Rak Rakenteiden mekaniikka C, RM C (4 ov) Tentti

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Rak-54.116 Rakenteiden mekaniikka C, RM C (4 ov) Tentti 30.8.2007"

Transkriptio

1 Rak Rakeneden mekankka, RM (4 ov) Ten.8.7 Krjoa jokaeen koepapern elvä - koko nme, puhuelunm allevvauna - oao, vuokur, enn pävämäärä ekä enävä opnojako koodeneen - opkeljanumero, mukaan luken arkukrjan - moneako keraa ole opnojakoa uoramaa - mnä vuonna ole uoranu pakolle harjouehävä 1) Suoran auvan lenen kdmenonen knemakka määrellään hälöllä u(, ) = u (, ) e + v (, ) e, N =, = u(, ) u () N = = v(, ) v() ekä on auvan kekpnnan uunanen koordnaa ja on auvan kekpnnan normaaln uunanen koordnaa. a) Men knemakan lauekea ulee modfoda, jo auva oakuaan kokoonpurumaomak normaalna uunnaa. b) Men knemakka edelleen knkerauu, jo velä a-kohdan oleuken läk auvan pokklekkauaojen oleeaan pvän aona muodonmuuokea. c) Johda aapanohälö ja reunaehdo vruaalen ön peraaeella päään jäkä knnen auvan jännreulanelle el momenlle M ja lekkauvomalle Q, kun oleeaan, eä knemakka on knkeraa muooa u(, ) = u1() ja v(, ) = v() ekä auvan jakaanunu kuorma on q (, ) ja puu. ) Määrä väänöjäh I ja lekkau- el väänökekön aema euraavlle pokklekkauklle: a) -pokklekkauknen auva, jonka molempen lappojen puu on b ja pakuu ; b / b) auva, jonka pokklekkau koouu kahdea - b pokklekkaukea, joden lappojen puu on b / ja pakuu. b b / ) Nelölaaa, jonka vuma on a, pakuu ja avuujäkk D = E / [1(1 ν )], on kahdela verekkäelä vulaan vapaa ueu kun aa oe kak vua ova vapaa. aaa lepää kmmoella alualla, joka kohdaa laaaan paneen px (, ) = kwx (, ), mä k on aluan kmmouuvako ja w laaan apuma. aaaa kuormaa aae jakaanunu kuorma q( x, ) = q. ake arvo laaan makmapumalle käämällä Krchhoffn laaamalla ja poenaalenergan mnmn peraaea ekä oveluvaa apuman refunkoa. a a 4) Rakenne, jonka pokklekkau on mprä, koouu kahdea er pakuea hä pkää auvaa, joden molempen puu on, pakumman äde on R ja ohuemman äde R /. Sauvojen he on ρ ja kmmokerron E. Heräevoma hekellä on f(). Krjoa rakeneen akaalväräheln dfferenaalhälö oleamalla, eä rakenne on molemma päään jäkä ueu ja kummankn auvan maa kekeään hä uurk pemaok auvan molempn pähn. Määrä läk rakeneen aln omnakulmaaajuu. R, / R,

2 Rak Rakeneden mekankka, RM (4ov) Kaavakokoelma enn.8.7 ää perukaavoja kaavakokoelma RM- ja RM-. Muodonmuuoke kakdmenoea apaukea ε = u u u u e, ε = e, γ = e + e Sänen vruaalnen ö δw = δ d Ulkonen vruaalnen ö δw = F δud + T δud u ST ruaalen ön peraae δw + δwu = Sauvan jännreulan: momen, normaalvoma ja lekkauvoma M ( ): σ (, ) d =, N( ): M ( ): σ (, ) d = =, ( ): = τ (, ) Q d äänöjäh umpnaelle, reällelle, monoaelle ohuelle uorakaeelle ekä k- ja monkoeloelle auvalle ψ ψ I = I p + ( z ) d z I = ( Hr + Φ d ) Gθ I M =, = Φ = Gθ, I d w d I I = + d d, I = d q Gθ Sekoraalnen koordnaa peen uheen P P =± h d = [( z z ) d ( ) dz] P P Sekoraale ulomomen I = d, I z z d Jähmomen I = z d, I = z = d, I z b = z d KÄÄNNÄ!

3 äänö- el lekkaukekö IzIz IzI Iz = + = ; + joiz = I I I I z z II IzIz I z = z = z ; joiz = I I I I z z z Sekoraalnen aanen momen väänökekön ekoraalelle koordnaalle S ˆ = ˆ d, Normeerau väänökekön ekoraalnen koordnaa Sˆ ˆ = Sekoraalnen aanen momen S () () d = Sekoraalnen väänöjäh el kärmjäh I = d Poenaalenerga Π = U + Muodonmuuoenerga 1 U = d Ulkoen kuormuken poenaal = F ud T ud S T Krchhoff-laaan muodonmuuoenerga 1 D w w w w w U = d {( ) (1 ν)[ ( ) ]} d = + x x x E D = 1(1 ν ) Sauvan muodonmuuoenerga avuu-, lekkau-, puru- ja väänöapaukea 1 G { x x } κ γ ε ϕ ζ U = EI + + E + GI dx Jouvoma ja jouen muodonmuuoenerga 1 F = kx, U = kx Ykvapaueen jou maa-eemn vapaan väräheln dfferenaalhälö, lenen rakau ja omnakulmaaajuu mx &&( ) + kx ( ) =, x( ) = 1n( ) + co( ), ää perukaavoja kaavakokoelma RM- ja RM-. = k m

4 Rak Rakeneden mekankka, RM (4 ov) Rakau enn.8.7 [ulua pe] 1. Tehävä: (a) Kokoonpurumaomuu normaaln uunnaa el -uunnaa arkoaa, eä ε =. N kun rmä on muooa u(, ) = u (, ) e + v (, ) e, ämä eho aa muodon u = ε = e = u (, ) v (, ) e + e e N v (, ) = = v() = = { v() v1() v() } = + v1() + v() + joka oeuuu, jo v1() + v() + = el v ( ) = kaklla = 1,,.... Tämä aa arkoaa ä, eä funkon v arjaa oeaan mukaan van enmmänen erm el N = : v(, ) = v () = v (). [1 p.] = (b) Joa pokklekkauao pvä aona (uorna), akeln uunaen rmäkomponenn u (, ) on rpuava anoaaan lneaare koordnaaa, koka korkeamman aeen -rppuvuu all pokklekkauaon kärmen muodonmuuokea. Funkon u arjaa oeaan mukaan van kak enmmää ermä, jollon u(, ) = u() + u1(). [1 p.] Tällön u 1 () vodaan ulka pokklekkauaon kallumkulmak (a en nk). (c) Muodonmuuoke ova n u u ε '() = e = = u1 u v ε = e = = u u v u γ = e + e = + = v'() + u1(). Sänen vruaalnen ö on muooa δw = δ d = ( σ δε + σ δε + τ δγ ) d { σδ( 1') τδ( ' 1) } = u + v + u dd = σ(, ) d δu1'() + τ(, ) d ( δv' + δu1)() d { δ δ δ } = : M u ' + Q v ' + Q u d 1 1 1

5 mä momen määrellään lauekkeella M ( ): = M1( ): = σ(, ) d ja lekkauvoma on vaaava muooa Q(): = Q(): = τ (, ) d. [1 p.] Ulkonen vruaalnen ö vodaan lauua muodoa δw = F δud + T δud = = = u q(, ) δv(, ) dd δv ( ) q(, ) dd δv F d ST mä kuormareulan on F( ): = q(, ) d. ruaalen ön peraaeen mukaan δw + δw =, joen { }. [1 p.] M δ u ' + Q δ v ' + Q δ u d + δ v F d = Oanegromalla aadaan { } [ ] [ ] M ' δu Q ' δv + Q δu d + M δu + Q δv = δv F d joka päee kaklla varaaolla δ u1 ja δ v, mä euraava aapanohälö M ' + Q = 1 ' F Q = ekä jäkä knnen (a vapaan) reunan reunaehdo δ u 1 = (a M 1 = ), kun =, δ v = (a Q = ), kun =,. [1 p.] u

6 . Tehävä: (a) -profln väänöjäh: 1 1 I b = b = b. [1/ p.] äänökekö: eeaan napape profln nurkkaan, jollon koko profllla ekoraalelle koordnaalle päee P P. =± h d = [( z z ) d ( ) dz] = P P Nän I = z d = = d = I, jollon z I I I I = + = z z z IIz Iz I I I I z = z = z z z IIz Iz ekkau- el väänökekö = jaee napapeeä profln nurkaa. [1 p.] Kärmjäh (e k): äänökekön uheen lakeu normeeraamaon ekoraalnen koordnaa ˆ = koko profllla ja vaaava ekoraalnen aanen momen S ˆ ˆ = d = ekä normeerau väänökekön Sˆ ekoraalnen koordnaa ˆ ˆ = = = koko profllla. S ekoraalnen väänöjäh el kärmjäh on I = d =. (b) Kahden -profln hdelmäprofln väänöjäh: 1 1 I b = 4( b /) b = b. [1/ p.] äänökekö: eeaan napape -proflen hdkohaan, jollon peeeen lvllä profln olla päee =. Ylemmän -profln plapalla kavaa nollaa lneaare arvoon = b /4 kun aa alemman -profln vaakalapalla kavaa nollaa lneaare arvoon = b /4. eeaan z -koordnaao peeeen akel lappojen uunae, jollon koordnaajakauma anava ekoraale ulomomen 4 b / b b b / b b 5b I = ( )( ) d= = b / b b b / b b 5b I ( ) ( ) z = z d= = = I ja jähmomen (ere I z ) [1 p.]

7 b b b b/ b b b/b b 5b I = z d= ( )( ) + ( )( ) + + = 4 z I = d= I = 5 b 4 b / b b b / b b b Iz = z d= ( ) ( ) = 8. [1 p.] Nää aadaan edelleen väänökekön koordnaa 4 4 5b 5b b 5b I ( ) ( ) zi z IzI b = + = + = IIz Iz 5b 5b b ( ) II ( ) ( ) 5 5 IzIz I Iz Iz I IIz IzI b b z = z = z : = z + = z = I I I I I I I I I [1 p.] z z z z z z Kärmjäh (e k): äänökekön uheen lakeu normeeraamaoman ekoraalen koordnaan ˆ jakauma on aaava ekoraalnen aanen momen S ˆ = ˆ d =... Normeerau väänökekön ekoraalnen koordnaa Sˆ ˆ = =... Sekoraalnen väänöjäh el kärmjäh I = d =...

8 . Tehävä: Ulkoen kuormuken q energa kuluu ekä laaan avuameen eä aluan kaaan panameen. S kokonapoenaalenergan laueke on Π = Ul + Ua + mä laaan muodonmuuoenerga on 1 Ul = d D w w w w w = {( ) (1 )[ ( ) ]} + ν d x x x [1/ p.] w = D(1 ν) ( ) d x w = D(1 ν) a Yllä on käe laaan apumalle approkmaaoa w w w w w w( x, ) = x ; =, = =, a x a x joka oeuaa poenaalenergan mnmperaaeen vaama knemaae reunaehdo wx (,) =, w(, ) =. Selveäväk jää k unemaon vako w. On huomaava, eä vapaaa nurkaa älle approkmaaolle päee waa (, ). [/ p.] luan muodonmuuoenerga aadaan uoraan jouvomaa px (, ) = kwx (, ) vaaavaa 1 muodonmuuoenergaa Ua = kw d a muodonmuuoenergaa 1 1 w Ua = d = p ddh H 11 H k = dhkwwd = w d H h kaw d 4 x kw = = a 18 Kuorman poenaalenerga on o [/ p.] w qaw = qwd = q xd = a 4 Kokonapoenaalenergan D(1 ν) w ka w qa w Π= Ul + Ua + = + a 18 4 mnm aavueaan, kun o

9 Π Π = δπ = δw = w w 4 D(1 ν) ka qa qa 1 9qa w + = w = = 4 a D(1 ν) ka 4(18 D(1 ν) + ka ) + a 9 Makmapuma aavueaan laaan vapaaa nurkaa: 9qa wmax = w( a, a) = w = [/ p.] 4 4(18 D(1 ν) + ka ) 4

10 4. Tehävä: Sauvojen maa ova m1 = ρ1 = ρπr ja m = ρ1 = ρπ( R/) = m1/4. Rakeneen kekelle auvojen hdkohaan kekeään maa m = m1/ + m/ = 5 m1/8 el molempen auvojen maoa puole. [1 p.] Toe puole maoa kekeään rakeneen jäkä knnehn päähn, joen ne evä ule mukaan väräheleemn. Yhdkohdan maapeen akaalnen aema x () on eemn anoa vapauae. omaaapanoeho eemn hauvomalle, jouvomalle ja heräekuormalle ajanhekellä on mx &&() + kx () = f(). [1 p.] Kokonajouvako määrä rnnan oleven auvojen purujäkkkä: E E E 1 5π k = k1+ k = + = ( 1+ ) = R E. [ p.] 4 (kehälö vodaan krjoaa mö uoraan muodoa E1 E 5π R E f() = mx && () + x () + x () = mx &&() + x (). [ p.]) 4 Koka eemä on van k vapauae, en aln ja anoa omnaaajuu on RE 5π k 4 1 E = m = 5 ρπr /8 = ρ. [1 p.]

Tässä harjoituksessa käsitellään Laplace-muunnosta ja sen hyödyntämistä differentiaaliyhtälöiden ratkaisemisessa.

Tässä harjoituksessa käsitellään Laplace-muunnosta ja sen hyödyntämistä differentiaaliyhtälöiden ratkaisemisessa. DEE-00 Lneaare järjeelmä Harjou 0, rakauehdouke Tää harjoukea käellään Laplace-muunnoa ja en hyödynämä dfferenaalyhälöden rakaemea Tehävä Laplace-muunno on käevä yökalu dfferenaalyhälöryhmen rakaemea,

Lisätiedot

12. ARKISIA SOVELLUKSIA

12. ARKISIA SOVELLUKSIA MAA. Arkiia ovellukia. ARKISIA SOVELLUKSIA Oleeaan, eä kappale liikkuu ykiuloeia raaa, eimerkiki -akelia pikin. Kappaleen nopeuden vekoriluonne riiää oaa vauhdin eumerkin avulla huomioon, ja on ehkä arkoiukenmukaiina

Lisätiedot

Rak Rakenteiden mekaniikka C, RM C 4ov Tentti

Rak Rakenteiden mekaniikka C, RM C 4ov Tentti Rk-5.6 Rkeneden meknkk RM ov Ten.. 7 Krjo jokeen koeppern elvä - koko nme puhuelunm llevvun - oo vuokur enn pävämäärä ekä enävä opnojko koodeneen - opkeljnumero (muknluken rkukrjn) - moneko ker ole ko.

Lisätiedot

Viivakuormituksen potentiaalienergia saadaan summaamalla viivan pituuden yli

Viivakuormituksen potentiaalienergia saadaan summaamalla viivan pituuden yli hum.9. oiman potentiaalienergia Potentiaalienergiata puhutaan, kun kappaleeeen vaikuttaa jokin konervatiivinen voima. oima on konervatiivinen, jo en tekemä tö vaikutupieen iirteä tiettä paikata toieen

Lisätiedot

RATKAISUT: 3. Voimakuvio ja liikeyhtälö

RATKAISUT: 3. Voimakuvio ja liikeyhtälö Phyica 9. paino (8) 3. Voiakuvio ja liikeyhtälö : 3. Voiakuvio ja liikeyhtälö 3. a) Newtonin I laki on nieltään jatkavuuden laki. Kappale jatkaa liikettään uoraviivaieti uuttuattoalla nopeudella tai pyyy

Lisätiedot

Telecommunication engineering I A Exercise 3

Telecommunication engineering I A Exercise 3 Teleouao egeerg I 5359A xere 3 Proble elaodulaaor lohkokaavo o eey oppkrja kuvaa 3.63. Pulodulaaor ääuloa o aoagaal ja reeregaal erou d. Tää gaal kerroaa pulgeeraaor gaallla rajouke, el erouke erk elväe,

Lisätiedot

6.4 Variaatiolaskennan oletusten rajoitukset. 6.5 Eulerin yhtälön ratkaisuiden erikoistapauksia

6.4 Variaatiolaskennan oletusten rajoitukset. 6.5 Eulerin yhtälön ratkaisuiden erikoistapauksia 6.4 Variaaiolaskennan oleusen rajoiukse Sivu ss. 27 31 läheien Kirk, ss. 13 143] ja KS, Ch. 5] pohjala Lähökoha oli: jos J:llä on eksremaali (), niin J:n variaaio δj( (), δ()) ():ä pikin on nolla. 1. Välämäön

Lisätiedot

Kertausosa. 2. Kuvaan merkityt kulmat ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia, kulmat ovat yhtä suuria.

Kertausosa. 2. Kuvaan merkityt kulmat ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia, kulmat ovat yhtä suuria. 5. Veitoken tilavuu on V,00 m 1,00 m,00 m 6,00 m. Pienoimallin tilavuu on 1 V malli 6,00 m 0,06m. 100 Mittakaava k aadaan tälötä. 0,06 1 k 6,00 100 1 k 0,1544... 100 Mitat ovat. 1,00m 0,408...m 100 0,41

Lisätiedot

Talousmatematiikan perusteet, L2 Kertaus Aiheet

Talousmatematiikan perusteet, L2 Kertaus Aiheet Talousmatematiikan perusteet, L2 Kertaus 1 Laskutoimitukset tehdään seuraavassa järjestyksessä 1. Sulkujen sisällä olevat lausekkeet (alkaen sisältä ulospäin) 2. potenssit ja juurilausekkeet 3. kerto-

Lisätiedot

Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti määräämättömiä vääntösauvoja

Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti määräämättömiä vääntösauvoja TAVOITTEET Tutkitaan väännön vaikutusta suoraan sauvaan Määritetään vääntökuormitetun sauvan jännitysjakauma Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti

Lisätiedot

MUODONMUUTOKSET. Lähtöotaksumat:

MUODONMUUTOKSET. Lähtöotaksumat: MUODONMUUTOKSET Lähöoaksuma:. Maeraal on sorooppsa ja homogeensa. Hooken lak on vomassa (fyskaalnen lneaarsuus) 3. Bernoulln hypoees on vomassa (eknnen avuuseora) 4. Muodonmuuokse ova nn penä rakeneen

Lisätiedot

Ene-59.4130, Kuivatus- ja haihdutusprosessit teollisuudessa, Laskuharjoitus 5, syksy 2015

Ene-59.4130, Kuivatus- ja haihdutusprosessit teollisuudessa, Laskuharjoitus 5, syksy 2015 Ene-59.4130, Kuivaus- ja haihduusprosessi eollisuudessa, asuharjoius 5, sysy 2015 Tehävä 4 on ähiehävä Tehävä 1. eijuerrosilassa poleaan rinnain uora ja urvea. Kuoren oseus on 54% ja uiva-aineen ehollinen

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet

KJR-C2002 Kontinuumimekaniikan perusteet KJR-C2002 Kontinuumimekaniikan perusteet Luento 23.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Luennon sisältö Hooken laki lineaaris-elastiselle materiaalille (Reddy, kpl 6.2.3) Lujuusoppia: sauva (Reddy,

Lisätiedot

Talousmatematiikan perusteet, L2 Kertaus Aiheet

Talousmatematiikan perusteet, L2 Kertaus Aiheet Talousmatematiikan perusteet, L2 Kertaus 1 Laskutoimitukset tehdään seuraavassa järjestyksessä 1. Sulkujen sisällä olevat lausekkeet (alkaen sisältä ulospäin) 2. potenssit ja juurilausekkeet 3. kerto-

Lisätiedot

Taustaa KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT. Jukka Talvitie, Toni Levanen & Mikko Valkama TTY / Tietoliikennetekniikka

Taustaa KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT. Jukka Talvitie, Toni Levanen & Mikko Valkama TTY / Tietoliikennetekniikka IMA- Exurso: Kompleksluvu ja radosgnaal / KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT Tausaa IMA- Exurso: Kompleksluvu ja radosgnaal / Kakk langaon vesnä ja radoeolkenne (makapuhelme, WLAN, ylesrado

Lisätiedot

Flow shop, työnvaiheketju, joustava linja, läpivirtauspaja. Kahden koneen flow shop Johnsonin algoritmi

Flow shop, työnvaiheketju, joustava linja, läpivirtauspaja. Kahden koneen flow shop Johnsonin algoritmi Flow shop önvaheeju jousava lnja läpvrauspaja Flow shopssa önvaheden järjess on sama alla uoella Kosa vahea vo edelää jono vova ö olla vaheleva ja ö vova ohaa osensa äl ö evä oha osaan puhuaan permuaaoaaaulusa

Lisätiedot

PUTKIKAKSOISNIPPA MUSTA

PUTKIKAKSOISNIPPA MUSTA Takorauta Tuote LVI-numero Pikakoodi 0753007 RU33 KESKIRASKAS KESKIRASKAS KESKIRASKAS KESKIRASKAS KESKIRASKAS KESKIRASKAS KESKIRASKAS KESKIRASKAS DN 65 KESKIRASKAS 0 KESKIRASKAS 0 KESKIRASKAS SK/UK SK/UK

Lisätiedot

12. laskuharjoituskierros, vko 16, ratkaisut

12. laskuharjoituskierros, vko 16, ratkaisut 1. lakuharjoitukierro, vko 16, ratkaiut D1. Muuttujien x ja Y havaitut arvot ovat: x 1 3 4 6 8 9 11 14 Y 1 4 4 5 7 8 9 a) Määrää regreiomallin Y i = α +βx i +ǫ i regreiokertoimien PNS-etimaatit ja piirrä

Lisätiedot

PARTIKKELIN KINETIIKKA

PARTIKKELIN KINETIIKKA PTKKELN KNETKK Newonin laki ma m& - on paikkeliin aikuaien oimien eulani - m on paikkelin maa - a & on paikkelin aboluuinen kiih Suoaiiaien liikkeen liikehälö (liikeuuna : m a 0 z 0 Taoliikkeen liikehälö

Lisätiedot

F Y S I I K K A KERTAUSTEHTÄVIÄ 1-20

F Y S I I K K A KERTAUSTEHTÄVIÄ 1-20 F Y S I I K K A KERTAUSTEHTÄVIÄ - 0 Oalla eieyiä kyyykiä vaauke ova huoaavai pidepiä kuin iä eierkiki kokeea vaaukela vaadiaan. Kokeea on oaava vain olennainen aia per ehävä. . Muua SI järjeelän ykiköihin

Lisätiedot

SYNKRONIKONEET RELUKTANS- SIKONEET RM RM RM + >>L q. L d >>L q. Harjalliset -pyörivä PMSM upotetu magneetit

SYNKRONIKONEET RELUKTANS- SIKONEET RM RM RM + >>L q. L d >>L q. Harjalliset -pyörivä PMSM upotetu magneetit 7.48 TY Juha Pyrhönen 7. Tahtikone Tahtikoneet muootavat kokonaien ähkökoneperheen. Päätyyppejä ovat vieramagnetoiut tahtikoneet, ynkroniet reluktanikoneet ja ketomagneettitahtikoneet. Vieramagnetoiut

Lisätiedot

Markovin ketju. Stokastinen prosessi. Markovin ketju. Markovin malli: DNA esimerkki. M-ketju:homogeeninen ja ei-homogeeninen

Markovin ketju. Stokastinen prosessi. Markovin ketju. Markovin malli: DNA esimerkki. M-ketju:homogeeninen ja ei-homogeeninen Soke roe Mkäl lmöö lyy uuu (okuu), uhu ok roee. Soke roe vod myö ähdä oukko umuuu X() oll o ey relo x(). Proe o oääre, o e lolle omuude evä muuu myöä (em. odourvo, vr). Ak vo oll kuv dkree, mo X() Mrkov

Lisätiedot

1 Excel-sovelluksen ohje

1 Excel-sovelluksen ohje 1 (11) 1 Excel-sovelluksen ohje Seuraavassa kuvaaan jakeluverkonhalijan kohuullisen konrolloiavien operaiivisen kusannusen (SKOPEX 1 ) arvioimiseen arkoieun Excel-sovelluksen oimina, mukaan lukien sovelluksen

Lisätiedot

RATKAISUT: 8. Momentti ja tasapaino

RATKAISUT: 8. Momentti ja tasapaino Phyica 9. paino (7) : 8. Voian vari r on voian vaikutuuoran etäiyy pyöriiakelita. Pyöriiakeli on todellinen tai kuviteltu akeli, jonka ypäri kappale pyörii. Voian oentti M kuvaa voian vääntövaikututa tietyn

Lisätiedot

Lujuusopin jatkokurssi IV.1 IV. KUORIEN KALVOTEORIAA

Lujuusopin jatkokurssi IV.1 IV. KUORIEN KALVOTEORIAA Lujuusoin jatkokussi IV. IV. KUORIE KALVOTEORIAA Kuoien kalvoteoiaa Lujuusoin jatkokussi IV. JOHDATO Kuoiakenteen keskiinta on jo ennen muoonmuutoksia kaaeva inta. Kaaevasta muoosta seuaa että keskiinnan

Lisätiedot

Talousmatematiikan perusteet, L2

Talousmatematiikan perusteet, L2 Talousmatematiikan perusteet, L2 orms.1030 EPKY / kevät 2011 Toisen Laskutoimitukset tehdään seuraavassa järjestyksessä 1. Sulkujen sisällä olevat (alkaen sisältä ulospäin) 2. potenssit ja juuri 3. kerto-

Lisätiedot

Turingin kone on kuin äärellinen automaatti, jolla on käytössään

Turingin kone on kuin äärellinen automaatti, jolla on käytössään 4 TUINGIN KONEET Ala Turg 1935 36 auha Koe vo srtää auha: T U I N G auhapää: ohjausykskkö: Turg koe o ku äärelle automaatt, jolla o käytössää auhapäätä vasemmalle ta okealle; se vo myös lukea ta krjottaa

Lisätiedot

YRITYSKOHTAISEN TEHOSTAMISTAVOITTEEN MÄÄRITTELY 1 YRITYSKOHTAISEN TEHOSTAMISPOTENTIAALIN MITTAAMINEN

YRITYSKOHTAISEN TEHOSTAMISTAVOITTEEN MÄÄRITTELY 1 YRITYSKOHTAISEN TEHOSTAMISPOTENTIAALIN MITTAAMINEN ENERGIAMARKKINAVIRASTO 1 Le 2 Säkön jakeluverkkoomnnan yryskoasen eosamsavoeen määrely YRITYSKOHTAISEN TEHOSTAMISTAVOITTEEN MÄÄRITTELY Asanosanen: Vaasan Säköverkko Oy Lyy pääökseen dnro 491/424/2007 Energamarkknavraso

Lisätiedot

Rak-54.1200 Rakenteiden lujuusoppi Tentti 8.3.2007

Rak-54.1200 Rakenteiden lujuusoppi Tentti 8.3.2007 Rak-54.00 Raketeide lujuusoppi Tetti 8..007 Kirjoita jokaisee koepaperii selvästi: opitojakso imi, koodi ja teti päivämäärä imesi puhutteluimi alleviivattua koulutusohjelma ja oppilasumero, mös tarkistuskirjai.

Lisätiedot

Ratkaisu: Kaikki tehtävän laskutoimitukset on tehty Microsoft Excel -ohjelmalla; ks. taulukkoa tehtävän lopussa.

Ratkaisu: Kaikki tehtävän laskutoimitukset on tehty Microsoft Excel -ohjelmalla; ks. taulukkoa tehtävän lopussa. Mat-.09 Sovellettu todeäköyylaku. harjotuket Mat-.09 Sovellettu todeäköyylaku. harjotuket / Ratkaut Aheet: Avaaat: Regreoaalyy Etmot, Jääöelöumma, Jääöterm, Jääövara, Kekhajota, Kokoaelöumma, Korrelaato,

Lisätiedot

4.3 Liikemäärän säilyminen

4.3 Liikemäärän säilyminen Tämän kappaleen aihe liikemäärän äilyminen törmäykiä. Törmäy on uora ja kekeinen, jo törmäävät kappaleet liikkuvat maakekipiteitten kautta kulkevaa uoraa pitkin ja jo törmäykohta on tällä amalla uoralla.

Lisätiedot

RATKAISUT: 17. Tasavirtapiirit

RATKAISUT: 17. Tasavirtapiirit Phyica 9. paino 1(6) ATKAST 17. Taavirtapiirit ATKAST: 17. Taavirtapiirit 17.1 a) Napajännite on laitteen navoita mitattu jännite. b) Lähdejännite on kuormittamattoman pariton napajännite. c) Jännitehäviö

Lisätiedot

ILMANÄKYMÄ LANNESTÄ TIIKERINSILMÄ

ILMANÄKYMÄ LANNESTÄ TIIKERINSILMÄ MAM A ERM 6. 9 aivannonlahti 6.6 AUEE HEE AUA/ UMARAA (/2) 6 AU 6.6 HERA HEA AU AUA +99. HU 2A EEU E 3A A EEU 93. 3. 94.7 (/2) 2 RE UÖR +99. HEA +. AU.4 (/2) 26 E- JA +99.2 HEA /3k UAEA AAUEA AUA 66 A

Lisätiedot

Luento 9. Epälineaarisuus

Luento 9. Epälineaarisuus Lueno 9 Epälineaarisuus 9..7 Epälineaarisuus Tarkasellaan passiivisa epälineaarisa komponenia u() y() f( ) Taylor-sarjakehielmä 3 y f( x) + f '( x) ( x x) + f ''( x) ( x x) + f ''( x) ( x x) +...! 3! 4!

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet

KJR-C2002 Kontinuumimekaniikan perusteet KJR-C2002 Kontinuumimekaniikan perusteet Luento 25.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Tämän päivän luento Aiemmin ollaan johdettu palkin voimatasapainoyhtälöt differentiaaligeometrisella tavalla

Lisätiedot

Aikasarja-analyysi I Syksy 2005 Tampereen yliopisto Arto Luoma

Aikasarja-analyysi I Syksy 2005 Tampereen yliopisto Arto Luoma Aikasara-aalyysi I Syksy 5 Tamperee yliopiso Aro Luoma Pääasiallise lähee: Brockwell, Davis: Iroducio o Time Series ad Forecasig Brockwell, Davis: Time Series: Theory ad Mehods (lyh. TSTM).. Johdao. Yleisä

Lisätiedot

Muodonmuutostila hum 30.8.13

Muodonmuutostila hum 30.8.13 Muodonmuutostila Tarkastellaan kuvan 1 kappaletta Ω, jonka pisteet siirtvät ulkoisen kuormituksen johdosta siten, että siirtmien tapahduttua ne muodostavat kappaleen Ω'. Esimerkiksi piste A siirt asemaan

Lisätiedot

Luku 9: Atomien rakenne ja spektrit. https://www.youtube.com/watch? v=bmivwz-7gmu https://www.youtube.com/watch? v=dvrzdcnsiyw

Luku 9: Atomien rakenne ja spektrit. https://www.youtube.com/watch? v=bmivwz-7gmu https://www.youtube.com/watch? v=dvrzdcnsiyw Luku 9: Atomien rakenne ja spektrit Vedyn kaltaiset atomit Atomiorbitaalit Spektrisiirtymät Monielektroniset atomit https://www.youtube.com/watch? v=bmivwz-7gmu https://www.youtube.com/watch? v=dvrzdcnsiyw

Lisätiedot

CLEAR Virta 1 A 1 100100000 ka Teksti X-akseli Virta A. Muuta kaikki Kaavio selitysosio Verkon jännite U1 = 1 kv U2 = 1 kv U2

CLEAR Virta 1 A 1 100100000 ka Teksti X-akseli Virta A. Muuta kaikki Kaavio selitysosio Verkon jännite U1 = 1 kv U2 = 1 kv U2 Sähkötekniet lakentaohjelmat. Helinki 24.11.2014 Selektiiviyy (1-1-29) ohjelman eittely Selektiiviyy ohjelma on Microoft Excel ohjelmalla tehty lakentaovellu. Ohjelmat toimitetaan Microoft Office Excel

Lisätiedot

t P1 `UT. Kaupparek. nro Y-tunnus Hämeenlinnan. hallinto- oikeudelle. Muutoksenhakijat. 1( UiH S<

t P1 `UT. Kaupparek. nro Y-tunnus Hämeenlinnan. hallinto- oikeudelle. Muutoksenhakijat. 1( UiH S< 1(0 1 4 1 1 4 UiH 0 0 0 1 S< A S I A N A J O T O I M I S T O O S S I G U S T A F S S O N P L 2 9, Ra u h a n k a t u 2 0, 1 5 1 1 1 L a h t i P u h e l i n 0 3 / 7 8 1 8 9 6 0, G S M 0 5 0 0 / 8 4 0 5

Lisätiedot

V astaano ttav aa antennia m allinnetaan k u v an 2-1 8 m u k aisella piirillä, jo ssa o n jänniteläh d e V sarjassa

V astaano ttav aa antennia m allinnetaan k u v an 2-1 8 m u k aisella piirillä, jo ssa o n jänniteläh d e V sarjassa Antennit osana viestintäjärjestelm ää Antennien pääk äy ttö tark o itu s o n to im inta v iestintäjärjestelm issä. V astaano ttav aa antennia m allinnetaan k u v an 2-1 8 m u k aisella piirillä, jo ssa

Lisätiedot

Luonnolliset vs. muodolliset kielet

Luonnolliset vs. muodolliset kielet Luonnolliset vs. muodolliset kielet Luonnollisia kieliä ovat esim. 1. englanti, 2. suomi, 3. ranska. Muodollisia kieliä ovat esim. 1. lauselogiikan kieli (ilmaisut p, p q jne.), 2. C++, FORTRAN, 3. bittijonokokoelma

Lisätiedot

LUKION FYSIIKKAKILPAILU 8.11.2005 avoimen sarjan vast AVOIN SARJA

LUKION FYSIIKKAKILPAILU 8.11.2005 avoimen sarjan vast AVOIN SARJA LKION FYSIIKKAKILPAIL 8..5 avoien arjan vat AVOIN SARJA Kirjoita tektaten koepaperiin oa niei, kotiooitteei, ähköpotiooitteei, opettajai nii ekä koului nii. Kilpailuaikaa on inuuttia. Sekä tehtävä- että

Lisätiedot

b) Laskiessani suksilla mäkeä alas ja hypätessäni laiturilta järveen painovoima tekee työtä minulle.

b) Laskiessani suksilla mäkeä alas ja hypätessäni laiturilta järveen painovoima tekee työtä minulle. nergia. Työ ja teho OHDI JA TSI -. Opettaja ja opikelija tekevät hyvin paljon aanlaita ekaanita työtä, kuten liikkuinen, kirjojen ja eineiden notainen, liikkeellelähtö ja pyähtyinen. Uuien aioiden oppiinen

Lisätiedot

7. Suora leikkaus TAVOITTEET 7. Suora leikkaus SISÄLTÖ

7. Suora leikkaus TAVOITTEET 7. Suora leikkaus SISÄLTÖ TAVOITTEET Kehitetään menetelmä, jolla selvitetään homogeenisen, prismaattisen suoran sauvan leikkausjännitysjakauma kun materiaali käyttäytyy lineaarielastisesti Menetelmä rajataan määrätyn tyyppisiin

Lisätiedot

Luku 5. Johteet. 5.1 Johteiden vaikutus sähkökenttään E = 0 E = 0 E = 0

Luku 5. Johteet. 5.1 Johteiden vaikutus sähkökenttään E = 0 E = 0 E = 0 Luku 5 Johteet 5.1 Johteiden vaikutus sähkökenttään Johteessa osa atomien elektroneista on ns. johde-elektroneja, jotka pääsevät vapaasti liikkumaan sähkökentän vaikutuksesta. Hyvässä johteessa (kuten

Lisätiedot

OPINTOJAKSO FYSIIKKA 1 OV OPINTOKOKONAISUUTEEN FYSIIKKA JA KEMIA 2 OV. Isto Jokinen 2012. 1. Mekaniikka 2

OPINTOJAKSO FYSIIKKA 1 OV OPINTOKOKONAISUUTEEN FYSIIKKA JA KEMIA 2 OV. Isto Jokinen 2012. 1. Mekaniikka 2 OPINTOJAKSO FYSIIKKA 1 OV OPINTOKOKONAISUUTEEN FYSIIKKA JA KEMIA OV Io Jokinen 01 SISÄLTÖ SIVU 1. Mekaniikka Nopeu Kekinopeu Kehänopeu 3 Kiihyvyy 3 Puoamikiihyvyy 4 Voima 5 Kika 6 Työ 7 Teho 8 Paine 9

Lisätiedot

Harjoitus 2. 10.9-14.9.2007. Nimi: Op.nro: Tavoite: Gradientin käsitteen sisäistäminen ja omaksuminen.

Harjoitus 2. 10.9-14.9.2007. Nimi: Op.nro: Tavoite: Gradientin käsitteen sisäistäminen ja omaksuminen. SMG-1300 Sähkömagneettiset kentät ja aallot I Harjoitus 2. 10.9-14.9.2007 Nimi: Op.nro: Tavoite: Gradientin käsitteen sisäistäminen ja omaksuminen. Tehtävä 1: Harjoitellaan ensinmäiseksi ymmärtämään lausekkeen

Lisätiedot

Yleisen antennin säteily k enttien ratk aisem isen v aih eet:

Yleisen antennin säteily k enttien ratk aisem isen v aih eet: Sä te ily k e n ttie n ra tk a ise m in e n Yleisen antennin säteily k enttien ratk aisem isen v aih eet: 1. E tsi A integ roim alla y h tälö A = µ e jβr 4π r V Je j βˆr r dv, (40 ) 2. L ask e E E = jωa

Lisätiedot

Analysoidaan lämpöjännitysten, jännityskeskittymien, plastisten muodonmuutosten ja jäännösjännityksien vaikutus

Analysoidaan lämpöjännitysten, jännityskeskittymien, plastisten muodonmuutosten ja jäännösjännityksien vaikutus TAVOITTEET Määritetään aksiaalisesti kuormitetun sauvan muodonmuutos Esitetään menetelmä, jolla ratkaistaan tukireaktiot tapauksessa, jossa statiikan tasapainoehdot eivät riitä Analysoidaan lämpöjännitysten,

Lisätiedot

Sähköstaattinen energia

Sähköstaattinen energia ähköstaattnen enega Potentaalenegan a potentaaln suhde on samanlanen kun Coulomn voman a sähkökentän suhde: ähkökenttä vakuttaa vaattuun kappaleeseen nn, että se kokee Coulomn voman, mutta sähkökenttä

Lisätiedot

PD-säädin PID PID-säädin

PD-säädin PID PID-säädin -äädin - äätö on ykinkertainen äätömuoto, jota voidaan kutua myö uhteuttavaki äädöki. Sinä lähtöignaali on uoraa uhteea tuloignaalin. -äätimen uhdealue kertoo kuinka paljon mittauuure aa muuttua ennen

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2002

MAOL-Pisteitysohjeet Fysiikka kevät 2002 MAOL-Piteityhjeet Fyiikka kevät 00 Tyypilliten virheiden aiheuttaia piteenetykiä (6 piteen kaalaa): - pieni lakuvirhe -/3 p - lakuvirhe, epäielekä tul, vähintään - - vataukea yki erkitevä nuer liikaa -0

Lisätiedot

Sisältö Tarrakirjoittimen esittely... 89 Aloitusvinkkejä... 89

Sisältö Tarrakirjoittimen esittely... 89 Aloitusvinkkejä... 89 Sisältö Tarrakirjoittimen esittely... 89 Tuotteen rekisteröiminen... 89 Aloitusvinkkejä... 89 Virran kytkeminen... 89 Akun asentaminen... 90 Akun lataaminen... 90 Tarrakasetin asettaminen paikalleen...

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 12 Stokastisista prosesseista

Rahoitusriskit ja johdannaiset Matti Estola. luento 12 Stokastisista prosesseista Rahoiusriski ja johdannaise Mai Esola lueno Sokasisisa prosesseisa . Markov ominaisuus Markov -prosessi on sokasinen prosessi, missä ainoasaan muuujan viimeinen havaino on relevani muuujan seuraavaa arvoa

Lisätiedot

S-55.1220 Piirianalyysi 2 Tentti 1.9.2011

S-55.1220 Piirianalyysi 2 Tentti 1.9.2011 S-55.2 Piirianalyyi 2 Tentti.9.. e(t) L j(t) Lake vatukea lämmöki muuttuva teho P. = Ω L = mh = 2mF ω = 0 3 rad/ e = ê in(ωt) j = ĵ in(2ωt) ĵ = 0 A ê = 2 2 V. 2. u(t) k Kuvan mukainen taajännitelähteen

Lisätiedot

LUKION FYSIIKKAKILPAILU 10.11.2009, ratkaisut PERUSSARJA

LUKION FYSIIKKAKILPAILU 10.11.2009, ratkaisut PERUSSARJA LUKION FYSIIKKAKILPAILU 0..009, ratkaiut PERUSSARJA Vataa huolellieti ja iititi! Kirjoita tektaten koepaperiin oa niei, kotiooitteei, ähköpotiooite, opettajai nii ekä koului nii. Kilpailuaikaa on 00 inuuttia.

Lisätiedot

Fy07 Koe Kuopion Lyseon lukio (KK) 1 / 5

Fy07 Koe Kuopion Lyseon lukio (KK) 1 / 5 y07 Koe 8.9.05 Kuopion yeon lukio (KK) / 5 Vataa kolmeen tehtävään. Vatuken reitani on 60, käämin induktani on 0,60 H ja reitani 8 ja kondenaattorin kapaitani on 80. Komponentit ovat arjaan kytkettyinä

Lisätiedot

S Piirianalyysi 2 2. välikoe

S Piirianalyysi 2 2. välikoe S-55.22 Piirianalyyi 2 2. välikoe 6.5.23 Lake tehtävät 2 eri paperille kuin tehtävät 3 5. Muita kirjoittaa jokaieen paperiin elväti nimi, opikelijanumero, kurin nimi ja koodi. Epäelvät vataupaperit voidaan

Lisätiedot

l s, c p T = l v = l l s c p. Z L + Z 0

l s, c p T = l v = l l s c p. Z L + Z 0 1.1 i k l s, c p Tasajännite kytketään hetkellä t 0 johtoon, jonka pituus on l ja jonka kapasitanssi ja induktanssi pituusyksikköä kohti ovat c p ja l s. Mieti, kuinka virta i käyttäytyy ajan t funktiona

Lisätiedot

1. SÄHKÖKONEIDEN SUUNNITTELUN PERUSTEITA. 1.1 Sähkömagneettiset perusteet

1. SÄHKÖKONEIDEN SUUNNITTELUN PERUSTEITA. 1.1 Sähkömagneettiset perusteet . LTY Juha Pyrhönen. SÄHKÖKOEIDE SUUITTELU PERUSTEITA. Sähköagneettiset perusteet Sähköagneettisten iliöiden hallinnan perusyhtälöinä käytetään Maxwellin yhtälöitä. Sähköagneettisten iliöiden kuvaainen

Lisätiedot

Hannu Pohjannoro SATEEN AIKAAN. laulusarja sopraanolle ja pianolle Tuomas Anhavan tekstiin. toinen, korjattu versio. For promotion only 1986 87 / 1999

Hannu Pohjannoro SATEEN AIKAAN. laulusarja sopraanolle ja pianolle Tuomas Anhavan tekstiin. toinen, korjattu versio. For promotion only 1986 87 / 1999 Hannu ohannoro SATEEN AIKAAN laulusara soraanolle a ianolle Tuomas Anhavan tekstiin toinen, korattu versio 10 or romotion only 1 / 1 a or romotion only SATEEN AIKAAN Tuomas Anhava: Runoa (1), tava I III

Lisätiedot

LVM/LMA/jp 2013-03-27. Valtioneuvoston asetus. ajoneuvojen käytöstä tiellä annetun asetuksen muuttamisesta. Annettu Helsingissä päivänä kuuta 20

LVM/LMA/jp 2013-03-27. Valtioneuvoston asetus. ajoneuvojen käytöstä tiellä annetun asetuksen muuttamisesta. Annettu Helsingissä päivänä kuuta 20 LVM/LMA/jp 2013-03-27 Valioneuvoson aseus ajoneuvojen käyösä iellä anneun aseuksen uuaisesa Anneu Helsingissä päivänä kuua 20 Valioneuvoson pääöksen ukaisesi uueaan ajoneuvojen käyösä iellä anneun aseuksen

Lisätiedot

Derivoimalla ensimmäinen komponentti, sijoittamalla jälkimmäisen derivaatta siihen ja eliminoimalla x. saadaan

Derivoimalla ensimmäinen komponentti, sijoittamalla jälkimmäisen derivaatta siihen ja eliminoimalla x. saadaan 87 5. Eliminoinimeneely Tarkaellaan -kokoia vakiokeroimia yeemiä + x a a x a x + a x b() x = = = +. a a x a x a x b () (3) b() x + Derivoimalla enimmäinen komponeni, ijoiamalla jälkimmäien derivaaa iihen

Lisätiedot

S-55.1220/142 Piirianalyysi 2 1. Välikoe 10.3.2006

S-55.1220/142 Piirianalyysi 2 1. Välikoe 10.3.2006 S-55.0/4 Piirianalyyi. Välioe 0.3.006 ae tehtävät 3 eri paperille in tehtävät 4 5. Mita irjoittaa joaieen paperiin elväti nimi, opielijanmero, rin nimi ja oodi. Tehtävät laetaan oaton oepaperille. Mita

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.

Lisätiedot

Arvioitu poikkileikkauksessa oleva teräspinta-ala. Vaadittu raudoituksen poikkileikkausala. Raudoituksen minimi poikkileikkausala

Arvioitu poikkileikkauksessa oleva teräspinta-ala. Vaadittu raudoituksen poikkileikkausala. Raudoituksen minimi poikkileikkausala 1/6 Latinalaiset isot kirjaimet A A c A s A s,est A s,vaad A s,valittu A s,min A sw A sw, min E c E cd E cm E s F F k F d G G k G Ed Poikkileikkausala Betonin poikkileikkauksen ala Raudoituksen poikkileikkausala

Lisätiedot

Esimerkkilaskelma. Jäykistävä CLT-seinä

Esimerkkilaskelma. Jäykistävä CLT-seinä Eimerilaelma Jäyitävä CLT-einä 30.5.014 Siällyluettelo 1 LÄHTÖTIEDOT... - 3 - LEVYJÄYKISTEEN TIEDOT... - 3-3 ATERIAALI... - 4-4 PANEELILEIKKAUSKESTÄVYYS... - 4-5 LAELLIN LEIKKAUSKESTÄVYYS... - 5-6 LAELLIEN

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut MS-C34 Lineaarialgebra ja differentiaaliyhtälöt, IV/26 Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / t Alkuviikon tuntitehtävä Hahmottele matriisia A ( 2 6 3 vastaava vektorikenttä Matriisia A

Lisätiedot

7. Pyörivät sähkökoneet

7. Pyörivät sähkökoneet Pyörivät ähkökoneet 7-1 7. Pyörivät ähkökoneet Mekaanien energian muuntamieen ähköenergiaki ekä ähköenergian muuntamieen takaiin mekaanieki energiaki käytetään ähkökoneita. Koneita, jotka muuntavat mekaanien

Lisätiedot

6 JÄYKÄN KAPPALEEN TASOKINETIIKKA

6 JÄYKÄN KAPPALEEN TASOKINETIIKKA Dyamiia 6. 6 JÄYKÄN KAPPALEEN TASKINETIIKKA 6. Yleisä Jäyä appalee ieiiassa arasellaa appaleesee aiuaie uloise oimie ja seurausea olea liiee (raslaaio ja roaaio) älisiä yheysiä. Voimie äsielyssä ariaa

Lisätiedot

Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat:

Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat: Mat-.090 Sovellettu todeäköiyylaku A 0. harjoituket Mat-.09 Sovellettu todeäköiyylaku 0. harjoituket / Ratkaiut Aiheet: Avaiaat: Tilatolliet tetit Aritmeettie kekiarvo, Beroulli-jakauma, F-jakauma, F-teti,

Lisätiedot

Trigonometriset funk4ot

Trigonometriset funk4ot Trigonometriset funk4ot Suorakulmainen kolmio sin() = a c cos() = b c hypotenuusa c tan() = sin() cos() = a b kulma b katee= a katee= a = c sin() b = c cos() cot() = cos() sin() = b a Trigonometriset funk4ot

Lisätiedot

Suuntaavuus ja vahvistus Aukkoantennien tapauksessa suuntaavuus saadaan m uotoon (luku 7.3.1 ) E a 2 ds

Suuntaavuus ja vahvistus Aukkoantennien tapauksessa suuntaavuus saadaan m uotoon (luku 7.3.1 ) E a 2 ds Suuntaavuus ja vahvistus Aukkoantennien tapauksessa suuntaavuus saadaan m uotoon (luku 7.3.1 ) Täm ä olettaa, että D = 4π λ 2 S a E a ds 2. (2 40 ) S a E a 2 ds Pääkeila aukon tasoa koh tisuoraan suuntaan

Lisätiedot

S-55.1220 Piirianalyysi 2 Tentti 4.1.2007

S-55.1220 Piirianalyysi 2 Tentti 4.1.2007 S-55.2 Piirianalyyi 2 Tentti 4..07. Piiriä yöttää kaki lähdettä, joilla on eri taajuudet. Kuinka uuri on lämmöki muuttuva teho P? Piiri on jatkuvuutilaa. J 2 00 Ω 5µH 0 pf 0/0 V J 2 00/0 ma f MHz f 2 2MHz.

Lisätiedot

Kertaustehtäviä. Luku 1. Physica 3 Opettajan OPAS

Kertaustehtäviä. Luku 1. Physica 3 Opettajan OPAS (4) Luku 57. a) Mekaaniea poikittaiea aaltoliikkeeä aineen rakenneoat värähtelevät eteneiuuntaan vataan kohtiuoraa uunnaa. Eierkkejä ovat uun uaa jouen poikittainen aaltoliike tai veden pinnan aaltoilu.

Lisätiedot

LVM/LMA/jp 2012-12-17. Valtioneuvoston asetus. ajoneuvojen käytöstä tiellä annetun asetuksen muuttamisesta. Annettu Helsingissä päivänä kuuta 20

LVM/LMA/jp 2012-12-17. Valtioneuvoston asetus. ajoneuvojen käytöstä tiellä annetun asetuksen muuttamisesta. Annettu Helsingissä päivänä kuuta 20 LVM/LMA/jp 2012-12-17 Valioneuvoson aseus ajoneuvojen käyösä iellä anneun aseuksen uuaisesa Anneu Helsingissä päivänä kuua 20 Valioneuvoson pääöksen ukaisesi, joka on ehy liikenne- ja viesinäiniseriön

Lisätiedot

DEE-53000 Sähkömagneettisten järjestelmien lämmönsiirto

DEE-53000 Sähkömagneettisten järjestelmien lämmönsiirto DEE-53000 Sähkömageese järjeselme lämmösro Lueo 8 1 Sähkömageese järjeselme lämmösro Rso Mkkoe Dfferessmeeelmä Numeersa rakasua haeaa aluee dskreeesä psesä. Muodoseaa verkko ja eseää dervaaa erousosamäärä.

Lisätiedot

Suomen kalamarkkinoiden analyysi yhteisintegraatiomenetelmällä

Suomen kalamarkkinoiden analyysi yhteisintegraatiomenetelmällä KALA- JA RIISTARAPORTTEJA nro 374 Jukka Laiinen Jari Seälä Kaija Saarni Suomen kalamarkkinoiden analyysi yheisinegraaiomeneelmällä Helsinki 006 Julkaisija Riisa- ja kalaalouden ukimuslaios KUVAILULEHTI

Lisätiedot

2 Eristeet. 2.1 Polarisoituma

2 Eristeet. 2.1 Polarisoituma 2 Eristeet Eristeissä kaikki elektronit ovat sitoutuneita atomeihin tai molekyyleihin, eivätkä voi siis liikkua vapaasti kuten johdeelektronit johteissa. Ulkoinen sähkökenttä aiheuttaa kuitenkin vähäisiä

Lisätiedot

Mat-2.090 Sovellettu todennäköisyyslasku A

Mat-2.090 Sovellettu todennäköisyyslasku A Mat-.090 Sovellettu todeäköiyylaku A Mat-.090 Sovellettu todeäköiyylaku A / Ratkaiut Aiheet: Avaiaat: Tilatollite aieito keräämie ja mittaamie Tilatollite aieitoje kuvaamie Oto ja otojakaumat Aritmeettie

Lisätiedot

Sähköstaattinen energia

Sähköstaattinen energia Luku 4 Sähköstaattinen energia oiman, työn ja energian käsitteet ovat keskeisiä kaikessa fysiikassa. Sähköja magneettikenttiä mitataan voimavaikutuksen kautta. Kun voima vaikuttaa varaukselliseen hiukkaseen,

Lisätiedot

01/2013. Köyhyyden dynamiikka Suomessa 1995 2008. Eläketurvakeskus. Ilpo Suoniemi

01/2013. Köyhyyden dynamiikka Suomessa 1995 2008. Eläketurvakeskus. Ilpo Suoniemi 0/203 ELÄKETURVAKESKUKSEN TUTKIMUKSIA PALKANSAAJIEN TUTKIMUSLAITOKSEN TUTKIMUKSIA 4 Köhden dnamkka Suomessa 995 2008 Ilpo Suonem Eläkeurvakeskus PENSIONSSKYDDSCENTRALEN 0/203 ELÄKETURVAKESKUKSEN TUTKIMUKSIA

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I Havaintokohteita 9. Polarimetria Lauri Jetsu Fysiikan laitos Helsingin yliopisto Havaintokohteita Polarimetria Havaintokohteita (kuvat: @phys.org/news, @annesastronomynews.com) Yleiskuvaus: Polarisaatio

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

INTERFERENSSIN VAIKUTUS LINEAARISESSA MODULAATIOSSA

INTERFERENSSIN VAIKUTUS LINEAARISESSA MODULAATIOSSA INTERFERENSSIN VIUTUS LINERISESS MOULTIOSS Teolkenneeknkka I 521359 a äkkänen Osa 15 1 19 Inefeenssn vakuus lneaasessa odulaaossa Radoaausa nefeenssä RFI sn usa äeselsä, kun oa kanoaaloaauus on lähellä

Lisätiedot

5 Jatkuvan funktion integraali

5 Jatkuvan funktion integraali 5 Jkuvn funkion inegrli Derivlle kääneisä käsieä kusun inegrliksi. Aloien inegrliin uusuminen esimerkillä. Esimerkki 5.. Tuonolioksess on phunu kemiklivuoo. Määriellään funkio V sien, eä V () on vuoneen

Lisätiedot

Pakkauksen sisältö: Sire e ni

Pakkauksen sisältö: Sire e ni S t e e l m a t e p u h u v a n v a r a s h ä l y t ti m e n a s e n n u s: Pakkauksen sisältö: K e s k u s y k sikk ö I s k u n t u n n i s ti n Sire e ni P i u h a s a rj a aj o n e st or el e Ste el

Lisätiedot

Kone- ja rakentamistekniikan laboratoriotyöt KON-C3004. Koesuunnitelma: Paineen mittaus venymäliuskojen avulla. Ryhmä C

Kone- ja rakentamistekniikan laboratoriotyöt KON-C3004. Koesuunnitelma: Paineen mittaus venymäliuskojen avulla. Ryhmä C Kone- ja rakentamistekniikan laboratoriotyöt KON-C3004 Koesuunnitelma: Paineen mittaus venymäliuskojen avulla Ryhmä C Aleksi Mäki 350637 Simo Simolin 354691 Mikko Puustinen 354442 1. Tutkimusongelma ja

Lisätiedot

Muodolliset kieliopit

Muodolliset kieliopit Muodolliset kieliopit Luonnollisen kielen lauseenmuodostuksessa esiintyy luonnollisia säännönmukaisuuksia. Esimerkiksi, on jokseenkin mielekästä väittää, että luonnollisen kielen lauseet koostuvat nk.

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekankan jatkokurss Fys102 Syksy 2009 Jukka Maalamp LUENTO 2 Alkuverryttelyä Vääntömomentt Oletus: Vomat tasossa, joka on kohtsuorassa pyörmsaksela vastaan. Oven kääntämseen tarvtaan er suurunen voma

Lisätiedot

RATKAISUT: 7. Gravitaatiovoima ja heittoliike

RATKAISUT: 7. Gravitaatiovoima ja heittoliike Phyica 9. paino () 7. Gaitaatiooia ja heittoliike : 7. Gaitaatiooia ja heittoliike 7. a) Gaitaatiooia aikuttaa kaikkien kappaleiden älillä. Gaitaatiooian uuuu iippuu kappaleiden aoita ja niiden älietä

Lisätiedot

10. Globaali valaistus

10. Globaali valaistus 10. Globaali valaistus Globaalilla eli kokonaisvalaistuksella tarkoitetaan tietokonegrafiikassa malleja, jotka renderöivät kuvaa laskien pisteestä x heijastuneen valon ottamalla huomioon kaiken tähän pisteeseen

Lisätiedot

Ilkka Mellin Aikasarja-analyysi ARMA-mallit

Ilkka Mellin Aikasarja-analyysi ARMA-mallit Ilkka Mellin Aikasarja-analyysi ARMA-mallit TKK (c) Ilkka Mellin (007) 1 ARMA-mallit >> ARMA-mallit ja niiden ominaisuudet ARMA-mallien auto- ja osittaisautokorrelaatiofunktiot ARMA-mallien spektri ARMA-mallien

Lisätiedot

ETERAN TyEL:n MUKAISEN VAKUUTUKSEN ERITYISPERUSTEET

ETERAN TyEL:n MUKAISEN VAKUUTUKSEN ERITYISPERUSTEET TRAN TyL:n MUKASN AKUUTUKSN RTYSPRUSTT Tässä peruseessa kaikki suuree koskea eraa, ellei oisin ole määriely. Tässä peruseessa käyey lyhenee: LL Lyhyaikaisissa yösuheissa oleien yönekijäin eläkelaki TaL

Lisätiedot

MAT-71506 Program Verification (Ohjelmien todistaminen) merkintöjen selityksiä

MAT-71506 Program Verification (Ohjelmien todistaminen) merkintöjen selityksiä MAT-71506 Program Verification (Ohjelmien todistaminen) merkintöjen selityksiä Antti Valmari & Antero Kangas Tampereen teknillinen yliopisto Matematiikan laitos 20. elokuuta 2013 Merkkien selityksiä Tähän

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

Koulutus- ja kehittämispalvelu Aducate 1 (6) KOPSU -hanke 10.10.2011

Koulutus- ja kehittämispalvelu Aducate 1 (6) KOPSU -hanke 10.10.2011 Kouluu- ja khämpalvlu Aduca 1 (6) Pykooaal ohjauk ja uvoa rkoumopo (35 op), - kogv ja rakaukk yöklyapa - pykorapu valmuk opo TOTEUTUSPAIKKA Jouu TAVOITE JA KOHDERYHMÄ Kouluu aaa oallujll valmud ouaa ohjau-

Lisätiedot

Voutila ASEMAKAAVAN SELOSTUS. 2519 Dnro 788/2015. Hongistonkuja Asemakaavan muutos 25. kaup. osa, Kortteli 74, tontti 3 ja katualue

Voutila ASEMAKAAVAN SELOSTUS. 2519 Dnro 788/2015. Hongistonkuja Asemakaavan muutos 25. kaup. osa, Kortteli 74, tontti 3 ja katualue SEMV SESS 59 Dnro 788/5 Vouil Hongisonuj semvn muuos 5 up os, oreli 74, oni 3 j ulue iljjohj äivi Slorn Vireille ulo 35 Yhdysunluun 5 Yhdysunluun 75 invoiminen SSYSEE ERS- J SEED 3 v-lueen sijini 3 vn

Lisätiedot