10 Suoran vektorimuotoinen yhtälö

Koko: px
Aloita esitys sivulta:

Download "10 Suoran vektorimuotoinen yhtälö"

Transkriptio

1 10 Suran vektrimutinen htälö J aluki tarkatellaan -tan kuuluvaa, rign kautta kulkevaa uraa, niin ura n täin määrätt, mikäli tunnetaan en uunta. Tavallieti tämä annetaan uuntakulman tangentin = kulmakertimen k avulla. Suran uunta vidaan antaa mö uuntavektrin avulla. Tällainen (ei -akelin uuntainen) ura = k kulkee iten eim. piteen (1,k) kautta, jten uuntavektriki vidaan valita î + kĵ tai mikä tahana tämän kana hdenuuntainen vektri. Merkitään tällaita vektria = î + ĵ. P O Välttämätön ja riittävä eht ille, että pite P = (,) n uralla L, n e, että löt reaaliluku t iten, että OP = r = t. Kun r n piteen P paikkavektri, ii r = î + ĵ, niin em. htälö kmpnenttimuda n î + ĵ = t î t ĵ, jta aadaan uran htälön n. parametrimut Niiä tapaukia, jia 0, aadaan eliminimalla t parametrimutieta htälötä uui htälö =, jta edelleen merkitemällä muuttujan kerrinta = k, pullahtaa ennetäänkin hvin tuttu htälö = k. Kannattaa tietenkin humata, että merkitemällä uuntavektria = î ĵ kelpaa mikä tahana tämän kana hdenuuntainen vektri uuntavektriki. Tällaieki 1 kelpaa vaikkapa vektri = î + ĵ = î + kĵ. Tällöin n = tan = k, miä n uran L ja pitiivien -akelin välinen terävä kulma. Tämä kulma tetaan + +

2 negatiiviena, mikäli en ikea klki n ntnt vektrin î kierteä mötäpäivään eli negatiivieen kiertuuntaan. Orign kautta kulkevaan avaruuuraan eitett tarkatelu pätee täin hvin. Kuitenkaan tällaielle uralle ei määritellä uuntakulmaa ja uuntavektriin tulee klmakin kmpnentti. Tällöin = î + ĵ kˆ, ja rign kautta kulkevan + uran parametrihtälöki aadaan klmen htälön rhmä miä t n mikä tahana reaaliluku. = t = t, = t Olktpa itten L1: r = t rign kautta kulkeva -tan kuuluva ura ja L 2 tämän uran uuntainen ura, jka kulkee piteen P = (, ) kautta. Jälkimmäien uran uuntavektriki vidaan ilman muuta valita vektri. r 0 P = (, ) r P = (, ) Välttämätön ja riittävä eht ille, että P = (,) n uran L 2 pite, n e, että löt reaaliluku t iten, että OP = OP + t, mikä merkitee vektrihtälöä minkä kmpnenttieit n r = r + t î + ĵ = î + ĵ+ tî + t ĵ, jta edelleen päätään parametrieitkeen

3 = + t = + t Mikäli n keeä erikitapau = 0, aadaan tätä -akelin uuntainen ura = 0, jnka uuntavektriki kä paiti ĵ, mö pelkkä ĵ. Ellei le keeä käitelt erikitapau, parametri t n helpp eliminida ja aadaan 0 = 0 = ( 0) 0 = k( 0). 0 Kun jhdettiin piteen etäittä urata, tdettiin, että uran nrmaalivektriki vitiin valita n = aî + bĵ ja uuntavektriki = bî + aĵ, ja aadaan ijituken nnä ievennken jälkeen jälleen kerran Laue 18 Mikä tahana -tan ura vidaan aina eittää muda a + b + c = 0 mikäli ainakin tinen kertimita a ja b eraa nllata. Olkt nt P = (,, ) avaruuden kiinteä pite ja = ai + bj + ck nllata erava vektri. Pite P = (,,) n P :n kautta kulkevalla, vektrin uuntaiella uralla tämälleen illin, kun löt reaaliluku t iten, että

4 P P OP = OP + t r = r + t Tätä päätään parametrimutn = = = + ta + tb + tc ja parametrin elimininnin jälkeen n. krdinaattimutn: Laue 19 Piteen P = (,, ) kautta kulkevan, vektrin = ai + b j+ ck uuntaien uran htälö vidaan eittää muda a edellttäen, että abc 0. = = b c Parametrimutinen eit ei tätä rajituta iällä, mutta vaatii en, että ainakin ki uuntavektrin kalaarikmpnenteita pitää lla nllata erava, kka nllavektrilla ei le uuntaa. Eim. 1 Sura kulkee piteiden A = (4, 3, 1) ja B = (6, 7, 5) kautta. Määritä uran htälö, ekä pite, ja ura khtaa -tan.

5 Tan uuntavektriki vidaan valita = AB = OB OA. = (6 4)î + (7 3) ĵ + ( 5 1)kˆ = 2î + 4ĵ 6kˆ. Sura kulkee piteen A kautta ja en uuntavektri n. Laue 5.19 antaa: = = Sura leikkaa -taa piteeä, jnka -krdinaatti n nlla. Muiden krdinaattien määräämieki tarvitaan uran parametrimutita = + ta htälöä: = + tb = + tc Sijitetaan tähän uuntavektrin kalaarikmpnentit ja piteen A krdinaatit (htä hvin B:n krdit) = 4 + 2t = 3 + 4t = 1 6t J = 0, niin t = 2. Sijittamalla tämä muiden krdinaattien lauekkeiiin, päätään tietämään uran ja -tan leikkaupite: = 0 = 3 + 4( 2) = 5 = 1 6( 2) = 13 Vatau: Ktn uran htälö 4 3 nrmaalimuda = = 2 4 = 4 + 2t parametrimuda = 3 + 4t = 1 6t 1 6 Sura leikkaa -tan piteeä (0, 5, 13).

pienempää, joten vektoreiden välinen kulma voidaan aina rajoittaa välille o. Erikoisesti on

pienempää, joten vektoreiden välinen kulma voidaan aina rajoittaa välille o. Erikoisesti on 5 Pistetul ja sen svellutuksia Kun kahdella vektrilla, a ja b n hteinen alkupiste, niiden määräämät pulisurat jakavat tasn kahteen saan, kahteen kulmaan, jtka vat tistensa eksplementtikulmia, siis kulmia,

Lisätiedot

Harjoituksia MAA5 - HARJOITUKSIA. 1. Olkoon ABCD mielivaltainen nelikulmio. Merkitse siihen vektorit. mutta molemmat puolet itseisarvojen sisällä????

Harjoituksia MAA5 - HARJOITUKSIA. 1. Olkoon ABCD mielivaltainen nelikulmio. Merkitse siihen vektorit. mutta molemmat puolet itseisarvojen sisällä???? MAA5 - HARJOITUKSIA 1. Olkn ABCD mielivaltainen nelikulmi. Merkitse siihen vektrit a) AB b) CA ja DB. 2. Neljäkäs eli vinneliö n suunnikkaan erikistapaus. Mitkä seuraavista väitteistä vat tsia neljäkkäässä

Lisätiedot

RATKAISUT: 8. Momentti ja tasapaino

RATKAISUT: 8. Momentti ja tasapaino Phyica 9. paino (7) : 8. Voian vari r on voian vaikutuuoran etäiyy pyöriiakelita. Pyöriiakeli on todellinen tai kuviteltu akeli, jonka ypäri kappale pyörii. Voian oentti M kuvaa voian vääntövaikututa tietyn

Lisätiedot

4.3 Liikemäärän säilyminen

4.3 Liikemäärän säilyminen Tämän kappaleen aihe liikemäärän äilyminen törmäykiä. Törmäy on uora ja kekeinen, jo törmäävät kappaleet liikkuvat maakekipiteitten kautta kulkevaa uoraa pitkin ja jo törmäykohta on tällä amalla uoralla.

Lisätiedot

Ensimmäisen asteen polynomifunktio

Ensimmäisen asteen polynomifunktio Ensimmäisen asteen polnomifunktio Yhtälön f = a+ b, a 0 määrittelemää funktiota sanotaan ensimmäisen asteen polnomifunktioksi. Esimerkki. Ensimmäisen asteen polnomifuktioita ovat esimerkiksi f = 3 7, v()

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2002

MAOL-Pisteitysohjeet Fysiikka kevät 2002 MAOL-Piteityhjeet Fyiikka kevät 00 Tyypilliten virheiden aiheuttaia piteenetykiä (6 piteen kaalaa): - pieni lakuvirhe -/3 p - lakuvirhe, epäielekä tul, vähintään - - vataukea yki erkitevä nuer liikaa -0

Lisätiedot

Pakkauksen sisältö: Sire e ni

Pakkauksen sisältö: Sire e ni S t e e l m a t e p u h u v a n v a r a s h ä l y t ti m e n a s e n n u s: Pakkauksen sisältö: K e s k u s y k sikk ö I s k u n t u n n i s ti n Sire e ni P i u h a s a rj a aj o n e st or el e Ste el

Lisätiedot

RATKAISUT: 3. Voimakuvio ja liikeyhtälö

RATKAISUT: 3. Voimakuvio ja liikeyhtälö Phyica 9. paino (8) 3. Voiakuvio ja liikeyhtälö : 3. Voiakuvio ja liikeyhtälö 3. a) Newtonin I laki on nieltään jatkavuuden laki. Kappale jatkaa liikettään uoraviivaieti uuttuattoalla nopeudella tai pyyy

Lisätiedot

Ongelma 1: Mistä joihinkin tehtäviin liittyvä epädeterminismi syntyy?

Ongelma 1: Mistä joihinkin tehtäviin liittyvä epädeterminismi syntyy? Ongelma : Mistä jihinkin tehtäviin liittyvä epädeterminismi syntyy? 0-0 Lasse Lensu Ongelma : Miten vidaan pelata algritmisesti? 0-0 Lasse Lensu Ongelma : Onk mahdllista pelata ptimaalisesti? 0-0 Lasse

Lisätiedot

Kertausosa. 2. Kuvaan merkityt kulmat ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia, kulmat ovat yhtä suuria.

Kertausosa. 2. Kuvaan merkityt kulmat ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia, kulmat ovat yhtä suuria. 5. Veitoken tilavuu on V,00 m 1,00 m,00 m 6,00 m. Pienoimallin tilavuu on 1 V malli 6,00 m 0,06m. 100 Mittakaava k aadaan tälötä. 0,06 1 k 6,00 100 1 k 0,1544... 100 Mitat ovat. 1,00m 0,408...m 100 0,41

Lisätiedot

Fy06 Koe 20.5.2014 Kuopion Lyseon lukio (KK) 1/6

Fy06 Koe 20.5.2014 Kuopion Lyseon lukio (KK) 1/6 Fy06 Ke 0.5.04 Kupin Lysen luki (KK) /6 6p/tehtävä.. Kaksi varattua palla rikkuu lankjen varassa lähellä tisiaan. Pallt vetävät tisiaan puleensa 0,66 N vimalla. Pienemmän palln varaus n kaksinkertainen

Lisätiedot

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät 11 Taso Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät tason. Olkoot nämä pisteet P, B ja C. Merkitään vaikkapa P B r ja PC s. Tällöin voidaan sanoa, että vektorit

Lisätiedot

Ongelma 1: Mistä joihinkin tehtäviin liittyvä epädeterminismi syntyy?

Ongelma 1: Mistä joihinkin tehtäviin liittyvä epädeterminismi syntyy? Ongelma : Mistä jihinkin tehtäviin liittyvä epädeterminismi syntyy? 0-0 Lasse Lensu Ongelma : Miten vidaan pelata algritmisesti? 0-0 Lasse Lensu Ongelma : Onk mahdllista pelata ptimaalisesti? 0-0 Lasse

Lisätiedot

VIRTAPIIRILASKUT II Tarkastellaan sinimuotoista vaihtojännitettä ja vaihtovirtaa;

VIRTAPIIRILASKUT II Tarkastellaan sinimuotoista vaihtojännitettä ja vaihtovirtaa; VITAPIIIASKUT II Tarkastellaan sinimutista vaihtjännitettä ja vaihtvirtaa; u sin π ft ja i sin π ft sekä vaihtvirtapiiriä, jssa n sarjaan kytkettyinä vastus, käämi ja kndensaattri (-piiri) ulkisen vastuksen

Lisätiedot

MoViE- sovelluksen käyttöohjeet

MoViE- sovelluksen käyttöohjeet MViE- svelluksen käyttöhjeet Yleistä tieta: MViE- palvelua vidaan käyttää mbiililaitteilla jk käyttämällä laitteessa levaa selainhjelmaa tai lataamalla laitteeseen ma MViE- svellus Svelluksen kautta vidaan

Lisätiedot

12. ARKISIA SOVELLUKSIA

12. ARKISIA SOVELLUKSIA MAA. Arkiia ovellukia. ARKISIA SOVELLUKSIA Oleeaan, eä kappale liikkuu ykiuloeia raaa, eimerkiki -akelia pikin. Kappaleen nopeuden vekoriluonne riiää oaa vauhdin eumerkin avulla huomioon, ja on ehkä arkoiukenmukaiina

Lisätiedot

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste Suora 1/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Suora geometrisena peruskäsitteenä Pisteen ohella suora on geometrinen peruskäsite, jota varsinaisesti ei määritellä. Alkeisgeometriassa

Lisätiedot

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R},

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R}, Määritelmä Suora Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko { p + t v t R}, missä p, v R n ja v 0. Tässä p on suoran jonkin pisteen paikkavektori ja v on suoran suuntavektori. v p LM1,

Lisätiedot

HENKKARIKLUBI. Mepco HRM uudet ominaisuudet vinkkejä eri osa-alueisiin 1 (16) 28.5.2015. Lomakkeen kansiorakenne

HENKKARIKLUBI. Mepco HRM uudet ominaisuudet vinkkejä eri osa-alueisiin 1 (16) 28.5.2015. Lomakkeen kansiorakenne 1 (16) Mepc HRM uudet minaisuudet vinkkejä eri sa-alueisiin Khta: Kuvaus: Lmakkeen kansirakenne Lmakkeen kansirakenne Lmakkeet vidaan kategrisida tiettyyn lmakekategriaan. Tämä helpttaa käyttäjiä hakemaan

Lisätiedot

Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat:

Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat: Mat-.090 Sovellettu todeäköiyylaku A 0. harjoituket Mat-.09 Sovellettu todeäköiyylaku 0. harjoituket / Ratkaiut Aiheet: Avaiaat: Tilatolliet tetit Aritmeettie kekiarvo, Beroulli-jakauma, F-jakauma, F-teti,

Lisätiedot

KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoski, professori. Lappeenrannan teknillinen yliopisto

KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoski, professori. Lappeenrannan teknillinen yliopisto KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoki, proeori Lappeenrannan teknillinen yliopito Näin uuden vuoden alkaea ueat meitä miettivät ijoitualkkuna kootumuta. Yki kekeiitä kyymykitä on päätö eri

Lisätiedot

1 LAMMIMUURIN RAKENNE JA OMINAISUUDET 2 2 KÄYTTÖKOHTEET 2 3 MUURITYYPIT 2 4 LASKENTAOTAKSUMAT 3 4.1 Materiaalien ominaisuudet 3 4.2 Maanpaine 3 4.

1 LAMMIMUURIN RAKENNE JA OMINAISUUDET 2 2 KÄYTTÖKOHTEET 2 3 MUURITYYPIT 2 4 LASKENTAOTAKSUMAT 3 4.1 Materiaalien ominaisuudet 3 4.2 Maanpaine 3 4. 1 LAIUURIN RAKENNE JA OINAISUUDET KÄYTTÖKOHTEET 3 UURITYYPIT 4 LASKENTAOTAKSUAT 3 4.1 ateriaalien ominaiuudet 3 4. aanpaine 3 4.3 uurin ketävyy npaineelle 4 4.4 Kaatumi- ja liukumivarmuu 5 4.4.1. Kaatumivarmuu

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 8..05 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3 Suorat ja tasot Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3.1 Suora Havaitsimme skalaarikertolaskun tulkinnan yhteydessä, että jos on mikä tahansa nollasta

Lisätiedot

RATKAISUT: 17. Tasavirtapiirit

RATKAISUT: 17. Tasavirtapiirit Phyica 9. paino 1(6) ATKAST 17. Taavirtapiirit ATKAST: 17. Taavirtapiirit 17.1 a) Napajännite on laitteen navoita mitattu jännite. b) Lähdejännite on kuormittamattoman pariton napajännite. c) Jännitehäviö

Lisätiedot

12. laskuharjoituskierros, vko 16, ratkaisut

12. laskuharjoituskierros, vko 16, ratkaisut 1. lakuharjoitukierro, vko 16, ratkaiut D1. Muuttujien x ja Y havaitut arvot ovat: x 1 3 4 6 8 9 11 14 Y 1 4 4 5 7 8 9 a) Määrää regreiomallin Y i = α +βx i +ǫ i regreiokertoimien PNS-etimaatit ja piirrä

Lisätiedot

Fysiikan labra Powerlandissa

Fysiikan labra Powerlandissa Fysiikan labra Pwerlandissa Bumper Cars Bumper Cars n suuri autrata jka spii niin vanhille kuin nurillekin kuljettajille. Autt vat varustetut turvavöin ja autja vi ajaa yksin tai pareittain. Lievemmät

Lisätiedot

Lisää unkarilaisia matematiikan tehtäviä koululaisille

Lisää unkarilaisia matematiikan tehtäviä koululaisille Lisää unkarilaisia matematiikan tehtäviä kululaisille Käännös: Meri Kähkönen. Gemetria. Paperista leikatun klmin sivujen pituudet vat 8 cm, 0 cm ja cm. Klmi taitetaan pitkin yhden kulman läpi kulkevaa

Lisätiedot

YKSIULOTTEINEN JÄNNITYSTILA

YKSIULOTTEINEN JÄNNITYSTILA YKSIULOTTEINEN JÄNNITYSTILA Normaalijäits N N Leikkausjäits Q Q KAKSIULOTTEINEN JÄNNITYSTILA Lerakee STRE SS CONTOURS OF SE 4.4483 8.8966 4.345 65.793 7.4 48.69 9.38 33.586 373.35 Ma 45.4 At Node 438 Mi.9

Lisätiedot

Ajankohtaiskatsaus, Peltotuki 2016.1

Ajankohtaiskatsaus, Peltotuki 2016.1 Ajankhtaiskatsaus, Pelttuki 2016.1 Sftsal Oy huhtikuu 2016 Seuraa Pelttuen alkuruudun Tiedtteet-timinta ja sivustn www.sftsal.fi ajankhtaistiedtteita! Lyhyesti Muista palauttaa 5 vuden viljelysuunnitelma

Lisätiedot

Intensiteettitaso ja Doplerin ilmiö

Intensiteettitaso ja Doplerin ilmiö Inteniteettitao ja Doplerin ilmiö Tehtävä Erkki työkentelee airaalaa. Sairaalalta 6,0 km päää on tapahtunut tieliikenneonnettomuu ja onnettomuupaikalta lähteneen ambulanin ireenin ääni kuuluu Erkille 60,0

Lisätiedot

Physica 9 1. painos 1(8) 20. Varattu hiukkanen sähkö- ja magneettikentässä

Physica 9 1. painos 1(8) 20. Varattu hiukkanen sähkö- ja magneettikentässä Phyica 9 aino (8) 0 Varattu hiukkann ähkö- ja agnttikntää : 0 Varattu hiukkann ähkö- ja agnttikntää 0 a) Sähköknttä aikuttaa arattuun hiukkan oialla F = QE Poitiiiti aratull hiukkall oian uunta on ähkökntän

Lisätiedot

Lineaarisista taikaneliöistä ja niiden konstruoinnista

Lineaarisista taikaneliöistä ja niiden konstruoinnista TAMPEREEN YLIOPISTO Pr gradu -tutkielma Emilia Kaikknen Lineaarisista taikaneliöistä ja niiden knstruinnista Infrmaatitieteiden yksikkö Matematiikan maisteripinnt Kesäkuu Tampereen ylipist Infrmaatitieteiden

Lisätiedot

TALOUSARVION 2015 MUUTOS / HUOVILAN KOULUN ILTAPÄIVÄTOIMINTA / OPETUS- JA VARHAISKASVATUSPALVELUT

TALOUSARVION 2015 MUUTOS / HUOVILAN KOULUN ILTAPÄIVÄTOIMINTA / OPETUS- JA VARHAISKASVATUSPALVELUT Opetus- ja 112 26.08.2015 varhaiskasvatuslautakunta Kunnanhallitus 303 14.09.2015 Valtuusto 64 28.09.2015 TALOUSARVION 2015 MUUTOS / HUOVILAN KOULUN ILTAPÄIVÄTOIMINTA / OPETUS- JA VARHAISKASVATUSPALVELUT

Lisätiedot

Lukion. Calculus. Analyyttinen geometria. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Analyyttinen geometria. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA Analttinen geometria Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Analttinen geometria (MAA) Pikatesti ja Kertauskokeet Tehtävien

Lisätiedot

RFID-tunnistus rengastuotannossa pilotin kokemuksia

RFID-tunnistus rengastuotannossa pilotin kokemuksia Sivu 1/5 Vastaanttajat EGLO-raprtit, LVM Versit Nr Pvm Muuts Laatija 1.0 23.5.2006 Julkinen versi Antti Virkkunen Raprtti RFID-tunnistus rengastutannssa piltin kkemuksia Yhteyshenkilöt: Antti Virkkunen

Lisätiedot

Sijoitusmenetelmä. 1.2. Yhtälöpari

Sijoitusmenetelmä. 1.2. Yhtälöpari MAB Yhtälöpari Yhtälöpari Yhtälöparilla tarkoitetaan tilannetta, missä on kaksi htälöä, joiden tät toteutua htä aikaa Tämä on sama asia kuin että kstään, missä pisteessä tai missä pisteissä htälöitä vastaavat

Lisätiedot

Lineaarialgebra MATH.1040 / trigonometriaa

Lineaarialgebra MATH.1040 / trigonometriaa Lineaarialgebra MATH.1040 / trigonometriaa 1 Aste, 1 (engl. degree) Täsi kierros on 360 (360 astetta). Yksi aste jaetaan 60 kulmaminuuttiin (1 = 60 ) ja ksi kulmaminuutti jaetaan 60 kulmasekuntiin (1 =

Lisätiedot

RATKAISUT: 7. Gravitaatiovoima ja heittoliike

RATKAISUT: 7. Gravitaatiovoima ja heittoliike Phyica 9. paino () 7. Gaitaatiooia ja heittoliike : 7. Gaitaatiooia ja heittoliike 7. a) Gaitaatiooia aikuttaa kaikkien kappaleiden älillä. Gaitaatiooian uuuu iippuu kappaleiden aoita ja niiden älietä

Lisätiedot

NAANTALI KARJALUOTO - PIRTTILUOTO ASEMAKAAVALUONNOS 3.10.06

NAANTALI KARJALUOTO - PIRTTILUOTO ASEMAKAAVALUONNOS 3.10.06 NAANTALI KARJALUOTO - PIRTTILUOTO ASEMAKAAVALUONNOS 3.0.06 Siniellä värillä on eitetty rakennuala/rakennualan oa, joka ijaitee kahden metrin korkeukäyrän alapuolella. Silta Epoon Suviaaritoa. Yleitä Aemakaavaonnoken

Lisätiedot

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi Mallivastaukset - Harjoituskoe F F1 a) (a + b) 2 (a b) 2 a 2 + 2ab + b 2 (a 2 2ab + b 2 ) a 2 + 2ab + b 2 a 2 + 2ab b 2 4ab b) tan x 3 x π 3 + nπ, n Z c) f(x) x2 x + 1 f (x) 2x (x + 1) x2 1 (x + 1) 2 2x2

Lisätiedot

Kansainväliset matematiikkaolympialaiset 2008

Kansainväliset matematiikkaolympialaiset 2008 Kansainväliset matematiikkaolympialaiset 2008 Tehtävät ja ratkaisuhahmotelmat 1. Teräväkulmaisen kolmion ABC korkeusjanojen leikkauspiste on H. Pisteen H kautta kulkeva ympyrä, jonka keskipiste on sivun

Lisätiedot

DNA OY:N LAUSUNTO KUSTANNUSSUUNTAUTUNEEN HINNAN MÄÄRITTELYYN SOVELLETTAVASTA MENETELMÄSTÄ SUOMEN TELEVISIOLÄHETYSPALVELUIDEN MARKKINALLA

DNA OY:N LAUSUNTO KUSTANNUSSUUNTAUTUNEEN HINNAN MÄÄRITTELYYN SOVELLETTAVASTA MENETELMÄSTÄ SUOMEN TELEVISIOLÄHETYSPALVELUIDEN MARKKINALLA 1 (6) Vivi 1110/230/2013 DNA OY:N LAUSUNTO KUSTANNUSSUUNTAUTUNEEN HINNAN MÄÄRITTELYYN SOVELLETTAVASTA MENETELMÄSTÄ SUOMEN TELEVISIOLÄHETYSPALVELUIDEN MARKKINALLA [Liikesalaisuudet merkitty hakasulkein]

Lisätiedot

Ristitulo ja skalaarikolmitulo

Ristitulo ja skalaarikolmitulo Ristitulo j sklrikolmitulo Opetussuunnitelmn 00 mukinen kurssi Vektorit (MAA) sisältää vektoreiden lskutoimituksist keskeisenä ineksen yhteenlskun, vähennyslskun, vektorin kertomisen luvull j vektoreiden

Lisätiedot

3 Lämpölaajaneminen ja tilanyhtälöt

3 Lämpölaajaneminen ja tilanyhtälöt Läölaajaneinen ja tilanyhtälöt Läölaajeneinen POHDI J ETSI - a) Kaksisetalliläöittarissa n liitetty yhteen kaksi eri ateriaalista valistettua etalliliuskaa, jtka läölaajenevat eri tavalla Kska tinen laajenee

Lisätiedot

Automaatiojärjestelmät 18.3.2010 Timo Heikkinen

Automaatiojärjestelmät 18.3.2010 Timo Heikkinen Autmaatijärjestelmät 18.3.2010 Tim Heikkinen AUT8SN Malliratkaisu 1 Kerr muutamalla lauseella termin tarkittamasta asiasta! (2 p / khta, yhteensä 6 p) 1.1 Hajautus (mitä tarkittaa, edut, haitat) Hajautuksella

Lisätiedot

MAB2. Kertaustehtävien ratkaisut. 120. a) α = 15 16 1. β = 95 58 45. 95 o 58. b) α = 11,9872 0,9872 = 0,9872 60 = 59,232 0,232 = 0,232 60 = 13,92

MAB2. Kertaustehtävien ratkaisut. 120. a) α = 15 16 1. β = 95 58 45. 95 o 58. b) α = 11,9872 0,9872 = 0,9872 60 = 59,232 0,232 = 0,232 60 = 13,92 MAB Kertaustehtävien ratkaisut 10. a) α = 15 16 1 16 1 15 60 β = 95 58 45 600 15,669 95 58 45 95,979 60 600 b) α = 11,987 0,987 = 0,987 60 = 59, 0, = 0, 60 = 1,9 α = 11 59 1,9 = 11 59 14 β = 95,4998 0,

Lisätiedot

MAA 9. HARJOITUSTEHTÄVIÄ

MAA 9. HARJOITUSTEHTÄVIÄ MAA 9. HARJOITUSTEHTÄVIÄ 1. Surakulmaisessa klmissa n 7. kulma ja tämän vastainen kateetti n 5 mm. Laske hyptenuusa ja viereinen kateetti.. Surakulmaisessa klmissa n 74 kulma ja tämän viereinen kateetti

Lisätiedot

Trigonometriset funktiot 1/7 Sisältö ESITIEDOT: reaalifunktiot

Trigonometriset funktiot 1/7 Sisältö ESITIEDOT: reaalifunktiot Trigonometriset funktiot 1/7 Sisältö Trigonometriset funktiot suorakulmaisessa kolmiossa a c b Olkoon suorakulmaisen kolmion terävä kulma, a tämän vastainen kateetti, b viereinen kateetti ja c kolmion

Lisätiedot

KOSMOLOGISIA HAVAINTOJA

KOSMOLOGISIA HAVAINTOJA KOSMOLOGISIA HAVAINTOJA 1) Olbersin paradksi Miksi taivas n öisin musta? Js tähdet lisivat jakautuneet keskimäärin tasaisesti äärettömään ja muuttumattmaan avaruuteen, tulisi taivaan listaa yhtä kirkkaana

Lisätiedot

normaali- ja leikkaus jännitysten laskemiseen pisteessä Määritetään ne tasot, joista suurimmat normaali- ja leikkausjännitykset löytyvät

normaali- ja leikkaus jännitysten laskemiseen pisteessä Määritetään ne tasot, joista suurimmat normaali- ja leikkausjännitykset löytyvät TAVOITTEET Johdetaan htälöt, joilla muutetaan jännitskomponentit koordinaatistosta toiseen Kätetään muunnoshtälöitä suurimpien normaali- ja leikkaus jännitsten laskemiseen pisteessä Määritetään ne tasot,

Lisätiedot

i lc 12. Ö/ LS K KY: n opiskelijakysely 2014 (toukokuu) 1. O pintojen ohjaus 4,0 3,8 4,0 1 ( 5 ) L i e d o n a mma t ti - ja aiku isopisto

i lc 12. Ö/ LS K KY: n opiskelijakysely 2014 (toukokuu) 1. O pintojen ohjaus 4,0 3,8 4,0 1 ( 5 ) L i e d o n a mma t ti - ja aiku isopisto i lc 12. Ö/ 1 ( 5 ) LS K KY: n opiskelijakysely 2014 (toukokuu) 1. O pintojen ohjaus 1=Täysi n en mi eltä. 2=Jokseenki n er i m ieltä, 3= En osaa sanoa 4= Jokseenki n sa m a a mieltä, 5= Täysin sa ma a

Lisätiedot

Sisäkorvaistutteen saaneiden lasten kuntoutuksen ja tulkkauspalvelujen tarkoituksenmukaisuus ja tulevaisuuden tarve. 2. vaiheen haastattelututkimus.

Sisäkorvaistutteen saaneiden lasten kuntoutuksen ja tulkkauspalvelujen tarkoituksenmukaisuus ja tulevaisuuden tarve. 2. vaiheen haastattelututkimus. Sisäkrvaistutteen saaneiden lasten kuntutuksen ja tulkkauspalvelujen tarkituksenmukaisuus ja tulevaisuuden tarve. 2. vaiheen haastattelututkimus. ---------------------------------------------------------------------

Lisätiedot

7. Pyörivät sähkökoneet

7. Pyörivät sähkökoneet Pyörivät ähkökoneet 7-1 7. Pyörivät ähkökoneet Mekaanien energian muuntamieen ähköenergiaki ekä ähköenergian muuntamieen takaiin mekaanieki energiaki käytetään ähkökoneita. Koneita, jotka muuntavat mekaanien

Lisätiedot

1. Turvaohje. 2. Tuotteen Ominaisuudet DIGISCALE 1000

1. Turvaohje. 2. Tuotteen Ominaisuudet DIGISCALE 1000 DIGISCALE 1000 EN: hje Sisällysluettel 1. Turvahje 2. Tutteen Ominaisuudet 3. Tekniset tiedt 4. Sähkökaavi 5. hje 6. Näytön 7. Vianmääritys 8. Kauksäätimen hje 9. Parametrin asetus 10. Kalibrinti 1. Turvahje

Lisätiedot

Sivistyslautakunta 15 27.03.2014 Sivistyslautakunta 44 21.10.2014 Sivistyslautakunta 52 02.12.2014

Sivistyslautakunta 15 27.03.2014 Sivistyslautakunta 44 21.10.2014 Sivistyslautakunta 52 02.12.2014 Sivistyslautakunta 15 27.03.2014 Sivistyslautakunta 44 21.10.2014 Sivistyslautakunta 52 02.12.2014 OSIKONMÄEN KOULUN LAKKAUTTAMINEN SIVLTK 27.03.2014 15 Kunnanvaltuuston on hyväksynyt 21.3.2011 11 kouluverkkosuunnitelman

Lisätiedot

3. Kolmiulotteisten kohteiden esitys ja mallintaminen: jatkoa

3. Kolmiulotteisten kohteiden esitys ja mallintaminen: jatkoa . Klmiultteisten khteiden esitys ja mallintaminen: jatka Mnikulmiverkkn nähden ilmeisiä etuja vat: eksakti analyyttinen esitysmut klmiultteinen mudn mukkaaminen mahdllista vähemmän muistitilaa vaativa

Lisätiedot

KEURUUN KAUPUNKI PÖYTÄKIRJA 9/2015 1(9)

KEURUUN KAUPUNKI PÖYTÄKIRJA 9/2015 1(9) KEURUUN KAUPUNKI PÖYTÄKIRJA 9/2015 1(9) Tarkastuslautakunta 19.11.2015 AIKA 19.11.2015 klo 15:00-18:00 PAIKKA Kehitysvammaisten asumisyksikkö Runokulma klo 15, ja sen jälkeen kau pun gin ta lo, kokoushuone

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

Aineen häviämättömyyden periaate Jos lähtöaineissa on tietty määrä joitakin atomeja, reaktiotuotteissa täytyy olla sama määrä näitä atomeja.

Aineen häviämättömyyden periaate Jos lähtöaineissa on tietty määrä joitakin atomeja, reaktiotuotteissa täytyy olla sama määrä näitä atomeja. KE3 Pähkinänkuressa Olmudt reaktiyhtälössä 1) Ilmassa esiintyvät alkuaineet ja yhdisteet kaasuja (g). 2) Metallit, lukuun ttamatta elhpeaa, vat huneen lämmössä kiinteitä (s). 3) Iniyhdisteet vat huneen

Lisätiedot

Ylälinjasi johtaja on:

Ylälinjasi johtaja on: Tärkeää tieta sinulle jka let PM:n Teampartner Me pyrimme ylläpitämään krkeaa palvelutasa, jtta vimme pitää tästä kiinni n tärkeää, että hyödynnät seuraavaa infrmatita. Lue tämä tarkasti ja käy nämä asiat

Lisätiedot

S-55.1220 Piirianalyysi 2 Tentti 4.1.2007

S-55.1220 Piirianalyysi 2 Tentti 4.1.2007 S-55.2 Piirianalyyi 2 Tentti 4..07. Piiriä yöttää kaki lähdettä, joilla on eri taajuudet. Kuinka uuri on lämmöki muuttuva teho P? Piiri on jatkuvuutilaa. J 2 00 Ω 5µH 0 pf 0/0 V J 2 00/0 ma f MHz f 2 2MHz.

Lisätiedot

HYVINVOINTI- JA TERVEYSTOIMEN TALOUSARVION TOTEUTUMINEN AJALLA 1.1.-30.9.2011 SEKÄ TALOUSARVION TARKISTUSESITYS

HYVINVOINTI- JA TERVEYSTOIMEN TALOUSARVION TOTEUTUMINEN AJALLA 1.1.-30.9.2011 SEKÄ TALOUSARVION TARKISTUSESITYS Hyvinvointi- ja terveyslautakunta 102 29.09.2011 HYVINVOINTI- JA TERVEYSTOIMEN TALOUSARVION TOTEUTUMINEN AJALLA 1.1.-30.9.2011 SEKÄ TALOUSARVION TARKISTUSESITYS Hyte 102 Hyvinvointi- ja terveystoimen talousarvion

Lisätiedot

Sähkömagneettinen induktio

Sähkömagneettinen induktio ähkömgneettinen inuktio Kun johinsilmukn läpi menevä mgneettikentän vuo muuttuu, silmukkn inusoituu jännite j silmukss lk kulke sähkövit. Mgneettikentässä liikkuvn johtimeen syntyy myös jännite. Näitä

Lisätiedot

Hätäkeskuslaitoksen ja Lohjan kaupungin välisen määräaikaisen vuokrasopimuksen päättäminen

Hätäkeskuslaitoksen ja Lohjan kaupungin välisen määräaikaisen vuokrasopimuksen päättäminen Kaupunginhallitus 139 31.03.2014 Kaupunginhallitus 271 16.06.2014 Kaupunginhallitus 511 15.12.2014 Hätäkeskuslaitoksen ja Lohjan kaupungin välisen määräaikaisen vuokrasopimuksen päättäminen 877/10.03.02/2013

Lisätiedot

PD-säädin PID PID-säädin

PD-säädin PID PID-säädin -äädin - äätö on ykinkertainen äätömuoto, jota voidaan kutua myö uhteuttavaki äädöki. Sinä lähtöignaali on uoraa uhteea tuloignaalin. -äätimen uhdealue kertoo kuinka paljon mittauuure aa muuttua ennen

Lisätiedot

... 23 1.4.3. Eläkelaitoksessa vakuutettujen työnansioiden summa S

... 23 1.4.3. Eläkelaitoksessa vakuutettujen työnansioiden summa S Eläketurakeku (89) Suunnitteluoato 2..2008 VASTUUNJAKOPERUSTEET Soiaali- ja tereminiteriö on ahitanut atuunjakoperuteet 20..2008. 5..2009 korjatut kirjoituirheet iuilla 62 ja 63 on päiitett etk.fi-iulle

Lisätiedot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan

Lisätiedot

Toimitsijaohjeet. Kilpailusäännöt 34 Toimitsijat. Kilpailusäännöt 35 Pelaajaluettelo. Kilpailusäännöt 36 Ottelupöytäkirja

Toimitsijaohjeet. Kilpailusäännöt 34 Toimitsijat. Kilpailusäännöt 35 Pelaajaluettelo. Kilpailusäännöt 36 Ottelupöytäkirja Timitsijahjeet Kilpailusäännöt 34 Timitsijat Vastuujukkueen n nimettävä kuhunkin tteluun pätevät, 15 vutta täyttäneet timitsijat, jista vähintään yksi n käynyt liitn timitsijakulutuksen. Liitn timitsijakulutuksen

Lisätiedot

Sosiaalijaosto päättää, miten lain kohta tulkitaan sosiaalipäivystyksen osalta Merikratoksen kanssa.

Sosiaalijaosto päättää, miten lain kohta tulkitaan sosiaalipäivystyksen osalta Merikratoksen kanssa. Sosiaalijaosto 22 23.04.2010 Sosiaalijaosto 36 31.05.2010 Sosiaalijaosto 52 18.06.2010 Sosiaalijaosto 58 11.08.2010 Sosiaalijaosto 67 08.09.2010 Sosiaalijaosto 76 17.09.2010 Lastensuojelun sijoituspäätökset

Lisätiedot

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2. MAA4 Koe 5.5.01 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse

Lisätiedot

Rengashinnasto 1.3.1 gg7

Rengashinnasto 1.3.1 gg7 Rengashinnast.3. gg7 K Y TRAKTORIN:'renkaatlevikepyörätalkuperäisetvanleetrenkaineenriviviljelypyörät.piikkipyörät.läänastaketiut.hiaamt R Nkia AS Pinier Tractr AS isl i ku ds reng as R Super Tractin isti

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2007

MAOL-Pisteitysohjeet Fysiikka kevät 2007 MAOL-Pisteityshjeet Fysiikka kevät 007 Tyypillisten virheiden aiheuttaia pisteenetyksiä (6 pisteen skaalassa): - pieni laskuvirhe -/3 p - laskuvirhe, epäielekäs tuls, vähintään - - vastauksessa yksi erkitsevä

Lisätiedot

Maahantuojat: omavalvontasuunnitelman ja sen toteutumisen tarkastuslomakkeen käyttöohje

Maahantuojat: omavalvontasuunnitelman ja sen toteutumisen tarkastuslomakkeen käyttöohje Esittelijä Nurttila Annika Sivu/sivut 1 / 6 Maahantujat: mavalvntasuunnitelman ja sen tteutumisen tarkastuslmakkeen käyttöhje Tarkastuksen tavitteena n selvittää, nk maahantujalla mavalvntasuunnitelmassaan

Lisätiedot

Suomen vetovoimaisin opiskelijakunta

Suomen vetovoimaisin opiskelijakunta Sumen vetvimaisin piskelijakunta Strategia 2013-2015 1 Sisällys 1. JOHDANTO... 3 2. MISSIO JA VISIO... 3 2.1.Missi... 3 2.2.Visi... 4 3. PAINOPISTEET... 4 3.1. Erinmaiset palvelut... 4 3.2. Osaavat ja

Lisätiedot

Johtokunta esittää etelän lohkon valintakokeiden järjestämistä erillisinä kokeina ja piirimestaruuskokeiden siirtämistä tammi helmikuulle.

Johtokunta esittää etelän lohkon valintakokeiden järjestämistä erillisinä kokeina ja piirimestaruuskokeiden siirtämistä tammi helmikuulle. Lunais-Sumen Ajkirayhdistys ry 1 VUOSIKOKOUSKUTSU Lunais- Sumen Ajkirayhdistyksen sääntömääräinen vusikkus pidetään keskiviikkna 12.3.2014 kl 18.00 Pöytyällä, Riihiksken mets.yhdistyksen Riistatuvalla

Lisätiedot

Vapaaehtoiset palkattomat virkavapaat ja työlomat (5+2)

Vapaaehtoiset palkattomat virkavapaat ja työlomat (5+2) Yhteistyöryhmä 1 16.01.2013 Kunnanhallitus 71 04.02.2013 Yhteistyöryhmä 14 24.10.2013 Kunnanhallitus 289 02.12.2013 Vapaaehtoiset palkattomat virkavapaat ja työlomat (5+2) 26/01.01.03/2013 Yhteistyöryhmä

Lisätiedot

RATKAISUT: 4. Mekaaninen energia

RATKAISUT: 4. Mekaaninen energia hyica 9 1 pain 1(7) 4 Meaaninen energia : 4 Meaaninen energia 41 a) tentiaalienergia n energian laji, jta appaleella n aeana anita tentiaalienergia vi lla eierii gravitaativurvaiutuen tai juen ptentiaalienergiaa

Lisätiedot

M A A N V U O K R A S O P I M U S YRI"Il 'ti IYII MI Vl)1

M A A N V U O K R A S O P I M U S YRIIl 'ti IYII MI Vl)1 M A A N V U O K R A S O P I M U S YRI"Il 'ti IYII MI Vl)1 ] JORD A;ATO Vuokramuut0a; Y-tunnus: 01 Kakkiløn kunta Vuokralainen : Jari-Malli Lanksila Anolamic. 310 1.2 Vrarkrn-alxe 199iiriala on c.cilctlv

Lisätiedot

Henkilöstöpalveluiden tiedote 5/2011

Henkilöstöpalveluiden tiedote 5/2011 Lutu 29.12.2011 13:26:00 29.12.2010 Henkilöstöpalveluiden tiedte 5/2011 KEVÄÄN REKRYTOINTIEN AIKATAULUT Kevään 2012 keskitetyt rekrytinnit tteutetaan seuraavan aikataulun mukaan: Tammikuussa täyttölupa-anmusten

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioilastutkintolautakunta S t u d e n t e a m e n s n ä m n d e n MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ 904 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten iiteiden sisältöjen isteitysten luonnehdinta ei

Lisätiedot

Sosiaali- ja terveysltk 201 09.12.2014 Sosiaali- ja terveysltk 22 26.01.2016

Sosiaali- ja terveysltk 201 09.12.2014 Sosiaali- ja terveysltk 22 26.01.2016 Sosiaali- ja terveysltk 201 09.12.2014 Sosiaali- ja terveysltk 22 26.01.2016 TILOJEN VUOKRAAMINEN TORNION SAIRASKOTISÄÄTIÖLTÄ PÄIVÄKESKUSTOIMINTAA VARTEN/TILOJEN VUOKRAAMINEN VUODELLE 2014/TILOJEN VUOKRAAMINEN

Lisätiedot

MULTI V -ilmastointijärjestelmä

MULTI V -ilmastointijärjestelmä MULTI V ilmastintijärjestelmä www.lgeaircn.cm H i s t r i a l y h y e s t i Perustaminen 1947 LG Grup perustetaan 1958 LG Electrnics Inc. perustetaan 196 Digital Appliance Cmpany perustetaan Kasvu 1968

Lisätiedot

Yleiset vedonlyöntisäännöt

Yleiset vedonlyöntisäännöt Yleiset vednlyöntisäännöt Kaikki vedt jtka hyväksytään vednlyöntiyhtiö Guts timesta, perustuvat seuraaviin sääntöihin. Guts pidättää ikeuden vetjen mitätöimiseen ääritapauksessa. Sellaisia visivat lla

Lisätiedot

Palkkataso ja kokonaiskysyntä työttömyyden selittäjinä Suomessa 1963-1996

Palkkataso ja kokonaiskysyntä työttömyyden selittäjinä Suomessa 1963-1996 Kansantaludellinen aikakauskirja - 93. vsk. - 1/1997 Palkkatas ja kknaiskysyntä työttömyyden selittäjinä Sumessa 1963-1996 MKA LNDEN VTT, vs. prfessri Helsingin ylipist, kansantalustieteen laits 1 Jhdant

Lisätiedot

(Liikunta- ja nuorisopäällikkö) Esitän, että uimahalli pidetään yleisölle auki 35 h viikossa. Ma-ke 13.00-20.00, to 06.00-14.00 ja su 12.00-18.00.

(Liikunta- ja nuorisopäällikkö) Esitän, että uimahalli pidetään yleisölle auki 35 h viikossa. Ma-ke 13.00-20.00, to 06.00-14.00 ja su 12.00-18.00. Sivistyslautakunta 85 21.10.2014 Sivistyslautakunta 90 12.11.2014 Sivistyslautakunta 103 10.12.2014 Kunnanhallitus 41 16.03.2015 Valtuusto 12 30.03.2015 Uimahallin aukioloajat Sivistyslautakunta 21.10.2014

Lisätiedot

- ONCELMAT JA PARANNUSEHDOTUKSET

- ONCELMAT JA PARANNUSEHDOTUKSET RATTJUOPUMUKSEN ALKOHOLMAARTYKSET SUOMESSA - ONCELMAT JA PARANNUSEHDOTUKSET P,]T.]R T]RKSSON Alkhlihumala heikentää ajtaita j a aiheuttaa nnettmuuksia. Humala-asteen nustessa riskit kasvavat. Aikaisemmin

Lisätiedot

3 Raja-arvo ja jatkuvuus

3 Raja-arvo ja jatkuvuus 3 Raja-arvo ja jatkuvuus 3. Raja-arvon käsite Raja-arvo kuvaa funktion kättätmistä jonkin lähtöarvon läheisdessä. Raja-arvoa tarvitaan toisinaan siksi, että funktion arvoa ei voida laskea kseisellä lähtöarvolla

Lisätiedot

Taso. Hannu Lehto. Lahden Lyseon lukio

Taso. Hannu Lehto. Lahden Lyseon lukio Taso Hannu Lehto Lahden Lyseon lukio Taso avaruudessa Piste P 0 ja tason normaalivektori n määräävät tason. n=a i+b j+c k P 0 (x 0,y 0,z 0 ) Hannu Lehto 17. syyskuuta 2010 Lahden Lyseon lukio 2 / 7 Taso

Lisätiedot

Kelan järjestelmä muodostaa erän apteekin yhden vuorokauden aikana lähettämistä ostoista.

Kelan järjestelmä muodostaa erän apteekin yhden vuorokauden aikana lähettämistä ostoista. 11 Tilitysmenettely Kelalta tai työpaikkakassalta tilitettävä kustannus syntyy sillin, kun lääkkeet luvutetaan asiakkaalle sairausvakuutuslain mukaisella krvauksella vähennettyyn hintaan. Kun lääkkeet

Lisätiedot

METSÄSTYSPUHELIMET. www.zodiacfinland.fi

METSÄSTYSPUHELIMET. www.zodiacfinland.fi METSÄSTYSPUHELIMET www.zodiacfinland.fi Z O D I A C T E A M P R O WAT E R P R O O F ZODIAC Zodiac Team Pro Waterproof radiopuhelin on valintai, kun toiminnot ja uoritukyky ratkaievat. TAKUU 3 VUOTTA Open

Lisätiedot

Excel 2013:n käyttö kirjallisen raportin, esim. työselostuksen tekemisessä

Excel 2013:n käyttö kirjallisen raportin, esim. työselostuksen tekemisessä Excel 2013:n käyttö kirjallisen raprtin, esim. työselstuksen tekemisessä Sisällysluettel EXCEL-TAULUKKOLASKENTAOHJELMAN PERUSTEET... 2 1. PERUSASIOITA... 2 2. TEKSTIN KIRJOITTAMINEN TAULUKKOON... 3 3.

Lisätiedot

27. 10. joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja.

27. 10. joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja. ÄÙ ÓÒÑ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒÔ ÖÙ Ö Tehtäviä on kahdella sivulla; kuusi ensimmäistä tehtävää on monivalintatehtäviä, joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja. 1. Hiiri juoksee tasaisella

Lisätiedot

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Harjoituksen 1 ratkaisuehdotukset

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Harjoituksen 1 ratkaisuehdotukset SMG-4200 Sähkömagneettiten järjetelmien lämmöniirto Harjoituken 1 ratkaiuehdotuket Vata 1800-luvun puoliväliä ymmärrettiin että lämpöenergia on atomien ja molekyylien atunnaieen liikkeeeen värähtelyyn

Lisätiedot

Valmistelija hallintopäällikkö Marja-Leena Larsson:

Valmistelija hallintopäällikkö Marja-Leena Larsson: Kaupunginhallitus 251 05.10.2015 Kaupunginhallitus 291 09.11.2015 Kaupunginhallitus 305 23.11.2015 Kaupunginhallitus 325 18.12.2015 Kaupunginhallitus 35 01.02.2016 SOSIAALITYÖN JOHTAJAN VIRAN TÄYTTÄMINEN

Lisätiedot