NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI

Koko: px
Aloita esitys sivulta:

Download "NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI"

Transkriptio

1 NEWTONIN LAIT MEKANIIKAN I PERUSLAKI eli jatkavuuden laki tai liikkeen jatkuvuuden laki (myös Newtonin I laki tai inertialaki) Kappale jatkaa tasaista suoraviivaista liikettä vakionopeudella tai pysyy levossa, jos siihen ei vaikuta ulkoisia voimia. Laki koskee vapaita kappaleita, jotka eivät ole vuorovaikutuksessa muiden kappaleiden kanssa MEKANIIKAN II PERUSLAKI eli dynamiikan peruslaki (myös Newtonin II laki) Kappaleeseen vaikuttava kokonaisvoima F antaa kappaleelle kiihtyvyyden a. Mitä suurempi on kappaleeseen kohdistuva voima, sitä suuremman kiihtyvyyden se kappaleelle aiheuttaa. Kappaleeseen vaikuttava kokonaisvoima F antaa m- massaiselle kappaleelle kiihtyvyyden a siten, että MEKANIIKAN III PERUSLAKI eli voiman ja vastavoiman laki (myös Newtonin III laki) Newtonin kolmas laki sanoo, että F = ma Jos kappaleeseen vaikuttaa jokin voima, niin samanaikaisesti kappaleen täytyy vaikuttaa toiseen kappaleeseen yhtä suurella, mutta suunnaltaan vastakkaisella voimalla. Esimerkiksi omena aiheuttaa pöytään voiman johtuen Maan vetovoimasta, mutta myös pöytä aiheuttaa omenaan yhtä suuren mutta vastakkaissuuntaisen voiman. Omena siis pysyy paikallaan. On tärkeä huomata, että voima ja vastavoima vaikuttavat aina eri kappaleisiin. Kaikilla voimilla on vastavoimat. Maa vetää omenaa puoleensa ja omena vetää maata puoleensa.

2 OMENA TEHTÄVÄ Omena on pöydällä. Piirrä tilanteesta kuva ja erittele kaikki tilanteessa esiintyvät voimat ja niiden aiheuttajat. Ohje: Piirrä kolme erillistä kuvaa 1 omena, 2 pöytä, 3 maa ja tarkastele voimia. VOIMA JA LIIKKEEN KUVAAMINEN Nopeasti ratkaistavia -mutta tutkimusten mukaan ongelmia aiheuttavia- tehtäviä 1. MILLOIN KAPPALEILLA A JA B ON SAMA NOPEUS? KATSO KUVAAJISTA! 2. MISSÄ PISTEESSÄ (A, B VAI C) KAPPALEELLA ON a) SUURIN N OPEUS? b) ENTÄ PIE NIN? c) MILLO IN LIIKE ON KIIH TYVÄÄ? 3. LENKKEILIJÄ JUOKSEE ALLA OLEVAN KUVAAJAN MUKAISESTI, VASTAA SEURAA- VIIN KYSYMYKSIIN a. Milloin liike on kiihtyvää? b. Milloin liike on hidastuvaa? c. Milloin nopeus on suurin? d. Milloin kappale pysähtyy? e. Milloin kappale liikkuu tasaista nopeutta? f. Milloin kappale vaihtaa suuntaansa? g. Milloin kappale on takaisin lähtöpisteessään? 4. PIIRRÄ EDELLISEN KUVAAJAN PERUST EELLA FUNKTIOT v(t) JA a(t)

3 5. HAHMOTTELE ALLA OLEVA STA KUVAAJASTA FUNKT ION x(t) KUVAAJA SEKÄ FUN K- TION a(t) KUVAAJA. 6. HAHMOTTELE ALLA OLEVASTA TILANTEESTA KUVAAJAT v(t) JA a(t) 7. ALLA OLEVASSA KUVASSA PALLO PÄÄSTETÄÄN LEVOSTA LIIKKEELLE. KUINKA KORKEALLE PALLO KIIPEÄÄ VASTAKKAISELLA SEINÄMÄLLÄ?

4 KEVÄT 86 YO-KOE Kappale voi liikkua suoraviivaisesti. Oheiset kuvaajat esittävät kappaleen paikkaa s, nopeutta v, kiihtyvyyttä a ja kappaleeseen vaikuttavaa kokonaisvoimaa F ajan funktiona. Mikä on kappaleen liiketila eri tapauksissa? Perustele ja selitä! KEVÄT 89 YO-KOE Oheiset kuvaajat esittävät kappaleen paikkaa, nopeutta ja kiihtyvyyttä ajan funktiona maan suhteen levossa olevassa koordinaatistossa. Mitkä kuvaajista voivat liittyä alla mainittuihin tapauksiin: A. pysäköity auto B. liukuportailla seisova henkilö C. asemalle saapuva juna, joka jarruttaa tasaisesti ja pysähtyy D. pysäkiltä tasaisesti kiihdyttäen lähtevä raitiovaunu E. laskuvarjon varassa putoava henkilö F. vakioteholla kiihdyttävä auto? Kuhunkin kohtaan voi liittyä kaksi tai useampi kuvaaja. Vastaukseksi riittää kuvaajan numero.

5 KEVÄT 89 YO-KOE Mitkä seuraavista paikan, nopeuden ja kiihtyvyyden kuvaajista voivat esittää A. tornista putoavan kappaleen liikettä, B. lattialla pomppivan pallon liikettä, C. jousen varassa pystysuunnassa heilahtelevan kappaleen liikettä? Liikettä tarkasteltaessa positiivinen suunta on valittu alaspäin! SYKSY 89 YO-KOE Oheinen kuvio esittää suoraviivaisesti liikkuvan kappaleen nopeuden kuvaajaa. A. Määritä ja piirrä kappaleen paikka ajan funktiona. B. Mihin tavalliseen liikkeeseen kuvaaja voi liittyä?

6 KEVÄT 96 YO-KOE Mitkä seuraavista paikan, nopeuden ja kiihtyvyyden kuvaajista voivat esittää pystysuoraan ylöspäin heitetyn kappaleen liikettä ja mitkä eivät? KEVÄT 2007 YO-KOE Kuvassa on joitakin paikan s, nopeuden v ja kiihtyvyyden a kuvaajia. Perustele, mitkä kuvaajista voivat esittää seuraavia liikkeitä: a) vakionopeudella etenevä polkupyöräilijä b) pysäkille tasaisesti jarruttava raitiovaunu c) suoraan alaspäin putoava tennispallo. KEVÄT 98 YO- KOE Kolme samanlaista herkkäliikkeistä vaunua liikkuu kuvion mukaisia teitä pitkin saman matkan pisteisiin A mennessä. Vaunut lähetetään liikkeelle samanaikaisesti samalta korkeudelta y ilman alkunopeutta. Perustele, a) millä vaunulla on pisteessä A suurin nopeus, b) millä vaunulla on pisteessä A suurin kiihtyvyys ja c) mikä vaunu ohittaa ensimmäisenä pisteen A.

7 SYKSY 87 YO -KOE (NEWTONIN KOLMAS LAKI JA KITKAVOIMA) Määrittele ja selitä sopivien kuvioiden avulla käsitteet a) voima ja vastavoima ja b) lepokitkavoima. a) voima ja vastavoima Newtonin III lain mukaan voima on aina vuorovaikutus kahden kappaleen välillä. Kun kappale A vaikuttaa kappaleeseen B, vaikuttaa kappale B kappaleesen A yhtä suurella, mutta vastakkaissuuntaisella voimalla. Voima ja vastavoima siis vaikuttavat eri kappaleisiin. Kappaleen A vapaakappalekuvassa on se voima, jolla B vaikuttaa A:han. Kappaleen B vapaakappalekuvassa on voima, jolla A vaikuttaa B:hen. Voiman ja vastavoiman pitää olla samantyyppisiä voimia esimerkiksi kumpikin ovat gravitaatiovoimia ja vastavoimat kohdistuvat aina eri kappaleisiin. b) lepokitkavoima. Kun vedämme tai työnnämme kappaletta, lepokitkavoima estää kappaleen liikkumisen. Kun lisäämme voimaa riittävästi, jossakin vaiheessa kappale lähtee liikkeelle. Kitkavoima kasvaa ulkoisen voiman kasvaessa. Sitä kitkaa, joka kappaleella on juuri ennen sen liikkeelle lähtöä, kutsutaan täysin kehittyneeksi lepokitkaksi tai lepokitkavoimaksi. KEVÄT 2000 YO-KOE Veturin (massa 84 tonnia) ja kolmen vaunun (kunkin massa 24 tonnia) muodostama juna liikkuu suoralla vaakasuoralla radalla. Junan nopeus kasvaa 7,0 sekunnissa tasaisesti nollasta arvoon 16 km/h. Määritä veturiin kohdistuvat voimat ja junan kiihdyttämiseen vaadittava energia. Liikevastuksia ei oteta huomioon. 1. Tärkein juttu tässä on piirtää voimakuvio oikein. Muista että kiihdyttävä voima on kitkavoima. 2. Tehtävänä on tarkastella veturiin kohdistuvia voimia, joten vaunujen aiheuttamat voimat on otettava huomioon. 3. Kun saat liikeyhtälöt (NII) oikein, niin tehtävän ratkaisu on helppo!

8 KEVÄT 2007 YO-KOE Kulmin lentomäen lähtöpuomi on asetettu 66 m:n korkeudelle hyppyrin nokasta. Hyppääjä lähtee levosta liukumaan pitkin vauhtimäkeä ja saavuttaa hyppyrin nokalla nopeuden 101 km/h. Kuinka suuren työn liikevastusvoimat tekevät liu un aikana? Hyppääjän ja varusteiden yhteinen massa on 71 kg SYKSY 99 YO-KOE Torninosturilla nostetaan rakennuselementtiä siten, että elementin nopeus kasvaa tasaisesti. Tarkastele elementin a) paikkaa, b) kiihtyvyyttä ja c) potentiaalienergiaa sekä d) nostovaijerin jännitysvoimaa. Minkä suureiden kuvaajat ovat nousevia suoria? 1. Piirrä voimakuvio! 2. Jos nopeus v kasvaa tasaisesti, niin kiihtyvyys on vakio, jolloin kinematiikan peruskaavat v = v 0 + at ja S = v 0 t at2 ovat käyttökelpoisia. 3. Jännitysvoiman ratkaisemisessa pääset soveltamaan Newtonin toista lakia. 4. Jännitys voiman tehon ratkaisemisessa kannattaa käyttää hekellisen tehon kaavaa (ks. edellinen tehtävä). Ymmärrä ja muista! v = v 0 + at S = v 0 t at2 F = ma

Pietarsaaren lukio Vesa Maanselkä

Pietarsaaren lukio Vesa Maanselkä Fys 9 / Mekaniikan osio Liike ja sen kuvaaminen koordinaatistossa Newtonin lait Voimavektorit ja vapaakappalekuvat Työ, teho,työ-energiaperiaate ja energian säilymislaki Liikemäärä ja sen säilymislaki,

Lisätiedot

Mekaniikka 1 Lukion fysiikan kertausta

Mekaniikka 1 Lukion fysiikan kertausta Mekaniikka 1 Lukion fysiikan kertausta 21.7.2009 Pietarsaaren lukio Vesa Maanselkä Kiihdyttäviä autoja, lipsuvia hihnoja, loistavia tehtäviä, loistavaa filosofiaa LAske! Sisältö Alustavia lähtökohtia mekaniikkaan...

Lisätiedot

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto Fysiikan perusteet Voimat ja kiihtyvyys Antti Haarto.05.01 Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure

Lisätiedot

Havainnoi mielikuviasi ja selitä, Panosta ajatteluun, selvitä liikkeen salat!

Havainnoi mielikuviasi ja selitä, Panosta ajatteluun, selvitä liikkeen salat! Parry Hotteri tutki näkymättömiä voimia kammiossaan Hän aikoi tönäistä pallon liikkeelle pöydällä olevassa ympyrän muotoisessa kourussa, joka oli katkaistu kuvan osoittamalla tavalla. Hän avasi Isaac Newtonin

Lisätiedot

Kitka ja Newtonin lakien sovellukset

Kitka ja Newtonin lakien sovellukset Kitka ja Newtonin lakien sovellukset Haarto & Karhunen Tavallisimpia voimia: Painovoima G Normaalivoima, Tukivoima Jännitysvoimat Kitkavoimat Voimat yleisesti F f T ja s f k N Vapaakappalekuva Kuva, joka

Lisätiedot

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis Fys1, moniste 2 Vastauksia Tehtävä 1 N ewtonin ensimmäisen lain mukaan pallo jatkaa suoraviivaista liikettä kun kourun siihen kohdistama tukivoima (tässä tapauksessa ympyräradalla pitävä voima) lakkaa

Lisätiedot

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Liike ja voima Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Tasainen liike Nopeus on fysiikan suure, joka kuvaa kuinka pitkän matkan kappale kulkee tietyssä ajassa. Nopeus voidaan

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Huom: luvun 4 kohdalla luennolla ei ollut laskuesimerkkejä, vaan koko luvun 5 voi nähdä kokoelmana sovellusesimerkkejä edellisen luvun asioihin! Esimerkki 5.1 Moottori roikkuu oheisen

Lisätiedot

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,

Lisätiedot

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t,

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, v)-koordinaatistossa ruutumenetelmällä. Tehtävä 4 (~YO-K97-1). Tekniikan

Lisätiedot

KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1

KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1 KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1 Tässä materiaalissa on ensin helpompia laskuja, joiden avulla voi kerrata perusasioita, ja sen jälkeen muutamia vaikeampia laskuja. Laskujen jälkeen

Lisätiedot

2.3 Voiman jakaminen komponentteihin

2.3 Voiman jakaminen komponentteihin Seuraavissa kappaleissa tarvitaan aina silloin tällöin taitoa jakaa voima komponentteihin sekä myös taitoa suorittaa sille vastakkainen operaatio eli voimien resultantin eli kokonaisvoiman laskeminen.

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 10.1 Tee-se-itse putkimies ei saa vesiputken kiinnitystä auki putkipihdeillään, joten hän päättää lisätä vääntömomenttia jatkamalla pihtien vartta siihen tiukasti sopivalla

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut A1 Ampumahiihtäjä ampuu luodin vaakasuoraan kohti maalitaulun keskipistettä. Luodin lähtönopeus on v 0 = 445 m/s ja etäisyys maalitauluun s = 50,0 m. a) Kuinka pitkä on luodin lentoaika? b) Kuinka kauaksi

Lisätiedot

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN

Lisätiedot

Kinematiikka -1- K09A,B&C Harjoitustehtäviä Kevät 2010 PARTIKKELI. Suoraviivainen liike

Kinematiikka -1- K09A,B&C Harjoitustehtäviä Kevät 2010 PARTIKKELI. Suoraviivainen liike Kinematiikka -1- K09A,B&C Harjoitustehtäviä Kevät 010 PARTIKKELI Suoraviivainen liike 1. Suoraviivaisessa liikkeessä olevan partikkelin asema on (järjestelmä m, s) 3 x ( = t 15t + 36t 10. Laske a) partikkelin

Lisätiedot

Mekaniikkaa ja sähköstatiikkaa Lukion fysiikan kertausta

Mekaniikkaa ja sähköstatiikkaa Lukion fysiikan kertausta Mekaniikkaa ja sähköstatiikkaa Lukion fysiikan kertausta 1.2.2010 Pietarsaaren lukio Vesa Maanselkä Kiihdyttäviä autoja, lipsuvia hihnoja, sähköisiä potentiaaleja loistavia tehtäviä, loistavaa filosofiaa

Lisätiedot

Massa ja paino. Jaana Ohtonen Språkskolan Kielikoulu. torsdag 9 januari 14

Massa ja paino. Jaana Ohtonen Språkskolan Kielikoulu. torsdag 9 januari 14 Massa ja paino Pohdi Miten pallon heittäminen poikkeaa kuulan heittämisestä? Auto lähtee liikkeelle rajusti kiihdyttäen. Mitä tapahtuu peilistä roikkuvalle koristeelle? Pohdi Miten pallon heittäminen poikkeaa

Lisätiedot

Muunnokset ja mittayksiköt

Muunnokset ja mittayksiköt Muunnokset ja mittayksiköt 1 a Mitä kymmenen potenssia tarkoittavat etuliitteet m, G ja n? b Mikä on massan (mass) mittayksikkö SI-järjestelmässäa? c Mikä on painon (weight) mittayksikkö SI-järjestelmässä?

Lisätiedot

RAK-31000 Statiikka 4 op

RAK-31000 Statiikka 4 op RAK-31000 Statiikka 4 op Opintojakson kotisivu on osoitteessa: http://webhotel2.tut.fi/mec_tme harjoitukset (H) harjoitusten malliratkaisut harjoitustyöt (HT) ja opasteet ilmoitusasiat RAK-31000 Statiikka

Lisätiedot

Tutkimusten mukaan opiskelijoilla on monia

Tutkimusten mukaan opiskelijoilla on monia Vuorovaikutuskaavion käyttö voimakäsitteen opetuksessa Asko Mäkynen, FT, matematiikan ja fysiikan lehtori, apulaisrehtori, Kurikan lukio Kirjoittaja väitteli 25.4.2014 Jyväskylän yliopistolla vuorovaikutuskaavion

Lisätiedot

Luento 6: Liikemäärä ja impulssi

Luento 6: Liikemäärä ja impulssi Luento 6: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Laskettuja esimerkkejä Luennon sisältö Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 1.6.2005, malliratkaisut.

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 1.6.2005, malliratkaisut. 1 Kuvaan 1 on piiretty kahden suoraviivaisesti samaan suuntaan liikkuvan auton ja B nopeudet ajan funktiona. utot ovat rinnakkain ajanhetkellä t = 0 s. a) Kuvaile auton liikettä ajan funktiona. Kumpi autoista

Lisätiedot

KALTEVA TASO. 1. Työn tavoitteet. 2. Teoria

KALTEVA TASO. 1. Työn tavoitteet. 2. Teoria Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1. Työn tavoitteet Tämän työn ensimmäisessä osassa tutkit kuulan, sylinterin ja sylinterirenkaan vierimistä pitkin kaltevaa tasoa.

Lisätiedot

Jakso 3: Dynamiikan perusteet Näiden tehtävien viimeinen palautus- tai näyttöpäivä on keskiviikko 5.8.2015.

Jakso 3: Dynamiikan perusteet Näiden tehtävien viimeinen palautus- tai näyttöpäivä on keskiviikko 5.8.2015. Jakso 3: Dynamiikan perusteet Näiden tehtävien viimeinen palautus- tai näyttöpäivä on keskiviikko 5.8.2015. Tässä jaksossa harjoittelemme Newtonin toisen lain soveltamista. Newtonin toinen laki on yhtälön

Lisätiedot

FYSIIKAN HARJOITUSTEHTÄVIÄ

FYSIIKAN HARJOITUSTEHTÄVIÄ FYSIIKAN HARJOITUSTEHTÄVIÄ MEKANIIKKA Nopeus ja keskinopeus 6. Auto kulkee 114 km matkan tunnissa ja 13 minuutissa. Mikä on auton keskinopeus: a) Yksikössä km/h 1. Jauhemaalaamon kuljettimen nopeus on

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Täydennä kuhunkin kohtaan yhtälöstä puuttuva suure tai vakio alla olevasta taulukosta. Anna vastauksena kuhunkin kohtaan ainoastaan

Lisätiedot

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi Fysiikan perusteet Työ, energia ja energian säilyminen Antti Haarto 0.09.0 Voiman tekemä työ Voiman F tekemä työ W määritellään kuljetun matkan s ja matkan suuntaisen voiman komponentin tulona. Yksikkö:

Lisätiedot

3.4 Liike-energiasta ja potentiaalienergiasta

3.4 Liike-energiasta ja potentiaalienergiasta Työperiaatteeksi (the work-energy theorem) kutsutaan sitä että suljetun systeemin liike-energian muutos Δ on voiman systeemille tekemä työ W Tämä on yksi konservatiivisen voiman erityistapaus Työperiaate

Lisätiedot

FY6 - Soveltavat tehtävät

FY6 - Soveltavat tehtävät FY6 - Soveltavat tehtävät 21. Origossa on 6,0 mikrocoulombin pistevaraus. Koordinaatiston pisteessä (4,0) on 3,0 mikrocoulombin ja pisteessä (0,2) 5,0 mikrocoulombin pistevaraus. Varaukset ovat tyhjiössä.

Lisätiedot

4.1 Vuorovaikutuksen käsite mekaniikan perustana

4.1 Vuorovaikutuksen käsite mekaniikan perustana 91 4 NEWTONIN KOLMS LKI Dynamiikan perusprobleema on kappaleen liikkeen ennustaminen siihen kohdistuvien vuorovaikutusten perusteella. Tämä on mahdollista, jos pystytään määrittämään kuhunkin vuorovaikutukseen

Lisätiedot

2.5 Liikeyhtälö F 3 F 1 F 2

2.5 Liikeyhtälö F 3 F 1 F 2 Tässä kappaleessa esittelen erilaisia tapoja, joilla voiat vaikuttavat kappaleen liikkeeseen. Varsinainen kappaleen pääteea on assan liikeyhtälön laatiinen, kun assaan vaikuttavat voiat tunnetaan. Sitä

Lisätiedot

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 31.5.2006, malliratkaisut ja arvostelu.

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 31.5.2006, malliratkaisut ja arvostelu. 1 Linja-autoon on suunniteltu vauhtipyörä, johon osa linja-auton liike-energiasta siirtyy jarrutuksen aikana Tätä energiaa käytetään hyväksi kun linja-autoa taas kiihdytetään Linja-auto, jonka nopeus on

Lisätiedot

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1). H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika

Lisätiedot

FYSP101/K1 KINEMATIIKAN KUVAAJAT

FYSP101/K1 KINEMATIIKAN KUVAAJAT FYSP101/K1 KINEMATIIKAN KUVAAJAT Työn tavoitteita tutustua kattavasti DataStudio -ohjelmiston käyttöön syventää kinematiikan kuvaajien (paikka, nopeus, kiihtyvyys) hallintaa oppia yhdistämään kinematiikan

Lisätiedot

SIMULINK 5.0 Harjoitus. Matti Lähteenmäki 2004 www.tpu.fi/~mlahteen/

SIMULINK 5.0 Harjoitus. Matti Lähteenmäki 2004 www.tpu.fi/~mlahteen/ SIMULINK 5.0 Harjoitus 2004 www.tpu.fi/~mlahteen/ SIMULINK 5.0 Harjoitus 2 Harjoitustehtävä. Tarkastellaan kuvan mukaisen yhden vapausasteen jousi-massa-vaimennin systeemin vaakasuuntaista pakkovärähtelyä,

Lisätiedot

Vuorovaikutuskaavion ja voimakuvion muodostamista ja Newtonin 3. lain osaamista testaavia tehtäviä

Vuorovaikutuskaavion ja voimakuvion muodostamista ja Newtonin 3. lain osaamista testaavia tehtäviä Vuorovaikutuskaavion ja voimakuvion muodostamista ja Newtonin 3. lain osaamista testaavia tehtäviä 1. a) Piirrä laskuvarjohyppääjälle ja kelluvalle korkille vuorovaikutuskaaviot, jossa on myös vuorovaikutustyyppi

Lisätiedot

1.4 Suhteellinen liike

1.4 Suhteellinen liike Suhteellisen liikkeen ensimmäinen esimerkkimme on joskus esitetty kompakysymyksenäkin. Esimerkki 5 Mihin suuntaan ja millä nopeudella liikkuu luoti, joka ammutaan suihkukoneesta mahdollisimman suoraan

Lisätiedot

On määritettävä puupalikan ja lattian välinen liukukitkakerroin. Sekuntikello, metrimitta ja puupalikka (tai jääkiekko).

On määritettävä puupalikan ja lattian välinen liukukitkakerroin. Sekuntikello, metrimitta ja puupalikka (tai jääkiekko). TYÖ 5b LIUKUKITKAKERTOIMEN MÄÄRITTÄMINEN Tehtävä Välineet Taustatietoja On määritettävä puupalikan ja lattian välinen liukukitkakerroin Sekuntikello, metrimitta ja puupalikka (tai jääkiekko) Kitkavoima

Lisätiedot

a) Kun skootterilla kiihdytetään ylämäessä, kitka on merkityksettömän pieni.

a) Kun skootterilla kiihdytetään ylämäessä, kitka on merkityksettömän pieni. AVOIN SARJA Kirjoita tekstaten koepaperiin oma nimesi, kotiosoitteesi, sähköpostiosoitteesi, opettajasi nimi sekä koulusi nimi. Kilpailuaikaa on 1 minuuttia. Sekä tehtävä- että koepaperit palautetaan kilpailun

Lisätiedot

Utsjoki 21.7.-1.8.2008 ABI KURSSI MEKANIIKKAA MOMENTUM IMPULSE ENERGY CONSERVATION. Rutherfordin sironta

Utsjoki 21.7.-1.8.2008 ABI KURSSI MEKANIIKKAA MOMENTUM IMPULSE ENERGY CONSERVATION. Rutherfordin sironta Utsjoki 21.7.-1.8.2008 ABI KURSSI MEKANIIKKAA MOMENTUM IMPULSE ENERGY CONSERVATION Rutherfordin sironta vm MOMENTUM IMPULSE COLLISIONS Rekan ja henkilöauton törmäyksessä vaikuttavia voimia on lukematon

Lisätiedot

www.mafyvalmennus.fi YO-harjoituskoe B / fysiikka Mallivastaukset

www.mafyvalmennus.fi YO-harjoituskoe B / fysiikka Mallivastaukset YO-harjoituskoe B / fysiikka Mallivastaukset 1. a) Laskuvarjohyppääjän pudotessa häneen vaikuttaa kaksi putoamisliikkeen kannalta merkittävää voimaa: painovoima ja ilmanvastusvoima. Painovoima on likimain

Lisätiedot

1.5 Tasaisesti kiihtyvä liike

1.5 Tasaisesti kiihtyvä liike Jos pudotat lyijykuulan aanpinnan läheisyydessä, sen vauhti kasvaa joka sekunti noin 9,8 etrillä sekunnissa kunnes törää aahan. Tai jos suoritat autolla lukkojarrutuksen kuivalla asvaltilla jostain kohtuullisesta

Lisätiedot

Luvun 8 laskuesimerkit

Luvun 8 laskuesimerkit Luvun 8 laskuesimerkit Esimerkki 8.1 Heität pallon, jonka massa on 0.40 kg seinään. Pallo osuu seinään horisontaalisella nopeudella 30 m/s ja kimpoaa takaisin niin ikään horisontaalisesti nopeudella 20

Lisätiedot

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun.

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun. Matematiikka KoTiA1 Demotehtäviä 1. Ratkaise epäyhtälöt x + 1 x 2 b) 3 x 1 < 2 x + 1 c) x 2 x 2 2. Ratkaise epäyhtälöt 2 x < 1 2 2 b) x 3 < x 2x 3. Olkoon f (x) kolmannen asteen polynomi jonka korkeimman

Lisätiedot

2.11 Väliaineen vastus

2.11 Väliaineen vastus Jokainen, joka on taistellut eteenpäin kohti kovaa vastatuulta tai yrittänyt juosta vedessä, tietää omasta kokemuksestaan, että väliaineella todellakin on vastus. Jos seisoo vain hiljaa paikoillaan vaikkapa

Lisätiedot

Harjoitustyö Hidastuva liike Biljardisimulaatio

Harjoitustyö Hidastuva liike Biljardisimulaatio Harjoitustyö Hidastuva liike Biljardisimulaatio Tietotekniikka Ammattialan matemaattiset menetelmät Tommi Sukuvaara Nico Hätönen, Joni Toivonen, Tomi Poutiainen INTINU13A6 Arviointi Päiväys Arvosana Opettajan

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2009, insinöörivalinnan fysiikan koe 27.5.2009, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2009, insinöörivalinnan fysiikan koe 27.5.2009, malliratkaisut Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2009, insinöörivalinnan fysiikan koe 27.5.2009, malliratkaisut 1 Huvipuiston vuoristoradalla vaunu (massa m v = 1100 kg) lähtee levosta liikkeelle

Lisätiedot

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7 Fy06 Koe 0.5.015 Kuopion Lyseon lukio (KK) 1/7 alitse kolme tehtävää. 6p/tehtävä. 1. Mitä mieltä olet seuraavista väitteistä. Perustele lyhyesti ovatko väitteet totta vai tarua. a. irtapiirin hehkulamput

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

5.3 Ensimmäisen asteen polynomifunktio

5.3 Ensimmäisen asteen polynomifunktio Yllä olevat polynomit P ( x) = 2 x + 1 ja Q ( x) = 2x 1 ovat esimerkkejä 1. asteen polynomifunktioista: muuttujan korkein potenssi on yksi. Yleisessä 1. asteen polynomifunktioissa on lisäksi vakiotermi;

Lisätiedot

Huomaa, että 0 kitkakerroin 1. Aika harvoin kitka on tasan 0. Koska kitkakerroin 1, niin

Huomaa, että 0 kitkakerroin 1. Aika harvoin kitka on tasan 0. Koska kitkakerroin 1, niin Kun alat vetää jotain esinettä pitkin alustaa, huomaat, että tarvitaan tietty nollaa suurempi voima ennen kuin mainittu esine lähtee edes liikkeelle. Yleensä on vielä niin, että liikkeelle lähteminen vaatii

Lisätiedot

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Suhteellisen liikkeen nopeuden ja kiihtyvyyden yhtälöt. Jäykän kappaleen partikkelin liike. Jäykän

Lisätiedot

Vektorit. Kertausta 12.3.2013 Seppo Lustig (Lähde: avoinoppikirja.fi)

Vektorit. Kertausta 12.3.2013 Seppo Lustig (Lähde: avoinoppikirja.fi) Vektorit Kertausta 12.3.2013 Seppo Lustig (Lähde: avoinoppikirja.fi) Sisällys Vektorit Nimeäminen Vektorien kertolasku Vektorien yhteenlasku Suuntasopimus Esimerkki: laivan nopeus Vektorit Vektoreilla

Lisätiedot

RATKAISUT. Luokka 1. Tehtävä 1. 1 a + 1 b = 1 f. , a = 2,0 m, b = 0,22 m. 1 f = a+ b. a) Gaussin kuvausyhtälö

RATKAISUT. Luokka 1. Tehtävä 1. 1 a + 1 b = 1 f. , a = 2,0 m, b = 0,22 m. 1 f = a+ b. a) Gaussin kuvausyhtälö RATKAISUT Luokka 1 Tehtävä 1 a) Gaussin kuvausyhtälö 1 a + 1 b = 1 f, a =,0 m, b = 0, m. 1 f = a+ b ab = f = ab,0 m 0, m = a+ b,0 m+ 0, m = 0,198198 m 0,0 m 1 p b) b = 0,5 m 1 a = b f bf a= bf b f = 0,5m

Lisätiedot

Voiman ja liikemäärän yhteys: Tämä pätee kun voima F on vakio hetken

Voiman ja liikemäärän yhteys: Tämä pätee kun voima F on vakio hetken Liikemäärä Henkilöauto törmää tukkirekkaan, miksi henkilöautossa olijat loukkaantuvat vakavasti, mutta rekan kuljettaja selviää yleensä aina vammoitta? Mihin suuntaan ja millä nopeudella rekka ja henkilöauto

Lisätiedot

Kuva 1. Langan päässä oleva massa m vetää pudotessaan lankaan kiinnitettyä M-massaista vaunua.

Kuva 1. Langan päässä oleva massa m vetää pudotessaan lankaan kiinnitettyä M-massaista vaunua. KIIHTYVÄ LIIKE 1 Johdanto Kuva 1. Langan päässä oleva massa m vetää pudotessaan lankaan kiinnitettyä M-massaista vaunua. Työssä kiinnitetään eri massaisia punnuksia langan ja väkipyörän kautta kiskolla

Lisätiedot

B sivu 1(6) AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE

B sivu 1(6) AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE B sivu 1(6) TEHTÄVÄOSA 7.6.2004 AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE YLEISOHJEITA Tehtävien suoritusaika on 2 h 45 min. Osa 1 (Tekstin ymmärtäminen) Osassa on 12 valintatehtävää. Tämän

Lisätiedot

2 Kappaleeseen vaikuttavat voimat

2 Kappaleeseen vaikuttavat voimat Kappaleeseen vaikuttavat voimat. Vuorovaikutus ja voima -. a) Sauvamagneetin ja Maan välillä vallitsee gravitaatiovuorovaikutus. Maan ja magneetin välillä on magneettinen vuorovaikutus. Kosketusvuorovaikutus

Lisätiedot

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)

Lisätiedot

FYSIIKAN AIHEKOKONAISUUDET

FYSIIKAN AIHEKOKONAISUUDET LUENTO 1: KINEMATIIKAN JA LuK Riku Järvinen 2.9.2009 SISÄLLYS 1 KINEMATIIKAN PERUSTEET Tasainen liike Esimerkki: nopeuden laskeminen tasaisessa liikkeessä Muuttuva liike Tasaisesti muuttuva liike Yleinen

Lisätiedot

ellipsirata II LAKI eli PINTA-ALALAKI: Planeetan liikkuessa sitä Aurinkoon yhdistävä jana pyyhkii yhtä pitkissä ajoissa yhtä suuret pinta-alat.

ellipsirata II LAKI eli PINTA-ALALAKI: Planeetan liikkuessa sitä Aurinkoon yhdistävä jana pyyhkii yhtä pitkissä ajoissa yhtä suuret pinta-alat. KEPLERIN LAI: (Ks. Physica 5, s. 5) Johannes Keple (57-60) yhtyi yko Bahen (546-60) havaintoaineiston pohjalta etsimään taivaanmekaniikan lainalaisuuksia. Keple tiivisti tutkimustyönsä kolmeen lakiinsa

Lisätiedot

VOIMA, LIIKE JA TASAPAINO

VOIMA, LIIKE JA TASAPAINO MUISTA RAPORTTI: VOIMA MUUTTAA LIIKETTÄ TIETOA JA TUTKIMUKSIA -Mitä tein? -Mitä ennustin? -Mitä tuloksia sain? -Johtopäätökseni Kappale, johon eivät voimat vaikuta pysyy paikoillaan tai liikkuu vakionopeudella

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut Diplomi-insino o rien ja arkkitehtien yhteisalinta - dia-alinta 15 Insino o rialinnan fysiikan koe 7.5.15, malliratkaisut A1 Pallo (massa m = 1, kg, sa de r =, cm) nojaa kur an mukaisesti pystysuoraan

Lisätiedot

Lineaarialgebra MATH.1040 / voima

Lineaarialgebra MATH.1040 / voima Lineaarialgebra MATH.1040 / voima 1 Seuraavaksi määrittelemme kaksi vektoreille määriteltyä tuloa; pistetulo ja. Määritelmät ja erilaiset tulojen ominaisuudet saattavat tuntua, sekavalta kokonaisuudelta.

Lisätiedot

Integraalilaskenta. Markus Hähkiöniemi Satu Juhala Petri Juutinen Sari Louhikallio-Fomin Erkki Luoma-aho Terhi Raittila Tommi Tikka

Integraalilaskenta. Markus Hähkiöniemi Satu Juhala Petri Juutinen Sari Louhikallio-Fomin Erkki Luoma-aho Terhi Raittila Tommi Tikka Integraalilaskenta 9 Markus Hähkiöniemi Satu Juhala Petri Juutinen Sari Louhikallio-Fomin Erkki Luoma-aho Terhi Raittila Tommi Tikka Helsingissä Kustannusosakeyhtiö Otava Kirjan rakenne Aiemmin opiskeltua

Lisätiedot

Mikä neljästä numeroidusta kuviosta jatkaa alkuperäistä kuviosarjaa? Perustele lyhyesti

Mikä neljästä numeroidusta kuviosta jatkaa alkuperäistä kuviosarjaa? Perustele lyhyesti Tehtävä 1. Mikä neljästä numeroidusta kuviosta jatkaa alkuperäistä kuviosarjaa? Perustele lyhyesti a) 1 4 b) 1 4 a) - kuvio, annetaan 1,5 p - ympyrä täyttyy neljänneksen kerrallaan, annetaan 1,5 p b) -

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 11.1 Sigge-serkku tasapainoilee sahapukkien varaan asetetulla tasapaksulla puomilla, jonka pituus L = 6.0 m ja massa M = 90 kg. Sahapukkien huippujen välimatka D = 1.5

Lisätiedot

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi Magneettikentät Haarto & Karhunen Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän Magneettikenttä aiheuttaa voiman liikkuvaan

Lisätiedot

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! 1. Vastaa, ovatko seuraavat väittämät oikein vai väärin. Perustelua ei tarvitse kirjoittaa. a) Atomi ei voi lähettää

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2010 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 4. kesäkuuta 2010 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta. K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy

Lisätiedot

Matemaattista mallintamista

Matemaattista mallintamista Johdatus GeoGebraan Matemaattista mallintamista Harjoitus 2A. Tutkitaan eksponentiaalista kasvua ja eksponenttifunktioita Auringonkukka (Helianthus annuus) on yksivuotinen kasvi, jonka varren pituus voi

Lisätiedot

MATEMATIIKKA 3 VIIKKOTUNTIA

MATEMATIIKKA 3 VIIKKOTUNTIA EB-TUTKINTO 010 MATEMATIIKKA 3 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 4 kesäkuuta 010 KOKEEN KESTO: 3 tuntia (180 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa olla

Lisätiedot

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Tuuliturbiinin toiminta TUULIVOIMALAN RAKENNE

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Tuuliturbiinin toiminta TUULIVOIMALAN RAKENNE SMG-4500 Tuulivoima Neljännen luennon aihepiirit Tuulivoimalan rakenne Tuuliturbiinin toiminta Turbiinin teho Nostovoima ja vastusvoima Suhteellinen tuuli Pintasuhde Turbiinin tehonsäätö 1 TUULIVOIMALAN

Lisätiedot

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola 9 E matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava Yhteenlaskumenetelmän harjoittelua Joskus

Lisätiedot

DYNAMIIKAN PERUSKÄSITTEET

DYNAMIIKAN PERUSKÄSITTEET DYNAMIIKAN PERUSKÄSITTEET 1. Perushahmotus Kappale Mekaniikassa kappaleiksi sanotaan yleisesti kaikkia aineellisia olioita. Kappaleita ovat esimerkiksi: pallo, kirja, pöytä ja auto. Myös elektroni on kappale,

Lisätiedot

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille]

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] A) p 1, V 1, T 1 ovat paine tilavuus ja lämpötila tilassa 1 p 2, V 2, T 2 ovat paine tilavuus ja

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

Fysiikan kurssit. MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka

Fysiikan kurssit. MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka Fysiikan kurssit MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka Valtakunnalliset kurssit 1. Fysiikka luonnontieteenä 2. Lämpö 3. Sähkö 4. Voima ja liike 5. Jaksollinen liike ja aallot 6. Sähkömagnetismi

Lisätiedot

FYS01: Fysiikka luonnontieteenä

FYS01: Fysiikka luonnontieteenä FYS01: Fysiikka luonnontieteenä kurssin muistiinpanot Rami Nuotio päivitetty 29.10.2009 Sisältö 1. Johdanto 3 1.1. Mitä fysiikka on? 3 1.2. Miksi fysiikkaa? 3 2. Mittaaminen 3 2.1. Suure 3 2.2. Yksikönmuunnoksia

Lisätiedot

Jännite, virran voimakkuus ja teho

Jännite, virran voimakkuus ja teho Jukka Kinkamo, OH2JIN oh2jin@oh3ac.fi +358 44 965 2689 Jännite, virran voimakkuus ja teho Jännite eli potentiaaliero mitataan impedanssin yli esiintyvän jännitehäviön avulla. Koska käytännön radioamatöörin

Lisätiedot

The permanent address of the publication is http://urn.fi/urn:nbn:fi:uta- 201212121096

The permanent address of the publication is http://urn.fi/urn:nbn:fi:uta- 201212121096 This document has been downloaded from Tampub The Institutional Repository of University of Tampere The permanent address of the publication is http://urn.fi/urn:nbn:fi:uta- 201212121096 Kustantajan versio

Lisätiedot

(µ 2 sg 2 a 2 t )r2. t = a t

(µ 2 sg 2 a 2 t )r2. t = a t Fysiikan valintakokeen 11.6.2013 klo 10-13 ratkaisut 1. Auto lähtee levosta hetkellä t = 0 ympyrän muotoiselle vaakasuoralle radalle tasaisella tangenttikiihtyvyydellä a t = 2,34 m/s 2. Oleta, että tien

Lisätiedot

a) Kuinka pitkän matkan punnus putoaa, ennen kuin sen liikkeen suunta kääntyy ylöspäin?

a) Kuinka pitkän matkan punnus putoaa, ennen kuin sen liikkeen suunta kääntyy ylöspäin? Luokka 3 Tehtävä 1 Pieni punnus on kiinnitetty venymättömän langan ja kevyen jousen välityksellä tukevaan kannattimeen. Alkutilanteessa punnusta kannatellaan käsin, ja lanka riippuu löysänä kuvan mukaisesti.

Lisätiedot

1.1 Funktion määritelmä

1.1 Funktion määritelmä 1.1 Funktion määritelmä Tämän kappaleen otsikoksi valittu funktio on hyvä esimerkki matemaattisesta käsitteestä, johon usein jopa tietämättämme törmäämme arkielämässä. Tutkiessamme erilaisia Jos joukkojen

Lisätiedot

5.4.3 I-testi, impulsiivinen voima

5.4.3 I-testi, impulsiivinen voima 148 5.4.3 I-testi, impulsiivinen voima Seuraavassa tarkastellaan testin tuloksia ja oppilaiden antamia perusteluja. Kuvioiden lyhenteiden tulkinnassa voi käyttää apuna taulukkoa 31. TAULUKKO 31. Kuvioissa

Lisätiedot

Fysiikan perusteet. SI-järjestelmä. Antti Haarto 21.05.2012. www.turkuamk.fi

Fysiikan perusteet. SI-järjestelmä. Antti Haarto 21.05.2012. www.turkuamk.fi Fysiikan perusteet SI-järjestelmä Antti Haarto 21.05.2012 Fysiikka ja muut luonnontieteet Ihminen on aina pyrkinyt selittämään havaitsemansa ilmiöt Kreikkalaiset filosofit pyrkivät selvittämään ilmiöt

Lisätiedot

Funktion derivoituvuus pisteessä

Funktion derivoituvuus pisteessä Esimerkki A Esimerkki A Esimerkki B Esimerkki B Esimerkki C Esimerkki C Esimerkki 4.0 Ratkaisu (/) Ratkaisu (/) Mielikuva: Funktio f on derivoituva x = a, jos sen kuvaaja (xy-tasossa) pisteen (a, f(a))

Lisätiedot

Ensimmäisen asteen polynomifunktio

Ensimmäisen asteen polynomifunktio Ensimmäisen asteen polnomifunktio Yhtälön f = a+ b, a 0 määrittelemää funktiota sanotaan ensimmäisen asteen polnomifunktioksi. Esimerkki. Ensimmäisen asteen polnomifuktioita ovat esimerkiksi f = 3 7, v()

Lisätiedot

RATKAISUT: 3. Voimakuvio ja liikeyhtälö

RATKAISUT: 3. Voimakuvio ja liikeyhtälö Phyica 9. paino (8) 3. Voiakuvio ja liikeyhtälö : 3. Voiakuvio ja liikeyhtälö 3. a) Newtonin I laki on nieltään jatkavuuden laki. Kappale jatkaa liikettään uoraviivaieti uuttuattoalla nopeudella tai pyyy

Lisätiedot

Liike pyörivällä maapallolla

Liike pyörivällä maapallolla Liike pyörivällä maapallolla Voidaan olettaa: Maan pyöriminen tasaista Maan rataliikkeen näennäisvoimat tasapainossa Auringon vetovoiman kanssa Riittää tarkastella Maan tasaisesta pyörimisestä akselinsa

Lisätiedot

Opetusmateriaali. Fermat'n periaatteen esittely

Opetusmateriaali. Fermat'n periaatteen esittely Opetusmateriaali Fermat'n periaatteen esittely Hengenpelastajan tehtävässä kuvataan miten hengenpelastaja yrittää hakea nopeinta reittiä vedessä apua tarvitsevan ihmisen luo - olettaen, että hengenpelastaja

Lisätiedot

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE Harmoninen voima on voima, jonka suuruus on suoraan verrannollinen poikkeamaan tasapainoasemasta

Lisätiedot

Numeeriset menetelmät Pekka Vienonen

Numeeriset menetelmät Pekka Vienonen Numeeriset menetelmät Pekka Vienonen 1. Funktion nollakohta Newtonin menetelmällä 2. Määrätty integraali puolisuunnikassäännöllä 3. Määrätty integraali Simpsonin menetelmällä Newtonin menetelmä Newtonin

Lisätiedot

Kenguru 2015 Benjamin (6. ja 7. luokka)

Kenguru 2015 Benjamin (6. ja 7. luokka) sivu 1 / 8 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

Digitaalinen fysiikan ylioppilaskoe. Ville Havu Fysiikan jaos

Digitaalinen fysiikan ylioppilaskoe. Ville Havu Fysiikan jaos Digitaalinen fysiikan ylioppilaskoe Ville Havu Fysiikan jaos Sisältö Fysiikan kokeen rakenne Kokonaispisteiden jakautuminen osien A-D välillä Mallitehtäviä HUOM! Kalvoissa esitetty fysiikan kokeen rakenne

Lisätiedot