RATKAISUT: 9. Pyörimisen peruslaki ja pyörimismäärä

Save this PDF as:
Koko: px
Aloita esitys sivulta:

Download "RATKAISUT: 9. Pyörimisen peruslaki ja pyörimismäärä"

Transkriptio

1 Phyic 9. pino (9) 9. Pyöiien peulki j pyöiiäää : 9. Pyöiien peulki j pyöiiäää 9. ) Hituoentti on uue, jok kuv kppleen pyöiihitutt, toiin noen itä, iten vike kppleen pyöiitä on uutt. b) Syteein pyöiiäää äilyy, jo yteeiin vikuttv ulkoinen kokonioentti on noll ΣM = 0. c) Pyöiiliikkeen peulin ukn pyöivään kppleeeen vikuttv kokonioentti ääää kppleen kulkiihtyvyyden Σ M = J α. A A 9. Kppleen on =, kg, ylintein =,7 kg j putoitk = 0,60. Kok keli on hyvin lkeoitu, ekninen enegi äilyy. Punnuken potentilienegi lu on yhtä uui kuin punnuken liike-enegin j ylintein pyöiienegioiden u lopu Ep,lku = Et,loppu + E,loppu. Vlitn potentilienegin nollto punnuken loppukokeuden tolle. Tällöin punnu on luki kokeudell h, joten gh = v + Jω. Sylintein hituoentti kelin uhteen on J =. Kok lnk on venyätön, lngn kukin pite liikkuu ll nopeudell kuin punnu. Siten ylintein kehäpiteen tnopeu lngn itoikohd on kuin punnuken nopeu. Kok kulnopeuden ω j kehäpiteen tnopeuden v välillä on yhtey ω = v, yhtey on voi yö punnuken eteneinopeuden j ylintein kulnopeuden välillä. Sijoittll v v gh = v + ( ) ω = enegiyhtälöön dn ( ) gh = + v. 4 Rtkitn nopeu j ijoitetn lukuvot v = 4gh + = 4, kg 9,8 0,60, kg +,7 kg =,3537,4. Vtu: Kppleen nopeu on,4. Tekijät j WSOY Oppiteilit Oy, 007 Piioket: Pekk Könönen j tekijät

2 Phyic 9. pino (9) 9. Pyöiien peulki j pyöiiäää 9.3 Voi on F = 3 N, äteet = 3 c j = 7 c. (Huo. kijn. pinoke tehtävää on vhingo nnettu F ). Ion on on =, kg j pieneän = 0,80 kg, j kulkiihtyvyy on α = 35. ) Hituoentti on ylinteeiden hituoenttien u. J = J + J = + = 0,8 kg (0,3 ) +, kg (0,7 ) = 0,00676 kg + 0,0734 kg = 0,04 kg 0,04 kg. b) Kppleeeen vikuttvt voit F j F ekä tukivoi N j pino G. Pyöiiliikkeen peuyhtälö M = Jα. Olkoon oenttien poitiivinen uunt vtpäivään. Silloin F F = Jα F Jα + F =. Sijoitetn lukuvot 0,04 kg N 0,3 F = =,55 N 3 N 0,7 Vtu: ) Hituoentti on 0,04 kg. b) Voi on 3 N. 9.4 ) Kok plloon vikuttv ulkoinen oentti on häviävän pieni, pyöiinopeu j kelin uunt pyyvät likiin oin pyöiiäään äilyilin peuteell. b) Kun vuhtipyöän kelin uunt vihdetn, täytyy vuuluken kääntyä, jott pyöiiäää äilyii. c) Rekkitngoll oikkuvn uheilijn hituoentti on uuepi kuin ykkyää kieppuvn uheilijn. Jott pyöiiäää äilyii, tulee kulnopeuden kv. Vtvti kulnopeu pienene, kun uheilij uoit itenä pennolle tulle. d) Tipuin uvn niot yteein (nuollkävelijä + uv) pinopite lkeutuu, jolloin nuollkävelijän on helpopi pyyä null. Riittävän tipuin j päätä pinvn uvn vull pinopite dn nuon lpuolelle. Pitkällä uvll on uui hituoentti, jolloin yteein pyöiinen ei uutu helpoti. Tekijät j WSOY Oppiteilit Oy, 007 Piioket: Pekk Könönen j tekijät

3 Phyic 9. pino 3(9) 9. Pyöiien peulki j pyöiiäää e) Pyöiiäään äilyilin ukn. Jott yteein pyöiiäää pyyii n (= noll), tulee oien liikku vtkkiiin uuntiin. Kävelijä kllit (kääntää) uv oikelle eli n uuntn, johon hän lk ktu. Tään euuken kävelijän vtlo kääntyy vtkkieen uuntn pyöiilin äilyilin kuvll tvll. lk ktu heilutt uv ktuiuuntn, jolloin heilht ite vtkkieen uuntn 9.5 Hituoentin ääittäinen voidn peut ekä pyöiien peuyhtälön että eknien enegin äilyilkien oveltieen. Tp : Kiinnitetään pyöä kelitn telineeeen. Kieetään pyöän kehälle kevyttä lnk j iputetn iihen punnu. Annetn punnuken pudot levot lähtien tietty ik. Mittn pyöän kulkiihtyvyy α, jok on vkio, kok oentti on vkio. Mittn, kuink pitkän tkn punnu puto ovitu j t. Putov punnu on tieti kiihtyvää eteneiliikkeeä j pyöä tieti kiihtyvää pyöiiliikkeeä. Newtonin II liikelin j pyöiiliikkeen peulin ukn Σ F = Σ M = Jα. Punnukeen vikutt pinovoi G j lngn tukivoi T. Kok lnk on kevyt j venyätön, lnk vikutt polkupyöän kehään yhtä uuell voill T. Kuv eitettyjen poitiiviten uuntien ukn dn yhtälöt punnuken eteneinen: g T = pyöän pyöiinen: T = Jα. Tekijät j WSOY Oppiteilit Oy, 007 Piioket: Pekk Könönen j tekijät

4 Phyic 9. pino 4(9) 9. Pyöiien peulki j pyöiiäää Kok punnuken kiihtyvyy on kuin pyöän ulkoeunn piteen tngenttikiihtyvyy t j toilt t = α, kulkiihtyvyyden j punnuken kiihtyvyyden välillä on yhtey α =. Siten T = J j pyöän hituoentti on Toilt punnuken liikeyhtälötä dn T = g = ( g ), T J =. joten hituoentti on T g ( ) g J = = = ( ). Kok punnu on tieti kiihtyvää liikkeeä, j t e etenee tkn Hituoentill dn iten lueke =. t = t, joten punnuken kiihtyvyy on gt J = ( ). Kun ittn ik t, tk, j äde, hituoentti dn lketuki. Tp : Pnnn pyöä vieiään kltev to lpäin. Mekninen enegi äilyy. Ep,lku = Et,loppu + E,loppu gh = v + Jω Vieiiehdon ukn pyöän eteneinopeuden v j kulnopeuden ω välillä on yhtey v = ω, joten v gh = v + J ( ). Rtkitn pyöän hituoentti v gh v = J ( ) gh v J =. v ( ) Kok pyöä on tieti kiihtyvää eteneiliikkeeä, en kekinopeu on Tekijät j WSOY Oppiteilit Oy, 007 Piioket: Pekk Könönen j tekijät

5 Phyic 9. pino 5(9) 9. Pyöiien peulki j pyöiiäää v+ v0 v vk = = = t, jot pyöän nopeudeki dn v =. t Pyöän pytyuon kulke tk dn yhtälötä h= inθ. Kun ittn h,,, t j, voidn hituoentti lke. 9.6 ) Pyöiiäää L = Jω äilyy. Tähteä voidn pitää hoogeenien pllon, jolloin en hituoentti on J 5 Kun tähti luhituu neutonitähdeki, tähden äde voi pienentyä lle tuhnneoki. Tällöin en hituoentti pienentyy iljoonoki. Pyöiiäään äilyietä eu, että pyöiinopeu voi kv jop yli iljoonketieki. b) Hyppääjän pyöiiäää on vkio. Hyppääjään ei kohditu ulkoiten voiien oentti. Jott hyppääjä pytyii kääntäään jlkojn, hänen on käännettävä ylävtlon vtkkieen uuntn. c) Kun luoti pyöii pituukelin ypäi, e äilyttää uuntn pein kuin luoti, jok ei pyöi. Luodill on kelin uuntinen pyöiiäää. Kok pyöiiäää äilyy, äilyy ekä en uunt että uuuu. Siki pyöivän luodin uunt pyyy pein n kuin pyöiättöän luodin uunt. =. 9.7 ) Kiekon hlkiij on d = 4,7 c, ton kltevuukul α = 3 j tk =,5. Mekninen enegi äilyy, kok ton j kiekon välinen kitk ei tee työtä. Ep,lku = Et,loppu + E,loppu gh = v + Jω Vieiiehdon ukn kiekon eteneinopeuden v j kulnopeuden ω välillä on yhtey v = ω. v gh = v + ( ) 3 gh= v + ( v ) = v 4 Tekijät j WSOY Oppiteilit Oy, 007 Piioket: Pekk Könönen j tekijät

6 Phyic 9. pino 6(9) 9. Pyöiien peulki j pyöiiäää 4 9,8,5 in 3 4gh v = = =, ,8. b) Mekninen enegi äilyy, jo liukuvn kiekkoon ei kohditu kitk. E p,lku = E t,loppu gh = v v = gh = 9,8,5 in 3 Vtu: = 3,390 3,4. ) Kiekon nopeu on,8. b) Kiekon nopeu on 3, ) Kppleiden t ovt = 0,0 kg j = 0,30 kg. Sylintein on = 0,0 kg j äde = 0,0. Sylinteiin vikutt en pino G, lnkojen voit F j F ekä tukivoi F A. Kppleeeen vikutt en pino G j lngn tukivoi F. Kppleeeen vikutt en pino G j lngn tukivoi F. Kuv on eitetty kppleiiin vikuttvt voit j vlittu poitiivinen uunt. Newtonin II lin j pyöiien peulin ukn dn yhtälöt kpple : G F = eli g F = kpple : F G = eli F g = Sylintei: F F = JAα ( F F ) = J α A ( F F) = α Kppleill on nuuuinen kiihtyvyy. Sylintein kehän piteellä on tkiihtyvyy, jok on en tngenttikiihtyvyy t. Toilt t = α j iten = α. Sijoitetn kulkiihtyvyyden lueke α = ylintein liikeyhtälöön Tekijät j WSOY Oppiteilit Oy, 007 Piioket: Pekk Könönen j tekijät

7 Phyic 9. pino 7(9) 9. Pyöiien peulki j pyöiiäää ( ) F F = F F =. Lketn yhteen yhtälöt g F = F g = F F =, dn g g = + +. Siten kiihtyvyy on = g + + 0,30 kg 0,0 kg 0,30 kg + 0,0 kg + 0,0 kg = 9,8 b) Kulkiihtyvyy on 3,94 α = t = = 0,0 = 39,4 c) Voit ovt 39. = 3,94 3,9. F = g = 0, 30 kg (9,8 3, 94 ) =,7658 N,8 N. F = g + = 0,0 kg (9,8 3, 94 ) + =,3734 N,4 N. Vtu: ) Kiihtyvyy on 3,9. b) Kulkiihtyvyy on 39. c) Voit ovt,8 N j,4 N. 9.9 Veiäpäin on = kg, puutukin hlkiij d = = 8 c, tukin j ken kokonihituoentti J = 0,08 kg, kitkoentti M =,4 N j putoitk h = 3,. Tekijät j WSOY Oppiteilit Oy, 007 Piioket: Pekk Könönen j tekijät

8 Phyic 9. pino 8(9) 9. Pyöiien peulki j pyöiiäää Enegipeitteen ukn kitkoentin tekeä työ on yhtä uui kuin yteein eknien enegin uuto. Kitkoentin tekeä työ on negtiivinen, kok e pienentää yteein eknit enegi. M Δ ϕ =Δ E +Δ E k Δ ϕ = + ω M v J gh p h v Puutukin kietyä on Δ ϕ = j kulnopeu ω =. Sijoitetn kietyä j kulnopeu enegiyhtälöön h v ( ) = + M v J gh J + = v v gh M h v = h gh M J ( + ) = 3, 0,08 kg ( kg + ) (0,090 ) kg 9,8 3,,4 N 0,090 = 6,5040 6,5. Vtu: Äpäin nopeu on 6, Kokeueo on h = 0,95. Kun oletetn vieiivtu j ilnvtu hyvin pieniki, voidn ovelt eknien enegin äilyilki. Siten pllon ekninen enegi lähtöhetkellä j lentoonlähtöhetkellä on. gh = v + Jω Pllon hituoentti on Pllo vieii, joten v Siten = ω. v gh = v + ( ) 5 7 gh = v 0 J 5 =. 0 Pllon nopeu itoihetkellä on v = gh. 7 Tktelln euvki lento il: Kun pllo lentää il, en pyöiiellä ei ole ekitytä enegitktelu. Kok ilnvtu on häviävän pieni, ekninen enegi äilyy. Siten pllon eteneien liike-enegi itoihetkellä on yhtä uui kuin en potentilienegi yliää kohd. Tekijät j WSOY Oppiteilit Oy, 007 Piioket: Pekk Könönen j tekijät

9 Phyic 9. pino 9(9) 9. Pyöiien peulki j pyöiiäää v = gh Lentokokeudeki dn v 0gh 5h h = = g 7 g = = 50, = 0,68. Vtu: Pllo nouee kokeudelle 0,68. Tekijät j WSOY Oppiteilit Oy, 007 Piioket: Pekk Könönen j tekijät

RATKAISUT: 6. Pyörimisliike ja ympyräliike

RATKAISUT: 6. Pyörimisliike ja ympyräliike Phyic 9 pio () 6 Pyöiiliike j ypyäliike : 6 Pyöiiliike j ypyäliike 6 ) Pyöiiliikkeeä kpple pyöii joki keli ypäi Kpplee eto uuttuu b) Ypyäliikkeeä kpple liikkuu pitki ypyät dϕ c) Hetkellie kulopeu ω o kietokul

Lisätiedot

rad s rad s km s km s

rad s rad s km s km s otoni 5 6- Ketautehtävien atkaiut Luku. Satelliitti kietää Maata päiväntaaajataoa 50 k Maan pinnan yläpuolella. Sen kietoaika on 90 in. Määitä atelliitin kulanopeu ja atanopeu. Maan ekvaattoiäde on noin

Lisätiedot

RATKAISUT: 3. Voimakuvio ja liikeyhtälö

RATKAISUT: 3. Voimakuvio ja liikeyhtälö Phyica 9. paino (8) 3. Voiakuvio ja liikeyhtälö : 3. Voiakuvio ja liikeyhtälö 3. a) Newtonin I laki on nieltään jatkavuuden laki. Kappale jatkaa liikettään uoraviivaieti uuttuattoalla nopeudella tai pyyy

Lisätiedot

RATKAISUT: 8. Momentti ja tasapaino

RATKAISUT: 8. Momentti ja tasapaino Phyica 9. paino (7) : 8. Voian vari r on voian vaikutuuoran etäiyy pyöriiakelita. Pyöriiakeli on todellinen tai kuviteltu akeli, jonka ypäri kappale pyörii. Voian oentti M kuvaa voian vääntövaikututa tietyn

Lisätiedot

RATKAISUT: 7. Gravitaatiovoima ja heittoliike

RATKAISUT: 7. Gravitaatiovoima ja heittoliike Phyica 9. paino () 7. Gaitaatiooia ja heittoliike : 7. Gaitaatiooia ja heittoliike 7. a) Gaitaatiooia aikuttaa kaikkien kappaleiden älillä. Gaitaatiooian uuuu iippuu kappaleiden aoita ja niiden älietä

Lisätiedot

1.a) f(x) = 2x(x 2 3) = 0 2x = 0 tai x 2 3 = 0 x = 0 tai x 2 = 3. Anne: Tulo on nolla, jos jokin tulon tekijöistä on nolla

1.a) f(x) = 2x(x 2 3) = 0 2x = 0 tai x 2 3 = 0 x = 0 tai x 2 = 3. Anne: Tulo on nolla, jos jokin tulon tekijöistä on nolla . f( = ( = 0 = 0 ti = 0 = 0 ti = Anne: Tulo on noll, jo jokin tulon tekijöitä on noll b f( = ( = 6 f ( = 6-6 f '( 6( 6 Anne: Peruderivointi ottv moin ijoitu luekkeeeen c ( 6 d / ( 4 (8 (8 0 Anne: Käytä

Lisätiedot

1. Oheinen kuvio esittää kolmen pyöräilijän A, B ja C paikkaa ajan funktiona.

1. Oheinen kuvio esittää kolmen pyöräilijän A, B ja C paikkaa ajan funktiona. Fotoni 4 Kertau - 1 Kertautehtäviä Luku 1 1. Oheinen kuvio eittää kolen pyöräilijän A, B ja C paikkaa ajan funktiona. a) Kuka on kulkenut piiän atkan aikavälinä 0...7? b) Milloin B aavuttaa C:n? c) Kenellä

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2004

MAOL-Pisteitysohjeet Fysiikka kevät 2004 MAOL-Piteityohjeet Fyiikka kevät 004 Tyypilliten virheiden aiheuttaia piteenetykiä (6 piteen kaalaa): - pieni lakuvirhe -1/3 p - lakuvirhe, epäielekä tulo, vähintään - - vataukea yki erkitevä nuero liikaa

Lisätiedot

Painopiste. josta edelleen. x i m i. (1) m L A TEX 1 ( ) x 1... x k µ x k+1... x n. m 1 g... m n g. Kuva 1. i=1. i=k+1. i=1

Painopiste. josta edelleen. x i m i. (1) m L A TEX 1 ( ) x 1... x k µ x k+1... x n. m 1 g... m n g. Kuva 1. i=1. i=k+1. i=1 Pinopiste Snomme ts-ineiseksi kpplett, jonk mteriliss ei ole sisäisiä tiheyden vihteluj. Tällisen kppleen pinopisteen sijinti voidn joskus päätellä kppleen muodon perusteell. Esimerkiksi ts-ineisen pllon

Lisätiedot

järjestelmät Jatkuva-aikaiset järjestelmät muunnostason ratkaisu Lineaariset järjestelmät Risto Mikkonen

järjestelmät Jatkuva-aikaiset järjestelmät muunnostason ratkaisu Lineaariset järjestelmät Risto Mikkonen DEE- Lineiet jäjetelmät Jtkuv-ikiet jäjetelmät muunnoton tkiu Lineiet jäjetelmät Rito Mikkonen Lplce-muunno Aikton DY Aikton tkiu Lplcemuunno Käänteimuunno Rtkiu -to 2 Lineiet jäjetelmät Rito Mikkonen

Lisätiedot

Kurssikoe, FY5 Pyöriminen ja gravitaatio,

Kurssikoe, FY5 Pyöriminen ja gravitaatio, Kussikoe, FY5 Pöiinen j gittio, 5.4.6 Vst in iiteen tehtäään. Jokisess tehtäässä ksii pisteäää on kuusi pistettä. Voit psti tehdä ekintöjä ös tehtääppeiin, niitä ei huoioid ioinniss. Plut ös tehtääppei..

Lisätiedot

b) Laskiessani suksilla mäkeä alas ja hypätessäni laiturilta järveen painovoima tekee työtä minulle.

b) Laskiessani suksilla mäkeä alas ja hypätessäni laiturilta järveen painovoima tekee työtä minulle. nergia. Työ ja teho OHDI JA TSI -. Opettaja ja opikelija tekevät hyvin paljon aanlaita ekaanita työtä, kuten liikkuinen, kirjojen ja eineiden notainen, liikkeellelähtö ja pyähtyinen. Uuien aioiden oppiinen

Lisätiedot

Riemannin integraalista

Riemannin integraalista Lebesguen integrliin sl. 2007 Ari Lehtonen Riemnnin integrlist Johdnto Tämän luentomonisteen trkoituksen on tutustutt lukij Lebesgue n integrliin j sen perusominisuuksiin mhdollisimmn yksinkertisess tpuksess:

Lisätiedot

LASKENTA laskentakaavat

LASKENTA laskentakaavat LASKENA lketkvt Kvkokoelm älle ivulle o koottu yleiiät j ueiite trvitut lketkvt. Näitä käytetää hihleveyde j keliväli lket. Liäki o koottu muutmi muuokvoj. Hhih mitoittmie käy helpoti Heomitoituohjelmll.

Lisätiedot

Siirtojohdot. Siirtojohdot

Siirtojohdot. Siirtojohdot iirtoohot uku iirtoohot iirtoohtoteori kytkee toiiin kenttäteorin tutun piiriteorin. iirtoohtoteori trktelee vin kenttien etenemitä niien käyttäytymitä eriliten ineien rpinnoill. Mutkikkt kenttätehtävät

Lisätiedot

PAKONOPEUDET eli KOSMISET NOPEUDET

PAKONOPEUDET eli KOSMISET NOPEUDET PAKONOPEUDET eli KOSMISET NOPEUDET Kappaleen kokonaienegiata Ekok Ek + Ep iippuu ikä on kappaleen atakäyän uoto gaitaatiokentää. Voidaan eottaa kole atakäyää: 1) Ekok < 0 ellipi ) Ekok 0 paaabeli 3) Ekok

Lisätiedot

LUKION FYSIIKKAKILPAILU 10.11.2009, ratkaisut PERUSSARJA

LUKION FYSIIKKAKILPAILU 10.11.2009, ratkaisut PERUSSARJA LUKION FYSIIKKAKILPAILU 0..009, ratkaiut PERUSSARJA Vataa huolellieti ja iititi! Kirjoita tektaten koepaperiin oa niei, kotiooitteei, ähköpotiooite, opettajai nii ekä koului nii. Kilpailuaikaa on 00 inuuttia.

Lisätiedot

TYÖNTEKIJÄN ELÄKELAIN (TYEL) 182 :N MUKAISEN TYÖTTÖMYYSVAKUUTUSRAHASTON MAKSUN KORJAUS VUODELTA 2007

TYÖNTEKIJÄN ELÄKELAIN (TYEL) 182 :N MUKAISEN TYÖTTÖMYYSVAKUUTUSRAHASTON MAKSUN KORJAUS VUODELTA 2007 Suunnitteluoto.8.009 / TYÖTEKIJÄ ELÄKELAI (TYEL) 8 : MUKAISE TYÖTTÖMYYSVAKUUTUSRAHASTO MAKSU KORJAUS VUODELTA Vuoden mkun korjuken yy O uoden mkun lkenn huomioitit etuupäiitä oli rioitu, kok mkun lkenthetkellä

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain

Lisätiedot

Jäykän kappaleen tasokinetiikka harjoitustehtäviä

Jäykän kappaleen tasokinetiikka harjoitustehtäviä ynmiikk 1 Liite lukuun 6. Jäykän kppleen tskinetiikk - hrjitustehtäviä 6.1 vlvpkettiutn mss n 1500 kg. ut lähtee levst liikkeelle 10 % ylämäkeen j svutt vkikiihtyvyydellä npeuden 50 km / h 1 10 60 m mtkll.

Lisätiedot

RATKAISUT: Kertaustehtäviä

RATKAISUT: Kertaustehtäviä Phyica 1 uuditettu paino OPETTAJAN OPAS 1(9) Kertautehtäiä RATKAISUT: Kertautehtäiä LUKU 3. Luua on a) 4 eriteää nueroa b) 3 eriteää nueroa c) 7 eriteää nueroa. 4. Selitetään erieen yhtälön olepien puolien

Lisätiedot

AHX640W AHX640W VOX400 VOX400 [UUSIA RATKAISUJA VALURAUTOJEN JYRSINTÄÄN] ] [UUSIA RATKAISUJA PROMOTION JYRSIMET VALURAUDOILLE

AHX640W AHX640W VOX400 VOX400 [UUSIA RATKAISUJA VALURAUTOJEN JYRSINTÄÄN] ] [UUSIA RATKAISUJA PROMOTION JYRSIMET VALURAUDOILLE PROMOTION JYRSIMET VALURAUDOILLE NEW CAST IRON FACE MILLING CUTTERS FI-00 AHX0W AHX l Uui tehok -ärmäinen kääntöterä. AHX0W [UUSIA RATKAISUJA [UUSIA RATKAISUJA VALURAUTOJEN JYRSINTÄÄN] ] JYRSINTÄÄN VALURAUTOJEN

Lisätiedot

LUKION FYSIIKKAKILPAILU 8.11.2005 avoimen sarjan vast AVOIN SARJA

LUKION FYSIIKKAKILPAILU 8.11.2005 avoimen sarjan vast AVOIN SARJA LKION FYSIIKKAKILPAIL 8..5 avoien arjan vat AVOIN SARJA Kirjoita tektaten koepaperiin oa niei, kotiooitteei, ähköpotiooitteei, opettajai nii ekä koului nii. Kilpailuaikaa on inuuttia. Sekä tehtävä- että

Lisätiedot

4.3 Liikemäärän säilyminen

4.3 Liikemäärän säilyminen Tämän kappaleen aihe liikemäärän äilyminen törmäykiä. Törmäy on uora ja kekeinen, jo törmäävät kappaleet liikkuvat maakekipiteitten kautta kulkevaa uoraa pitkin ja jo törmäykohta on tällä amalla uoralla.

Lisätiedot

Intensiteettitaso ja Doplerin ilmiö

Intensiteettitaso ja Doplerin ilmiö Inteniteettitao ja Doplerin ilmiö Tehtävä Erkki työkentelee airaalaa. Sairaalalta 6,0 km päää on tapahtunut tieliikenneonnettomuu ja onnettomuupaikalta lähteneen ambulanin ireenin ääni kuuluu Erkille 60,0

Lisätiedot

Fysiikkakilpailu 6.11.2007, avoimen sarjan vastaukset AVOIN SARJA

Fysiikkakilpailu 6.11.2007, avoimen sarjan vastaukset AVOIN SARJA Fyiikkakilpailu 6.11.007, avoimen ajan vatauket AVOIN SARJA Kijoita tektaten koepapeiin oma nimei, kotiooitteei, ähköpotiooitteei, opettajai nimi ekä koului nimi. Kilpailuaikaa on 100 minuuttia. Sekä tehtävä-

Lisätiedot

Tasogeometriassa käsiteltiin kuvioita vain yhdessä tasossa. Avaruusgeometriassa tasoon tulee kolmas ulottuvuus, jolloin saadaan kappaleen tilavuus.

Tasogeometriassa käsiteltiin kuvioita vain yhdessä tasossa. Avaruusgeometriassa tasoon tulee kolmas ulottuvuus, jolloin saadaan kappaleen tilavuus. KOLMIULOTTEISI KPPLEIT Tsogeometriss käsiteltiin kuvioit vin ydessä tsoss. vruusgeometriss tsoon tulee kolms ulottuvuus, jolloin sdn kppleen tilvuus. SUORKULMINEN SÄRMIÖ Suorkulmisess särmiössä kikki kulmt

Lisätiedot

Luentomoniste: Mekaniikka Pasi Repo & Pekka Varis (päivitetty 2.1.06)

Luentomoniste: Mekaniikka Pasi Repo & Pekka Varis (päivitetty 2.1.06) Fyiia evät 006 JAMK/IT -Intituutti Luentoonite: Meaniia Pai Repo & Pea Vai (päivitetty..06) 0. Johdanto... 0.. Fyiian ääitelä... 0.. Mittau ja yiöt.... -ulotteita ineatiiaa... 3.. Keivauhti... 3.. Keinopeu...

Lisätiedot

Puolijohdekomponenttien perusteet A Ratkaisut 6, Kevät 2016

Puolijohdekomponenttien perusteet A Ratkaisut 6, Kevät 2016 OY/PJKOMP R6 016 Puolijohekoponenttien peruteet 51071A Rtkiut 6, Kevät 016 1. MOS-konenttori (Metl-Oxie-Seiconuctor) kootuu nienä ukieti etlliet hilt, okii-eriteetä j ouptut puolijohteet (Kuv 1). Ielieti

Lisätiedot

Physica 9 1. painos 1(8) 20. Varattu hiukkanen sähkö- ja magneettikentässä

Physica 9 1. painos 1(8) 20. Varattu hiukkanen sähkö- ja magneettikentässä Phyica 9 aino (8) 0 Varattu hiukkann ähkö- ja agnttikntää : 0 Varattu hiukkann ähkö- ja agnttikntää 0 a) Sähköknttä aikuttaa arattuun hiukkan oialla F = QE Poitiiiti aratull hiukkall oian uunta on ähkökntän

Lisätiedot

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO Integrlilskent Tämä on lukion oppimterileist hiemn poikkev yksinkertistettu selvitys määrätyn integrlin lskemisest. Kerromme miksi integroidn, mitä integroiminen trkoitt, miten integrli lsketn j miten

Lisätiedot

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina 18.6. ylimääräisessä tapaamisessa.

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina 18.6. ylimääräisessä tapaamisessa. Jkso 12. Sähkömgneettinen induktio Tässä jksoss käsitellään sähkömgneettist induktiot, jok on tärkeimpiä sioit sähkömgnetismiss. Tätä tphtuu koko jn rkisess ympäristössämme, vikk emme sitä välttämättä

Lisätiedot

2. Laske tehtävän 1 mukaiselle 320 km pitkälle johdolle nimellisen p- sijaiskytkeän impedanssit ja admittanssit, sekä piirrä sijaiskytkennän kuva.

2. Laske tehtävän 1 mukaiselle 320 km pitkälle johdolle nimellisen p- sijaiskytkeän impedanssit ja admittanssit, sekä piirrä sijaiskytkennän kuva. ELECE849 k 6. Lk 6 Hz:n vrko olvn 5 :n ohdon ltoimpdni khdll tvll: kä olttmll ohto hävittmäki ttä ottmll hävit huomioon. Vrtil impdnin ro. Lk luonnollinn tho P kättämällä hävittmän ohdon ltoimpdni. Lk

Lisätiedot

Äänen nopeus pitkässä tangossa

Äänen nopeus pitkässä tangossa IXPF24 Fyiikka, ryhälaboratoriotyö IST4S1 / E1 / A Okanen Janne, Vaitti Mikael, Vähäartti Pai Jyväkylän Aattikorkeakoulu, IT-intituutti IXPF24 Fyiikka, Kevät 2005, 6 ECTS Opettaja Pai Repo Äänen nopeu

Lisätiedot

8.4 Gaussin lause Edellä laskettiin vektorikentän v = rf(r) vuo R-säteisen pallon pinnan läpi, tuloksella

8.4 Gaussin lause Edellä laskettiin vektorikentän v = rf(r) vuo R-säteisen pallon pinnan läpi, tuloksella H 8.3.2 uontegrlt: vektoreden pntntegrlt Tvllsn tpus pntntegrlest on lske vektorkentän vuo pnnn läp: Trkstelln pnt j sllä psteessä P (x, y, z olev pnt-lkot d. Määrtellään vektorlnen pnt-lko d sten, että

Lisätiedot

Jakso 4: Dynamiikan perusteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautus- tai näyttöpäivä on maanantaina

Jakso 4: Dynamiikan perusteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautus- tai näyttöpäivä on maanantaina Jako 4: Dynamiikan peruteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautu- tai näyttöpäivä on maanantaina 8.8.2016. Kolmea enimmäieä lakua ovelletaan Newtonin 2. ja 3. lakia. T 4.1 (pakollinen):

Lisätiedot

Vastaa tehtäviin 1-4 ja valitse toinen tehtävistä 5 ja 6. Vastaat siis enintään viiteen tehtävään.

Vastaa tehtäviin 1-4 ja valitse toinen tehtävistä 5 ja 6. Vastaat siis enintään viiteen tehtävään. S-8. Sähkönsiirtoärstlmät Tntti 8..7 Vst thtäviin -4 vlits toinn thtävistä 5 6. Vstt siis nintään viitn thtävään.. Tutkitn ll piirrttyä PV-käyrää, ok kuv sllist vrkko, oss on tuotntolu kuormituslu niidn

Lisätiedot

θ 1 θ 2 γ γ = β ( n 2 α + n 2 β = l R α l s γ l s 22 LINSSIT JA LINSSIJÄRJESTELMÄT 22.1 Linssien kuvausyhtälö

θ 1 θ 2 γ γ = β ( n 2 α + n 2 β = l R α l s γ l s 22 LINSSIT JA LINSSIJÄRJESTELMÄT 22.1 Linssien kuvausyhtälö 22 LINSSIT JA LINSSIJÄRJSTLMÄT 22. Linssien kuvusyhtälö Trkstelln luksi vlon tittumist pllopinnll (krevuussäde R j krevuuskeskipiste C) kuvn mukisess geometriss. Tässä vlo siis tulee ineest ineeseen 2

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut A1 Ampumahiihtäjä ampuu luodin vaakasuoraan kohti maalitaulun keskipistettä. Luodin lähtönopeus on v 0 = 445 m/s ja etäisyys maalitauluun s = 50,0 m. a) Kuinka pitkä on luodin lentoaika? b) Kuinka kauaksi

Lisätiedot

RATKAISUT: Kertaustehtäviä

RATKAISUT: Kertaustehtäviä Phyica 5 OPETTAJAN OPAS paino (6) Ketautehtäiä : Ketautehtäiä Luku t 5 n 5 RPM,,5 Kiihdyty Oletetaan, että taaieti kiihtyä pyöiiliike ϕ ωt+ αt Kulanopeuden ja pyöiinopeuden älillä allitee yhtey ω π n Sijoitetaan

Lisätiedot

(0 1) 0 (0 1) 01 = (0 1) (0 01) = (0 1 ) (0 01)

(0 1) 0 (0 1) 01 = (0 1) (0 01) = (0 1 ) (0 01) M M ( ) ( ) M, Tehtävä 24. Muodot äännöllitä luekett (0 ) 0 (0 ) 0 = (0 ) (0 0) = (0 ) (0 0) vtv äärellinen utomtti. Tehtävä 25. Muodot C-kielen liukuluvut tunnitv utomtti äännöllietä luekkeet (d +.d.d

Lisätiedot

VEKTOREILLA LASKEMINEN

VEKTOREILLA LASKEMINEN ..07 VEKTOREILL LSKEMINEN YHTEENLSKU VEKTORIT, M4 Vektoreiden j summ on vektori +. Tämän summvektorin + lkupiste on vektorin lkupiste j loppupiste vektorin loppupiste, kun vektorin lkupisteenä on vektorin

Lisätiedot

Kuva 1. n i n v. (2 p.) b) Laske avaimiesi etäisyys x altaan seinämästä. (4 p.) c) Kuinka paljon lunta voi sulaa enintään Lassen suksien alla?

Kuva 1. n i n v. (2 p.) b) Laske avaimiesi etäisyys x altaan seinämästä. (4 p.) c) Kuinka paljon lunta voi sulaa enintään Lassen suksien alla? TKK, TTY, LTY, OY, ÅA, TY j VY insinööriosstojen vlintkuulustelujen fysiikn koe 26.5.2004 Merkitse jokiseen koepperiin nimesi, hkijnumerosi j tehtäväsrjn kirjin. Lske jokinen tehtävä siististi omlle sivulleen.

Lisätiedot

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA Tekijät: Ari Heimonen, Hellevi Kupil, Ktj Leinonen, Tuomo Tll, Hnn Tuhknen, Pekk Vrniemi Alkupl Tiedekeskus Tietomn torninvrtij

Lisätiedot

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Sksn 0 Pitkän mtemtiikn YO-kokeen TI-Nspire CAS -rtkisut Tekijät: Olli Krkkulinen Rtkisut on ldittu TI-Nspire CAS -tietokoneohjelmll kättäen Muistiinpnot -sovellust. Kvt j lskut on kirjoitettu Mth -ruutuihin.

Lisätiedot

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on 4. DETERINANTTI JA KÄÄNTEISATRIISI 6 4. Neliömtriisi determitti Neliömtriisi A determitti o luku, jot merkitää det(a) ti A. Se lsket seurvsti: -mtriisi A determitti o det(a) () -mtriisi A determitti void

Lisätiedot

SATE1120 Staattinen kenttäteoria kevät / 6 Laskuharjoitus 7 / Kapasitanssi ja eristeaineet

SATE1120 Staattinen kenttäteoria kevät / 6 Laskuharjoitus 7 / Kapasitanssi ja eristeaineet ATE0 tttinen kenttäteoi kevät 06 / 6 Lskuhjoitus 7 / Kpsitnssi j eisteineet Tehtävä. Kuvss esitetyn kpelin sisimmän johteen ( =,5 mm) potentilieo uloimpn johtimeen ( = 00 mm) nähen on 00. Alueell,5 <

Lisätiedot

VEKTOREILLA LASKEMINEN

VEKTOREILLA LASKEMINEN 3..07 VEKTOREILLA LASKEMINEN YHTEENLASKU VEKTORIT, MAA Vektoreiden j summ on vektori +. Tämän summvektorin + lkupiste on vektorin lkupiste j loppupiste vektorin loppupiste, kun vektorin lkupisteenä on

Lisätiedot

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI NEWTONIN LAIT MEKANIIKAN I PERUSLAKI eli jatkavuuden laki tai liikkeen jatkuvuuden laki (myös Newtonin I laki tai inertialaki) Kappale jatkaa tasaista suoraviivaista liikettä vakionopeudella tai pysyy

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2010

MAOL-Pisteitysohjeet Fysiikka kevät 2010 MAOL-Piteityohjeet Fyiikka kevät 010 Tyypilliten virheiden aiheuttaia piteenetykiä (6 piteen kaalaa): - pieni lakuvirhe -1/3 p - lakuvirhe, epäielekä tulo, vähintään - - vataukea yki erkitevä nuero liikaa

Lisätiedot

( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 321 Päivitetty 19.2.2006. Saadaan yhtälö. 801 Paraabeli on niiden pisteiden ( x,

( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 321 Päivitetty 19.2.2006. Saadaan yhtälö. 801 Paraabeli on niiden pisteiden ( x, Pyrmidi Anlyyttinen geometri tehtävien rtkisut sivu Päivitetty 9..6 8 Prbeli on niiden pisteiden (, y) joukko, jotk ovt yhtä kukn johtosuorst j polttopisteestä. Pisteen (, y ) etäisyys suorst y = on d

Lisätiedot

10 Suoran vektorimuotoinen yhtälö

10 Suoran vektorimuotoinen yhtälö 10 Suran vektrimutinen htälö J aluki tarkatellaan -tan kuuluvaa, rign kautta kulkevaa uraa, niin ura n täin määrätt, mikäli tunnetaan en uunta. Tavallieti tämä annetaan uuntakulman tangentin = kulmakertimen

Lisätiedot

Physica 5 Opettajan OPAS (1/24)

Physica 5 Opettajan OPAS (1/24) Phyica 5 Opettajan OPAS (/4) 45 y 6,5 /, v 0x /, x?, v?, α? a) Moleat kivet putoavat aanaikaieti veteen Koka ilanvatu on ekityketön, ne putoavat aalla kiihtyvyydellä Vaakauoa alkunopeu ei vaikuta pytyuoaan

Lisätiedot

Viikkotehtävät IV, ratkaisut

Viikkotehtävät IV, ratkaisut Viikkotehtävät IV, ratkaiut. 7,40 V (pariton napajännite) I 7 ma (lampun A ähkövirta rinnankytkennää) I 5 ma (lampun B ähkövirta rinnankytkennää) a) eitani on, joten lamppujen reitanit voidaan lakea tehtävää

Lisätiedot

2.4 Pienimmän neliösumman menetelmä

2.4 Pienimmän neliösumman menetelmä 2.4 Pienimmän neliösummn menetelmä Optimointimenetelmiä trvitn usein kokeellisen dtn nlysoinniss. Mittuksiin liittyy virhettä, joten mittus on toistettv useit kertoj. Oletetn, että mittn suurett c j toistetn

Lisätiedot

RATKAISUT: 17. Tasavirtapiirit

RATKAISUT: 17. Tasavirtapiirit Phyica 9. paino 1(6) ATKAST 17. Taavirtapiirit ATKAST: 17. Taavirtapiirit 17.1 a) Napajännite on laitteen navoita mitattu jännite. b) Lähdejännite on kuormittamattoman pariton napajännite. c) Jännitehäviö

Lisätiedot

C B A. Kolmessa ensimmäisessä laskussa sovelletaan Newtonin 2. ja 3. lakia.

C B A. Kolmessa ensimmäisessä laskussa sovelletaan Newtonin 2. ja 3. lakia. Jako 4: Dynamiikan peruteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautu- tai näyttöpäivä on tiitaina 23.5.2017. Ektra-tehtävät vataavat kolmea tehtävää, kun kurin lopua laketaan lakuharjoitupiteitä.

Lisätiedot

Kertausosa. 2. Kuvaan merkityt kulmat ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia, kulmat ovat yhtä suuria.

Kertausosa. 2. Kuvaan merkityt kulmat ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia, kulmat ovat yhtä suuria. 5. Veitoken tilavuu on V,00 m 1,00 m,00 m 6,00 m. Pienoimallin tilavuu on 1 V malli 6,00 m 0,06m. 100 Mittakaava k aadaan tälötä. 0,06 1 k 6,00 100 1 k 0,1544... 100 Mitat ovat. 1,00m 0,408...m 100 0,41

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.2014 Ratkaisut ja arvostelu

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.2014 Ratkaisut ja arvostelu VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.4 Rtkisut j rvostelu. Koululisen todistuksen keskirvo x on lskettu ) b) c) d) kymmenen ineen perusteell. Jos koululinen nostisi neljän ineen

Lisätiedot

Teoriaa tähän jaksoon on talvikurssin luentomonisteessa luvussa 10. Siihen on linkki sivulta

Teoriaa tähän jaksoon on talvikurssin luentomonisteessa luvussa 10. Siihen on linkki sivulta Jkso 10. Sähkömgneettinen induktio Näytä ti plut tämän jkson tehtävät viimeistään tiistin 13.6.2017. Ekstr-tehtävät vstvt kolme tvllist tehtävää, kun lsketn lskuhrjoituspisteitä. Teori tähän jksoon on

Lisätiedot

Pintaintegraali. i j k cos(θ) sin(θ) 1. = r cos(θ)i r sin(θ)j + rk, r sin(θ) r cos(θ) 0 joten

Pintaintegraali. i j k cos(θ) sin(θ) 1. = r cos(θ)i r sin(θ)j + rk, r sin(θ) r cos(θ) 0 joten .4.8 intintegrli. He krtion z x + y sylinterin x + y y sisäpuolelle jäävän osn pint-l käyttämällä npkoordinttej x r cosθ j y r sinθ jolloin epäyhtälö x + y y on r sinθ. Rtkisu: Symmetrin nojll voidn trkstell

Lisätiedot

Tee B-osion konseptiin etusivulle pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Välivaiheet perustelevat vastauksesi!

Tee B-osion konseptiin etusivulle pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Välivaiheet perustelevat vastauksesi! MAA8 Koe 4.4.016 Jussi Tyni Tee B-osion konseptiin etusivulle pisteytysruudukko! Muist kirjt nimesi j ryhmäsi. Väliviheet perustelevt vstuksesi! A-osio. Ilmn lskint. MAOLi s käyttää. Mksimissn 1h ik. Lske

Lisätiedot

766319A Sähkömagnetismi, 7 op Kertaustehtäviä, 1. välikokeen alue Vastaukset tehtävien jälkeen

766319A Sähkömagnetismi, 7 op Kertaustehtäviä, 1. välikokeen alue Vastaukset tehtävien jälkeen 76619A Sähkömgnetismi, 7 op Kertustehtäviä, 1. välikokeen lue Vstukset tehtävien jälkeen 1. Kolme pistevrust sijitsee xy-koordintistoss ll olevn kuvn mukisesti. Vrus +Q sijitsee kohdss x =, toinen vrus

Lisätiedot

Sosiaali- ja terveysministeriön vahvistamissa vastuunjakoperusteissa esiintyvien tasauskertoimien arvot vuodelle 2011 = 0, = 0,036947

Sosiaali- ja terveysministeriön vahvistamissa vastuunjakoperusteissa esiintyvien tasauskertoimien arvot vuodelle 2011 = 0, = 0,036947 Soili- j terveyminiteriön 25.11.2010 vhvitmi vtuunjkoperutei eiintyvien tukertoimien rvot vuodelle = 0,403097 = 0,036947 = 0,000569 TVR(j) = 0,008056 TVR(m) = 0,008051 TVR(y) = 0,008046 ELÄKETURVAKESKUS

Lisätiedot

olevat ansiot vuonna v ja

olevat ansiot vuonna v ja uunnitteluoto.8.00 / TYÖTEKIJÄ ELÄKELAI (TYEL) 8 : MUKAIE TYÖTTÖMYYVAKUUTURAHATO MAKU VUODELTA Yleitä TyEL 8 :n mukn Työttömyykuuturhton on uoritett Eläketurkekukelle mku jok hitetn oili- j tereyminiteriön

Lisätiedot

b) (max 3p) Värähtelijän jaksonajan ja taajuuden välinen yhteys on T = 1/ f, eli missä k on jousen jousivakio. Neliöimällä yllä oleva yhtälö saadaan

b) (max 3p) Värähtelijän jaksonajan ja taajuuden välinen yhteys on T = 1/ f, eli missä k on jousen jousivakio. Neliöimällä yllä oleva yhtälö saadaan A1 Lbortoriokokeess keveen kierrejouseen ripustettiin eri mssisi punnuksi. Punnust vedettiin lspäin j sntneen hrmonisen värähteln jksonik mitttiin. Värähtelijän tjus f = 2π 1 k mp. Oheisess tulukoss on

Lisätiedot

S if b then S else S S s. (b) Muodosta (a)-kohdan kieliopin kanssa ekvivalentti, so. saman kielen tuottava yksiselitteinen.

S if b then S else S S s. (b) Muodosta (a)-kohdan kieliopin kanssa ekvivalentti, so. saman kielen tuottava yksiselitteinen. T-79.148 Kevät 2004 Tietojenkäittelyteorin peruteet Hrjoitu 7 Demontrtiotehtävien rtkiut 4. Tehtävä: Ooit, että yhteydettömien kielten luokk on uljettu yhdite-, ktentioj ulkeumopertioiden uhteen, o. jo

Lisätiedot

Luento 6: Liikemäärä ja impulssi

Luento 6: Liikemäärä ja impulssi Luento 6: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Laskettuja esimerkkejä Luennon sisältö Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste

Lisätiedot

PD-säädin PID PID-säädin

PD-säädin PID PID-säädin -äädin - äätö on ykinkertainen äätömuoto, jota voidaan kutua myö uhteuttavaki äädöki. Sinä lähtöignaali on uoraa uhteea tuloignaalin. -äätimen uhdealue kertoo kuinka paljon mittauuure aa muuttua ennen

Lisätiedot

763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 1 Kevät 2014

763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 1 Kevät 2014 763333A KIINTEÄN AINEEN FYSIIKKA Rtkisut 1 Kevät 014 1. Tehtävä: Lske, kuink mont hilpistettä on yksikkökopiss ) yksinkertisess kuutiollisess, b) tkk:ss j c) pkk:ss. (Ot huomioon, että esimerkiksi yksikkökopin

Lisätiedot

SATE2140 Dynaaminen kenttäteoria syksy / 6 Laskuharjoitus 0: Siirrosvirta ja indusoitunut sähkömotorinen voima

SATE2140 Dynaaminen kenttäteoria syksy / 6 Laskuharjoitus 0: Siirrosvirta ja indusoitunut sähkömotorinen voima ATE14 Dynminen kenttäteori syksy 1 1 / skuhrjoitus : iirrosvirt j inusoitunut sähkömotorinen voim Tehtävä 1. All olevss kuvss esitetyssä pitkässä virtlngss kulkee virt i 1 (t) j sen vieressä on kuvn mukinen

Lisätiedot

SATE1120 Staattinen kenttäteoria kevät / 6 Laskuharjoitus 7 / Kapasitanssi ja eristeaineet

SATE1120 Staattinen kenttäteoria kevät / 6 Laskuharjoitus 7 / Kapasitanssi ja eristeaineet SATE0 Stttinen kenttäteoi kevät 07 / Lskuhjoitus 7 / Kpsitnssi j eisteineet Tehtävä. All olevss kuvss sisimmän johteen ( = mm) potentilieo uloimpn johtimeen ( = 00 mm) nähen on 40 V. Alueell < < 50 mm

Lisätiedot

TYÖNTEKIJÄN ELÄKELAIN (TYEL) 182 :N MUKAINEN TYÖTTÖMYYSVAKUUTUSRAHASTON MAKSU VUODELTA 2008

TYÖNTEKIJÄN ELÄKELAIN (TYEL) 182 :N MUKAINEN TYÖTTÖMYYSVAKUUTUSRAHASTON MAKSU VUODELTA 2008 uunnitteluoto.8.009 / TYÖTEKIJÄ ELÄKELAI (TYEL) 8 : MUKAIE TYÖTTÖMYYVAKUUTURAHATO MAKU VUODELTA Yleitä TyEL 8 :n mukn Työttömyykuuturhton on uoritett Eläketurkekukelle mku jok hitetn oili- j tereyminiteriön

Lisätiedot

VESIPATTERIN ASENNUS TBLA Thermo Guard-jäätymissuojalla GOLD koko 11-32, versio B

VESIPATTERIN ASENNUS TBLA Thermo Guard-jäätymissuojalla GOLD koko 11-32, versio B VESIPATTERIN ASENNUS TBLA -jäätymissuojll GOLD koko 11-32, versio B ASENNUS 1. Knvliitäntä on tehtävä seurvsti: ) TBLA 000-031 j 000-040 Vesiptteri voidn sent suorn kierresumttuun knvn. Ptteri on vrustettu

Lisätiedot

KERTAUSTEHTÄVIÄ. LUKU v k = 12 m/s, x = 3,0 km, t =? x. LUKU v = 90 km/h = (90/3,6) m/s = 25 m/s, t = 1 s, s =? Kuljettu matka on m s

KERTAUSTEHTÄVIÄ. LUKU v k = 12 m/s, x = 3,0 km, t =? x. LUKU v = 90 km/h = (90/3,6) m/s = 25 m/s, t = 1 s, s =? Kuljettu matka on m s Phyica 4 Opettajan OPAS (8) LUKU 46 v k = /, x = 3,0 k, t =? x x Kekinopeuden uuruu on vk = Ratkaitaan aika t = t v 3,0 k t = = 50 = 50 in = 4,667 in 4, in 60 k 47 v k = 50 k/h, x =,5 k, v k = 80 k/h,

Lisätiedot

.) (b) Vertaa p :tä vastaavaa kineettistä energiaa perustilan kokonaisenergiaan. ( ) ( ) = = Ek

.) (b) Vertaa p :tä vastaavaa kineettistä energiaa perustilan kokonaisenergiaan. ( ) ( ) = = Ek S-446, FYSIIKKA IV (Sf) Kevät 5, HSf Rtkisut HSf- Kvnttimekninen hrmoninen värähtelijä on perustillln (mss m) Värähtelyn mplitudi on A () ske p (Värähtelijä sijitsee välillä A ) (b) Vert p :tä vstv kineettistä

Lisätiedot

Harjoitellaan voimakuvion piirtämistä

Harjoitellaan voimakuvion piirtämistä Harjoitellaan voimakuvion piirtämistä Milloin ja miksi voimakuvio piirretään? Voimakuvio on keskeinen osa mekaniikan tehtävän ratkaisua, sillä sen avulla hahmotetaan tilanne, esitetään kappaleeseen kohdistuvat

Lisätiedot

2. Laske tehtävän 1 mukaiselle 320 km pitkälle johdolle nimellisen p- sijaiskytkennän impedanssit ja admittanssit, sekä piirrä sijaiskytkennän kuva.

2. Laske tehtävän 1 mukaiselle 320 km pitkälle johdolle nimellisen p- sijaiskytkennän impedanssit ja admittanssit, sekä piirrä sijaiskytkennän kuva. ELECE849 iirtoohdot, lkuhroituki. Lk 6 Hz:n vrko olvn 5 k:n ohdon ltoimpdni khdll tvll: kä olttmll ohto hävittmäki ttä ottmll hävit huomioon. rtil impdnin ro. Lk luonnollinn tho P kättämällä hävittmän

Lisätiedot

RATKAISUT: 5. Liikemäärä ja impulssi

RATKAISUT: 5. Liikemäärä ja impulssi Phyica 9 1. paino 1(9) 5. Liikeäärä ja ipuli : 5. Liikeäärä ja ipuli 5.1 a) Kappaleen liikeäärä on p, joa on kappaleen aa ja kappaleen nopeu. b) Ipuliperiaate: Syteein liikeäärän uuto Δ p aikaälillä Δt

Lisätiedot

SATE.10xx Staattisen kenttäteorian laajentaminen Sähkömagneettiseksi kenttäteoriaksi

SATE.10xx Staattisen kenttäteorian laajentaminen Sähkömagneettiseksi kenttäteoriaksi ATE.1xx tttisen kenttäteorin ljentminen ähkömgneettiseksi kenttäteoriksi syksy 212 1 / 5 skuhrjoitus 1: iirrosvirt j inusoitunut sähkömotorinen voim Tehtävä 1. Määritä tjuus, millä johtvuusvirrn tiheys

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 30.3.2016 Susanna Hurme Yleisen tasoliikkeen kinetiikka (Kirjan luku 17.5) Osaamistavoitteet Osata ratkaista voimia ja niiden aiheuttamia kiihtyvyyksiä tasoliikkeessä

Lisätiedot

6 Kertausosa. 6 Kertausosa

6 Kertausosa. 6 Kertausosa Kertusos Kertusos. ) b). ) b). ) ( ( ) : ) ( : ) b) { : [ ( ) ]} { :[ - ]} { : } -{ - } -{} c) ( ) : - ( ) ( ) ( ) ( 9) 9 9 Kertusos. ) ( ) b) ( ). ) ) ) b) / / c) : 7 7. ) ) ) b) Kertusos c) : 7 ( 9)

Lisätiedot

Vedetään kiekkoa erisuuruisilla voimilla! havaitaan kiekon saaman kiihtyvyyden olevan suoraan verrannollinen käytetyn voiman suuruuteen

Vedetään kiekkoa erisuuruisilla voimilla! havaitaan kiekon saaman kiihtyvyyden olevan suoraan verrannollinen käytetyn voiman suuruuteen 4.3 Newtonin II laki Esim. jääkiekko märällä jäällä: pystysuuntaiset voimat kumoavat toisensa: jään kiekkoon kohdistama tukivoima n on yhtäsuuri, mutta vastakkaismerkkinen kuin kiekon paino w: n = w kitka

Lisätiedot

Suorakaidekanavat. lindab suorakaidekanavat

Suorakaidekanavat. lindab suorakaidekanavat Suorkideknvt lind suorkideknvt lind suorkideknvt Sisällysluettelo Suorkideknvt Knv LKR... Liitosost Liitoslist LS... Liitoslist LS-... Kulmyhde LBR... Liitoslist LS... S-mutk LBXR... LBSR... Liitoslist

Lisätiedot

6 Integraalilaskentaa

6 Integraalilaskentaa 6 Integrlilskent 6. Integrlifunktio Funktion f integrlifunktioksi snotn funktiot F, jonk derivtt on f. Siis F (x) = f (x) määrittelyjoukon jokisell muuttujn rvoll x. Merkitään F(x) = f (x) dx. Integrlifunktion

Lisätiedot

Tampereen teknillinen yliopisto hum Konstruktiotekniikan laitos. MEC-2430 Elementtimenetelmän perusteet. Luento vk 1 Syksy 2012.

Tampereen teknillinen yliopisto hum Konstruktiotekniikan laitos. MEC-2430 Elementtimenetelmän perusteet. Luento vk 1 Syksy 2012. mpereen teknillinen yliopisto hum 3.8. Konstruktiotekniikn litos MEC-430 Elementtimenetelmän perusteet. Luento vk Syksy 0. Mtemtiikn j mtriisilskennn kertust Yleistä Kirjoittelen tänne joitin kurssin keskeisiä

Lisätiedot

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto Fysiikan perusteet Voimat ja kiihtyvyys Antti Haarto.05.01 Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure

Lisätiedot

Kitka ja Newtonin lakien sovellukset

Kitka ja Newtonin lakien sovellukset Kitka ja Newtonin lakien sovellukset Haarto & Karhunen Tavallisimpia voimia: Painovoima G Normaalivoima, Tukivoima Jännitysvoimat Kitkavoimat Voimat yleisesti F f T ja s f k N Vapaakappalekuva Kuva, joka

Lisätiedot

SATE1050 Piirianalyysi II syksy kevät / 8 Laskuharjoitus 12 / Siirtojohdot taajuusalueessa, ketjumatriisi

SATE1050 Piirianalyysi II syksy kevät / 8 Laskuharjoitus 12 / Siirtojohdot taajuusalueessa, ketjumatriisi SAT5 Piirinlyysi syksy 6 kevät 7 / 8 Tehtävä. Lske kuvss esitetyssä piirissä sisäänmenoimpednssi siirtojohdon ketjumtriisin vull, kun ) johdon loppupää on voin ) johdon loppupää on oikosuljettu c) johto

Lisätiedot

RATKAISUT: 13. Harmoninen värähtely

RATKAISUT: 13. Harmoninen värähtely Phyica 9 1 paino 1(7) 13 Haroninen värähtely : 13 Haroninen värähtely 131 a) Voia, jona uuruu on uoraan verrannollinen poieaaan taapainoaeata ja jona uunta on ohti taapainoaeaa b) Suure, joa ilaiee aiayiöä

Lisätiedot

NAANTALI KARJALUOTO - PIRTTILUOTO ASEMAKAAVALUONNOS 3.10.06

NAANTALI KARJALUOTO - PIRTTILUOTO ASEMAKAAVALUONNOS 3.10.06 NAANTALI KARJALUOTO - PIRTTILUOTO ASEMAKAAVALUONNOS 3.0.06 Siniellä värillä on eitetty rakennuala/rakennualan oa, joka ijaitee kahden metrin korkeukäyrän alapuolella. Silta Epoon Suviaaritoa. Yleitä Aemakaavaonnoken

Lisätiedot

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Liike ja voima Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Tasainen liike Nopeus on fysiikan suure, joka kuvaa kuinka pitkän matkan kappale kulkee tietyssä ajassa. Nopeus voidaan

Lisätiedot

KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1

KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1 KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1 Tässä materiaalissa on ensin helpompia laskuja, joiden avulla voi kerrata perusasioita, ja sen jälkeen muutamia vaikeampia laskuja. Laskujen jälkeen

Lisätiedot

b) (max 3p) Värähtelijän jaksonajan ja taajuuden välinen yhteys on T = 1/ f (++), eli

b) (max 3p) Värähtelijän jaksonajan ja taajuuden välinen yhteys on T = 1/ f (++), eli 1 Lbortoriokokeess keveen kierrejouseen ripustettiin eri mssisi punnuksi. Punnust vedettiin lspäin j sntneen hrmonisen värähteln jksonik mitttiin. Värähtelijän tjus f = 2π 1 k mp. Oheisess tulukoss on

Lisätiedot

Ruiskuvalukappaleen valettavuus

Ruiskuvalukappaleen valettavuus Ruiskuvlukppleen vlettvuus Käännökset: Snn Nykänen, Tuul Höök Tmpereen teknillinen yliopisto Seinämänpksuus Yordnk Atnsov Technicl University of Gbrovo Seinämänpksuus vikutt huomttvsti ruiskuvletun kppleen

Lisätiedot

Jakso 7. Lorentz-voima

Jakso 7. Lorentz-voima Jkso 7. Loentz-voim Mgnetismi-ilmiö on monelle mysteei. Siksi sen vull voidn helposti huijt ihmisiä j myydä kiken milmn polttoineen säästäjiä utoihin. Edelleen on kuitenkin kysymys Coulombin voimst eli

Lisätiedot

RATKAISUT: Kertaustehtävät

RATKAISUT: Kertaustehtävät Phyica 4 OPETTAJAN OPAS (7) Kertautehtävät : Kertautehtävät Luku Piirretään tangentti hetkeä, vataavaan kohtaan Kuvan ukaan tangentin kulakerroin on 4,5 4 oikea vaihtoehto Vatau: B eli B on Taainen liike,

Lisätiedot

Tapa II: Piirretään voiman F vaikutussuora ja lasketaan momentti sen avulla. Kuva 3. d r. voiman F vaikutussuora

Tapa II: Piirretään voiman F vaikutussuora ja lasketaan momentti sen avulla. Kuva 3. d r. voiman F vaikutussuora VOIMAN MOMENTTI Takastellaan jäykkää kappaletta, joka pääsee kietymään akselin O ympäi. VOIMAN MOMENTTI on voiman kietovaikutusta kuvaava suue. Voiman momentti määitellään voiman F ja voiman vaen tulona:

Lisätiedot

Riemannin integraali

Riemannin integraali LUKU 5 iemnnin integrli Tässä luvuss funktion f iemnnin integrli merkitään - b f = - b f() d. Vstvsti funktion f Lebesgue in integrli merkitään f = f() dm(). [,b] [,b] Luse 5.1. Olkoon f : [, b] rjoitettu

Lisätiedot

Y56 Laskuharjoitukset 3 palautus ma klo 16 mennessä

Y56 Laskuharjoitukset 3 palautus ma klo 16 mennessä 1 Y6 Lakuharjoituket 3 alautu ma 3.. klo 16 menneä Harjoitu 1. Lue enin Vihmo, Jouni (006) Alkoholijuomien hintajoutot uomea vuoina 199 00, Yhteikuntaolitiikka 71, 006/1 ivut 9 ja vataa itten kyymykiin.

Lisätiedot