/s, t = 1 s, s =? Kuljettu matka on m s

KERTAUSTEHTÄVIÄ. LUKU v k = 12 m/s, x = 3,0 km, t =? x. LUKU v = 90 km/h = (90/3,6) m/s = 25 m/s, t = 1 s, s =? Kuljettu matka on m s Phyica 4 Opettajan OPAS (8) LUKU 46 v k = /, x = 3,0 k, t =? x x Kekinopeuden uuruu on vk = Ratkaitaan aika t = t v 3,0 k t = = 50 = 50 in = 4,667 in 4, in 60 k 47 v k = 50 k/h, x =,5 k, v k = 80 k/h,

Lisätiedot

RATKAISUT: 13. Harmoninen värähtely

RATKAISUT: 13. Harmoninen värähtely Phyica 9 1 paino 1(7) 13 Haroninen värähtely : 13 Haroninen värähtely 131 a) Voia, jona uuruu on uoraan verrannollinen poieaaan taapainoaeata ja jona uunta on ohti taapainoaeaa b) Suure, joa ilaiee aiayiöä

Lisätiedot

12. ARKISIA SOVELLUKSIA

12. ARKISIA SOVELLUKSIA MAA. Arkiia ovellukia. ARKISIA SOVELLUKSIA Oleeaan, eä kappale liikkuu ykiuloeia raaa, eimerkiki -akelia pikin. Kappaleen nopeuden vekoriluonne riiää oaa vauhdin eumerkin avulla huomioon, ja on ehkä arkoiukenmukaiina

Lisätiedot

S-55.1220 Piirianalyysi 2 Tentti 1.9.2011

S-55.1220 Piirianalyysi 2 Tentti 1.9.2011 S-55.2 Piirianalyyi 2 Tentti.9.. e(t) L j(t) Lake vatukea lämmöki muuttuva teho P. = Ω L = mh = 2mF ω = 0 3 rad/ e = ê in(ωt) j = ĵ in(2ωt) ĵ = 0 A ê = 2 2 V. 2. u(t) k Kuvan mukainen taajännitelähteen

Lisätiedot

Viivakuormituksen potentiaalienergia saadaan summaamalla viivan pituuden yli

Viivakuormituksen potentiaalienergia saadaan summaamalla viivan pituuden yli hum.9. oiman potentiaalienergia Potentiaalienergiata puhutaan, kun kappaleeeen vaikuttaa jokin konervatiivinen voima. oima on konervatiivinen, jo en tekemä tö vaikutupieen iirteä tiettä paikata toieen

Lisätiedot

Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat:

Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat: Mat-.090 Sovellettu todeäköiyylaku A 0. harjoituket Mat-.09 Sovellettu todeäköiyylaku 0. harjoituket / Ratkaiut Aiheet: Avaiaat: Tilatolliet tetit Aritmeettie kekiarvo, Beroulli-jakauma, F-jakauma, F-teti,

Lisätiedot

Jakso 4: Dynamiikan perusteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautus- tai näyttöpäivä on maanantaina

Jakso 4: Dynamiikan perusteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautus- tai näyttöpäivä on maanantaina Jako 4: Dynamiikan peruteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautu- tai näyttöpäivä on maanantaina 8.8.2016. Kolmea enimmäieä lakua ovelletaan Newtonin 2. ja 3. lakia. T 4.1 (pakollinen):

Lisätiedot

Y56 Laskuharjoitukset 3 palautus ma klo 16 mennessä

Y56 Laskuharjoitukset 3 palautus ma klo 16 mennessä 1 Y6 Lakuharjoituket 3 alautu ma 3.. klo 16 menneä Harjoitu 1. Lue enin Vihmo, Jouni (006) Alkoholijuomien hintajoutot uomea vuoina 199 00, Yhteikuntaolitiikka 71, 006/1 ivut 9 ja vataa itten kyymykiin.

Lisätiedot

F Y S I I K K A KERTAUSTEHTÄVIÄ 1-20

F Y S I I K K A KERTAUSTEHTÄVIÄ 1-20 F Y S I I K K A KERTAUSTEHTÄVIÄ - 0 Oalla eieyiä kyyykiä vaauke ova huoaavai pidepiä kuin iä eierkiki kokeea vaaukela vaadiaan. Kokeea on oaava vain olennainen aia per ehävä. . Muua SI järjeelän ykiköihin

Lisätiedot

C B A. Kolmessa ensimmäisessä laskussa sovelletaan Newtonin 2. ja 3. lakia.

C B A. Kolmessa ensimmäisessä laskussa sovelletaan Newtonin 2. ja 3. lakia. Jako 4: Dynamiikan peruteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautu- tai näyttöpäivä on tiitaina 23.5.2017. Ektra-tehtävät vataavat kolmea tehtävää, kun kurin lopua laketaan lakuharjoitupiteitä.

Lisätiedot

Mat-2.090 Sovellettu todennäköisyyslasku A

Mat-2.090 Sovellettu todennäköisyyslasku A Mat-.090 Sovellettu todeäköiyylaku A Mat-.090 Sovellettu todeäköiyylaku A / Ratkaiut Aiheet: Avaiaat: Tilatollite aieito keräämie ja mittaamie Tilatollite aieitoje kuvaamie Oto ja otojakaumat Aritmeettie

Lisätiedot

RATKAISUT: Kertaustehtävät

RATKAISUT: Kertaustehtävät Phyica 4 OPETTAJAN OPAS (7) Kertautehtävät : Kertautehtävät Luku Piirretään tangentti hetkeä, vataavaan kohtaan Kuvan ukaan tangentin kulakerroin on 4,5 4 oikea vaihtoehto Vatau: B eli B on Taainen liike,

Lisätiedot

10 Suoran vektorimuotoinen yhtälö

10 Suoran vektorimuotoinen yhtälö 10 Suran vektrimutinen htälö J aluki tarkatellaan -tan kuuluvaa, rign kautta kulkevaa uraa, niin ura n täin määrätt, mikäli tunnetaan en uunta. Tavallieti tämä annetaan uuntakulman tangentin = kulmakertimen

Lisätiedot

X 2 = k 21X 1 + U 2 s + k 02 + k 12. (s + k 02 + k 12 )U 1 + k 12 U 2. s 2 + (k 01 + k 21 + k 02 + k 12 ) s + k

X 2 = k 21X 1 + U 2 s + k 02 + k 12. (s + k 02 + k 12 )U 1 + k 12 U 2. s 2 + (k 01 + k 21 + k 02 + k 12 ) s + k Aalto-yliopiton Perutieteiden korkeakoulu Matematiikan ja yteemianalyyin laito Mat-49 Syteemien Identifiointi 0 harjoituken ratkaiut äytetään enin iirtofunktiomalli Tehdään Laplace-muunno: ẋ k 0 k x +

Lisätiedot

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Harjoituksen 1 ratkaisuehdotukset

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Harjoituksen 1 ratkaisuehdotukset SMG-4200 Sähkömagneettiten järjetelmien lämmöniirto Harjoituken 1 ratkaiuehdotuket Vata 1800-luvun puoliväliä ymmärrettiin että lämpöenergia on atomien ja molekyylien atunnaieen liikkeeeen värähtelyyn

Lisätiedot

1.5 Tasaisesti kiihtyvä liike

1.5 Tasaisesti kiihtyvä liike Jos pudotat lyijykuulan aanpinnan läheisyydessä, sen vauhti kasvaa joka sekunti noin 9,8 etrillä sekunnissa kunnes törää aahan. Tai jos suoritat autolla lukkojarrutuksen kuivalla asvaltilla jostain kohtuullisesta

Lisätiedot

S-55.1220 Piirianalyysi 2 Tentti 27.10.2011

S-55.1220 Piirianalyysi 2 Tentti 27.10.2011 S-55.220 Piirianalyyi 2 Tentti 27.0. j(t) u(t) -piiriin vaikuttaa lähdevirta j(t) = A ĵ in(ωt)]. Lake piirin jännite u(t) ajan funktiona ja vatukea kuluva teho. Piiri on jatkuvuutilaa. ĵ = 0,5A = 2µF ω

Lisätiedot

RATKAISUT: 5. Liikemäärä ja impulssi

RATKAISUT: 5. Liikemäärä ja impulssi Phyica 9 1. paino 1(9) 5. Liikeäärä ja ipuli : 5. Liikeäärä ja ipuli 5.1 a) Kappaleen liikeäärä on p, joa on kappaleen aa ja kappaleen nopeu. b) Ipuliperiaate: Syteein liikeäärän uuto Δ p aikaälillä Δt

Lisätiedot

Kertaustehtäviä ) 2. E = on suoraan verrannollinen nopeuden toiseen potenssiin. 9,6 m/s. 1. c 2. b 3. b 4. c 5. b 6. c 7. d 8. a 9. b 10.

Kertaustehtäviä ) 2. E = on suoraan verrannollinen nopeuden toiseen potenssiin. 9,6 m/s. 1. c 2. b 3. b 4. c 5. b 6. c 7. d 8. a 9. b 10. Kertaustehtäviä. c. b 3. b 4. c 5. b 6. c 7. d 8. a 9. b. c. c) Läpötila on T = ( + 73) K = 6 K.. b) Sukellusveneen sisällä on noraali ilanpaine, joka on likiain yhtä suuri kuin ilanpaine eren pinnalla.

Lisätiedot

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa

Lisätiedot

Lämpöoppia. Haarto & Karhunen. www.turkuamk.fi

Lämpöoppia. Haarto & Karhunen. www.turkuamk.fi Läpöoppia Haarto & Karhunen Läpötila Läpötila suuren atoi- tai olekyylijoukon oinaisuus Liittyy kiinteillä aineilla aineen atoeiden läpöliikkeeseen (värähtelyyn) ja nesteillä ja kaasuilla liikkeisiin Atoien

Lisätiedot

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 5

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 5 5384A RADIOTEKNIIKAN PERUSTEET Haroitu 5. Häviötön 5 Ω:n aaltoohto on päätetty tuntemattomaan impedaniin. Aaltoohdolla olevaki ännitteen eiovan aallon uhteeki aadaan 3 a enimmäinen minimi havaitaan 5 cm:n

Lisätiedot

MP069 alueen sähköteknisten reunaehtojen laskeminen.

MP069 alueen sähköteknisten reunaehtojen laskeminen. M069 alueen ähkötekniten reunaehtojen lakeinen. Kekiteho tälle alueelle aatiin kun otettiin Tornion irkkiötä ataaa oakotitalo alue ja niiden talojen kulututen peruteella äärättiin kullekin tontille kulutupite

Lisätiedot

Luku 16 Markkinatasapaino

Luku 16 Markkinatasapaino 68 Luku 16 Markkinataaaino 16.1 Markkinataaainon määrity Tarkatelemme kilailulliia markkinoita kaikki talouenitäjät hinnanottajia kaikki määrittävät arhaat ratkaiuna uhteea makimihintoihin talouenitäjien

Lisätiedot

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Liike ja voima Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Tasainen liike Nopeus on fysiikan suure, joka kuvaa kuinka pitkän matkan kappale kulkee tietyssä ajassa. Nopeus voidaan

Lisätiedot

7. PYÖRIVÄN SÄHKÖKONEEN SUUNNITTELUN ETENEMINEN JA KONEEN OMI- NAISUUDET

7. PYÖRIVÄN SÄHKÖKONEEN SUUNNITTELUN ETENEMINEN JA KONEEN OMI- NAISUUDET 7.1 LTY Juha Pyhönen 7. PYÖRIVÄN SÄHKÖKONEEN SUUNNITTELUN ETENEMINEN JA KONEEN OMI- NAISUUDET Pyöivän ähkökoneen uunnittelua voidaan noudattaa eiekiki euaavanlaita työjäjetytä. Tää opii uoaan epätahtioottoeille,

Lisätiedot

RATKAISUT: 14. Aaltoliike, heijastuminen ja taittuminen

RATKAISUT: 14. Aaltoliike, heijastuminen ja taittuminen Phya 9 pao (7) 4 Aaltolke, hejatue ja tattue : 4 Aaltolke, hejatue ja tattue 4 a) Aalloptuu o kahde lähä aaa aheea olea ärähteljä älatka b) Aaltolkkee peruyhtälö o = λ f, joa λ o aalloptuu, f o taajuu

Lisätiedot

gallup gallup potentiaali ja voima potentiaali ja voima potentiaali ja voima potentiaali ja voima

gallup gallup potentiaali ja voima potentiaali ja voima potentiaali ja voima potentiaali ja voima aup Kuinka pajon käytät kurikirjaa (tai jotain muuta oppikirjaa)? a) Tututun aiheeeen ennen uentoja b) Luen kirjaa uentojen jäkeen c) Luen oppikirjaa ähinnä akareita tehdeä d) n koke oppikirjaan aup Kappae

Lisätiedot

Vallox TEKNINENOHJE. Vallox SILENT. Tyyppi 3510 Mallit: VALLOX 75 VALLOX 75 VKL VALLOX 95 VALLOX 95 VKL VALLOX 95 SILENT VALLOX 95 SILENT VKL

Vallox TEKNINENOHJE. Vallox SILENT. Tyyppi 3510 Mallit: VALLOX 75 VALLOX 75 VKL VALLOX 95 VALLOX 95 VKL VALLOX 95 SILENT VALLOX 95 SILENT VKL 75 95.9.59F 9.. yyppi 5 VAOX yyppi 5 Mallit: VAOX 75 VAOX 75 VK VAOX 95 VAOX 95 VK Huoneitokohtaieen ilanvaihtoon pien-, rivi- ja kerrotaloihin ulo-/poitoilanvaihto läöntalteenotolla Hyvä uodatu Siäänrakennettu

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 Vaaan yliopito, kvät 06 Taloumatmatiikan prutt, ORMS030 4. arjoitu, viikko 6 (8...06) Malliratkaiut. Erään kappaltavaratuottn varaton ykikköylläpitokutannukt ovat 4,00 kappaltta ja vuotta koti. Tilaukutannukt

Lisätiedot

1 LAMMIMUURIN RAKENNE JA OMINAISUUDET 2 2 KÄYTTÖKOHTEET 2 3 MUURITYYPIT 2 4 LASKENTAOTAKSUMAT 3 4.1 Materiaalien ominaisuudet 3 4.2 Maanpaine 3 4.

1 LAMMIMUURIN RAKENNE JA OMINAISUUDET 2 2 KÄYTTÖKOHTEET 2 3 MUURITYYPIT 2 4 LASKENTAOTAKSUMAT 3 4.1 Materiaalien ominaisuudet 3 4.2 Maanpaine 3 4. 1 LAIUURIN RAKENNE JA OINAISUUDET KÄYTTÖKOHTEET 3 UURITYYPIT 4 LASKENTAOTAKSUAT 3 4.1 ateriaalien ominaiuudet 3 4. aanpaine 3 4.3 uurin ketävyy npaineelle 4 4.4 Kaatumi- ja liukumivarmuu 5 4.4.1. Kaatumivarmuu

Lisätiedot

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI NEWTONIN LAIT MEKANIIKAN I PERUSLAKI eli jatkavuuden laki tai liikkeen jatkuvuuden laki (myös Newtonin I laki tai inertialaki) Kappale jatkaa tasaista suoraviivaista liikettä vakionopeudella tai pysyy

Lisätiedot

S Fysiikka III (Est) Tentti

S Fysiikka III (Est) Tentti S-114137 Fyiikka III (Et) Tentti 9008 1 Vetyatomin elektronin kulmaliikemäärää kuvaa kvanttiluku l =3 Lake miä kaikia kulmia kulmaliikemäärävektori voi olla uhteea kulmaliikemäärän z-komponenttiin ( )

Lisätiedot

Kuva 1: Etäisestä myrskystä tulee 100 metrisiä sekä 20 metrisiä aaltoja kohti rantaa.

Kuva 1: Etäisestä myrskystä tulee 100 metrisiä sekä 20 metrisiä aaltoja kohti rantaa. Kuva : Etäisestä yrskystä tulee 00 etrisiä sekä 20 etrisiä aaltoja kohti rantaa. Myrskyn etäisyys Kuvan ukaisesti yrskystä tulee ensin pitkiä sataetrisiä aaltoja, joiden nopeus on v 00. 0 tuntia yöhein

Lisätiedot

YDINSPEKTROMETRIA TENTTI mallivastaukset ja arvostelu max 30 p, pisterajat 15p 1, 18p 2, 21p 3, 24p 4, 27p - 5

YDINSPEKTROMETRIA TENTTI mallivastaukset ja arvostelu max 30 p, pisterajat 15p 1, 18p 2, 21p 3, 24p 4, 27p - 5 5573-5 YDISPEKTROMETRIA TETTI 9.5.05 mallivatauket ja arvotelu max 30 p, piterajat 5p, 8p, p 3, 4p 4, 7p - 5. Mittautehokkuu ja iihen vaikuttavat aiat/ilmiöt gammapektrometriaa (yht. 6 p) Vatau: ilmaiimea

Lisätiedot

BH60A0900 Ympäristömittaukset

BH60A0900 Ympäristömittaukset BH60A0900 Yäitöittauket Lakuhajoitu Kuiva ja kotea kaau, tilavuuvita ehtävä Savukaau läötila o 00 ja aie 99 kpa. ekittäviät kaaukooetit ovat 0 %, H 0 %, 0 % ja lout tyeä. ikä o a) kotea ja kuiva kaau tilavuukie

Lisätiedot

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7 Fy06 Koe 0.5.015 Kuopion Lyseon lukio (KK) 1/7 alitse kolme tehtävää. 6p/tehtävä. 1. Mitä mieltä olet seuraavista väitteistä. Perustele lyhyesti ovatko väitteet totta vai tarua. a. irtapiirin hehkulamput

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

Leppävaaran torni noussut täyteen korkeuteensa

Leppävaaran torni noussut täyteen korkeuteensa TAMK/ Rakennualan työnjoto Aikuikoulutu Valintakoe 6..0, Ratkaiut VASTAUSOSA, OSIO (Tektin ymmätäminen) Leppävaaan toni nouut täyteen kokeuteena Vataa euaaviin tetäviin valitemalla vaitoeto OIKEIN, jo

Lisätiedot

Pietarsaaren lukio Vesa Maanselkä

Pietarsaaren lukio Vesa Maanselkä Fys 9 / Mekaniikan osio Liike ja sen kuvaaminen koordinaatistossa Newtonin lait Voimavektorit ja vapaakappalekuvat Työ, teho,työ-energiaperiaate ja energian säilymislaki Liikemäärä ja sen säilymislaki,

Lisätiedot

Rak-54.116 Rakenteiden mekaniikka C, RM C (4 ov) Tentti 30.8.2007

Rak-54.116 Rakenteiden mekaniikka C, RM C (4 ov) Tentti 30.8.2007 Rak-54.116 Rakeneden mekankka, RM (4 ov) Ten.8.7 Krjoa jokaeen koepapern elvä - koko nme, puhuelunm allevvauna - oao, vuokur, enn pävämäärä ekä enävä opnojako koodeneen - opkeljanumero, mukaan luken arkukrjan

Lisätiedot

Teknologiakehitystä ei voi pysäyttääj. Hankintaprosessi sähköistynyt laajalti. Oston teknologiakehityksen alkuvaiheita. Luento 11 e-hankinnat

Teknologiakehitystä ei voi pysäyttääj. Hankintaprosessi sähköistynyt laajalti. Oston teknologiakehityksen alkuvaiheita. Luento 11 e-hankinnat Tieto- ja palvelutalouden laito / logitiikka Teknologiakehitytä ei voi pyäyttääj Luento 11 e-hankinnat Tietotekniikka otamien apuvälineenä Erilaita teknologiaa Miten ähköitämieä tulii edetä Cae etapharm

Lisätiedot

2.4 Erikoistapaus kantalukuna 10 eli kymmenen potenssit

2.4 Erikoistapaus kantalukuna 10 eli kymmenen potenssit 2.4 Kyenen potenit 2.4 Erikoitapau kantaukuna ei kyenen potenit Potenin kantaukuna käytetään kyentä erityieti, kun uku on erittäin uuri tai erittäin pieni. Tää auttaa näitten ääritapauten hahottaiea. Tarkateaan

Lisätiedot

S FYSIIKKA IV (ES), Koulutuskeskus Dipoli, Kevät 2003, LH2. f i C C. λ 2, m 1 cos60,0 1, m 1,2 pm. λi λi

S FYSIIKKA IV (ES), Koulutuskeskus Dipoli, Kevät 2003, LH2. f i C C. λ 2, m 1 cos60,0 1, m 1,2 pm. λi λi S-11436 FYSIIKKA IV (S), Kulutukeku Dipli, Kevät 003, LH LH-1 Ftni, jnka energia n 10,0 kev, törmää leva levaan vapaaeen elektrniin ja irttuu uuntaan, jka mudtaa 60,0 kulman ftnin alkuperäien liikeuunnan

Lisätiedot

Valuma-aluetason kuormituksen hallintataulukon vaatimusmäärittely

Valuma-aluetason kuormituksen hallintataulukon vaatimusmäärittely Valuma-aluetaon kuormituken hallintataulukon vaatimumäärittely Verio 4.11.2011 1. Tavoitteet Veienhoidon äädöten toteutu edellyttää veitöihin kohdituvan kuormituken vähentämitä n, että veden laatu paranee

Lisätiedot

SYNKRONIKONEET RELUKTANS- SIKONEET RM RM RM + >>L q. L d >>L q. Harjalliset -pyörivä PMSM upotetu magneetit

SYNKRONIKONEET RELUKTANS- SIKONEET RM RM RM + >>L q. L d >>L q. Harjalliset -pyörivä PMSM upotetu magneetit 7.48 TY Juha Pyrhönen 7. Tahtikone Tahtikoneet muootavat kokonaien ähkökoneperheen. Päätyyppejä ovat vieramagnetoiut tahtikoneet, ynkroniet reluktanikoneet ja ketomagneettitahtikoneet. Vieramagnetoiut

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 014 Insinöörivalinnan fysiikan koe 8.5.014, malliratkaisut Kalle ja Anne tekivät fysikaalisia kokeita liukkaalla vaakasuoralla jäällä.

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

LHSf5-1* Osoita, että van der Waalsin kaasun tilavuuden lämpötilakerroin on 2 γ = ( ) RV V b T 2 RTV 2 a V b. m m ( ) m m. = 1.

LHSf5-1* Osoita, että van der Waalsin kaasun tilavuuden lämpötilakerroin on 2 γ = ( ) RV V b T 2 RTV 2 a V b. m m ( ) m m. = 1. S-445 FSIIKK III (ES) Syksy 004, LH 5 Ratkaisut LHSf5-* Osoita, että van der Waalsin kaasun tilavuuden läötilakerroin on R ( b ) R a b Huoaa, että läötilakerroin on annettu oolisen tilavuuden = / ν avulla

Lisätiedot

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t,

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, v)-koordinaatistossa ruutumenetelmällä. Tehtävä 4 (~YO-K97-1). Tekniikan

Lisätiedot

S-55.1220/142 Piirianalyysi 2 1. Välikoe 10.3.2006

S-55.1220/142 Piirianalyysi 2 1. Välikoe 10.3.2006 S-55.0/4 Piirianalyyi. Välioe 0.3.006 ae tehtävät 3 eri paperille in tehtävät 4 5. Mita irjoittaa joaieen paperiin elväti nimi, opielijanmero, rin nimi ja oodi. Tehtävät laetaan oaton oepaperille. Mita

Lisätiedot

a) Oletetaan, että happi on ideaalikaasu. Säiliön seinämiin osuvien hiukkasten lukumäärä saadaan molekyylivuon lausekkeesta = kaava (1p) dta n =

a) Oletetaan, että happi on ideaalikaasu. Säiliön seinämiin osuvien hiukkasten lukumäärä saadaan molekyylivuon lausekkeesta = kaava (1p) dta n = S-, ysiikka III (S) välikoe 7000 Laske nopeuden itseisarvon keskiarvo v ja nopeuden neliöllinen keskiarvo v rs seuraaville 6 olekyylien nopeusjakauille: a) kaikkien vauhti 0 / s, b) kolen vauhti / s ja

Lisätiedot

= 2 1,2 m/s 55 m 11 m/s. 18 m 72 m v v0

= 2 1,2 m/s 55 m 11 m/s. 18 m 72 m v v0 Kertaustehtävät. c) Loppunopeus on v = as =, /s 55 /s. 8 7 v v0 3,6 s 3,6 s. c) Kiihtyvyys on a = =,0. t 5 s s Kolessa sekunnissa kuljettu atka on 7 s3 = v0t + at = 3,0 s + (,0 /s ) (3,0 s) 55,5. 3,6 s

Lisätiedot

Kuva 22: Fraktaalinen kukkakaali. pituus on siis 4 AB. On selvää, että käyrän pituus kasvaa n:n kasvaessa,

Kuva 22: Fraktaalinen kukkakaali. pituus on siis 4 AB. On selvää, että käyrän pituus kasvaa n:n kasvaessa, Tortai 6..999 = Geometria o hyvä tapa kuvata ykikertaiia kappaleita, mutta kappaleie tullea äärettömä moimutkaiiki, käy iie kuvaamie klaie geometria avulla mahottomaki. Eimerkiki rataviiva pituue määrittämie

Lisätiedot

KOE 2 Ympäristöekonomia

KOE 2 Ympäristöekonomia Helingin yliopio Valinakoe.5. Maaalou-meäieeellinen iedekuna KOE Ympäriöekonomia Sekä A- eä B-oioa ulee aada vähinään 5 pieä. Mikäli A-oion piemäärä on vähemmän kuin 5 pieä B-oio jäeään arvoelemaa. B-OSIO

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut A1 Ampumahiihtäjä ampuu luodin vaakasuoraan kohti maalitaulun keskipistettä. Luodin lähtönopeus on v 0 = 445 m/s ja etäisyys maalitauluun s = 50,0 m. a) Kuinka pitkä on luodin lentoaika? b) Kuinka kauaksi

Lisätiedot

Mekaaninen energia. Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa. Suppea energian määritelmä:

Mekaaninen energia. Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa. Suppea energian määritelmä: Mekaaninen energia Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa Suppea energian määritelmä: Energia on kyky tehdä työtä => mekaaninen energia Ei

Lisätiedot

1 Magneetin ympärillä on magneettikenttä Perustehtävät

1 Magneetin ympärillä on magneettikenttä Perustehtävät Phyica 7 Opettajan OPAS (6) Magneetin ympärillä on magneettikenttä Magneetin ympärillä on magneettikenttä Perutehtävät. a) Aineet voidaan luokitella magneettiiin ja ei-magneettiiin aineiiin. Oa ei-magneettiita

Lisätiedot

Tilastotieteen jatkokurssi 8. laskuharjoitusten ratkaisuehdotukset (viikot 13 ja 14)

Tilastotieteen jatkokurssi 8. laskuharjoitusten ratkaisuehdotukset (viikot 13 ja 14) Tilatotietee jatkokuri 8. lakuharjoitute ratkaiuehdotuket (viikot 13 ja 14) 1) Perujoukko o aluee A aukkaat ja tutkittavaa omiaiuutea ovat tulot, Tiedämme, että perujouko tulot oudattaa ormaalijakaumaa,

Lisätiedot

PT-36 Plasmarc-leikkausarvot

PT-36 Plasmarc-leikkausarvot PT-36 Plamarc-leikkauarvot Leikkauarvojen opa (FI) 0558007661 Verion 8.1 releaed on 28Oct11 VARMISTA, ETTÄ KÄYTTÄJÄ SAA NÄMÄ TIEDOT. VOIT TILATA MYYJÄLTÄ LISÄÄ KOPIOITA. VARO OHJEET on tarkoitettu kokeneille

Lisätiedot

1 Määrittele lyhyesti seuraavat käsitteet. a) Kvantisointivirhe. b) Näytetaajuuden interpolointi. c) Adaptiivinen suodatus.

1 Määrittele lyhyesti seuraavat käsitteet. a) Kvantisointivirhe. b) Näytetaajuuden interpolointi. c) Adaptiivinen suodatus. TL536DSK-algoritmit (J. Laitinen) 6.4.5 Määrittele lyyeti euraavat käitteet a) Kvantiointivire. b) äytetaajuuden interpolointi. ) Adaptiivinen uodatu. a) Kvantiointivire yntyy, kun ignaalin ykittäinen

Lisätiedot

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,

Lisätiedot

LUKION FYSIIKKAKILPAILU PERUSSARJA

LUKION FYSIIKKAKILPAILU PERUSSARJA PERUSSARJA Vastaa huolellisesti ja siististi! Kirjoita tekstaten koepaperiin oma nimesi, kotiosoitteesi, sähköpostiosoite, opettajasi nimi sekä koulusi nimi. Kilpailuaikaa on 100 minuuttia. Sekä tehtävä-

Lisätiedot

OPINTOJAKSO FYSIIKKA 1 OV OPINTOKOKONAISUUTEEN FYSIIKKA JA KEMIA 2 OV. Isto Jokinen 2012. 1. Mekaniikka 2

OPINTOJAKSO FYSIIKKA 1 OV OPINTOKOKONAISUUTEEN FYSIIKKA JA KEMIA 2 OV. Isto Jokinen 2012. 1. Mekaniikka 2 OPINTOJAKSO FYSIIKKA 1 OV OPINTOKOKONAISUUTEEN FYSIIKKA JA KEMIA OV Io Jokinen 01 SISÄLTÖ SIVU 1. Mekaniikka Nopeu Kekinopeu Kehänopeu 3 Kiihyvyy 3 Puoamikiihyvyy 4 Voima 5 Kika 6 Työ 7 Teho 8 Paine 9

Lisätiedot

RATKAISUT: 18. Sähkökenttä

RATKAISUT: 18. Sähkökenttä Physica 9 1. painos 1(7) : 18.1. a) Sähkökenttä on alue, jonka jokaisessa kohdassa varattuun hiukkaseen vaikuttaa sähköinen voia. b) Potentiaali on sähkökenttää kuvaava suure, joka on ääritelty niin, että

Lisätiedot

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa.

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa. 3 Derivaatta. a) Vastaus: Merenpinta nousee aikavälillä 00:00-06:00 ja :30-7:30. Merenpinta laskee aikavälillä 06:00-:30 ja 7:30-3:00. b) Merenpinta nousi 0,35 cm ( 0,) cm = 0,55 cm tuona aikana. Merenpinta

Lisätiedot