S Piirianalyysi 2 Tentti

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "S-55.1220 Piirianalyysi 2 Tentti 4.1.2007"

Transkriptio

1 S-55.2 Piirianalyyi 2 Tentti Piiriä yöttää kaki lähdettä, joilla on eri taajuudet. Kuinka uuri on lämmöki muuttuva teho P? Piiri on jatkuvuutilaa. J 2 00 Ω 5µH 0 pf 0/0 V J 2 00/0 ma f MHz f 2 2MHz. 2. k Kytkin k avataan hetkellä t 0, jota ennen piiri on jatkuvuutilaa. ake jännite u(t) ajan funktiona kytkimen avaamien jälkeen. u(t) 00 Ω mh V 2,5 µf. 3. kautta ähköverkkoon oheien kuvan mukaieti. ake I Kuorma kytketään z-parametreilla kuvatun piirin virta I. z z 4Ω z 2 z 2 j5ω 33Ω z 22 67Ω 230/0 V Ω. 4. g I ake virta I. Z 0,l 2 Z 0 Ω g Ω 0/0 V 400 pf 2 00 pf ω 0 8 rad/ l λ Z 02 Valite häviöttömien iirtojohtojen 2 ja 3 pituudet iten, että SAShäviöttömällä johdolla on. Kaikki johdot ovat ilmaeriteiiä. Yki oikea ratkaiu riittää. Z 0 Z 03 25Ω f GHz Z 0 Ω Z 02 Ω Z 03 Ω. Kirjoita nimei ja opikelijanumeroi Smithin karttaan ja palauta e oana vatautai! Tutkintoääntö antaa mahdolliuuden järjetää liäharjoituta niille opikelijoille, jotka ovat aaneet kolmeti hylätyn arvoanan välikokeita tai tentitä. Tämä tarkoittaaitä, että aatuaan kolme nollaa, opikelijan on palautettava lakettuna aitentin määräämää liätehtävää ennen euraavaan tenttiin tai välikokeeeen oallitumita. Välikokeet ja välikokeen uuinta tai uuintatilaiuudea tehty tentti laketaan yhdeki yritykeki. Ykittäinen välikoe laketaan puolikkaaki uoritukerraki. änäolo koetilaiuudea laketaan yritykeki, amoin tenttiin ilmoittautuminen.

2 aplace-muunnotaulukko Määritelmä. f(t) F () {f(t)} f(t) aplace-muunnoken ominaiuukia 2. A f (t)+a 2 f 2 (t) A F ()+A 2 F 2 () t d dt f(t) d n dt n f(t) F () f(0) n F () 5. f(τ)dτ 0 F () 6. ( t) n f(t) d n d n F () 7. f(t a)ε(t a) e a F () 8. f(t + a) e a (F () 0 f(t)e t dt F () {f(t)} n n i f (i ) (0) i a 0 e t f(t)dt) 9. e at f(t) F ( + a) 0. f(at) ( ) a F a. jakollinen funktio f(t) f(t + T ) F () e T, F () yhden jakon muunno. 2. f (t) f 2 (t) t 0 f (τ)f 2 (t τ)dτ F ()F 2 () 3. f(0 + ) lim F () 4. f( ) lim 0 F (), jo loppuarvo on olemaa f(t) Muunnopareja 5. δ(t) F () {f(t)} 6. aε(t) a 7. t 2 8. t n n! n+ 9. e at + a. e at e bt b a ( + a)( + b) ω 2. in(ωt) 2 + ω co(ωt) 2 + ω 2 a 23. inh(at) 2 a coh(at) 2 a e at ω in(ωt) ( + a) 2 + ω e at co(ωt) + a ( + a) 2 + ω e at t n n! t 2ω in(ωt) 29. [ε(t) ε(t π/ω)] in(ωt) ( + a) n+ ( 2 + ω 2 ) ( 2 +e π/ω) ω 2 + ω 2

3 . J 2 Piiriä yöttää kaki lähdettä, joilla on eri taajuudet. Kuinka uuri on lämmöki muuttuva teho P? Piiri on jatkuvuutilaa. 00 Ω 5µH 0 pf 0/0 V J 2 00/0 ma f MHz f 2 2MHz. aketaan kerrotamalla yki taajuu kerrallaan. jω U U jω + jω +jω jω + ω 2 0,477/ 9,2 V P U 2,098 W J 2 U 2 U 2 J 2 + jω +jω 2 2 jω 2 J 2 jω 2 + ω2 2 7,2/43,9 V P 2 U 2 2 0,59 W P P + P 2,66 W

4 .2 k u(t) Kytkin k avataan hetkellä t 0,jotaennenpiirion jatkuvuutilaa. ake jännite u(t) ajan funktiona kytkimen avaamien jälkeen. 00 Ω mh V 2,5 µf. aketaan alkuarvot: k u(t) U 0 I 0 2 0,A + 2 0V Piiri aplace-muunnettuna I 0 I() U() I() U 0 + I U 0 U() U 0 U 0 I() U 0 U 0 U 0 + I U 0 + I U 0 + I 0 ( ) U 0( ) U 0 I 0 ( ) U 0 + U 0 I Nimittäjän nollakohdat: 000 ja U() A B U 0 + U 0 I ( + 000)( ) A B lim ( + 000) ( + 000)( ) 32 3 lim ( ) ( + 000)( ) U() ( 32 u(t) 3 e 000t 2 ) 3 e 4000t V, kun t

5 .3 z kautta ähköverkkoon oheien kuvan mukaieti. ake I Kuorma kytketään z-parametreilla kuvatun piirin virta I. z 4Ω z 2 z 2 j5ω 33Ω z 22 67Ω 230/0 V Ω. Koka piiri on reiprookkinen (z 2 z 2 ), voidaan käyttää ykinkertaita ijaikytkentää. z z 2 z 22 z 2 İ I I 2 z 2 İ Silmukkayhtälöt [ ][ ] [ + z z 2 + z 2 z 2 I z 2 + z 22 z 2 + z 2 I 2 0 [ 5 j5 j5 00 ][ ] [ I 230 I 2 0 ] ] atkaitaan vatuken läpi kulkeva virta ramerin äännöllä j5 0 I 2 5 j5 j 525 A 2,9/90 A j5 00 Vatukea kulkeva virta I I 2 2,9/90 A

6 .4 g I ake virta I. Z 0,l 2 Z 0 Ω g Ω 0/0 V 400 pf 2 00 pf ω 0 8 rad/ l λ 4. Häviöttömien iirtojohtojen yhtälöt: I a I b [ Ua ] [ I a co (βl) j Z 0 in (βl) jz 0 in (βl) co(βl) ][ Ub I b ] U a Z 0, l U b β 2π λ atkaitaan johdon alkupäätä näkyvä admittani kun βl π 2 : Y in I a j Z 0 in (βl)u b +co(βl)i b U a co (βl)u b +jz 0 in (βl)i b miä Y on johdon loppupään admittani. aketaan kondenaattorien admittanit: Z 0 U b Z 0 I b Z 0 2 Y, Y Y 2 jω 2 j0ms ja Y jω j40ms Kondenaattorien ja johdon kokonaiadmittaniki aadaan: Y Y in + Y Z 0 2 Y + Y 0 Koka admittani on nolla, kondenaattorit ja iirtojohto edutavat avointa piiriä tällä taajuudella, eikä virtaa kulje. I 0.

7 7.5 Z 0 Z 03 Z 02 Valite häviöttömien iirtojohtojen 2 ja 3 pituudet iten, että SAShäviöttömällä johdolla on. Kaikki johdot ovat ilmaeriteiiä. Yki oikea ratkaiu riittää. 25Ω f GHz Z 0 Ω Z 02 Ω Z 03 Ω. Koka ovitu tehdaan rinnakkaitubilla, käytetään inpedanien ijata admittaneja. Kuormakonduktani G 0, 04 S. Normalioidaan konduktani jakamalla johdon ominaiadmittanilla (kerrotaan ominaiimpedanilla Z 0.) g 2 Sijoitetaan aatu arvo Smithin diagrammille ja iirrytään generaattoriin päin kunne admittanin reaalioa on taan. iikuttu matka on S 2 48λ 5λ 0, 098λ Imaginarioa on noin 0, 7. Tarvitaan rinnakkaitubi, jonka alkupäätä näkyvä admittani on j0, 7. Kuljetaan oikoulkua vataavata kohdata (admittani ääretön) generaattoriin päin kunne päätään admittaniin j0, 7 Kuljettu matka 3 0, 25λ +0, 098λ 0, 348λ. Kun taajuu on GHz, aallonpituu on 30 cm ja pituukiki aadaan 2 2, 94 cm ja 3 0, 44 cm Tää tapaukea olii kyllä ollut parempi käyttää avointa tubia. Näin olii rinnakkaitubita tullut huomattavati lyhyempi > WAVNGTHS TOWAD GNATO > < WAVNGTHS TOWAD OAD < INDUTIV ATAN OMPONNT (+jx/zo), O APAITIV SUSPTAN (+jb/yo) APAITIV ATAN OMPONNT (-jx/zo), O INDUTIV SUSPTAN (-jb/yo) SISTAN OMPONNT (/Zo), O ONDUTAN OMPONNT (G/Yo) ANG OF FTION OFFIINT IN DGS F. OFF, or I ADIAY SAD PAAMTS F. OFF, P NT SW dbs

S-55.1220 Piirianalyysi 2 Tentti 27.10.2011

S-55.1220 Piirianalyysi 2 Tentti 27.10.2011 S-55.220 Piirianalyyi 2 Tentti 27.0. j(t) u(t) -piiriin vaikuttaa lähdevirta j(t) = A ĵ in(ωt)]. Lake piirin jännite u(t) ajan funktiona ja vatukea kuluva teho. Piiri on jatkuvuutilaa. ĵ = 0,5A = 2µF ω

Lisätiedot

S-55.1220 Piirianalyysi 2 Tentti 1.9.2011

S-55.1220 Piirianalyysi 2 Tentti 1.9.2011 S-55.2 Piirianalyyi 2 Tentti.9.. e(t) L j(t) Lake vatukea lämmöki muuttuva teho P. = Ω L = mh = 2mF ω = 0 3 rad/ e = ê in(ωt) j = ĵ in(2ωt) ĵ = 0 A ê = 2 2 V. 2. u(t) k Kuvan mukainen taajännitelähteen

Lisätiedot

S Piirianalyysi 2 Tentti

S Piirianalyysi 2 Tentti S-55.2 Piirianalyyi 2 Tentti 4.9.06. j(t) u(t) ake jännite u(t) ajan funktiona ja vatukea kuluva teho, kun j(t) ĵ in(ω t)+ĵ 2 in(ω 2 t) ja piiri on jatkuvuutilaa. Ω 5µH 00 nf ĵ 300 ma ĵ 2 0 ma ω 0 6 rad/

Lisätiedot

S Piirianalyysi 2 1. Välikoe

S Piirianalyysi 2 1. Välikoe S-55.0 Piirianalyyi. Välioe 9.3.007 ae tehtävät eri paperille uin tehtävät 3 5. Muita irjoittaa joaieen paperiin elväti nimi, opielijanumero, urin nimi ja oodi. Tehtävät laetaan oaton oepaperille. Muita

Lisätiedot

S Piirianalyysi 2 2. välikoe

S Piirianalyysi 2 2. välikoe S-55.22 Piirianalyyi 2 2. välikoe 6.5.23 Lake tehtävät 2 eri paperille kuin tehtävät 3 5. Muita kirjoittaa jokaieen paperiin elväti nimi, opikelijanumero, kurin nimi ja koodi. Epäelvät vataupaperit voidaan

Lisätiedot

ELEC-C4120 Piirianalyysi II 2. välikoe

ELEC-C4120 Piirianalyysi II 2. välikoe LC-C4 Piirianalyyi II 2. välikoe 8.4.4 Vataa KOLMN tehtävään.. e (t) R C Oheiea piiriä vaikuttaa taajännitelähde = V ekä e (t) = ê in(ω 0 t)+ê 2 in(2ω 0 t). Lake vatukea kuluva pätöteho P. ê = 2 V ê 2

Lisätiedot

S /142 Piirianalyysi 2 2. Välikoe

S /142 Piirianalyysi 2 2. Välikoe S-55.0/4 Piirianalyysi. Välikoe.5.006 Laske tehtävät eri paperille kuin tehtävät 3 5. Muista kirjoittaa jokaiseen paperiin selvästi nimi, opiskelijanumero, kurssin nimi ja koodi. Tehtävät lasketaan osaston

Lisätiedot

S Piirianalyysi 1 2. välikoe

S Piirianalyysi 1 2. välikoe S-55.20 Piirianalyysi 2. välikoe 4.2.200 aske tehtävät 2 eri paperille kuin tehtävät 3 5. Muista kirjoittaa jokaiseen paperiin selvästi nimi, opiskelijanumero, kurssin nimi ja koodi. Tehtävät lasketaan

Lisätiedot

S Piirianalyysi 2 1. Välikoe

S Piirianalyysi 2 1. Välikoe S-55.0 Piirianalyyi. Välioe.3.0 ae ehävä eri paperille uin ehävä 3 5. Muia irjoiaa joaieen paperiin elväi nimi, opielijanumero, urin nimi ja oodi. Tehävä laeaan oreaoulun oepaperille. Muia papereia ei

Lisätiedot

S-55.1220/142 Piirianalyysi 2 1. Välikoe 10.3.2006

S-55.1220/142 Piirianalyysi 2 1. Välikoe 10.3.2006 S-55.0/4 Piirianalyyi. Välioe 0.3.006 ae tehtävät 3 eri paperille in tehtävät 4 5. Mita irjoittaa joaieen paperiin elväti nimi, opielijanmero, rin nimi ja oodi. Tehtävät laetaan oaton oepaperille. Mita

Lisätiedot

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 5

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 5 5384A RADIOTEKNIIKAN PERUSTEET Haroitu 5. Häviötön 5 Ω:n aaltoohto on päätetty tuntemattomaan impedaniin. Aaltoohdolla olevaki ännitteen eiovan aallon uhteeki aadaan 3 a enimmäinen minimi havaitaan 5 cm:n

Lisätiedot

SATE2010 Dynaaminen kenttäteoria syksy /8 Laskuharjoitus 7 / Smithin-kartan käyttö siirtojohtojen sovituksessa

SATE2010 Dynaaminen kenttäteoria syksy /8 Laskuharjoitus 7 / Smithin-kartan käyttö siirtojohtojen sovituksessa SATE2010 Dynaaminen kenttäteoria syksy 2010 1 /8 Tehtävä 1. Häviötön linja (70 Ω), joka toimii taajuudella 280 MHz, on päätetty kuormaan Z = 60,3 /30,7 Ω. Käytä Smithin karttaa määrittäessäsi, kuinka suuri

Lisätiedot

Intensiteettitaso ja Doplerin ilmiö

Intensiteettitaso ja Doplerin ilmiö Inteniteettitao ja Doplerin ilmiö Tehtävä Erkki työkentelee airaalaa. Sairaalalta 6,0 km päää on tapahtunut tieliikenneonnettomuu ja onnettomuupaikalta lähteneen ambulanin ireenin ääni kuuluu Erkille 60,0

Lisätiedot

( ) ( ) 14 HARJOITUSTEHTÄVIÄ SÄHKÖISET PERUSSUUREET SÄHKÖVERKON PIIRIKOMPONENTIT

( ) ( ) 14 HARJOITUSTEHTÄVIÄ SÄHKÖISET PERUSSUUREET SÄHKÖVERKON PIIRIKOMPONENTIT 4 HAJOTUSTHTÄVÄ SÄHKÖST PUSSUUT -auton akku (84 V, 700 mah on ladattu täyteen Kuinka uuri oa akun energiata kuluu enimmäien viiden minuutin aikana, kun oletetaan moottorin ottavan vakiovirran 5 A? Oletetaan

Lisätiedot

l s, c p T = l v = l l s c p. Z L + Z 0

l s, c p T = l v = l l s c p. Z L + Z 0 1.1 i k l s, c p Tasajännite kytketään hetkellä t 0 johtoon, jonka pituus on l ja jonka kapasitanssi ja induktanssi pituusyksikköä kohti ovat c p ja l s. Mieti, kuinka virta i käyttäytyy ajan t funktiona

Lisätiedot

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 51384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 1. Tutkitaan mikroliuskajohtoa, jonka substraattina on kvartsi (ε r 3,8) ja jonka paksuus (h) on,15 mm. a) Mikä on liuskan leveyden w oltava, jotta ominaisimpedanssi

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.00 SÄHKÖTKNIIKKA JA KTONIIKKA Tentti 4.5.2009: tehtävät,,4,6,9. välikoe: tehtävät,2,,4,5 2. välikoe: tehtävät 6,7,8,9,0 Saat vastata vain neljään tehtävään/koe. Sallitut: Kako, (gr.) laskin, (MAO)..

Lisätiedot

S SÄHKÖTEKNIIKKA Kimmo Silvonen

S SÄHKÖTEKNIIKKA Kimmo Silvonen S55.103 SÄHKÖTKNKK 21.12.2000 Kimmo Silvonen Tentti: tehtävät 1,3,4,8,9 1. välikoe: tehtävät 1,2,3,4,5 2. välikoe: tehtävät,7,8,9,10 Oletko jo ehtinyt vastata palautekyselyyn Voit täyttää lomakkeen nyt.

Lisätiedot

RATKAISUT: 17. Tasavirtapiirit

RATKAISUT: 17. Tasavirtapiirit Phyica 9. paino 1(6) ATKAST 17. Taavirtapiirit ATKAST: 17. Taavirtapiirit 17.1 a) Napajännite on laitteen navoita mitattu jännite. b) Lähdejännite on kuormittamattoman pariton napajännite. c) Jännitehäviö

Lisätiedot

S SÄHKÖTEKNIIKKA Kimmo Silvonen

S SÄHKÖTEKNIIKKA Kimmo Silvonen S-55.103 SÄHKÖTKNIIKKA 19.12.2002 Kimmo Silvonen Tentti: tehtävät 1,3,4,7,9 1. välikoe: tehtävät 1,2,3,4,5 2. välikoe: tehtävät 6,7,8,9,10 Oletko muistanut vastata palautekyselyyn? Voit täyttää lomakkeen

Lisätiedot

SATE2010 Dynaaminen kenttäteoria syksy /6 Laskuharjoitus 6 / Siirtojohdot ja transientit häviöttömissä siirtojohdoissa

SATE2010 Dynaaminen kenttäteoria syksy /6 Laskuharjoitus 6 / Siirtojohdot ja transientit häviöttömissä siirtojohdoissa ATE2010 Dynaaminen kenttäteoria syksy 2011 1 /6 Tehtävä 1. 0,67 m pitkä häviötön siirtojohdon (50 Ω) päässä on kuorma Z L = (100 - j50) Ω. iirtojohtoa syötetään eneraattorilla (e (t) = 10sin(ωt + 30º)

Lisätiedot

MHz. Laske. = 1,5 j1,38

MHz. Laske. = 1,5 j1,38 . Z a Z 0, l Z Johto, jonka ominaisimpedanssi on Z 0 = Ω, on päätetty impedanssilla Z = (75 j69) Ω. Johdon pituus on l = 3,5 m ja sitä syötetään taajuudella f = MHz. Laske (a) syöttöpisteimpedanssi Z a

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.00 SÄHKÖTKNIIKK J KTONIIKK Kimmo Silvonen alto-yliopisto, sähkötekniikan korkeakoulu C Välikoe on kääntöpuolella! Tentti 7.4.04. Tehtävät,, 4, 6, 7. Saat vastata vain neljään tehtävään! Sallitut:

Lisätiedot

1. Erään piirin impedanssimittauksissa saatiin seuraavat tulokset:

1. Erään piirin impedanssimittauksissa saatiin seuraavat tulokset: 521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 4 1. Erään piirin impedanssimittauksissa saatiin seuraavat tulokset: f [MHz] [Ω] 870 120-j100 875 100-j80 880 80-j55 885 70-j30 890 70-j15 895 65+j10 900 70+j30

Lisätiedot

C 2. + U in C 1. (3 pistettä) ja jännite U C (t), kun kytkin suljetaan ajanhetkellä t = 0 (4 pistettä). Komponenttiarvot ovat

C 2. + U in C 1. (3 pistettä) ja jännite U C (t), kun kytkin suljetaan ajanhetkellä t = 0 (4 pistettä). Komponenttiarvot ovat S-87.2 Tentti 6..2007 ratkaisut Vastaa kaikkiin neljään tehtävään! C 2 I J 2 C C U C Tehtävä atkaise virta I ( pistettä), siirtofunktio F(s) = Uout ( pistettä) ja jännite U C (t), kun kytkin suljetaan

Lisätiedot

Erään piirikomponentin napajännite on nolla, eikä sen läpi kulje virtaa ajanhetkellä 0 jännitteen ja virran arvot ovat. 500t.

Erään piirikomponentin napajännite on nolla, eikä sen läpi kulje virtaa ajanhetkellä 0 jännitteen ja virran arvot ovat. 500t. DEE- Piirianalyysi Harjoitus / viikko 4 Erään piirikomponentin napajännite on nolla, eikä sen läpi kulje virtaa ajanhetkellä jännitteen ja virran arvot ovat t Kun t, v te t 5t 8 V, i te t 5t 5 A, a) Määritä

Lisätiedot

Viikkotehtävät IV, ratkaisut

Viikkotehtävät IV, ratkaisut Viikkotehtävät IV, ratkaiut. 7,40 V (pariton napajännite) I 7 ma (lampun A ähkövirta rinnankytkennää) I 5 ma (lampun B ähkövirta rinnankytkennää) a) eitani on, joten lamppujen reitanit voidaan lakea tehtävää

Lisätiedot

LUKION FYSIIKKAKILPAILU 8.11.2005 avoimen sarjan vast AVOIN SARJA

LUKION FYSIIKKAKILPAILU 8.11.2005 avoimen sarjan vast AVOIN SARJA LKION FYSIIKKAKILPAIL 8..5 avoien arjan vat AVOIN SARJA Kirjoita tektaten koepaperiin oa niei, kotiooitteei, ähköpotiooitteei, opettajai nii ekä koului nii. Kilpailuaikaa on inuuttia. Sekä tehtävä- että

Lisätiedot

KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoski, professori. Lappeenrannan teknillinen yliopisto

KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoski, professori. Lappeenrannan teknillinen yliopisto KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoki, proeori Lappeenrannan teknillinen yliopito Näin uuden vuoden alkaea ueat meitä miettivät ijoitualkkuna kootumuta. Yki kekeiitä kyymykitä on päätö eri

Lisätiedot

X 2 = k 21X 1 + U 2 s + k 02 + k 12. (s + k 02 + k 12 )U 1 + k 12 U 2. s 2 + (k 01 + k 21 + k 02 + k 12 ) s + k

X 2 = k 21X 1 + U 2 s + k 02 + k 12. (s + k 02 + k 12 )U 1 + k 12 U 2. s 2 + (k 01 + k 21 + k 02 + k 12 ) s + k Aalto-yliopiton Perutieteiden korkeakoulu Matematiikan ja yteemianalyyin laito Mat-49 Syteemien Identifiointi 0 harjoituken ratkaiut äytetään enin iirtofunktiomalli Tehdään Laplace-muunno: ẋ k 0 k x +

Lisätiedot

R = Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen on tällöin jännitteenjako = 1

R = Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen on tällöin jännitteenjako = 1 Fysiikan mittausmenetelmät I syksy 206 Laskuharjoitus 4. Merkitään kaapelin resistanssin ja kuormaksi kytketyn piirin sisäänmenoimpedanssia summana R 000.2 Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen

Lisätiedot

Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat:

Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat: Mat-.090 Sovellettu todeäköiyylaku A 0. harjoituket Mat-.09 Sovellettu todeäköiyylaku 0. harjoituket / Ratkaiut Aiheet: Avaiaat: Tilatolliet tetit Aritmeettie kekiarvo, Beroulli-jakauma, F-jakauma, F-teti,

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Aalto-yliopisto, sähkötekniikan korkeakoulu

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Aalto-yliopisto, sähkötekniikan korkeakoulu S-55.00 SÄHKÖTKNKKA JA LKTONKKA Aalto-yliopisto, sähkötekniikan korkeakoulu Kimmo Silvonen Tentti 4.5.0: tehtävät,3,4,6,8.. välikoe: tehtävät,,3,4,5.. välikoe: tehtävät 6,7,8,9,0. Saat vastata vain neljään

Lisätiedot

Äänen nopeus pitkässä tangossa

Äänen nopeus pitkässä tangossa IXPF24 Fyiikka, ryhälaboratoriotyö IST4S1 / E1 / A Okanen Janne, Vaitti Mikael, Vähäartti Pai Jyväkylän Aattikorkeakoulu, IT-intituutti IXPF24 Fyiikka, Kevät 2005, 6 ECTS Opettaja Pai Repo Äänen nopeu

Lisätiedot

12. laskuharjoituskierros, vko 16, ratkaisut

12. laskuharjoituskierros, vko 16, ratkaisut 1. lakuharjoitukierro, vko 16, ratkaiut D1. Muuttujien x ja Y havaitut arvot ovat: x 1 3 4 6 8 9 11 14 Y 1 4 4 5 7 8 9 a) Määrää regreiomallin Y i = α +βx i +ǫ i regreiokertoimien PNS-etimaatit ja piirrä

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.00 SÄHKÖTKNIIKKA JA KTONIIKKA Tentti 9..006: tehtävät,3,5,7,9. välikoe: tehtävät,,3,4,5. välikoe: tehtävät 6,7,8,9,0 Saat vastata vain neljään tehtävään/koe; ne sinun pitää itse valita! Kimmo Silvonen.

Lisätiedot

Fy07 Koe Kuopion Lyseon lukio (KK) 1 / 5

Fy07 Koe Kuopion Lyseon lukio (KK) 1 / 5 y07 Koe 8.9.05 Kuopion yeon lukio (KK) / 5 Vataa kolmeen tehtävään. Vatuken reitani on 60, käämin induktani on 0,60 H ja reitani 8 ja kondenaattorin kapaitani on 80. Komponentit ovat arjaan kytkettyinä

Lisätiedot

Mat-2.090 Sovellettu todennäköisyyslasku A

Mat-2.090 Sovellettu todennäköisyyslasku A Mat-.090 Sovellettu todeäköiyylaku A Mat-.090 Sovellettu todeäköiyylaku A / Ratkaiut Aiheet: Avaiaat: Tilatollite aieito keräämie ja mittaamie Tilatollite aieitoje kuvaamie Oto ja otojakaumat Aritmeettie

Lisätiedot

Jakso 10. Tasavirrat. Tasaantumisilmiöt. Vaihtovirrat. Sarja- ja lineaaripiirit. Maxwellin yhtälöt. (Kuuluu kurssiin Sähkömagnetismi, LuTK)

Jakso 10. Tasavirrat. Tasaantumisilmiöt. Vaihtovirrat. Sarja- ja lineaaripiirit. Maxwellin yhtälöt. (Kuuluu kurssiin Sähkömagnetismi, LuTK) Jakso 10. Tasavirrat. Tasaantumisilmiöt. Vaihtovirrat. Sarja- ja linaaripiirit. Maxwllin yhtälöt. (Kuuluu kurssiin Sähkömagntismi, LuTK) Näytä tai jätä tarkistttavaksi tämän jakson pakollist thtävät viimistään

Lisätiedot

S if b then S else S S s. (b) Muodosta (a)-kohdan kieliopin kanssa ekvivalentti, so. saman kielen tuottava yksiselitteinen.

S if b then S else S S s. (b) Muodosta (a)-kohdan kieliopin kanssa ekvivalentti, so. saman kielen tuottava yksiselitteinen. T-79.148 yky 2003 Tietojenkäittelyteorian peruteet Harjoitu 7 Demontraatiotehtävien ratkaiut 4. Tehtävä: Ooita, että yhteydettömien kielten luokka on uljettu yhdite-, katenaatioja ulkeumaoperaatioiden

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Aalto-yliopisto, sähkötekniikan korkeakoulu

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Aalto-yliopisto, sähkötekniikan korkeakoulu S-55.00 SÄHKÖTKNIIKKA JA KTONIIKKA Aalto-yliopisto, sähkötekniikan korkeakol Kimmo Silvonen Tentti 30.5.03: tehtävät,3,4,6,0.. välikoe: tehtävät,,3,4,5.. välikoe: tehtävät 6,7,8,9,0. Saat vastata vain

Lisätiedot

Ratkaisu: z TH = j0,2 pu. u TH. Thevenin jännite u TH on 1,0 pu ja sen impedanssi z = j0,2 pu.

Ratkaisu: z TH = j0,2 pu. u TH. Thevenin jännite u TH on 1,0 pu ja sen impedanssi z = j0,2 pu. L89 Jäittaiiliu. Jäykkä vrkko, oka äit u TH o, pu yöttää oho kautta kuormaa. Johto olttaa häviöttömäki a raktai o, pu. Joho päähä liittää vakioritaikuorma r. Piirrä i oho a äitläht Thvii kvivaltti. Aa

Lisätiedot

Physica 9 1. painos 1(8) 20. Varattu hiukkanen sähkö- ja magneettikentässä

Physica 9 1. painos 1(8) 20. Varattu hiukkanen sähkö- ja magneettikentässä Phyica 9 aino (8) 0 Varattu hiukkann ähkö- ja agnttikntää : 0 Varattu hiukkann ähkö- ja agnttikntää 0 a) Sähköknttä aikuttaa arattuun hiukkan oialla F = QE Poitiiiti aratull hiukkall oian uunta on ähkökntän

Lisätiedot

POSITIIVISEN LINSSIN POLTTOVÄLI

POSITIIVISEN LINSSIN POLTTOVÄLI S-108110 OPTIIKKA 1/6 POSITIIVISEN LINSSIN POLTTOVÄLI Laboratoriotyö S-108110 OPTIIKKA /6 SISÄLLYSLUETTELO 1 Poitiivien linin polttoväli 3 11 Teoria 3 1 Mittauken uoritu 5 LIITE 1 6 Mittaupöytäkirja 6

Lisätiedot

Kertausosa. 2. Kuvaan merkityt kulmat ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia, kulmat ovat yhtä suuria.

Kertausosa. 2. Kuvaan merkityt kulmat ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia, kulmat ovat yhtä suuria. 5. Veitoken tilavuu on V,00 m 1,00 m,00 m 6,00 m. Pienoimallin tilavuu on 1 V malli 6,00 m 0,06m. 100 Mittakaava k aadaan tälötä. 0,06 1 k 6,00 100 1 k 0,1544... 100 Mitat ovat. 1,00m 0,408...m 100 0,41

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.00 SÄHKÖTKNKK LKTRONKK. välikoe 0.3.006. Saat vastata vain neljään tehtävään!. Laske jännite U. R = =Ω, R 3 =3Ω, = =4V, 3 =6V, = + R + R 3 + U 3. Konkka on varautunut jännitteeseen u C (0) =. Kytkin

Lisätiedot

Projekti 5 Systeemifunktiot ja kaksiportit. Kukin ryhmistä tarkastelee piiriä eri taajuuksilla. Ryhmäni taajuus on

Projekti 5 Systeemifunktiot ja kaksiportit. Kukin ryhmistä tarkastelee piiriä eri taajuuksilla. Ryhmäni taajuus on EPOP Kevät 2012 Projeti 5 Systeemifuntiot ja asiportit Tämä projeti tehdään 3 hengen ryhmissä. Ryhmääni uuluvat Kuin ryhmistä tarastelee piiriä eri taajuusilla. Ryhmäni taajuus on Seuraavan projetin aiana

Lisätiedot

S SÄHKÖTEKNIIKKA Kimmo Silvonen

S SÄHKÖTEKNIIKKA Kimmo Silvonen S55.3 SÄHKÖTKNIIKK.5. Kimmo Silvonen Tentti: tehtävät,3,5,7,8. välikoe: tehtävät,,3,4,5. välikoe: tehtävät,7,8,9, Oletko muistanut vastata palautekyselyyn Voit täyttää lomakkeen nyt.. aske jännite U. =Ω,

Lisätiedot

Tehtävä 1. a) sähkövirta = varausta per sekunti, I = dq dt = 1, A = 1, C s protonin varaus on 1, C

Tehtävä 1. a) sähkövirta = varausta per sekunti, I = dq dt = 1, A = 1, C s protonin varaus on 1, C Tehtävä a) sähkövirta = varausta per sekunti, I = dq dt =, 5 0 3 =, 5 0 3 C s protonin varaus on, 6 0 9 C Jaetaan koko virta yksittäisille varauksille:, 5 0 3 C s kpl = 9 05, 6 0 9 s b) di = Jd = J2πrdr,

Lisätiedot

LUKION FYSIIKKAKILPAILU 10.11.2009, ratkaisut PERUSSARJA

LUKION FYSIIKKAKILPAILU 10.11.2009, ratkaisut PERUSSARJA LUKION FYSIIKKAKILPAILU 0..009, ratkaiut PERUSSARJA Vataa huolellieti ja iititi! Kirjoita tektaten koepaperiin oa niei, kotiooitteei, ähköpotiooite, opettajai nii ekä koului nii. Kilpailuaikaa on 00 inuuttia.

Lisätiedot

S SÄHKÖTEKNIIKKA Kimmo Silvonen

S SÄHKÖTEKNIIKKA Kimmo Silvonen S55.0 SÄHKÖTEKNKKA 9.5.000 Kimmo Silvonen Tentti: tehtävät,,5,8,9. välikoe: tehtävät,,,4,5. välikoe: tehtävät 6,7,8,9,0 Oletko muistanut vastata palautekyselyyn Voit täyttää lomakkeen nyt.. aske virta.

Lisätiedot

Johdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen

Johdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Johdatus vaihtosähköön, sinimuotoiset suureet 1 Vaihtovirta vs tasavirta Sähkömagneettinen induktio tuottaa kaikissa pyörivissä generaattoreissa vaihtojännitettä. Vaihtosähköä on

Lisätiedot

S Fysiikka III (Est) Tentti

S Fysiikka III (Est) Tentti S-114137 Fyiikka III (Et) Tentti 9008 1 Vetyatomin elektronin kulmaliikemäärää kuvaa kvanttiluku l =3 Lake miä kaikia kulmia kulmaliikemäärävektori voi olla uhteea kulmaliikemäärän z-komponenttiin ( )

Lisätiedot

TL5362DSK-algoritmit (J. Laitinen) TTE2SN4X/4Z, TTE2SN5X/5Z Välikoe 1, ratkaisut

TL5362DSK-algoritmit (J. Laitinen) TTE2SN4X/4Z, TTE2SN5X/5Z Välikoe 1, ratkaisut TL536DSK-algoritmit (J. Laitie) 4. - 5..4 TTESN4X/4Z, TTESN5X/5Z Välikoe, ratkaiut a) Maiite väitää kaki digitaalite FIR-uotimie etua verrattua IIR-uotimii. b) Mite Reme-meetelmällä uuitellu FIR-uotime

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Teho vaihtosähköpiireissä ja symmetriset kolmivaihejärjestelmät Luennon keskeinen termistö ja tavoitteet Kompleksinen teho S ja näennästeho S Loisteho

Lisätiedot

b) Laskiessani suksilla mäkeä alas ja hypätessäni laiturilta järveen painovoima tekee työtä minulle.

b) Laskiessani suksilla mäkeä alas ja hypätessäni laiturilta järveen painovoima tekee työtä minulle. nergia. Työ ja teho OHDI JA TSI -. Opettaja ja opikelija tekevät hyvin paljon aanlaita ekaanita työtä, kuten liikkuinen, kirjojen ja eineiden notainen, liikkeellelähtö ja pyähtyinen. Uuien aioiden oppiinen

Lisätiedot

Luottamusmiehen / -valtuutetun valinta, asema ja oikeudet

Luottamusmiehen / -valtuutetun valinta, asema ja oikeudet YLEMMÄT TOIMIHENKILÖT YTN RY OHJE YRY+K -ryhmä / Mko 19.8.2009 1 (13) Luottamumiehen / -valtuutetun valinta, aema ja oikeudet Siällyluettelo: Yleitä... 2 Oikeu luottamumiehen valintaan... 2 Luottamumiehen

Lisätiedot

12. ARKISIA SOVELLUKSIA

12. ARKISIA SOVELLUKSIA MAA. Arkiia ovellukia. ARKISIA SOVELLUKSIA Oleeaan, eä kappale liikkuu ykiuloeia raaa, eimerkiki -akelia pikin. Kappaleen nopeuden vekoriluonne riiää oaa vauhdin eumerkin avulla huomioon, ja on ehkä arkoiukenmukaiina

Lisätiedot

S SÄHKÖTEKNIIKKA Kimmo Silvonen

S SÄHKÖTEKNIIKKA Kimmo Silvonen S55.03 SÄHKÖTKNIIKKA 20.5.999 Kimmo Silvonen Tentti: tehtävät,3,5,8,9. välikoe: tehtävät,2,3,4,5 2. välikoe: tehtävät,7,8,9,0 Oletko muitanut täyttää palautekyelyn Teeenytja hauku amalla kokeet.. ake jännite

Lisätiedot

S FYSIIKKA IV (ES), Koulutuskeskus Dipoli, Kevät 2003, LH2. f i C C. λ 2, m 1 cos60,0 1, m 1,2 pm. λi λi

S FYSIIKKA IV (ES), Koulutuskeskus Dipoli, Kevät 2003, LH2. f i C C. λ 2, m 1 cos60,0 1, m 1,2 pm. λi λi S-11436 FYSIIKKA IV (S), Kulutukeku Dipli, Kevät 003, LH LH-1 Ftni, jnka energia n 10,0 kev, törmää leva levaan vapaaeen elektrniin ja irttuu uuntaan, jka mudtaa 60,0 kulman ftnin alkuperäien liikeuunnan

Lisätiedot

7. Pyörivät sähkökoneet

7. Pyörivät sähkökoneet Pyörivät ähkökoneet 7-1 7. Pyörivät ähkökoneet Mekaanien energian muuntamieen ähköenergiaki ekä ähköenergian muuntamieen takaiin mekaanieki energiaki käytetään ähkökoneita. Koneita, jotka muuntavat mekaanien

Lisätiedot

MAA7 7.2 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! lim.

MAA7 7.2 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! lim. MAA7 7. Koe Jussi Tyni 8.1.01 1. Laske raja-arvot: a) 9 lim 6 lim 1. a) Määritä erotusosamäärän avulla funktion f (). 1 f ( ) derivaatta 1 Onko funktio f ( ) 9 kaikkialla vähenevä? Perustele vastauksesi

Lisätiedot

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa

Lisätiedot

Projekti 5 Systeemifunktiot ja kaksiportit. Kukin ryhmistä tarkastelee piiriä eri taajuuksilla. Ryhmäni taajuus on

Projekti 5 Systeemifunktiot ja kaksiportit. Kukin ryhmistä tarkastelee piiriä eri taajuuksilla. Ryhmäni taajuus on EPOP Kevät 2012 Projeti 5 Systeemifuntiot ja asiportit Tämä projeti tehdään 3 hengen ryhmissä. yhmääni uuluvat Kuin ryhmistä tarastelee piiriä eri taajuusilla. yhmäni taajuus on Seuraavan projetin aiana

Lisätiedot

PD-säädin PID PID-säädin

PD-säädin PID PID-säädin -äädin - äätö on ykinkertainen äätömuoto, jota voidaan kutua myö uhteuttavaki äädöki. Sinä lähtöignaali on uoraa uhteea tuloignaalin. -äätimen uhdealue kertoo kuinka paljon mittauuure aa muuttua ennen

Lisätiedot

DIGITAALISET PULSSIMODULAATIOT M JA PCM

DIGITAALISET PULSSIMODULAATIOT M JA PCM DIGITAALISET PULSSIMODULAATIOT M JA PCM 1 (10) Deltamodulaatio ( M) M koodaa informaation ± polariteetin omaavaki binääriiki impuleiki. Menetelmä on ykinkertainen. Idea perutuu ignaalin m(t) muutoken binäärieen

Lisätiedot

gallup gallup potentiaali ja voima potentiaali ja voima potentiaali ja voima potentiaali ja voima

gallup gallup potentiaali ja voima potentiaali ja voima potentiaali ja voima potentiaali ja voima aup Kuinka pajon käytät kurikirjaa (tai jotain muuta oppikirjaa)? a) Tututun aiheeeen ennen uentoja b) Luen kirjaa uentojen jäkeen c) Luen oppikirjaa ähinnä akareita tehdeä d) n koke oppikirjaan aup Kappae

Lisätiedot

S SÄHKÖTEKNIIKKA Kimmo Silvonen

S SÄHKÖTEKNIIKKA Kimmo Silvonen S55.3 SÄHKÖTKNKKA.. Kimmo Silvonn Tntti: thtävät,3,5,7,9. väliko: thtävät,,3,4,5. väliko: thtävät 6,7,8,9, Oltko muistanut vastata palautkyslyyn Voit täyttää lomakkn nyt.. Lask virta. = = 3 =Ω, J =3A,

Lisätiedot

4.3 Liikemäärän säilyminen

4.3 Liikemäärän säilyminen Tämän kappaleen aihe liikemäärän äilyminen törmäykiä. Törmäy on uora ja kekeinen, jo törmäävät kappaleet liikkuvat maakekipiteitten kautta kulkevaa uoraa pitkin ja jo törmäykohta on tällä amalla uoralla.

Lisätiedot

Kannattaa opetella parametrimuuttujan käyttö muidenkin suureiden vaihtelemiseen.

Kannattaa opetella parametrimuuttujan käyttö muidenkin suureiden vaihtelemiseen. 25 Mikäli tehtävässä piti määrittää R3:lle sellainen arvo, että siinä kuluva teho saavuttaa maksimiarvon, pitäisi variointirajoja muuttaa ( ja ehkä tarkentaa useampaankin kertaan ) siten, että R3:ssä kulkeva

Lisätiedot

SATE1050 Piirianalyysi II syksy 2016 kevät / 8 Laskuharjoitus 13 / Smithin kartta ja kuorman sovittaminen

SATE1050 Piirianalyysi II syksy 2016 kevät / 8 Laskuharjoitus 13 / Smithin kartta ja kuorman sovittaminen SATE1050 Piirianayysi II syksy 2016 kevät 2017 1 / 8 Tehtävä 1. Aa oevassa kuvassa esitetty pitkä johto on päätetty impedanssia Z. Kuormituksen sovittamiseksi iitetään johtoon avoin johdonpätkä ( Z 0,

Lisätiedot

järjestelmät Luento 8

järjestelmät Luento 8 DEE-111 Lineaariset järjestelmät Luento 8 1 Lineaariset järjestelmät Risto Mikkonen 7.8.214 Luento 7 - Recap Z-muunnos ja sen ominaisuudet Lineaaristen dierenssiyhtälöiden käsittely Alku- ja loppuarvot

Lisätiedot

ELEC-E8419 syksy 2016 Jännitteensäätö

ELEC-E8419 syksy 2016 Jännitteensäätö ELEC-E849 syksy 06 Jännitteensäätö. Tarkastellaan viittä rinnakkaista siirtojohtoa. Jännite johdon loppupäässä on 400, pituus on 00 km, reaktanssi on 0,3 ohm/km (3 ohmia/johto). Kunkin johdon virta on

Lisätiedot

Sähkövirran määrittelylausekkeesta

Sähkövirran määrittelylausekkeesta VRTAPRLASKUT kysyttyjä suureita ovat mm. virrat, potentiaalit, jännitteet, resistanssit, energian- ja tehonkulutus virtapiirin teho lasketaan Joulen laista: P = R 2 sovelletaan Kirchhoffin sääntöjä tuntemattomien

Lisätiedot

Vcc. Vee. Von. Vip. Vop. Vin

Vcc. Vee. Von. Vip. Vop. Vin 5-87.2020 Elektroniikka II Tentti ja välikoeuusinnat 27.05.2011 1. Våitikokeen tehtiivät l-4,2. välikokeen tehtävät 5-8 ja tentin tehtävät l,2,6ja 8. Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA Vaihtosähkö SMG-2100: SÄHKÖTEKNIIKKA Sinimuotoiset suureet Tehollisarvo Sinimuotoinen vaihtosähkö & passiiviset piirikomponentit Käydään läpi, mistä sinimuotoiset jännite ja virta ovat peräisin. Näytetään,

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.00 SÄHKÖTKNIIKKA JA KTONIIKKA Kimmo Silvonen Tentti 2.2.200: tehtävät,3,4,7,0.. välikoe: tehtävät,2,3,4,5. 2. välikoe: tehtävät 6,7,8,9,0. Saat vastata vain neljään tehtävään/koe. Sallitut: Kako,

Lisätiedot

METSÄNTUTKIMUSLAITOS. tutkimusosasto. Metsäteknologian WÄRTSILA. Kenttäkoe. Tutkimusselostus

METSÄNTUTKIMUSLAITOS. tutkimusosasto. Metsäteknologian WÄRTSILA. Kenttäkoe. Tutkimusselostus METSÄNTUTKIMUSLAITOS Metäteknologian Uniinkatu WÄRTSILA 40 A tutkimuoato Helinki TELESKOOPPIKUORMAIN AUTOKUORMAUKSESSA Kenttäkoe Tutkimuelotu Juhani Helinki Lukkari 97 7 Ainto Tutkimuken kenttäkoe Ruokolahdella.

Lisätiedot

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Vastaus: Määrittelyehto on x 1 ja nollakohta x = 1.

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Vastaus: Määrittelyehto on x 1 ja nollakohta x = 1. Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 4..6 Kokoavia tehtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ. a) Funktion f( ) = määrittelyehto on +, eli. + Ratkaistaan funktion nollakohdat. f(

Lisätiedot

SATE1050 PIIRIANALYYSI II / MAARIT VESAPUISTO: APLAC, MATLAB JA SIMULINK -HARJOITUSTYÖ / SYKSY 2015

SATE1050 PIIRIANALYYSI II / MAARIT VESAPUISTO: APLAC, MATLAB JA SIMULINK -HARJOITUSTYÖ / SYKSY 2015 1 SAT1050 PANAYYS / MAAT VSAPUSTO: APA, MATAB JA SMUNK -HAJOTUSTYÖ / SYKSY 2015 Harjoitustyön tarkoituksena on ensisijaisesti tutustua Aplac-, Matab ja Simulink simulointiohjelmistojen ominaisuuksiin ja

Lisätiedot

METSÄSTYSPUHELIMET. www.zodiacfinland.fi

METSÄSTYSPUHELIMET. www.zodiacfinland.fi METSÄSTYSPUHELIMET www.zodiacfinland.fi Z O D I A C T E A M P R O WAT E R P R O O F ZODIAC Zodiac Team Pro Waterproof radiopuhelin on valintai, kun toiminnot ja uoritukyky ratkaievat. TAKUU 3 VUOTTA Open

Lisätiedot

Fysiikkakilpailu 6.11.2007, avoimen sarjan vastaukset AVOIN SARJA

Fysiikkakilpailu 6.11.2007, avoimen sarjan vastaukset AVOIN SARJA Fyiikkakilpailu 6.11.007, avoimen ajan vatauket AVOIN SARJA Kijoita tektaten koepapeiin oma nimei, kotiooitteei, ähköpotiooitteei, opettajai nimi ekä koului nimi. Kilpailuaikaa on 100 minuuttia. Sekä tehtävä-

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.00 SÄHKÖTKNKKA A KTONKKA. välkoe 9.3.2007. Saat vatata van neljään tehtävään!. ake pteden A ja B välnen potentaalero el jännte AB. =4Ω, 2 =2Ω, =0 V, 2 =4V, =2A, =3A A + 2 2 B + 2. Kytkn ljetaan hetkellä.

Lisätiedot

S SÄHKÖTEKNIIKKA Kimmo Silvonen

S SÄHKÖTEKNIIKKA Kimmo Silvonen S55.3 SÄHKÖTKNIIKK..999 Kimmo Silvonen Tentti: tehtävät,3,4,8,. välikoe: tehtävät,,3,4,5. välikoe: tehtävät,7,8,9, Oletko muistanut vastata palautekyselyyn Voit täyttää lomakkeen nyt.. aske virta I. =Ω,

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta 8..206 Gripenberg, Nieminen, Ojanen, Tiilikainen, Weckman Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA SMG-: SÄHKÖTEKNIIKKA Passiiviset piirikomponentit vastus kondensaattori käämi Tarkoitus on yrittää ymmärtää passiivisten piirikomponenttien toiminnan taustalle olevat luonnonilmiöt. isäksi johdetaan näiden

Lisätiedot

Tehtävä 1. Vaihtoehtotehtävät.

Tehtävä 1. Vaihtoehtotehtävät. Kem-9.7 Proeiautomaation peruteet Perutehtävät Tentti 9.. Tehtävä. Vaihtoehtotehtävät. Oikea vatau,p, väärä vatau -,p ja ei vatauta p Makimi,p ja minimi p TÄMÄ PAPERI TÄYTYY EHDOTTOMASTI PALAUTTAA TENTIN

Lisätiedot

RATKAISUT: 3. Voimakuvio ja liikeyhtälö

RATKAISUT: 3. Voimakuvio ja liikeyhtälö Phyica 9. paino (8) 3. Voiakuvio ja liikeyhtälö : 3. Voiakuvio ja liikeyhtälö 3. a) Newtonin I laki on nieltään jatkavuuden laki. Kappale jatkaa liikettään uoraviivaieti uuttuattoalla nopeudella tai pyyy

Lisätiedot

Luento 6. DEE Piirianalyysi Risto Mikkonen

Luento 6. DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Luento 6 1 DEE-11000 Piirianalyysi Ensimmäinen välikoe keskiviikkona 19.11. klo 13-16 salissa S1. Aihepiiri: Tasasähköpiirin analyysi (monisteen luvut 1-6) 2 Solmupistemenetelmä

Lisätiedot

RATKAISUT: 8. Momentti ja tasapaino

RATKAISUT: 8. Momentti ja tasapaino Phyica 9. paino (7) : 8. Voian vari r on voian vaikutuuoran etäiyy pyöriiakelita. Pyöriiakeli on todellinen tai kuviteltu akeli, jonka ypäri kappale pyörii. Voian oentti M kuvaa voian vääntövaikututa tietyn

Lisätiedot

d) Jos edellä oleva pari vie 10 V:n signaalia 12 bitin siirtojärjestelmässä, niin aiheutuuko edellä olevissa tapauksissa virheitä?

d) Jos edellä oleva pari vie 10 V:n signaalia 12 bitin siirtojärjestelmässä, niin aiheutuuko edellä olevissa tapauksissa virheitä? -08.300 Elektroniikan häiriökysymykset Kevät 006 askari 3. Kierrettyyn pariin kytkeytyvä häiriöjännite uojaamaton yksivaihejohdin, virta I, kulkee yhdensuuntaisesti etäisyydellä r instrumentointikaapelin

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle / MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,

Lisätiedot

SATE1150 Piirianalyysi, osa 2 syksy /10 Laskuharjoitus 1: RL- ja RC-piirit

SATE1150 Piirianalyysi, osa 2 syksy /10 Laskuharjoitus 1: RL- ja RC-piirit SATE1150 Piirianalyyi, oa 2 yy 2017 1 /10 auharjoitu 1: R ja Rpiirit Tehtävä 1. a) Millainen uodatin on yeeä uvaa 1? Perutele aia taratelemalla unin yittäien omponentin impedanin taajuuäyttäytymitä. b)

Lisätiedot

Diskreettiaikainen dynaaminen optimointi

Diskreettiaikainen dynaaminen optimointi Diskreettiaikainen dynaaminen optimointi Usean kauden tapaus 2 kauden yleistys Ääretön loppuaika Optimaalinen pysäytys Optimointiopin seminaari - Syksy 2000 / Ongelma t 0 x 0 t- t T x t- + x t + x T u

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2004

MAOL-Pisteitysohjeet Fysiikka kevät 2004 MAOL-Piteityohjeet Fyiikka kevät 004 Tyypilliten virheiden aiheuttaia piteenetykiä (6 piteen kaalaa): - pieni lakuvirhe -1/3 p - lakuvirhe, epäielekä tulo, vähintään - - vataukea yki erkitevä nuero liikaa

Lisätiedot

Jakso 15. Vaihtovirrat. Sarja- ja lineaaripiirit. Maxwellin yhtälöt

Jakso 15. Vaihtovirrat. Sarja- ja lineaaripiirit. Maxwellin yhtälöt Jakso 15. Vaihtovirrat. Sarja- ja linaaripiirit. Maxwllin yhtälöt Tässä jaksossa käsitllään vaihtovirtapiirjä. Mukana on skä sarjapiirjä ttä linaaripiirjä. Sarjapiirilaskut ovat hkä hlpompia, sillä virta

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 3 Supremum ja infimum Tarkastellaan aluksi avointa väliä, ) = { : < < }. Tämä on joukko, johon kuuluvat kaikki reaaliluvut miinus yhdestä yhteen. Kuitenkaan päätepisteet

Lisätiedot

Osa IX. Z muunnos. Johdanto Diskreetit funktiot

Osa IX. Z muunnos. Johdanto Diskreetit funktiot Osa IX Z muunnos A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 298 / 322 A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 299 / 322 Johdanto

Lisätiedot