1.5 Tasaisesti kiihtyvä liike

Koko: px
Aloita esitys sivulta:

Download "1.5 Tasaisesti kiihtyvä liike"

Transkriptio

1 Jos pudotat lyijykuulan aanpinnan läheisyydessä, sen vauhti kasvaa joka sekunti noin 9,8 etrillä sekunnissa kunnes törää aahan. Tai jos suoritat autolla lukkojarrutuksen kuivalla asvaltilla jostain kohtuullisesta nopeudesta, auton vauhti vähenee vakioarvolla joka sekunti. Liikettä sanotaan tasaisesti kiihtyväksi, jos kappaleen nopeus uuttuu jollain vakioarvolla aikayksikköä kohti. Näin ollen yös hidastuva liike onkin fysiikassa kiihtyvää! Tasaisesti kiihtyvän liikkeen tapauksessa kuten yleensäkin liikettä käsiteltäessä tavoitteena on esittää liikkuvan kappaleen rata ajan funktiona. Tässä luvussa liike on aina suoraviivaista. Tasaisen kiihtyvyyden ääritelä ei häästytä. Se ilaisee vain kiihtyvyyden äärän aikayksikössä. Kiihtyvyyttä erkitään usein a:lla. Kiihtyvyys aikavälillä [t 2 ;t 1 ] on a= v t = v 2 v 1 t 2 t 1, issä nopeus on siis uuttunut v 2 :sta v 1 :een. Kiihtyvyyden ääritelän yhtälön osoittajassa on siis etrejä sekunnissa ja niittäjässä sekunteja, joten kiihtyvyyden yksikkö on s 2 eli etriä neliösekunnissa. Kuten ääritelästä huoaat, kyseessä on tarkein sanottuna keskikiihtyvyys tarkasteltavalla aikavälillä. Mitä tarkoittaa etriä neliösekunnissa? On uistettava, että eillä on käytössä tietyllä tavalla kehittynyt ja kehitetty kirjaaistyökalu. Se, itä e kirjoitae, on allin alli tai allista tehty alli. Käytössä oleva kirjaaistyökalu on aika hyvä, utta ei täydellinen. Tää alli tuottaa uun uassa neliösekunnin. Sitä ei ole pakko ottaa ihan todesta. Kun tutkija havaitsee jonkin iliön, hän kehittää ielessään idean siitä, istä tuossa iliössä on kysyys. Sitten hän tiivistää tuon iliön testattavaksi teoriaksi ja esittää sen edelleen ateaattisena allina. Tuon ateaattisen allin hän kirjoittaa yhtälöinä näkyviin. Metri neliösekunnissa on siis tuon kirjaaistavan tulos. Ei uuta. Itse todellisuus on sitten jossain kaukana, tutkijan ieleensä rakentaan käsityksen tuolla puolen. Metrin neliösekunnissa -kaltaiset asiat ovat tään ketjun tai hierarkian tässä eidän päässäe. Tarkastellaan kiihtyvän liikkeen ensiäisessä esierkissä linja-auton liikettä pysäkiltä toiselle. 1(11)

2 Seuraavan esierkin kole kuvaa esittävät sen nopeutta ajan funktiona. Vaaka-akselilla on aika lähdöstä sekunteina iloitettuna. Esierkki 9 2(11)

3 Hetkellä nolla sekuntia auto lähtee liikkeelle paikaltaan. Vihreä viiva, joka päättyy 12 sekunnin kohdalla, esittää auton kiihtyvyyttä nollasta 14 etriin sekunnissa eli nollasta noin viiteen kyppiin eli tietysti viiteen kyeneen kiloetriin tunnissa. Koska vihreä viiva on aivan suora, keskikiihtyvyyden laskeinen on ielekästä sikälikin, että kiihtyvyys on ollut saa koko 12 sekunnin ajan. Olisikohan tuossa autossa laadukkaat autoaattivaihteet! Kiihtyvyydeksi saan a 1 = v 14 t = s 0 s 12 s 0 s =1,2. s 2 Välillä 12 sekuntia 20 sekuntia vauhti kasvaa tuosta 14 etristä sekunnissa 20 etriin sekunnissa eli kiihtyvyys on a 2 = v 20 t = s 14 s 20 s 12 s =0,75. s 2 Tätä kuvaa turkoosi viiva, joka on taas hellittäättöän suora, joten kiihtyvyys on ollut aivan tasaista. Järjestyksessä keskiäisen kuvan tylsännäköinen ja epäääräisen värinen vaakaviiva erkitsee kiihtyvyyttä nolla: a 3 = v 20 t = s 20 s 200 s 20 s =0 s =0. 2 Viieisessä kuvassa, toinen vihreä viiva, kuljettaja jarruttaa esierkillisen tasaisesti nopeudesta noin 20 etriä sekunnissa paikalleen. Mahdollinen sivuttaisliike esierkiksi kaartainen 3(11)

4 pysäkille ei näy kuvassa kuten ei näkynyt yöskään lähtövaiheen kaartainen tielle. Kiihtyvyydeksi saan nyt Onko 1,2 kiihtyvyys on a 3 = v 0 t = s 20 s 230 s 200 s =0,67. s 2 s 2 suuri kiihtyvyys? Nopea auto kiihtyy nollasta sataan viidessä sekunnissa eli sen 28 s 0 s a 4 = 5s =5,6 s 2, kun joillekin oottoripyörille luvataan saa nopeus puolessa tuosta ajasta eli kaksinkertainen kiihtyvyys noin 11 s 2. Tää on jo nopeapaa kuin pienikokoisen, utta suuriassaisen esineen kiihtyvyys vetovoian vaikutuksesta aanpinnan lähellä, kun se putoaa vapaasti. Vapaasti putoavan kappaleen kiihtyvyys on g = 9,80665 s 2 silloin, kun ilanvastus tai ikään uukaan ei hidasta liikettä. Itse asiassa tuo ainittu oottoripyörän kiihtyvyys edellyttää, että kui sulaa kiinni asvalttiin, koska teoreettisesti suurin ahdollinen kiihtyvyys on tuo yhden g:n kiihtyvyys. Sitä suureat kiihtyvyydet edellyttävät kuuuudessa sulavaa kuia, rattaita, iukuppeja tai uuta vastaavaa keinoa takertua tiehen. Pelkän tien ja renkaan välisen kitkan varassa se ei onnistu. Maan vetovoian kiihtyvyys Maan pinnan lähellä on g =9,80665 s 2 Kiihtyvyys 1,2 ei siis ole erityisen suuri. Eri asia sitten on, itä asiasta arvelee s 2 ruuhkabussissa pystyssä taiteileva atkustaja. Jos kappale on tasaisesti kiihtyvässä liikkeessä ja sen kiihtyvyys on a, niin niin ajan t kuluttua sen vauhti on uuttunut äärällä 4(11)

5 Nopeuden uutos kiihtyvyydellä a ajan t kuluttua on v=at Esierkki 10 Raketti lähtee paikaltaan kiihtyvyydellä 0,5 g jonka kiihtyvyyden se säilyttää uuttuattoana viiden sekunnin ajan, inkä jälkeen polttoaine loppuu. Laske raketin loppunopeus polttoaineen loppuishetkellä. Loppunopeus on v=v 0 at=0 0,5 9,80665 s 2 5 s 24,5 s, koska nyt alkunopeus v 0 on nolla. Vastaus: Raketin loppunopeus on noin 24,5 /s. Käytännössä raketin kiihtyvyys kasvaisi koko ajan koska sen assa pienenee sitä ukaa kuin sen polttoaine vähenee, utta työntövoia pysyy saana. Esierkki 11 Kaksivaiheinen säähavaintoraketti lähtee paikaltaan aan suhteen kiihtyvyydellä 1 g, joka kiihtyvyys kestää 40 sekuntia. Ensiäisen vaihe hylätään heti kun sen polttoaine on loppu, jolloin toinen vaihe käynnistetään. Toinen vaihe toiii 30 sekuntia ja antaa kiihtyvyyden 1,5 g. Laske raketin loppunopeus. Vakio g saadaan taulukkokirjasta tai laskiesta. Sen arvo on g=9,80665 s 2. Likiarvo 9,8 s 2 riittää usein. Koska raketti lähtee paikaltaan, v 0 = 0, niin ensiäisen vaiheen sauessa raketin vauhti on v 1 =v 0 at=9,80665 s 2 40 s=392 s. Raketin loppunopeus toisen vaiheen jälkeen on v=v 1 1,5 9,80665 s 2 30 s=835 s. Vastaus: Raketin loppunopeus on noin 835 etriä sekunnissa. 5(11)

6 Esierkki 12 Lennokki lähtee paikaltaan kiihtyvyydellä 3 s 2 ja lentää sitten vakionopeudella 185 k/h kaksi tuntia. Kahden tunnin lennon jälkeen lennokki laskeutuu täydellä atkanopeudellaan. Se tarvitsee 50 etriä pitkän kiitoradan ennen kuin pysähtyy. Laske atka, jonka lennokki lentää alun kiihdytysvaiheen aikana sekä laskeutuiskiihtyvyys. Aluksi kannattaa laskea aika, jonka lennokki tarvitsee alun kiihdytykseen. Koska lennokki lähtee paikaltaan, niin alkunopeus on taas nolla, joten voit ratkaista ajan yhtälöstä 185 v=at t= v a = 3,6 s 3 s 2 17,13 s. Koska kiihtyvyys on tasaista, se erkitsee uun uassa sitä, että keskivauhti kiihdytysjakson aikana on alkunopeuden ja loppunopeuden keskiarvo eli v keski = v v alku loppu = v v v = 0=0 1 alku loppu 2 v = 1 loppu at (1) 2 Koska toisaalta tiedetään, että keskinopeus on atkan pituuden ja atkaan käytetyn ajan osaäärä eli v keski = s t, josta s=v keski t, niin sijoittaalla keskinopeus yhtälöstä (1) saadaan s=v keski t= 1 2 at t= 1 2 at 2. Kun tähän kaavaan sijoitetaan a = 3 s 2 ja t 17 s, niin saadaan tulos, että lennokki lentää kiihdytysvaiheen aikana atkan s 440. Koska laskeutuessaan lennokki jarruttaa täydestä lentonopeudesta 185 k/h paikoilleen, niin sen keskinopeus laskeutuisvaiheen aikana on puolet tästä eli 92,5 k/h. Tästä saadaan pysähtyiseen tarvittava aika. Ratkaistaan yllä olevasta yhtälöstä a ja sijoitetaan kaavaan: s= 1 2 at2 a= 2s t 2 26 s 2 2,7 g. 6(11)

7 Vastaus: Lennokki lentää alun kiihdytysvaiheen aikana atkan 440 etriä. Laskeutuiskiihtyvyys on noin 26 s 2. Hiean yleisepi kaava, joka kytkee yhteen tasaisen kiihtyvyyden ja atkan, ottaa huoioon, että aina ei lähdetä liikkeelle paikalta eikä origosta. Jos atka alkaa hetkellä t = 0 etäisyydeltä s 0 alkuvauhdilla v 0, niin ajan hetkenä t Tasaisesti kiihtyvän kappaleen ajassa t kulkea atka s=s 0 v 0 t 1 2 a t 2 (1) Seuraavassa esierkissä valotan tasaisesti kiihtyvän liikkeen ja atkan yhteyttä vähän toisella tavalla. Esierkki 13 Kuuden kypin rajoitus vaihtuu liikennevaloissa suoraan 120:ksi ja oottoritie alkaa. Moottoripyöräilijä saa näissä valoissa niin sanotun lentävän lähdön eli valo vaihtuu vihreäksi juuri kun hän on tulossa kohtaan, jossa pitäisi jo jarruttaa. Hän kiihdyttää kuudesta kypistä sataan kahteen kyppiin 5,3 sekunnissa. Saavutettuaan nopeuden 120 k/h pyörän kuljettaja säilyttää sen seuraavat 18 inuuttia, inkä jälkeen hän kääntyy rapille hidastaatta vauhtiaan ja pysähtyy täydestä nopeudesta vasta rapin jälkeen tasaisesti jarruttaen 16 sekunnissa. Kuinka pitkän atkan hän ajoi laskettuna 120 k/h rajoituksen alusta? Kun kappale kulkee tasaisella vauhdilla 120 kiloetriä tunnissa, se etenee 18 inuutissa atkan s a=0 =v t=120 k h h=36 k. Entä tasaisesti kiihtyvä pyörä? Piirretään apukuva. Oletetaan, että oottoripyörä kykenee ylläpitäään saaa, tasaista kiihtyvyyttä 60:sta aina 120:aan, ihin se ei todellisuudessa tarkkaan ottaen pysty. Me siis approksioie eli arvioie sen liikettä tasaisella kiihtyvyydellä. Sen vauhti ajan funktiona näyttäisi siis seuraavalta. Sininen, nouseva viiva kuvaa pyörän nopeutta 7(11)

8 kiihdytyksen aikana ja vihreä vaakaviiva tasaisen nopeuden osuuden alkua. Lisään kuvaan vielä ustan katkoviivan kuvaaaan pyörän liikkeen pohjana ollutta kuuden kypin alkunopeutta. Tällöin jaan nopeuskäyrän alle jäävän alan kahteen osaan: kuuden kypin alkunopeuden osuus, joka on suorakulio ja siihen kiihdytyksen tuoaa lisää, joka on puolestaan kolio. Kuten tunnettua, jos pyörä jatkaisi tasaisella 60 kiloetrin nopeudella tunnissa, se kulkisi 6 sekunnissa atkan s 0 =60 k h 5,3 s=88. Kun katsot seuraavaa kuvaa, niin huoaat, että tää 88 etriä on yös kuvan sen suorakulion pinta-ala, joka jää sinisen pilkkuviivan eli suoran y = 60 k/h, nopeusakselin eli pystyakselin, aikaakselin eli vaaka-akselin sekä suoran x = 5,3 s väliin. v, [k/h] 8(11) t, [s]

9 Sovelletaan nyt tätä havaintoa kiihtyvyyden tuoaan lisään eli suorakulion yläpuolella olevaan kolioon. Sen ala on s 1 = 1 5,3 s 120 k/h 60 k/h =44 2 eli yhteensä 132 etriä. Saatuaan lentävän lähdön liikennevaloista oottoripyörä etenee kiihdytyksen aikana 132 etriä. Ajorupeaan lopuksi oottoripyörä tai ainakin sen kuljettaja! jarruttaa 120:sta paikalleen 16 sekunnissa. Kaaviokuvana se näyttää seuraavalta: Tään kolion ala on s jarrutus = k/h 16 s=267. Yhteensä atkaa kertyi siis 36 k = Vastaus: Moottoripyöräilijä ajoi yhteensä noin 36,4 kiloetriä. Huoaa, että kaavassa s jarrutus = k/h 16 s=267 tää s jarrutus on jarrutusvaiheen alku- ja loppunopeuksien keskiarvo sekä aika, joka jarrutukseen kului kuten yhtälössä (1) ja sen seurausyhtälöissä. 9(11)

10 Huoaa, että jos Esierkissä 13 kuvat olisivat ahtuneet kaikki rinnakkain järkevässä ittakaavassa esitettyinä, näkisit heti, että pyörän kulkea koko atka on sen alueen pinta-ala, joka jää nopeutta esittävän käyrän ja vaaka-akselin väliin. Ehkä kysyt: Mistä lähtien etri on ollut pinta-alan yksikkö? Minä vastaan: Siitä lähtien, kun atka on ollut keskinopeuden ja atkaan käytetyn ajan tulo. Esierkki 14 Laske Esierkki 13:n oottoripyörän keskivauhti. Keskivauhdin laskeiseen tarvitset aina atkan, joka on kuljettu sekä tähän atkaan käytetyn ajan. Tässä tapauksessa atka on etriä ja aika on 16 sekuntia + 5,3 sekuntia + 18 inuuttia eli aika on noin 1101 sekuntia. Keskinopeus v on siis v s 33 s 119 k h. Vastaus: Pyörän keskinopeus oli 119 kiloetriä tunnissa. Esierkki 15 Rautakuula lähtee nopeudella 500 Kuinka kaukana se on silloin lähtöpaikastaan laskettuna? s suoraan ylös. Kuinka kauan kestää, että se pysähtyy? Merkitään kuulan nopeutta kirjaiella v ja sen alkunopeutta kirjaiella v 0. Koska vetovoia hidastaa kuulan nopeutta joka sekunti noin 9,81 etrillä sekunnissa, saadaan yhtälö v=v 0 g t=500 s 9,81 s 2 t ja koska etsitään ajan t hetkeä, jona v = 0, niin 10(11)

11 500 s 9,81 s 2 t=0, josta t = 51 s. Etäisyys lähtöpaikasta eli tällä kertaa korkeus lähtökorkeuteen verrattuna on s= 1 2 a t 2 = 1 2 g t ,81 s 2 51 s 2 =12 758, koska nyt a = g ja g 9,81 s 2. Vastaus: Kuula pysähtyy 51 sekunnin kuluttua ja se nousee noin 13 kiloetrin korkeuteen. 11(11)

FYSIIKAN HARJOITUSTEHTÄVIÄ

FYSIIKAN HARJOITUSTEHTÄVIÄ FYSIIKAN HARJOITUSTEHTÄVIÄ MEKANIIKKA Nopeus ja keskinopeus 6. Auto kulkee 114 km matkan tunnissa ja 13 minuutissa. Mikä on auton keskinopeus: a) Yksikössä km/h 1. Jauhemaalaamon kuljettimen nopeus on

Lisätiedot

Kinematiikka -1- K09A,B&C Harjoitustehtäviä Kevät 2010 PARTIKKELI. Suoraviivainen liike

Kinematiikka -1- K09A,B&C Harjoitustehtäviä Kevät 2010 PARTIKKELI. Suoraviivainen liike Kinematiikka -1- K09A,B&C Harjoitustehtäviä Kevät 010 PARTIKKELI Suoraviivainen liike 1. Suoraviivaisessa liikkeessä olevan partikkelin asema on (järjestelmä m, s) 3 x ( = t 15t + 36t 10. Laske a) partikkelin

Lisätiedot

1.3 Kappaleen tasaisesta liikkeestä

1.3 Kappaleen tasaisesta liikkeestä Arkikielen sana vauhti (speed) tarkoittaa fysiikassa nopeuden (velocity) suuruutta (magnitude of velocity). Kun nopeus on fysiikassa vektorisuure, niin vauhti taas on vain luku skalaari johon liittyy yksikkö.

Lisätiedot

Liikkeet. Haarto & Karhunen. www.turkuamk.fi

Liikkeet. Haarto & Karhunen. www.turkuamk.fi Liikkeet Haarto & Karhunen Suureita Aika: tunnus t, yksikkö: sekunti = s Paikka: tunnus x, y, r, ; yksikkö: metri = m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema) oidaan ilmoittaa

Lisätiedot

Pietarsaaren lukio Vesa Maanselkä

Pietarsaaren lukio Vesa Maanselkä Fys 9 / Mekaniikan osio Liike ja sen kuvaaminen koordinaatistossa Newtonin lait Voimavektorit ja vapaakappalekuvat Työ, teho,työ-energiaperiaate ja energian säilymislaki Liikemäärä ja sen säilymislaki,

Lisätiedot

Nopeus, kiihtyvyys ja liikemäärä Vektorit

Nopeus, kiihtyvyys ja liikemäärä Vektorit Nopeus, kiihtyvyys ja liikemäärä Vektorit Luento 2 https://geom.mathstat.helsinki.fi/moodle/course/view.php?id=360 Luennon tavoitteet: Vektorit tutuiksi Koordinaatiston valinta Vauhdin ja nopeuden ero

Lisätiedot

MEKANIIKAN TEHTÄVIÄ. Nostotyön suuruus ei riipu a) nopeudesta, jolla kappale nostetaan b) nostokorkeudesta c) nostettavan kappaleen massasta

MEKANIIKAN TEHTÄVIÄ. Nostotyön suuruus ei riipu a) nopeudesta, jolla kappale nostetaan b) nostokorkeudesta c) nostettavan kappaleen massasta MEKANIIKAN TEHTÄVIÄ Ympyröi oikea vaihtoehto. Normaali ilmanpaine on a) 1013 kpa b) 1013 mbar c) 1 Pa Kappaleen liike on tasaista, jos a) kappaleen paikka pysyy samana b) kappaleen nopeus pysyy samana

Lisätiedot

= 6, Nm 2 /kg kg 71kg (1, m) N. = 6, Nm 2 /kg 2 7, kg 71kg (3, m) N

= 6, Nm 2 /kg kg 71kg (1, m) N. = 6, Nm 2 /kg 2 7, kg 71kg (3, m) N t. 1 Auringon ja kuun kohdistamat painovoimat voidaan saada hyvin tarkasti laksettua Newtonin painovoimalailla, koska ne ovat pallon muotoisia. Junalle sillä saadaan selville suuruusluokka, joka riittää

Lisätiedot

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis Fys1, moniste 2 Vastauksia Tehtävä 1 N ewtonin ensimmäisen lain mukaan pallo jatkaa suoraviivaista liikettä kun kourun siihen kohdistama tukivoima (tässä tapauksessa ympyräradalla pitävä voima) lakkaa

Lisätiedot

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t,

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, v)-koordinaatistossa ruutumenetelmällä. Tehtävä 4 (~YO-K97-1). Tekniikan

Lisätiedot

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa.

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa. 3 Derivaatta. a) Vastaus: Merenpinta nousee aikavälillä 00:00-06:00 ja :30-7:30. Merenpinta laskee aikavälillä 06:00-:30 ja 7:30-3:00. b) Merenpinta nousi 0,35 cm ( 0,) cm = 0,55 cm tuona aikana. Merenpinta

Lisätiedot

2.5 Liikeyhtälö F 3 F 1 F 2

2.5 Liikeyhtälö F 3 F 1 F 2 Tässä kappaleessa esittelen erilaisia tapoja, joilla voiat vaikuttavat kappaleen liikkeeseen. Varsinainen kappaleen pääteea on assan liikeyhtälön laatiinen, kun assaan vaikuttavat voiat tunnetaan. Sitä

Lisätiedot

Havainnoi mielikuviasi ja selitä, Panosta ajatteluun, selvitä liikkeen salat!

Havainnoi mielikuviasi ja selitä, Panosta ajatteluun, selvitä liikkeen salat! Parry Hotteri tutki näkymättömiä voimia kammiossaan Hän aikoi tönäistä pallon liikkeelle pöydällä olevassa ympyrän muotoisessa kourussa, joka oli katkaistu kuvan osoittamalla tavalla. Hän avasi Isaac Newtonin

Lisätiedot

3.4 Liike-energiasta ja potentiaalienergiasta

3.4 Liike-energiasta ja potentiaalienergiasta Työperiaatteeksi (the work-energy theorem) kutsutaan sitä että suljetun systeemin liike-energian muutos Δ on voiman systeemille tekemä työ W Tämä on yksi konservatiivisen voiman erityistapaus Työperiaate

Lisätiedot

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN

Lisätiedot

Kuva 1: Etäisestä myrskystä tulee 100 metrisiä sekä 20 metrisiä aaltoja kohti rantaa.

Kuva 1: Etäisestä myrskystä tulee 100 metrisiä sekä 20 metrisiä aaltoja kohti rantaa. Kuva : Etäisestä yrskystä tulee 00 etrisiä sekä 20 etrisiä aaltoja kohti rantaa. Myrskyn etäisyys Kuvan ukaisesti yrskystä tulee ensin pitkiä sataetrisiä aaltoja, joiden nopeus on v 00. 0 tuntia yöhein

Lisätiedot

Fysiikan lisäkurssin tehtävät (kurssiin I liittyvät, syksy 2013, Kaukonen)

Fysiikan lisäkurssin tehtävät (kurssiin I liittyvät, syksy 2013, Kaukonen) 1. Ylöspäin liikkuvan hissin, jonka massa on 480 kg, nopeus riippuu ajasta oheisen kuvion mukaisesti. Laske kannatinvaijeria jännittävä voima liikkeen eri vaiheissa. (YO, S 84) 0-4s: 4,9 kn, 4..10s: 4,7

Lisätiedot

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI NEWTONIN LAIT MEKANIIKAN I PERUSLAKI eli jatkavuuden laki tai liikkeen jatkuvuuden laki (myös Newtonin I laki tai inertialaki) Kappale jatkaa tasaista suoraviivaista liikettä vakionopeudella tai pysyy

Lisätiedot

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Liike ja voima Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Tasainen liike Nopeus on fysiikan suure, joka kuvaa kuinka pitkän matkan kappale kulkee tietyssä ajassa. Nopeus voidaan

Lisätiedot

Fysiikan perusteet. Liikkeet. Antti Haarto 22.05.2012. www.turkuamk.fi

Fysiikan perusteet. Liikkeet. Antti Haarto 22.05.2012. www.turkuamk.fi Fysiikan perusteet Liikkeet Antti Haarto.5.1 Suureita Aika: tunnus t, yksikkö: sekunti s Paikka: tunnus x, y, r, ; yksikkö: metri m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema)

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 15.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinematiikka: asema, nopeus ja kiihtyvyys (Kirjan luvut 12.1-12.5, 16.1 ja 16.2) Osaamistavoitteet Ymmärtää

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 28. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta 2016 1 / 22 Hieman kertausta

Lisätiedot

1 Oikean painoisen kuulan valinta

1 Oikean painoisen kuulan valinta Oikean painoisen kuulan valinta Oheisessa kuvaajassa on optimoitu kuulan painoa niin, että se olisi mahdollisimman nopeasti perillä tietyltä etäisyydeltä ammuttuna airsoft-aseella. Tulos on riippumaton

Lisätiedot

Juuri 5 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa.

Juuri 5 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa. 5 Paraabeli Juuri 5 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 13..017 ENNAKKOTEHTÄVÄT 1. a) Jos a > 0, paraabeli aukeaa oikealle. Jos a < 0, paraabeli aukeaa vasemmalle. Jos a = 0, paraabeli

Lisätiedot

3 TOISEN ASTEEN POLYNOMIFUNKTIO

3 TOISEN ASTEEN POLYNOMIFUNKTIO 3 TOISEN ASTEEN POLYNOMIFUNKTIO POHDITTAVAA 1. Kuvasta voidaan arvioida, että frisbeegolfkiekko käy noin 9 metrin korkeudella ja se lentää noin 40 metrin päähän. Vastaus: Frisbeegolfkiekko käy n. 9 m:n

Lisätiedot

Numeeriset menetelmät Pekka Vienonen

Numeeriset menetelmät Pekka Vienonen Numeeriset menetelmät Pekka Vienonen 1. Funktion nollakohta Newtonin menetelmällä 2. Määrätty integraali puolisuunnikassäännöllä 3. Määrätty integraali Simpsonin menetelmällä Newtonin menetelmä Newtonin

Lisätiedot

Ratkaisut Tarkastelemme kolmiota ABC, jonka sivujen pituudet ovat!, & ja ' ja niiden vastaiset korkeudet

Ratkaisut Tarkastelemme kolmiota ABC, jonka sivujen pituudet ovat!, & ja ' ja niiden vastaiset korkeudet 197 Lausu logaritmeja käyttämättä jaksollisen desimaaliluvun (kymmenysluvun) 0,578703703 kuutiojuuri jaksollisena desimaalilukuna. [S3, pitempi kurssi] Ratkaisut 1917 197 1917 Tarkastelemme kolmiota ABC,

Lisätiedot

1 Rationaalifunktio , a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen.

1 Rationaalifunktio , a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen. Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.06 Rationaalifunktio. a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen. f (50) 50 8 50 4 8 50 500 400 4 400

Lisätiedot

1.4 Suhteellinen liike

1.4 Suhteellinen liike Suhteellisen liikkeen ensimmäinen esimerkkimme on joskus esitetty kompakysymyksenäkin. Esimerkki 5 Mihin suuntaan ja millä nopeudella liikkuu luoti, joka ammutaan suihkukoneesta mahdollisimman suoraan

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 4 / vko 40

Diskreetin matematiikan perusteet Laskuharjoitus 4 / vko 40 Diskreetin ateatiikan perusteet Laskuharjoitus 4 / vko 40 Tuntitehtävät 31-32 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 35-36 loppuviikon harjoituksissa. Kotitehtävät 33-34 tarkastetaan loppuviikon

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Harjoitustyö Hidastuva liike Biljardisimulaatio

Harjoitustyö Hidastuva liike Biljardisimulaatio Harjoitustyö Hidastuva liike Biljardisimulaatio Tietotekniikka Ammattialan matemaattiset menetelmät Tommi Sukuvaara Nico Hätönen, Joni Toivonen, Tomi Poutiainen INTINU13A6 Arviointi Päiväys Arvosana Opettajan

Lisätiedot

Muunnokset ja mittayksiköt

Muunnokset ja mittayksiköt Muunnokset ja mittayksiköt 1 a Mitä kymmenen potenssia tarkoittavat etuliitteet m, G ja n? b Mikä on massan (mass) mittayksikkö SI-järjestelmässäa? c Mikä on painon (weight) mittayksikkö SI-järjestelmässä?

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

RATKAISUT: 7. Gravitaatiovoima ja heittoliike

RATKAISUT: 7. Gravitaatiovoima ja heittoliike Phyica 9. paino () 7. Gaitaatiooia ja heittoliike : 7. Gaitaatiooia ja heittoliike 7. a) Gaitaatiooia aikuttaa kaikkien kappaleiden älillä. Gaitaatiooian uuuu iippuu kappaleiden aoita ja niiden älietä

Lisätiedot

1 Tieteellinen esitystapa, yksiköt ja dimensiot

1 Tieteellinen esitystapa, yksiköt ja dimensiot 1 Tieteellinen esitystapa, yksiköt ja dimensiot 1.1 Tieteellinen esitystapa Maan ja auringon välinen etäisyys on 1 AU. AU on astronomical unit, joka määritelmänsä mukaan on maan ja auringon välinen keskimääräinen

Lisätiedot

5.3 Ensimmäisen asteen polynomifunktio

5.3 Ensimmäisen asteen polynomifunktio Yllä olevat polynomit P ( x) = 2 x + 1 ja Q ( x) = 2x 1 ovat esimerkkejä 1. asteen polynomifunktioista: muuttujan korkein potenssi on yksi. Yleisessä 1. asteen polynomifunktioissa on lisäksi vakiotermi;

Lisätiedot

Luku 6 Kysyntä. > 0, eli kysyntä kasvaa, niin x 1. < 0, eli kysyntä laskee, niin x 1

Luku 6 Kysyntä. > 0, eli kysyntä kasvaa, niin x 1. < 0, eli kysyntä laskee, niin x 1 40 Luku 6 Kysyntä Edellisessä luvussa näie, että ratkaisealla kuluttajan valintaongelan pitäällä paraetrit (p, p, ) yleisinä, saae eksplisiittisen kysyntäfunktion kuallekin hyödykkeelle. Ilaisie kysyntäfunktiot

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Syksy 2016 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia Ajankohtaista Presemokyselyn poimintoja Millä odotuksilla aloitat

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo - Ratkaisut ja pisteytysohjeet. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x+ x +9, b) log (x) 7,

Lisätiedot

a) Oletetaan, että happi on ideaalikaasu. Säiliön seinämiin osuvien hiukkasten lukumäärä saadaan molekyylivuon lausekkeesta = kaava (1p) dta n =

a) Oletetaan, että happi on ideaalikaasu. Säiliön seinämiin osuvien hiukkasten lukumäärä saadaan molekyylivuon lausekkeesta = kaava (1p) dta n = S-, ysiikka III (S) välikoe 7000 Laske nopeuden itseisarvon keskiarvo v ja nopeuden neliöllinen keskiarvo v rs seuraaville 6 olekyylien nopeusjakauille: a) kaikkien vauhti 0 / s, b) kolen vauhti / s ja

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Mikro- ja nanotekniikan laitos Syksy 2016 1 / 21 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia

Lisätiedot

Gravitaatio ja heittoliike. Gravitaatiovoima Numeerisen ratkaisun perusteet Heittoliike

Gravitaatio ja heittoliike. Gravitaatiovoima Numeerisen ratkaisun perusteet Heittoliike Gravitaatio ja heittoliike Gravitaatiovoima Numeerisen ratkaisun perusteet Heittoliike KERTAUS Newtonin lait Newtonin I laki Kappale, johon ei vaikuta voimia/voimien summa on nolla, ei muuta liiketilaansa

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain

Lisätiedot

Sarake 1 Sarake 2 Sarake 3 Sarake 4. Vahvistumisen jälkeen tavaran hinta on 70. Uusi tilavuus on

Sarake 1 Sarake 2 Sarake 3 Sarake 4. Vahvistumisen jälkeen tavaran hinta on 70. Uusi tilavuus on AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE 1/5 TEHTÄVÄOSA / Ongelmanratkaisu 1.6. 2017 TEHTÄVÄOSA ONGELMANRATKAISU Vastaa kullekin tehtävälle varatulle ratkaisusivulle. Vastauksista tulee selvitä tehtävien

Lisätiedot

= 2 1,2 m/s 55 m 11 m/s. 18 m 72 m v v0

= 2 1,2 m/s 55 m 11 m/s. 18 m 72 m v v0 Kertaustehtävät. c) Loppunopeus on v = as =, /s 55 /s. 8 7 v v0 3,6 s 3,6 s. c) Kiihtyvyys on a = =,0. t 5 s s Kolessa sekunnissa kuljettu atka on 7 s3 = v0t + at = 3,0 s + (,0 /s ) (3,0 s) 55,5. 3,6 s

Lisätiedot

A-osio. Ei laskinta! Laske kaikki tehtävät. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa.

A-osio. Ei laskinta! Laske kaikki tehtävät. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. MAB2 koe Jussi Tyni Lue ohjeet huolellisesti! Muista, että välivaiheet perustelevat vastauksesi. Muista kirjoittaa konseptille nimesi ja tee pisteytysruudukko konseptin yläreunaan. A-osio. Ei laskinta!

Lisätiedot

Sekä A- että B-osasta tulee saada vähintään 7 pistettä. Mikäli A-osan pistemäärä on vähemmän kuin 7 pistettä, B-osa jätetään arvostelematta.

Sekä A- että B-osasta tulee saada vähintään 7 pistettä. Mikäli A-osan pistemäärä on vähemmän kuin 7 pistettä, B-osa jätetään arvostelematta. KOE Sekä A- että B-osasta tulee saada vähintään 7 pistettä. Mikäli A-osan pistemäärä on vähemmän kuin 7 pistettä, B-osa jätetään arvostelematta. B-OSA, ht. 0p. Ksmksen maksimipistemäärä on 7 pistettä.

Lisätiedot

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa.

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa. 4 Suora ja taso Ennakkotehtävät 1. a) Kappale kulkee yhdessä sekunnissa vektorin s, joten kahdessa sekunnissa kappale kulkee vektorin 2 s. Pisteestä A = ( 3, 5) päästään pisteeseen P, jossa kappale sijaitsee,

Lisätiedot

Differentiaalilaskenta 1.

Differentiaalilaskenta 1. Differentiaalilaskenta. a) Mikä on tangentti? Mikä on sekantti? b) Määrittele funktion monotonisuuteen liittyvät käsitteet: kasvava, aidosti kasvava, vähenevä ja aidosti vähenevä. Anna esimerkit. c) Selitä,

Lisätiedot

Sovelletun fysiikan pääsykoe

Sovelletun fysiikan pääsykoe Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille

Lisätiedot

Liikemäärä ja voima 1

Liikemäärä ja voima 1 Liikemäärä ja voima 1 Tällä luennolla tavoitteena Kinematiikan ongelma ja sen ratkaisu: Miten radan ja nopeuden saa selville, jos kappaleen kiihtyvyys tunnetaan? Analyyttinen ratkaisu Liikemäärän, voiman

Lisätiedot

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A) Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut

Lisätiedot

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 1.6.2005, malliratkaisut.

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 1.6.2005, malliratkaisut. 1 Kuvaan 1 on piiretty kahden suoraviivaisesti samaan suuntaan liikkuvan auton ja B nopeudet ajan funktiona. utot ovat rinnakkain ajanhetkellä t = 0 s. a) Kuvaile auton liikettä ajan funktiona. Kumpi autoista

Lisätiedot

TEHTÄVIEN RATKAISUT. Luku a) Merkintä f (5) tarkoittaa lukua, jonka funktio tuottaa, kun siihen syötetään luku 5.

TEHTÄVIEN RATKAISUT. Luku a) Merkintä f (5) tarkoittaa lukua, jonka funktio tuottaa, kun siihen syötetään luku 5. TEHTÄVIEN RATKAISUT Luku 4.1 183. a) Merkintä f (5) tarkoittaa lukua, jonka funktio tuottaa, kun siihen syötetään luku 5. Lasketaan funktioon syötetyn luvun neliö: 5 = 5. Saatuun arvoon lisätään luku 1:

Lisätiedot

1 Ensimmäisen asteen polynomifunktio

1 Ensimmäisen asteen polynomifunktio Ensimmäisen asteen polynomifunktio ENNAKKOTEHTÄVÄT. a) f(x) = x 4 b) Nollakohdassa funktio f saa arvon nolla eli kuvaaja kohtaa x-akselin. Kuvaajan perusteella funktion nollakohta on x,. c) Funktion f

Lisätiedot

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 LIIKE Jos vahvempi kaveri törmää heikompaan kaveriin, vahvemmalla on enemmän voimaa. Pallon heittäjä antaa pallolle heittovoimaa, jonka

Lisätiedot

RATKAISUT: 18. Sähkökenttä

RATKAISUT: 18. Sähkökenttä Physica 9 1. painos 1(7) : 18.1. a) Sähkökenttä on alue, jonka jokaisessa kohdassa varattuun hiukkaseen vaikuttaa sähköinen voia. b) Potentiaali on sähkökenttää kuvaava suure, joka on ääritelty niin, että

Lisätiedot

2.3 Voiman jakaminen komponentteihin

2.3 Voiman jakaminen komponentteihin Seuraavissa kappaleissa tarvitaan aina silloin tällöin taitoa jakaa voima komponentteihin sekä myös taitoa suorittaa sille vastakkainen operaatio eli voimien resultantin eli kokonaisvoiman laskeminen.

Lisätiedot

1 Laske ympyrän kehän pituus, kun

1 Laske ympyrän kehän pituus, kun Ympyrään liittyviä harjoituksia 1 Laske ympyrän kehän pituus, kun a) ympyrän halkaisijan pituus on 17 cm b) ympyrän säteen pituus on 1 33 cm 3 2 Kuinka pitkä on ympyrän säde, jos sen kehä on yhden metrin

Lisätiedot

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a) Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman

Lisätiedot

TALOUDELLINEN AJOTAPA. Ennakoiva ajotapa

TALOUDELLINEN AJOTAPA. Ennakoiva ajotapa TALOUDELLINEN AJOTAPA Ennakoiva ajotapa Mitä voi tehdä 10 sekunnin aikana? Ennakoiva autoilija ajattelee liikenteessä siten, että hän miettii omaa tilannettaan 10 sekunnin päähän. Mitä tapahtuu seuraavaksi?

Lisätiedot

2.11 Väliaineen vastus

2.11 Väliaineen vastus Jokainen, joka on taistellut eteenpäin kohti kovaa vastatuulta tai yrittänyt juosta vedessä, tietää omasta kokemuksestaan, että väliaineella todellakin on vastus. Jos seisoo vain hiljaa paikoillaan vaikkapa

Lisätiedot

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan.

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. MAA Koe..05 Jussi Tyni Lue tehtävänannot huolella. Tee pisteytysruudukko. konseptin yläreunaan. A-osio. Ilman laskinta! MAOL:in taulukkokirja saa olla käytössä. Laske kaikki tehtävät. Vastaa tälle paperille.

Lisätiedot

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto Fysiikan perusteet Voimat ja kiihtyvyys Antti Haarto.05.01 Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure

Lisätiedot

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian pedagogiikan perusteet (mat/fys/kem suunt.), luento 1 Kari Sormunen

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian pedagogiikan perusteet (mat/fys/kem suunt.), luento 1 Kari Sormunen VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN Fysiikan ja kemian pedagogiikan perusteet (mat/fys/kem suunt.), luento 1 Kari Sormunen Vuorovaikutus on yksi keskeisimmistä fysiikan peruskäsitteistä

Lisätiedot

2.2 Principia: Sir Isaac Newtonin 1. ja 2. laki

2.2 Principia: Sir Isaac Newtonin 1. ja 2. laki Voima se on joka jyllää!, sanottiin ennen. Fysiikassakin voimalla tarkoitetaan jokseenkin juuri sitä, mikä ennenkin jylläsi, joskin täytyy muistaa, että voima ja teho ovat kaksi eri asiaa. Fysiikan tutkimuksen

Lisätiedot

Ohjeita fysiikan ylioppilaskirjoituksiin

Ohjeita fysiikan ylioppilaskirjoituksiin Ohjeita fysiikan ylioppilaskirjoituksiin Kari Eloranta 2016 Jyväskylän Lyseon lukio 11. tammikuuta 2016 Kokeen rakenne Fysiikan kokeessa on 13 tehtävää, joista vastataan kahdeksaan. Tehtävät 12 ja 13 ovat

Lisätiedot

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN Fysiikan ja kemian perusteet ja pedagogiikka, 1.-2. luento Kari Sormunen Mitä yhteistä? Kirja pöydällä Opiskelijapari Teräskuulan liike magneetin lähellä

Lisätiedot

Luvun 8 laskuesimerkit

Luvun 8 laskuesimerkit Luvun 8 laskuesimerkit Esimerkki 8.1 Heität pallon, jonka massa on 0.40 kg seinään. Pallo osuu seinään horisontaalisella nopeudella 30 m/s ja kimpoaa takaisin niin ikään horisontaalisesti nopeudella 20

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 26. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 26. syyskuuta 2016 1 / 14 Hieman kertausta

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Huom: luvun 4 kohdalla luennolla ei ollut laskuesimerkkejä, vaan koko luvun 5 voi nähdä kokoelmana sovellusesimerkkejä edellisen luvun asioihin! Esimerkki 5.1 Moottori roikkuu oheisen

Lisätiedot

Kertauskysymyksiä. KPL1 Suureita ja mittauksia. KPL2 Vuorovaikutus ja voima. Avain Fysiikka KPL 1-4

Kertauskysymyksiä. KPL1 Suureita ja mittauksia. KPL2 Vuorovaikutus ja voima. Avain Fysiikka KPL 1-4 Kertauskysymyksiä KPL1 Suureita ja mittauksia 1. Suure on kappaleen ominaisuus, joka voidaan jollain tavalla mitata 2. Mittayksiköksi, tai lyhyemmin yksiköksi 3. Si-järjestelmä on kansainvälinen mittayksikköjärjestelmä

Lisätiedot

jakokulmassa x 4 x 8 x 3x

jakokulmassa x 4 x 8 x 3x Laudatur MAA ratkaisut kertausarjoituksiin. Polynomifunktion nollakodat 6 + 7. Suoritetaan jakolasku jakokulmassa 5 4 + + 4 8 6 6 5 4 + 0 + 0 + 0 + 0+ 6 5 ± 5 5 4 ± 4 4 ± 4 4 ± 4 8 8 ± 8 6 6 + ± 6 Vastaus:

Lisätiedot

AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE

AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE OHJEITA Valintakokeessa on kaksi osaa: TEHTÄVÄOSA: Ongelmanratkaisu VASTAUSOSA: Ongelmanratkaisu ja Tekstikoe HUOMIOI SEURAAVAA: 1. TEHTÄVÄOSAN tehtävään 7 ja

Lisätiedot

2. Suoraviivainen liike

2. Suoraviivainen liike . Suoraviivainen liike . Siirymä, keskinopeus ja keskivauhi Aika: unnus, yksikkö: sekuni s Suoraviivaisessa liikkeessä kappaleen asema (paikka) ilmoieaan suoralla olevan piseen paikkakoordinaain (unnus

Lisätiedot

2 Raja-arvo ja jatkuvuus

2 Raja-arvo ja jatkuvuus Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.6 Raja-arvo ja jatkuvuus. a) Kun suorakulmion kärki on kohdassa =, on suorakulmion kannan pituus. Suorakulmion korkeus on käyrän y-koordinaatti

Lisätiedot

Opetusmateriaali. Tutkimustehtävien tekeminen

Opetusmateriaali. Tutkimustehtävien tekeminen Opetusmateriaali Tämän opetusmateriaalin tarkoituksena on opettaa kiihtyvyyttä mallintamisen avulla. Toisena tarkoituksena on hyödyntää pikkuautoa ja lego-ukkoa fysiikkaan liittyvän ahdistuksen vähentämiseksi.

Lisätiedot

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4 766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4 0. MUISTA: Tenttitehtävä tulevassa päätekokeessa: Fysiikan säilymislait ja symmetria. (Tästä tehtävästä voi saada tentissä kolme ylimääräistä pistettä. Nämä

Lisätiedot

määrittelyjoukko. 8 piirretään tangentti pisteeseen, jossa käyrä leikkaa y-akselin. Määritä tangentin yhtälö.

määrittelyjoukko. 8 piirretään tangentti pisteeseen, jossa käyrä leikkaa y-akselin. Määritä tangentin yhtälö. MAA8 Juuri- ja logaritmifunktiot 5.4.0 Jussi Tyni. a) Derivoi f ( ) 3e 5 Mikä on funktion f () = ln(5 ) 00 määrittelyjoukko. c) Derivoi g( t) 4ln( t t ). Käyrälle g( ) e 8 piirretään tangentti pisteeseen,

Lisätiedot

Intensiteettitaso ja Doplerin ilmiö

Intensiteettitaso ja Doplerin ilmiö Inteniteettitao ja Doplerin ilmiö Tehtävä Erkki työkentelee airaalaa. Sairaalalta 6,0 km päää on tapahtunut tieliikenneonnettomuu ja onnettomuupaikalta lähteneen ambulanin ireenin ääni kuuluu Erkille 60,0

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Esimerkki 5.1 Moottori roikkuu oheisen kuvan mukaisessa ripustuksessa. a) Mitkä ovat kahleiden jännitykset? b) Mikä kahleista uhkaa katketa ensimmäisenä? Piirretäänpä parit vapaakappalekuvat.

Lisätiedot

VUOROVAIKUTUS JA VOIMA

VUOROVAIKUTUS JA VOIMA VUOROVAIKUTUS JA VOIMA Isaac Newton 1642-1727 Voiman tunnus: F Voiman yksikkö: 1 N (newton) = 1 kgm/s 2 Vuorovaikutus=> Voima Miten Maa ja Kuu vaikuttavat toisiinsa? Pesäpallon ja Maan välinen gravitaatiovuorovaikutus

Lisätiedot

η = = = 1, S , Fysiikka III (Sf) 2. välikoe

η = = = 1, S , Fysiikka III (Sf) 2. välikoe S-11445 Fysiikka III (Sf) välikoe 710003 1 Läpövoiakoneen kiertoprosessin vaiheet ovat: a) Isokorinen paineen kasvu arvosta p 1 arvoon p b) adiabaattinen laajeneinen jolloin paine laskee takaisin arvoon

Lisätiedot

KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1

KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1 KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1 Tässä materiaalissa on ensin helpompia laskuja, joiden avulla voi kerrata perusasioita, ja sen jälkeen muutamia vaikeampia laskuja. Laskujen jälkeen

Lisätiedot

HePon ryhmäajokoulutus Ajomuodostelmat

HePon ryhmäajokoulutus Ajomuodostelmat HePon ryhmäajokoulutus 9.4.2011 Ajomuodostelmat Peesaus Edellä ajavaan etäisyys 30 cm Kovissa nopeuksissa parikin metriä jo auttaa Älä aja renkaat limittäin Pidä veto koko ajan päällä Älä kiihdytä ja rullaa

Lisätiedot

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Tekijä Pitkä matematiikka 5 7..017 37 Pisteen (x, y) etäisyys pisteestä (0, ) on ( x 0) + ( y ). Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Merkitään etäisyydet yhtä suuriksi ja ratkaistaan

Lisätiedot

FYSP101/K1 KINEMATIIKAN KUVAAJAT

FYSP101/K1 KINEMATIIKAN KUVAAJAT FYSP101/K1 KINEMATIIKAN KUVAAJAT Työn tavoitteita tutustua kattavasti DataStudio -ohjelmiston käyttöön syventää kinematiikan kuvaajien (paikka, nopeus, kiihtyvyys) hallintaa oppia yhdistämään kinematiikan

Lisätiedot

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! 1. Vastaa, ovatko seuraavat väittämät oikein vai väärin. Perustelua ei tarvitse kirjoittaa. a) Atomi ei voi lähettää

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta

Lisätiedot

Luento 3: Käyräviivainen liike

Luento 3: Käyräviivainen liike Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike 2015-09-14 13:50:32 1/40 luentokalvot_03_combined.pdf (#36) Luennon

Lisätiedot

Lukion. Calculus. MAA10 Integraalilaskenta. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. MAA10 Integraalilaskenta. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA Integraalilaskenta Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Integraalilaskenta (MAA Pikatesti ja Kertauskokeet Tehtävien

Lisätiedot

4 Yleinen potenssifunktio ja polynomifunktio

4 Yleinen potenssifunktio ja polynomifunktio 4 Yleinen potenssifunktio ja polynomifunktio ENNAKKOTEHTÄVÄT 1. a) Tutkitaan yhtälöiden ratkaisuja piirtämällä funktioiden f(x) = x, f(x) = x 3, f(x) = x 4 ja f(x) = x 5 kuvaajat. Näin nähdään, monessako

Lisätiedot

MAA4 Abittikokeen vastaukset ja perusteluja 1. Määritä kuvassa olevien suorien s ja t yhtälöt. Suoran s yhtälö on = ja suoran t yhtälö on = + 2. Onko väittämä oikein vai väärin? 2.1 Suorat =5 +2 ja =5

Lisätiedot

4 TOISEN ASTEEN YHTÄLÖ

4 TOISEN ASTEEN YHTÄLÖ Huippu Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 7.4.016 4 TOISEN ASTEEN YHTÄLÖ POHDITTAVAA 1. Merkitään toisen neliön sivun pituutta kirjaimella x. Tällöin toisen neliön sivun pituus on

Lisätiedot

g-kentät ja voimat Haarto & Karhunen

g-kentät ja voimat Haarto & Karhunen g-kentät ja voimat Haarto & Karhunen Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure Aiheuttaa kappaleelle

Lisätiedot

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille. Ongelmanratkaisu. Isto Jokinen 2017

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille. Ongelmanratkaisu. Isto Jokinen 2017 MATEMATIIKKA Matematiikkaa pintakäsittelijöille Ongelmanratkaisu Isto Jokinen 2017 SISÄLTÖ 1. Matemaattisten ongelmien ratkaisu laskukaavoilla 2. Tekijäyhtälöt 3. Laskukaavojen yhdistäminen 4. Yhtälöiden

Lisätiedot

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77 Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty.5.07 Kertaus K. a) sin 0 = 0,77 b) cos ( 0 ) = cos 0 = 0,6 c) sin 50 = sin (80 50 ) = sin 0 = 0,77 d) tan 0 = tan (0 80 ) = tan 0 =,9 e)

Lisätiedot