RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi

Koko: px
Aloita esitys sivulta:

Download "RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi"

Transkriptio

1 Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa yhtä paljon lämpöä kuin kyseinen vaihtovirta samassa ajassa. b) Kondensaattorin ja ideaalisen käämin vaihtovirtaa rajoittavaa ominaisuutta kuvaavasta suureesta käytetään nimitystä reaktanssi, joka on komponentin jännitehäviön ja sähkövirran tehollisten arvojen suhde reaktanssi ω.. deaalisen käämin induktiivinen c) Kondensaattorin vaihtovirtaa rajoittava ominaisuus on kapasitiivinen reaktanssi. ω d) Vastuksen, käämin ja kondensaattorin muodostamassa virtapiirissä vaihtovirtaa rajoittava ominaisuus on, jossa on tehollinen jännitehäviö ja on tehollinen sähkövirta. R-piirin impedanssi on R + ( ω ) ω R on virtapiirin resistanssi, e) Vaihe-ero φ lasketaan yhtälöstä tanϕ, jossa ω on induktiivinen R reaktanssi ja on kapasitiivinen reaktanssi. ω f) Resonanssitaajuus on sen vaihtojännitteen taajuus, jolla vaihtovirtapiiriin saadaan suurin vaihtovirta. Resonanssitaajuus on R-piirin ominaistaajuus. Resonanssitilanteessa virtapiirin reaktanssi on nolla, joten sähkövirran ja jännitehäviön välinen vaihe-ero on nolla. Ne ovat siis samassa vaiheessa. R-piirin resonanssitaajuus on f0, jossa on virtapiirin induktanssi ja on virtapiirin kapasitanssi.. Kiukaan teho on P 500W, sähköverkon tehollinen jännite 30 V ja taajuus f 50 Hz Tekijät ja WSOY Oppimateriaalit Oy, 007

2 Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi a) Vastuksen sähköteho lasketaan yhtälöllä P, joten sähkövirta vastuksessa on P 500W 0,8696 A 0,9 A. 30 V b) Sinimuotoisen vaihtojännitteen tehollisen arvon ja huippuarvon välillä on yhteys uˆ, josta jännitehäviön huippuarvo on uˆ 30 V 35, 69 V 35 V. c) Sinimuotoisen vaihtovirran tehollisen ja huippuarvon välillä on yhteys iˆ, josta sähkövirran huippuarvo on iˆ 0,8696 A 5,379 A 5, 4 A. Vastaus: a) Tehollinen sähkövirta on 0,9 A. b) Jännitehäviön huippuarvo on 35 V. c) Sähkövirran huippuarvo on 5,4 A..3 a) uetaan jännitteen kuvaajasta huippuarvo u ˆ 35 V ja lasketaan tehollinen jännite uˆ 35 V 4,7487 V 5 V. b) uetaan sähkövirran kuvaajasta huippuarvo i ˆ 5 ma ja lasketaan tehollinen sähkövirta iˆ 5 ma 88,3883 ma 88 ma. c) Kuviossa jännite tapahtuu ensin, se on sähkövirran edellä. Sähkövirran ja jännitteen aikaero on Δ t, 67 ms ja jaksonaika on T 0 ms. Vaihe-eroksi saadaan Δt, 67 ms ϕ 0, rad 30. T 0 ms d) Jännite on sähkövirran edellä. Sähkövirta jää jälkeen, koska induktioilmiö hidastaa sähkövirran muutoksia. Positiivinen vaihe-ero johtuu laitteen induktanssista. e) Vaihtovirran teho on P ˆ cosϕ ui ˆ cosϕ 35 V 5 ma cos30 3,789 W 3,8 W. Vastaus: a) Jännitteen huippuarvo on 35 V ja tehollinen arvo 5 V. b) Sähkövirran huippuarvo on 5 ma ja tehollinen arvo 88 ma. Tekijät ja WSOY Oppimateriaalit Oy, 007

3 Physica 9. painos 3(0) RATKAST. Vaihtovirtapiiri ja resonanssi c) Jännitteen ja sähkövirran välinen vaihe-ero on 30 d) Vaihe-ero johtuu induktanssista. e) aitteen kuluttama keskiteho on 3,8 W..4 Käämin induktanssi on, mh ja resistanssi R 9,73 Ω, tehollinen jännite,3 V ja taajuus f 55 Hz. a) asketaan ensin impedanssi R + ( ω) R + ( π f) (9,73 Ω ) + ( 55 Hz, 0 H) 3 38, 049 Ω 38, Ω. Tehollinen virta on nyt lausekkeen mukaan,3 V 38, 049 Ω 0,58369 A 0,584 A. b) Virran ja jännitteen välinen vaihe-ero saadaan lausekkeesta ω f tanϕ R R R 9,73 Ω 3, 7970, 3 55 Hz, 0 H josta vaihe-ero ϕ 75,454 75,. Vastaus: a) Tehollinen sähkövirta on 0,584 A. b) Virran ja jännitteen välinen vaihe-ero on 75,..5 a) Kun käämin resistanssi on pieni R 0 Ω, niin käämin impedanssi on likimain käämin reaktanssi R ( ω) 0 ( π f) f + +. Toisaalta impedanssi on. Saadaan siis π f, josta ratkaistaan induktanssi f. Tekijät ja WSOY Oppimateriaalit Oy, 007

4 Physica 9. painos 4(0) RATKAST. Vaihtovirtapiiri ja resonanssi nduktanssi saadaan selville mittaamalla käämin päiden välinen jännitehäviö käämin sähkövirta. Jännitelähteen taajuus tunnetaan. ja Mittausta varten tarvitaan jännitemittari ja virtamittari, johtimia ja tietenkin tutkittava pieniresistanssinen käämi. b) R-piirin impedanssi on R + ( ). R-piirin sähkövirta on suurin, kun piirin impedanssi on pienin. Tämä tapahtuu resonanssitaajuudella f0. Tällöin ja R + R. min 0 Resonanssitaajuudella piirin sähkövirta on suurin,max R. Mittaus voidaan suorittaa siten, että pidetään jännitelähteen napajännitettä vakiona ja muutetaan sen taajuutta. Seurataan sähkövirtaa virtamittarista. Etsitään taajuus, jolla sähkövirta saa maksimiarvon. Tämä taajuus on resonanssitaajuus f. 0 Mittausta varten tarvitaan jännitelähde, jonka taajuutta voidaan muuttaa. isäksi tarvitaan virtamittari ja tietenkin komponentit ja johtimet. min.6 Jännite on 30 V, taajuus f 50 Hz, kondensaattorin kapasitanssi on F ja vastuksen resistanssi on 50 a) asketaan kapasitiivinen reaktanssi ω f 50 Hz F 99,508 Ω 900 Ω. 9 R Ω. Virtapiirin vastus rajoittaa vaihtovirran kulkua enemmän kuin kondensaattori, koska R >. b) Vaihtovirtapiirin impedanssi on R + ( ) R + ( ) ω f (50 Ω ) + ( ) 50 Hz F 963,80 Ω 960 Ω. 9 c) Sähkövirran ja jännitteen välinen vaihe-ero on 99,508Ω tanϕ 0,8574, R 50Ω joten vaihe-ero ϕ 40, ,6. Tekijät ja WSOY Oppimateriaalit Oy, 007

5 Physica 9. painos 5(0) RATKAST. Vaihtovirtapiiri ja resonanssi Koska vaihe-ero on negatiivinen, sähkövirta on kondensaattorin jännitehäviötä edellä. d) Sähkövirran tehollinen arvo saadaan lausekkeesta, josta 30 V 963,80 ΩΩ 0, A 77, 6 ma. Vastaus: a) Virtapiirin vastus rajoittaa vaihtovirran kulkua enemmän kuin kondensaattori. b) Virtapiirin impedanssi on 960 Ω. c) Sähkövirran ja jännitteen välinen vaihe-ero on 40,6. Sähkövirta on edellä. d) Sähkövirran tehollinen arvo on 0,776 ma..7 Kondensaattorin kapasitanssi on 6 0 F, käämin induktanssi H ja kondensaattori on ladattu jännitteeseen u ˆ 30 V. a) Sähkövirta värähtelypiirissä on suurimmillaan, kun kaikki energia on käämin magneettikentän energiana E ˆ M i. Energian säilymisen perusteella i Ratkaistaan tästä sähkövirta iˆ uˆ 6 0 F H ˆ uˆ. ˆ i uˆ 30V,936A,9A. b) Virtapiirin värähtelytaajuus on f 9,35 Hz H 0 F ja jaksonaika T 0,0088 s 0,8 ms. f 9,35 s (Sähkövirran yhtälö on,9 A sin(580,6 /s t)) Vastaus: a) Suurin sähkövirta on,9 A. Tekijät ja WSOY Oppimateriaalit Oy, 007

6 Physica 9. painos 6(0) RATKAST. Vaihtovirtapiiri ja resonanssi.8 a) Kuva esittää vastuksen sähkövirtaa, koska vastuksen sähkövirta ei riipu taajuudesta. Kuva esittää käämin sähkövirtaa, koska käämin sähkövirta on kääntäen verrannollinen virtapiirin taajuuteen. Käämin reaktanssi ω f, joten sähkövirta. f f Taajuuden kasvaessa sähkövirta pienenee. Kuva 3 esittää kondensaattorin sähkövirtaa, koska kondensaattorin sähkövirta on suoraan verrannollinen virtapiirin taajuuteen. Kondensaattorin reaktanssi Taajuuden kasvaessa sähkövirta kasvaa. f, joten sähkövirta f f. b) Vastuksen resistanssi on 7,5 V R 7,5 Ω., 0 A Käämin induktanssi on f 7,5 V 60 Hz,0 A 3 7, H 7,5 mh. Kondensaattorin kapasitanssi on, 0 A f 30 Hz 7, 5 V 5 6,635 0 F 66 μf. c) Kuvaajasta saadaan max, 0 A. Tämä sähkövirta R-piirissä saavutetaan resonanssitaajuudella, jolloin 0. Tällöin f 0, f josta saadaan resonanssitaajuus f 0 π 6,73 Hz 6 Hz , H 6,635 0 F c) ( f) kuvaaja voidaan hahmotella, kun tiedetään, että resonanssitaajuudella f 0 6 Hz saadaan suurin sähkövirta max, 0 A. Vastaus: b) Resistanssi on 7,5 Ω, induktanssi on 7,5 mh ja kapasitanssi on 66 μf. Huom. Oheinen kuvaaja on piirretty Excel-ohjelmalla. Kuvaajan piirtämistä varten on laskettu sähkövirran arvoja muutamilla taajuuden arvoilla. Koevastauksessa Tekijät ja WSOY Oppimateriaalit Oy, 007

7 Physica 9. painos 7(0) RATKAST. Vaihtovirtapiiri ja resonanssi hahmotelman ei tarvitse olla näin tarkasti oikea. Oleellista on, että käyrän huippu on resonanssitaajuuden kohdalla. Sähkövirta R + ( π f ) f 7,5 V (7, 5 Ω ) + ( f 7, H ) f 6,635 0 F 3 5 f (Hz) (A) 5 0, ,6 75 0, , , , , , , , , , , , a) asketaan ensin virtapiirin impedanssi R + ( ) R + ( ) ω f (50 Ω ) + ( ) 50Hz 3, 0 F 6 005, 9646 Ω, 0 k Ω. Virtapiirin tehollinen sähkövirta on 30 V 005, 9646 Ω 0, 8636 A 0,3 A. Kondensaattorin kapasitiivinen reaktanssi saadaan lausekkeesta ω f π 6 50Hz 3, 0 F 994,784 Ω 0,99 k Ω. Vastuksen päiden välinen tehollinen jännite on Tekijät ja WSOY Oppimateriaalit Oy, 007

8 Physica 9. painos 8(0) RATKAST. Vaihtovirtapiiri ja resonanssi R, R 50 Ω 0,8636 A 34,954 V 34 V. b) Teho voidaan laskea kahdella tavalla. Vain vastuskomponentit tuottavat lämpöenergiaa. Tapa : Joulen lain avulla P R 50 Ω (0,3 A) 7,935 W 7,9 W. Tapa : Vaihtovirran tehon kaavalla P cos ϕ. asketaan vaihe-ero tanϕ ω R R 6 50,0Hz 3, 0 F 6, 63456, 50 Ω josta vaihe-ero ϕ 8, 446. Teho on P cos ϕ 30 V 0, 3 A cos(8, 446 ) 7,8879 W 7,9 W Vastaus: a) Vastuksen päiden välinen tehollinen jännite on 34 V. b) R-piirin teho on 7,9 W. Tekijät ja WSOY Oppimateriaalit Oy, 007

9 Physica 9. painos 9(0) RATKAST. Vaihtovirtapiiri ja resonanssi.0 a) Vaihtovirtapiirin jännite vaihtelee sinimuotoisesti. Kondensaattorin latautuessa sen jännite kasvaa ja purkautuessa sen jännite pienenee. Kondensaattorin latautuessa sähkölähteen energiaa siirtyy kondensaattorin sähkökentän energiaksi. Seuraavan neljännesjakson aikana kondensaattori luovuttaa sähkökenttään varastoituneen energian takaisin sähkölähteeseen. Energian nettosiirtymä on nolla jokaisen puolijakson aikana. b) Sähköverkon jännite on 30 V ja taajuus f 50 Hz sekä lämpölevyn teho alussa P 80 W ja lopussa P P, kysytään kondensaattorin kapasitanssia?. Tehonkulutus vastuksen muodostamassa virtapiirissä P R, josta resistanssi R (30 V) R 93,88889 Ω P 80 W R-piirin impedanssi on R + ( ) R + ( ) ω f ja sähkövirta. Tehonkulutus vastuksen ja kondensaattorin muodostamassa virtapiirissä P R R evyn tehonkulutus pienennetään puoleen lisäämällä virtapiiriin kondensaattori Tekijät ja WSOY Oppimateriaalit Oy, 007

10 Physica 9. painos 0(0) RATKAST. Vaihtovirtapiiri ja resonanssi P P R R, josta ratkaistaan impedanssi R. Sijoitetaan R + ( ) f ja ratkaistaan kapasitanssi R + ( ) R f R f R π f 94 Ω 50 Hz As V 5,08 0 μf Vastaus: b) Kondensaattorin kapasitanssi on μf. Tekijät ja WSOY Oppimateriaalit Oy, 007

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteet o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

Kuva 1. Vastus (R), kondensaattori (C) ja käämi (L). Sinimuotoinen vaihtojännite

Kuva 1. Vastus (R), kondensaattori (C) ja käämi (L). Sinimuotoinen vaihtojännite TYÖ 54. VAIHE-EO JA ESONANSSI Tehtävä Välineet Taustatietoja Tehtävänä on mitata ja tutkia jännitteiden vaihe-eroa vaihtovirtapiirissä, jossa on kaksi vastusta, vastus ja käämi sekä vastus ja kondensaattori.

Lisätiedot

Kuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi

Kuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi 31 VAIHTOVIRTAPIIRI 311 Lineaarisen vaihtovirtapiirin impedanssi ja vaihe-ero Tarkastellaan kuvan 1 mukaista vaihtovirtapiiriä, jossa on resistanssi R, kapasitanssi C ja induktanssi L sarjassa Jännitelähde

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA Vaihtosähkö SMG-2100: SÄHKÖTEKNIIKKA Sinimuotoiset suureet Tehollisarvo Sinimuotoinen vaihtosähkö & passiiviset piirikomponentit Käydään läpi, mistä sinimuotoiset jännite ja virta ovat peräisin. Näytetään,

Lisätiedot

FYS206/5 Vaihtovirtakomponentit

FYS206/5 Vaihtovirtakomponentit FYS206/5 Vaihtovirtakomponentit Tässä työssä pyritään syventämään vaihtovirtakomponentteihin liittyviä käsitteitä. Tunnetusti esimerkiksi käsitteet impedanssi, reaktanssi ja vaihesiirto ovat aina hyvin

Lisätiedot

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 Mittalaitetekniikka NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella

Lisätiedot

Pynnönen 1.5.2000. Opiskelija: Tarkastaja: Arvio:

Pynnönen 1.5.2000. Opiskelija: Tarkastaja: Arvio: EAOL 1/5 Opintokokonaisuus : Jakso: Harjoitustyö: Passiiviset komponentit Pvm : vaihtosähköpiirissä Opiskelija: Tarkastaja: Arvio: Tavoite: Välineet: Opiskelija oppii ymmärtämään vastuksen, kondensaattorin

Lisätiedot

Sähkötekniikka. NBIELS12 Vaihtosähköpiirit Jussi Hurri syksy 2014

Sähkötekniikka. NBIELS12 Vaihtosähköpiirit Jussi Hurri syksy 2014 Sähkötekniikka NBIELS12 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella vaihtovirtaa!

Lisätiedot

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan

Lisätiedot

6. Kertaustehtävien ratkaisut

6. Kertaustehtävien ratkaisut Fotoni 7 6-6. Kertaustehtävien ratkaisut Luku. Oheisessa kuvassa on kompassineulan punainen pohjoisnapa osoittaa alaspäin. a) Mikä johtimen ympärille muodostuvan magneettikentän suunta? b) Mikä on johtimessa

Lisätiedot

Sähkömagnetismi. s. 24. t. 1-11. 24. syyskuuta 2013 22:01. FY7 Sivu 1

Sähkömagnetismi. s. 24. t. 1-11. 24. syyskuuta 2013 22:01. FY7 Sivu 1 FY7 Sivu 1 Sähkömagnetismi 24. syyskuuta 2013 22:01 s. 24. t. 1-11. FY7 Sivu 2 FY7-muistiinpanot 9. lokakuuta 2013 14:18 FY7 Sivu 3 Magneettivuo (32) 9. lokakuuta 2013 14:18 Pinta-alan Webber FY7 Sivu

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Passiiviset piirikomponentit Luennon keskeinen termistö ja tavoitteet vastus käämi kondensaattori puolijohdekomponentit Tarkoitus on esitellä piiriteorian

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA SMG-2100: SÄHKÖTEKNIIKKA Vaihtosähkön teho kompleksinen teho S pätöteho P loisteho Q näennäisteho S Käydään läpi sinimuotoisiin sähkösuureisiin liittyviä tehotermejä. Määritellään kompleksinen teho, jonka

Lisätiedot

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan. cos sin.

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan. cos sin. VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan

Lisätiedot

Luku 7 Lenzin laki kertoo induktioilmiön suunnan

Luku 7 Lenzin laki kertoo induktioilmiön suunnan Physica 7 Opettajan OPAS 0(9) Luku 7 Lenzin laki kertoo induktioilmiön suunnan 0. Sähkövirran kytkemisen jälkeen virtapiirin sähkövirta kasvaa pienen hetken maksimiarvoonsa. Sähkövirta synnyttää kasvavan

Lisätiedot

Elektroniikan perusteet, Radioamatööritutkintokoulutus

Elektroniikan perusteet, Radioamatööritutkintokoulutus Elektroniikan perusteet, Radioamatööritutkintokoulutus Antti Karjalainen, PRK 30.10.2014 Komponenttien esittelytaktiikka Toiminta, (Teoria), Käyttö jännite, virta, teho, taajuus, impedanssi ja näiden yksiköt:

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Teho vaihtosähköpiireissä ja symmetriset kolmivaihejärjestelmät Luennon keskeinen termistö ja tavoitteet Kompleksinen teho S ja näennästeho S Loisteho

Lisätiedot

3D-kuva A B C D E Kuvanto edestä Kuvanto sivulta Kuvanto päältä. Nimi Sotun loppuosa - Monimuotokoulutuksen soveltavat tehtävät 20 p. Tehtävä 1 3p.

3D-kuva A B C D E Kuvanto edestä Kuvanto sivulta Kuvanto päältä. Nimi Sotun loppuosa - Monimuotokoulutuksen soveltavat tehtävät 20 p. Tehtävä 1 3p. Nimi Sotun loppuosa - Monimuotokoulutuksen soveltavat tehtävät 20 p. Tehtävä 1 3p. Viiden oheisen 3D-kappaleen kuvannot kolmesta suunnasta katsottuna on esitetty seuraavalla sivulla. Merkitse oheiseen

Lisätiedot

Fysiikka 7. Sähkövaraukset. Varaukset. Kondensaattori. Sähkökenttä. Sähkö-opin pikakertaus. Sähkömagnetismi

Fysiikka 7. Sähkövaraukset. Varaukset. Kondensaattori. Sähkökenttä. Sähkö-opin pikakertaus. Sähkömagnetismi http://www.foxitsoftware.com For evaluation only. 7.. Fysiikka 7 Sähkö-opin pikakertaus Sähkömagnetismi Juhani Kaukoranta aahen lukio Sähkövaraukset Elektronin ja protonin varauksen itseisarvoa kutsutaan

Lisätiedot

Elektroniikan perusteet, Radioamatööritutkintokoulutus

Elektroniikan perusteet, Radioamatööritutkintokoulutus Elektroniikan perusteet, Radioamatööritutkintokoulutus Antti Karjalainen, PRK 14.11.2013 Komponenttien esittelytaktiikka Toiminta, (Teoria), Käyttö jännite, virta, teho, taajuus, impedanssi ja näiden yksiköt:

Lisätiedot

Sähkövirran määrittelylausekkeesta

Sähkövirran määrittelylausekkeesta VRTAPRLASKUT kysyttyjä suureita ovat mm. virrat, potentiaalit, jännitteet, resistanssit, energian- ja tehonkulutus virtapiirin teho lasketaan Joulen laista: P = R 2 sovelletaan Kirchhoffin sääntöjä tuntemattomien

Lisätiedot

kipinäpurkauksena, josta salama on esimerkki.

kipinäpurkauksena, josta salama on esimerkki. Sähkö 25 Esineet saavat sähkövarauksen hankauksessa kipinäpurkauksena, josta salama on esimerkki. Hankauksessa esineet voivat varautua sähköisesti. Varaukset syntyvät, koska hankauksessa kappaleesta siirtyy

Lisätiedot

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä Työ 3A VAIHTOVIRTAPIIRI Pari Jonas Alam Antti Tenhiälä Selostuksen laati: Jonas Alam Mittaukset tehty: 0.3.000 Selostus jätetty: 7.3.000 . Johdanto Tasavirtapiirissä sähkövirta ja jännite käyttäytyvät

Lisätiedot

7. Resistanssi ja Ohmin laki

7. Resistanssi ja Ohmin laki Nimi: LK: SÄHKÖ-OPPI Tarmo Partanen Teoria (Muista hyödyntää sanastoa) 1. Millä nimellä kuvataan sähköisen komponentin (laitteen, johtimen) sähkön kulkua vastustavaa ominaisuutta? 2. Miten resistanssi

Lisätiedot

VIRTAPIIRILASKUT II Tarkastellaan sinimuotoista vaihtojännitettä ja vaihtovirtaa;

VIRTAPIIRILASKUT II Tarkastellaan sinimuotoista vaihtojännitettä ja vaihtovirtaa; VITAPIIIASKUT II Tarkastellaan sinimutista vaihtjännitettä ja vaihtvirtaa; u sin π ft ja i sin π ft sekä vaihtvirtapiiriä, jssa n sarjaan kytkettyinä vastus, käämi ja kndensaattri (-piiri) ulkisen vastuksen

Lisätiedot

14.1 Tasavirtapiirit ja Kirchhoffin lait R 1. I 1 I 3 liitos + - R 2. silmukka. Kuva 14.1: Liitoksen, haaran ja silmukan määrittely virtapiirissä.

14.1 Tasavirtapiirit ja Kirchhoffin lait R 1. I 1 I 3 liitos + - R 2. silmukka. Kuva 14.1: Liitoksen, haaran ja silmukan määrittely virtapiirissä. Luku 14 Lineaaripiirit Lineaaripiireillä ymmärretään verkkoja, joiden jokaisessa haarassa jännite on verrannollinen virtaan, ts. Ohmin laki on voimassa. Lineaariset piirit voivat siis sisältää jännitelähteitä,

Lisätiedot

ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen.

ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen. ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen. X.X.2015 Tehtävä 1 Bipolaaritransistoria käytetään alla olevan kuvan mukaisessa kytkennässä, jossa V CC = 40 V ja kuormavastus

Lisätiedot

Jakso 10. Tasavirrat. Tasaantumisilmiöt. Vaihtovirrat. Sarja- ja lineaaripiirit. Maxwellin yhtälöt. (Kuuluu kurssiin Sähkömagnetismi, LuTK)

Jakso 10. Tasavirrat. Tasaantumisilmiöt. Vaihtovirrat. Sarja- ja lineaaripiirit. Maxwellin yhtälöt. (Kuuluu kurssiin Sähkömagnetismi, LuTK) Jakso 10. Tasavirrat. Tasaantumisilmiöt. Vaihtovirrat. Sarja- ja linaaripiirit. Maxwllin yhtälöt. (Kuuluu kurssiin Sähkömagntismi, LuTK) Näytä tai jätä tarkistttavaksi tämän jakson pakollist thtävät viimistään

Lisätiedot

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7 Fy06 Koe 0.5.015 Kuopion Lyseon lukio (KK) 1/7 alitse kolme tehtävää. 6p/tehtävä. 1. Mitä mieltä olet seuraavista väitteistä. Perustele lyhyesti ovatko väitteet totta vai tarua. a. irtapiirin hehkulamput

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Kompleksilukujen hyödyntäminen vaihtosähköpiirien analyysissä Luennon keskeinen termistö ja tavoitteet Osoitin eli kompleksiluku: Trigonometrinen muoto

Lisätiedot

Työ 4249 4h. SÄHKÖVIRRAN ETENEMINEN

Työ 4249 4h. SÄHKÖVIRRAN ETENEMINEN TUUN AMMATTKOKEAKOULU TYÖOHJE 1/7 FYSKAN LABOATOO V. 5.14 Työ 449 4h. SÄHKÖVAN ETENEMNEN TYÖN TAVOTE Perehdytään vaihtovirran etenemiseen värähtelypiirissä eri taajuuksilla eli resonanssi-ilmiöön ja sähköenergian

Lisätiedot

MICRO-CAP: in lisäominaisuuksia

MICRO-CAP: in lisäominaisuuksia MICRO-CAP: in lisäominaisuuksia Jännitteellä ohjattava kytkin Pulssigeneraattori AC/DC jännitelähde ja vakiovirtageneraattori Muuntaja Tuloimpedanssin mittaus Makrot mm. VCO, Potentiometri, PWM ohjain,

Lisätiedot

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä:

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä: FY6 SÄHKÖ Tavoitteet Kurssin tavoitteena on, että opiskelija ymmärtää sähköön liittyviä peruskäsitteitä, tutustuu mittaustekniikkaan osaa tehdä sähköopin perusmittauksia sekä rakentaa ja tutkia yksinkertaisia

Lisätiedot

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ TYÖOHJE 14.7.2010 JMK, TSU 33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ Laitteisto: Kuva 1. Kytkentä solenoidin ja toroidin magneettikenttien mittausta varten. Käytä samaa digitaalista jännitemittaria molempien

Lisätiedot

SÄHKÖTEKNIIKKA. NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015

SÄHKÖTEKNIIKKA. NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015 SÄHKÖTEKNIIKKA NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015 1. PERSKÄSITTEITÄ 1.1. VIRTAPIIRI Virtapiiri on johtimista ja komponenteista tehty reitti, jossa sähkövirta kulkee. 2 Virtapiirissä on vähintään

Lisätiedot

Elektroniikan kaavoja 1 Elektroniikan Perusteet 25.03.1998 I1 I2 VAIHTOVIRROILLA. Z = R + j * X Z = R*R + X*X

Elektroniikan kaavoja 1 Elektroniikan Perusteet 25.03.1998 I1 I2 VAIHTOVIRROILLA. Z = R + j * X Z = R*R + X*X TASAVOLLA Sähkökenttä, potentiaali, potentiaaliero, jännite, varaus, virta, vastus, teho Positiivinen Negatiivinen e e e e e Sähkövaraus e =,602 * 0 9 [As] w e Siirrettäessä varausta sähkökentässä täytyy

Lisätiedot

Induktiivisuus WURTH ELEKTRONIK. Induktiivisuuden ABC

Induktiivisuus WURTH ELEKTRONIK. Induktiivisuuden ABC Induktiivisuus 1 WURTH ELEKTRONIK Induktiivisuuden ABC ESIPUHE Osa 1: ABC Osa 2: Sovellukset Osa 3: Komponentit Nämä oppaat on tehty yhteistyössä parhaiden asiantuntijoiden kanssa. 2 Induktiivisuuden ABC

Lisätiedot

SÄHKÖTEKNIIKKA. NTUTAS13 Tasasähköpiirit Jussi Hurri kevät 2015

SÄHKÖTEKNIIKKA. NTUTAS13 Tasasähköpiirit Jussi Hurri kevät 2015 SÄHKÖTEKNIIKKA NTTAS13 Tasasähköpiirit Jussi Hurri kevät 2015 1. PERSKÄSITTEITÄ 1.1. VIRTAPIIRI Virtapiiri on johtimista ja komponenteista tehty reitti, jossa sähkövirta kulkee. 2 Virtapiirissä on vähintään

Lisätiedot

TYÖ 58. VAIMENEVA VÄRÄHTELY, TASASUUNTAUS JA SUODATUS. Tehtävänä on vaimenevan värähtelyn, tasasuuntauksen ja suodatuksen tutkiminen oskilloskoopilla.

TYÖ 58. VAIMENEVA VÄRÄHTELY, TASASUUNTAUS JA SUODATUS. Tehtävänä on vaimenevan värähtelyn, tasasuuntauksen ja suodatuksen tutkiminen oskilloskoopilla. TYÖ 58. VAIMENEVA VÄRÄHTELY, TASASUUNTAUS JA SUODATUS Tehtävä Välineet Tehtävänä on vaimenevan värähtelyn, tasasuuntauksen ja suodatuksen tutkiminen oskilloskoopilla. Kaksoiskanavaoskilloskooppi KENWOOD

Lisätiedot

TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT

TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT Työselostuksen laatija: Tommi Tauriainen Luokka: TTE7SN1 Ohjaaja: Jaakko Kaski Työn tekopvm: 02.12.2008 Selostuksen luovutuspvm: 16.12.2008 Tekniikan

Lisätiedot

l s, c p T = l v = l l s c p. Z L + Z 0

l s, c p T = l v = l l s c p. Z L + Z 0 1.1 i k l s, c p Tasajännite kytketään hetkellä t 0 johtoon, jonka pituus on l ja jonka kapasitanssi ja induktanssi pituusyksikköä kohti ovat c p ja l s. Mieti, kuinka virta i käyttäytyy ajan t funktiona

Lisätiedot

RATKAISUT: 19. Magneettikenttä

RATKAISUT: 19. Magneettikenttä Physica 9 1. painos 1(6) : 19.1 a) Magneettivuo määritellään kaavalla Φ =, jossa on magneettikenttää vastaan kohtisuorassa olevan pinnan pinta-ala ja on magneettikentän magneettivuon tiheys, joka läpäisee

Lisätiedot

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s.

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s. 7. KSS: Sähkömagnetismi (FOTON 7: PÄÄKOHDAT). MAGNETSM Magneettiset vuoovaikutukset, Magneettikenttä B = magneettivuon tiheys (yksikkö: T = Vs/m ), MAO s. 67, Fm (magneettikenttää kuvaava vektoisuue; itseisavona

Lisätiedot

RATKAISUT: 17. Tasavirtapiirit

RATKAISUT: 17. Tasavirtapiirit Phyica 9. paino 1(6) ATKAST 17. Taavirtapiirit ATKAST: 17. Taavirtapiirit 17.1 a) Napajännite on laitteen navoita mitattu jännite. b) Lähdejännite on kuormittamattoman pariton napajännite. c) Jännitehäviö

Lisätiedot

Kondensaattori ja vastus piirissä (RC)

Kondensaattori ja vastus piirissä (RC) Kondensaattori ja vastus piirissä (RC) = QC/C 1. Ratkaisuyrite: 2. Sijoitus yhälöön: Tässä on aikavakio: τ = RC 3. Alkuarvo: Kondensaattori ja vastus piirissä (RC) Kirchhoffin lait ovat hyvä idea I 1.

Lisätiedot

SÄHKÖSUUREIDEN MITTAAMINEN

SÄHKÖSUUREIDEN MITTAAMINEN FYSP107 / K3 Sähkösuureiden mittaaminen yleismittarilla - 1 - FYSP107 / K3 YLEISMITTARILLA SÄHKÖSUUREIDEN MITTAAMINEN Työn tavoitteita oppia tuntemaan digitaalisen yleismittarin suorituskyvyn rajat oppia

Lisätiedot

Sähköoppi. Sähköiset ja magneettiset vuorovaikutukset sekä sähkö energiansiirtokeinona.

Sähköoppi. Sähköiset ja magneettiset vuorovaikutukset sekä sähkö energiansiirtokeinona. Sähköoppi Sähköiset ja magneettiset vuorovaikutukset sekä sähkö energiansiirtokeinona. Sähkövaraus Pienintä sähkövarausta kutsutaan alkeisvaraukseksi. Elektronin varaus negatiivinen ja yhden alkeisvarauksen

Lisätiedot

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon 30 SÄHKÖVAKIO 30 Sähkövakio ja Coulombin laki Coulombin lain mukaan kahden tyhjiössä olevan pistevarauksen q ja q 2 välinen voima F on suoraan verrannollinen varauksiin ja kääntäen verrannollinen varausten

Lisätiedot

Kapasitiivinen ja induktiivinen kytkeytyminen

Kapasitiivinen ja induktiivinen kytkeytyminen Kapasitiivinen ja induktiivinen kytkeytyminen EMC - Kaapelointi ja kytkeytyminen Kaapelointi merkittävä EMC-ominaisuuksien kannalta yleensä pituudeltaan suurin elektroniikan osa > toimii helposti antennina

Lisätiedot

Magneettinen energia

Magneettinen energia Luku 11 Magneettinen energia 11.1 Kelojen varastoima energia Sähköstatiikan yhteydessä havaittiin, että kondensaattori kykenee varastoimaan sähköstaattista energiaa. astaavalla tavalla kela, jossa kulkee

Lisätiedot

Ongelmia mittauksissa Ulkoiset häiriöt

Ongelmia mittauksissa Ulkoiset häiriöt Ongelmia mittauksissa Ulkoiset häiriöt Häiriöt peittävät mitattavia signaaleja Häriölähteitä: Sähköverkko 240 V, 50 Hz Moottorit Kytkimet Releet, muuntajat Virtalähteet Loisteputkivalaisimet Kännykät Radiolähettimet,

Lisätiedot

OSKILLOSKOOPIN SYVENTÄVÄ KÄYTTÖ

OSKILLOSKOOPIN SYVENTÄVÄ KÄYTTÖ FYSP110/K2 OSKILLOSKOOPIN SYVENTÄVÄ KÄYTTÖ 1 Johdanto Työn tarkoituksena on tutustua oskilloskoopin käyttöön perusteellisemmin ja soveltaa työssä Oskilloskoopin peruskäyttö hankittuja taitoja. Ko. työn

Lisätiedot

BY-PASS kondensaattorit

BY-PASS kondensaattorit BY-PA kondensaattorit H. Honkanen Lähes kaikki piirikortille rakennetut elektroniikkalaitteet vaativat BY PA -kondensaattorin käyttöä. BY-pass kondensaattorilla on viisi merkittävää tarkoitusta: Estää

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Peruskäsitteet Luennon keskeinen termistö ja tavoitteet sähkövaraus teho ja energia potentiaali ja jännite sähkövirta Tarkoitus on määritellä sähkötekniikan

Lisätiedot

1. Mitä tarkoittaa resistanssi? Miten resistanssi lasketaan ja mikä on sen yksikkö?

1. Mitä tarkoittaa resistanssi? Miten resistanssi lasketaan ja mikä on sen yksikkö? 6 Resistanssi ja Ohmin laki 1. Mitä tarkoittaa resistanssi? Miten resistanssi lasketaan ja mikä on sen yksikkö? Se kuvaa sähkövirtaa vastustavaa ominaisuutta. R = U / I, yksikkö ohmi, 1 Ω 2. Mitkä asiat

Lisätiedot

Katso Opetus.tv:n video: Kirchhoffin 1. laki http://opetus.tv/fysiikka/fy6/kirchhoffin-lait/

Katso Opetus.tv:n video: Kirchhoffin 1. laki http://opetus.tv/fysiikka/fy6/kirchhoffin-lait/ 4.1 Kirchhoffin lait Katso Opetus.tv:n video: Kirchhoffin 1. laki http://opetus.tv/fysiikka/fy6/kirchhoffin-lait/ Katso Kimmo Koivunoron video: Kirchhoffin 2. laki http://www.youtube.com/watch?v=2ik5os2enos

Lisätiedot

YLEISMITTAREIDEN KÄYTTÄMINEN

YLEISMITTAREIDEN KÄYTTÄMINEN FYSP104 / K1 YLEISMITTAREIDEN KÄYTTÄMINEN Työn tavoitteita oppia tuntemaan analogisen ja digitaalisen yleismittarin tärkeimmät erot ja niiden suorituskyvyn rajat oppia yleismittareiden oikea ja rutiininomainen

Lisätiedot

Operaatiovahvistimen vahvistus voidaan säätää halutun suuruiseksi käyttämällä takaisinkytkentävastusta.

Operaatiovahvistimen vahvistus voidaan säätää halutun suuruiseksi käyttämällä takaisinkytkentävastusta. TYÖ 11. Operaatiovahvistin Operaatiovahvistin on mikropiiri ( koostuu useista transistoreista, vastuksista ja kondensaattoreista juotettuna pienelle piipalaselle ), jota voidaan käyttää useisiin eri kytkentöihin.

Lisätiedot

PERMITTIIVISYYS. 1 Johdanto. 1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla . (1) , (2) (3) . (4) Permittiivisyys

PERMITTIIVISYYS. 1 Johdanto. 1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla . (1) , (2) (3) . (4) Permittiivisyys PERMITTIIVISYYS 1 Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä Siirretään varausta levystä toiseen, jolloin levyissä on varaukset ja ja levyjen välillä

Lisätiedot

Fysiikan laboratoriotyöt 1, työ nro: 3, Vastuksen ja diodin virta-jänniteominaiskäyrät

Fysiikan laboratoriotyöt 1, työ nro: 3, Vastuksen ja diodin virta-jänniteominaiskäyrät Fysiikan laboratoriotyöt 1, työ nro: 3, Vastuksen ja diodin virta-jänniteominaiskäyrät Tekijä: Mikko Laine Tekijän sähköpostiosoite: miklaine@student.oulu.fi Koulutusohjelma: Fysiikka Mittausten suorituspäivä:

Lisätiedot

2. Sähköisiä perusmittauksia. Yleismittari.

2. Sähköisiä perusmittauksia. Yleismittari. TURUN AMMATTKORKEAKOULU TYÖOHJE 1 TEKNKKA FYSKAN LABORATORO 2.0 2. Sähköisiä perusmittauksia. Yleismittari. 1. Työn tavoite Tutustutaan tärkeimpään sähköiseen perusmittavälineeseen, yleismittariin, suorittamalla

Lisätiedot

20 kv Keskijänniteavojohdon kapasiteetti määräytyy pitkien etäisyyksien takia tavallisimmin jännitteenaleneman mukaan:

20 kv Keskijänniteavojohdon kapasiteetti määräytyy pitkien etäisyyksien takia tavallisimmin jännitteenaleneman mukaan: SÄHKÖENERGIATEKNIIKKA Harjoitus - Luento 2 H1 Kolmivaiheteho Kuinka suuri teho voidaan siirtää kolmivaihejärjestelmässä eri jännitetasoilla, kun tehokerroin on 0,9 ja virta 100 A. Tarkasteltavat jännitetasot

Lisätiedot

1. Tasavirtapiirit ja Kirchhoffin lait

1. Tasavirtapiirit ja Kirchhoffin lait Kimmo Silvonen, Sähkötekniikka ja elektroniikka, Otatieto 2003. Tasavirtapiirit ja Kirchhoffin lait Sähkötekniikka ja elektroniikka, sivut 5-62. Versio 3..2004. Kurssin Sähkötekniikka laskuharjoitus-,

Lisätiedot

2. Vastuksen läpi kulkee 50A:n virta, kun siihen vaikuttaa 170V:n jännite. Kuinka suuri resistanssi vastuksessa on?

2. Vastuksen läpi kulkee 50A:n virta, kun siihen vaikuttaa 170V:n jännite. Kuinka suuri resistanssi vastuksessa on? SÄHKÖTEKNIIKKA LASKUHARJOITUKSIA; OHMIN LAKI, KIRCHHOFFIN LAIT, TEHO 1. 25Ω:n vastuksen päiden välille asetetaan 80V:n jännite. Kuinka suuri virta alkaa kulkemaan vastuksen läpi? 2. Vastuksen läpi kulkee

Lisätiedot

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö:

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö: A1 Seppä karkaisee teräsesineen upottamalla sen lämpöeristettyyn astiaan, jossa on 118 g jäätä ja 352 g vettä termisessä tasapainossa Teräsesineen massa on 312 g ja sen lämpötila ennen upotusta on 808

Lisätiedot

SÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013

SÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013 SÄHKÖSTATIIKKA JA MAGNETISMI NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013 1. RESISTANSSI Resistanssi kuvaa komponentin tms. kykyä vastustaa sähkövirran kulkua Johtimen tai komponentin jännite on verrannollinen

Lisätiedot

TST:n laboratoriotyöt Tekniikan Yksikkö / Oamk, Jaakko Kaski, Jukka Jauhiainen, Heikki Kurki 2004

TST:n laboratoriotyöt Tekniikan Yksikkö / Oamk, Jaakko Kaski, Jukka Jauhiainen, Heikki Kurki 2004 TST:n laboratoriotyöt Tekniikan Yksikkö / Oamk, Jaakko Kaski, Jukka Jauhiainen, Heikki Kurki 004 Tst:n labratyöt liittyvät kiinteästi fysiikan laboratoriotöihin. Tämän vuoksi tähän monisteeseen ei ole

Lisätiedot

Nimi: Muiden ryhmäläisten nimet:

Nimi: Muiden ryhmäläisten nimet: Nimi: Muiden ryhmäläisten nimet: PALKKIANTURI Työssä tutustutaan palkkianturin toimintaan ja havainnollistetaan sen avulla pienten ainepitoisuuksien havainnointia. Työn mittaukset on jaettu kolmeen osaan,

Lisätiedot

www.mafyvalmennus.fi YO-harjoituskoe A / fysiikka Mallivastaukset 1. a)

www.mafyvalmennus.fi YO-harjoituskoe A / fysiikka Mallivastaukset 1. a) YO-harjoituskoe A / fysiikka Mallivastaukset 1. a) 1 b) Lasketaan 180 N:n voimaa vastaava kuorma. G = mg : g m = G/g (1) m = 180 N/9,81 m/s 2 m = 18,348... kg Luetaan kuvaajista laudan ja lankun taipumat

Lisätiedot

LABORAATIO 1, YLEISMITTARI JA PERUSMITTAUKSET

LABORAATIO 1, YLEISMITTARI JA PERUSMITTAUKSET KAJAANIN AMMATTIKORKEAKOULU Tekniikan ja liikenteen ala VAHVAVIRTATEKNIIKAN LABORAATIOT H.Honkanen LABORAATIO 1, YLEISMITTARI JA PERUSMITTAUKSET YLEISTÄ YLEISMITTARIN OMINAISUUKSISTA: Tässä laboratoriotyössä

Lisätiedot

Elektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist

Elektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Elektroniikka Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Kurssin sisältö Sähköopin perusteet Elektroniikan perusteet Sähköturvallisuus ja lainsäädäntö Elektroniikka musiikkiteknologiassa Suoritustapa

Lisätiedot

LOPPURAPORTTI 19.11.2007. Lämpötilahälytin. 0278116 Hans Baumgartner xxxxxxx nimi nimi

LOPPURAPORTTI 19.11.2007. Lämpötilahälytin. 0278116 Hans Baumgartner xxxxxxx nimi nimi LOPPURAPORTTI 19.11.2007 Lämpötilahälytin 0278116 Hans Baumgartner xxxxxxx nimi nimi KÄYTETYT MERKINNÄT JA LYHENTEET... 3 JOHDANTO... 4 1. ESISELOSTUS... 5 1.1 Diodi anturina... 5 1.2 Lämpötilan ilmaisu...

Lisätiedot

RATKAISUT: 21. Induktio

RATKAISUT: 21. Induktio Physica 9 2. painos 1(6) ATKAISUT ATKAISUT: 21.1 a) Kun magneettienttä muuttuu johdinsilmuan sisällä, johdinsilmuaan indusoituu lähdejännite. Tätä ilmiötä utsutaan indutiosi. b) Lenzin lai: Indutioilmiön

Lisätiedot

Elektroniikka ja sähkötekniikka

Elektroniikka ja sähkötekniikka Elektroniikka ja sähkötekniikka Sähköisiltä ilmiöiltä ei voi välttyä, vaikka ei käsittelisikään sähkölaitteita. Esimerkiksi kokolattiamatto, muovinen penkki, piirtoheitinkalvo tai porraskaide tulevat sähköisiksi,

Lisätiedot

Taitaja2004/Elektroniikka Semifinaali 19.11.2003

Taitaja2004/Elektroniikka Semifinaali 19.11.2003 Taitaja2004/Elektroniikka Semifinaali 19.11.2003 Teoriatehtävät Nimi: Oppilaitos: Ohje: Tehtävät ovat suurimmaksi osaksi vaihtoehtotehtäviä, mutta tarkoitus on, että lasket tehtävät ja valitset sitten

Lisätiedot

a) Kun skootterilla kiihdytetään ylämäessä, kitka on merkityksettömän pieni.

a) Kun skootterilla kiihdytetään ylämäessä, kitka on merkityksettömän pieni. AVOIN SARJA Kirjoita tekstaten koepaperiin oma nimesi, kotiosoitteesi, sähköpostiosoitteesi, opettajasi nimi sekä koulusi nimi. Kilpailuaikaa on 1 minuuttia. Sekä tehtävä- että koepaperit palautetaan kilpailun

Lisätiedot

a) Kuinka pitkän matkan punnus putoaa, ennen kuin sen liikkeen suunta kääntyy ylöspäin?

a) Kuinka pitkän matkan punnus putoaa, ennen kuin sen liikkeen suunta kääntyy ylöspäin? Luokka 3 Tehtävä 1 Pieni punnus on kiinnitetty venymättömän langan ja kevyen jousen välityksellä tukevaan kannattimeen. Alkutilanteessa punnusta kannatellaan käsin, ja lanka riippuu löysänä kuvan mukaisesti.

Lisätiedot

Kannattaa opetella parametrimuuttujan käyttö muidenkin suureiden vaihtelemiseen.

Kannattaa opetella parametrimuuttujan käyttö muidenkin suureiden vaihtelemiseen. 25 Mikäli tehtävässä piti määrittää R3:lle sellainen arvo, että siinä kuluva teho saavuttaa maksimiarvon, pitäisi variointirajoja muuttaa ( ja ehkä tarkentaa useampaankin kertaan ) siten, että R3:ssä kulkeva

Lisätiedot

FYSP105 / K3 RC-SUODATTIMET

FYSP105 / K3 RC-SUODATTIMET FYSP105 / K3 R-SODATTIMET Työn tavoitteita tutustua R-suodattimien toimintaan oppia mitoittamaan tutkittava kytkentä laiterajoitusten mukaisesti kerrata oskilloskoopin käyttöä vaihtosähkömittauksissa Työssä

Lisätiedot

OSKILLOSKOOPPI JA KOKOAALTOTASASUUNTAUS

OSKILLOSKOOPPI JA KOKOAALTOTASASUUNTAUS 1 OSKILLOSKOOPPI JA KOKOAALTOTASASNTAS 1. Työn tavoitteet 1.1 Mittausten tarkoitus Tässä työssä tutustut sähköisten perusmittausten tärkeimpään mittalaitteeseen - oskilloskooppiin. Opit mittaamaan oskilloskoopilla

Lisätiedot

FYSP104 / K2 RESISTANSSIN MITTAAMINEN

FYSP104 / K2 RESISTANSSIN MITTAAMINEN FYSP104 / K2 RESISTANSSIN MITTAAMINEN Työn tavoite tutustua erilaisiin menetelmiin, jotka soveltuvat pienten, keskisuurten ja suurten vastusten mittaamiseen Työssä tutustutaan useisiin vastusmittauksen

Lisätiedot

Diodit. I = Is * (e U/n*Ut - 1) Ihanteellinen diodi

Diodit. I = Is * (e U/n*Ut - 1) Ihanteellinen diodi Diodit Puolijohdediodilla on tasasuuntaava ominaisuus, se päästää virran lävitseen vain yhdessä suunnassa. Puolijohdediodissa on samassa puolijohdepalassa sekä p-tyyppistä että n-tyyppistä puolijohdetta.

Lisätiedot

Sähköstatiikka ja magnetismi Sähkömagneetinen induktio

Sähköstatiikka ja magnetismi Sähkömagneetinen induktio Sähköstatiikka ja magnetismi Sähkömagneetinen induktio Antti Haarto.05.013 Magneettivuo Magneettivuo Φ on magneettivuon tiheyden B ja sen läpäisemän pinta-alavektorin A pistetulo Φ B A BAcosθ missä θ on

Lisätiedot

KOHINA LÄMPÖKOHINA VIRTAKOHINA. N = Noise ( Kohina )

KOHINA LÄMPÖKOHINA VIRTAKOHINA. N = Noise ( Kohina ) KOHINA H. Honkanen N = Noise ( Kohina ) LÄMÖKOHINA Johtimessa tai vastuksessa olevien vapaiden elektronien määrä ei ole vakio, vaan se vaihtelee satunnaisesti. Nämä vaihtelut aikaansaavat jännitteen johtimeen

Lisätiedot

Kertaustehtävien ratkaisut

Kertaustehtävien ratkaisut Kertaustehtävien ratkaisut. c) Protoniin kohdistuva agneettisen voian suuruus on F 9 qvb,60773 0 C,6M / s 0,4T 58fN. Suunta on oikean käden sorisäännön perusteella ylöspäin.. b) Johtieen kohdistuvan voian

Lisätiedot

Jännite, virran voimakkuus ja teho

Jännite, virran voimakkuus ja teho Jukka Kinkamo, OH2JIN oh2jin@oh3ac.fi +358 44 965 2689 Jännite, virran voimakkuus ja teho Jännite eli potentiaaliero mitataan impedanssin yli esiintyvän jännitehäviön avulla. Koska käytännön radioamatöörin

Lisätiedot

OPERAATIOVAHVISTIN. Oulun seudun ammattikorkeakoulu Tekniikan yksikkö. Elektroniikan laboratoriotyö. Työryhmä Selostuksen kirjoitti 11.11.

OPERAATIOVAHVISTIN. Oulun seudun ammattikorkeakoulu Tekniikan yksikkö. Elektroniikan laboratoriotyö. Työryhmä Selostuksen kirjoitti 11.11. Oulun seudun ammattikorkeakoulu Tekniikan yksikkö Elektroniikan laboratoriotyö OPERAATIOVAHVISTIN Työryhmä Selostuksen kirjoitti 11.11.008 Kivelä Ari Tauriainen Tommi Tauriainen Tommi 1 TEHTÄVÄ Tutustuimme

Lisätiedot

1 Yleismittarin käyttäminen

1 Yleismittarin käyttäminen Työn tavoitteet 1 Yleismittarin käyttäminen Oppia tuntemaan tutkittujen yleismittareiden rakenne pääpiirteissään Oppia tuntemaan tutkittujen yleismittareiden suorituskyky pääpiirteissään Oppia tuntemaan

Lisätiedot

Fysiikka 9. luokan kurssi

Fysiikka 9. luokan kurssi Nimi: Fysiikka 9. luokan kurssi Kurssilla käytettävät suureet ja kaavat Täydennä taulukkoa kurssin edetessä: Suure Kirjaintunnus Yksikkö Yksikön lyhenne Jännite Sähkövirta Resistanssi Aika Sähköteho Sähköenergia

Lisätiedot

Raportti 31.3.2009. Yksivaiheinen triac. xxxxxxx nimi nimi 0278116 Hans Baumgartner xxxxxxx nimi nimi

Raportti 31.3.2009. Yksivaiheinen triac. xxxxxxx nimi nimi 0278116 Hans Baumgartner xxxxxxx nimi nimi Raportti 31.3.29 Yksivaiheinen triac xxxxxxx nimi nimi 278116 Hans Baumgartner xxxxxxx nimi nimi 1 Sisältö KÄYTETYT MERKINNÄT JA LYHENTEET... 2 1. JOHDANTO... 3 2. KIRJALLISUUSTYÖ... 4 2.1 Triacin toimintaperiaate...

Lisätiedot

OPERAATIOVAHVISTIMET 2. Operaatiovahvistimen ominaisuuksia

OPERAATIOVAHVISTIMET 2. Operaatiovahvistimen ominaisuuksia KAJAANIN AMMATTIKORKEAKOULU Tekniikan ja liikenteen ala TYÖ 11 ELEKTRONIIKAN LABORAATIOT H.Honkanen OPERAATIOVAHVISTIMET 2. Operaatiovahvistimen ominaisuuksia TYÖN TAVOITE Tutustua operaatiovahvistinkytkentään

Lisätiedot

Kolmivaihejärjestelmän perusteet. Pekka Rantala 29.8.2015

Kolmivaihejärjestelmän perusteet. Pekka Rantala 29.8.2015 Kolmivaihejärjestelmän perusteet Pekka Rantala 29.8.2015 Sisältö Jännite- ja virtalähde Kolme toimintatilaa Theveninin teoreema Symmetrinen 3-vaihejärjestelmä Virrat ja jännitteet Tähti- ja kolmiokytkentä

Lisätiedot

RATKAISUT. Luokka 1. Tehtävä 1. 1 a + 1 b = 1 f. , a = 2,0 m, b = 0,22 m. 1 f = a+ b. a) Gaussin kuvausyhtälö

RATKAISUT. Luokka 1. Tehtävä 1. 1 a + 1 b = 1 f. , a = 2,0 m, b = 0,22 m. 1 f = a+ b. a) Gaussin kuvausyhtälö RATKAISUT Luokka 1 Tehtävä 1 a) Gaussin kuvausyhtälö 1 a + 1 b = 1 f, a =,0 m, b = 0, m. 1 f = a+ b ab = f = ab,0 m 0, m = a+ b,0 m+ 0, m = 0,198198 m 0,0 m 1 p b) b = 0,5 m 1 a = b f bf a= bf b f = 0,5m

Lisätiedot

HAHMOTTAVA KOKEELLISUUS VAIHTOVIRTAPIIRIEN OPETUKSESSA

HAHMOTTAVA KOKEELLISUUS VAIHTOVIRTAPIIRIEN OPETUKSESSA Laudatur-tutkielma HAHMOTTAVA KOKEELLISUUS VAIHTOVIRTAPIIRIEN OPETUKSESSA Jorma Tahvanainen 21 Ohjaaja: Prof. Heimo Saarikko Tarkastajat: Prof. Heimo Saarikko Prof. emer. Kaarle Kurki-Suonio HELSINGIN

Lisätiedot

MUUNTAJAT. KAAVAT ideaalimuuntajalle 2 I2 Z. H. Honkanen

MUUNTAJAT. KAAVAT ideaalimuuntajalle 2 I2 Z. H. Honkanen MTAJAT H. Honkann Muuntaja on lait, jossa nsiön vaihtovita saa aikaan muuttuvan magnttikntän muuntajasydämn. Tämä muuttuva magnttiknttä saa aikaan vian toisiokäämiin. Tasasähköllä muuntaja i toimi, tasavita

Lisätiedot

RATKAISUT: 16. Peilit ja linssit

RATKAISUT: 16. Peilit ja linssit Physica 9 1 painos 1(6) : 161 a) Kupera linssi on linssi, jonka on keskeltä paksumpi kuin reunoilta b) Kupera peili on peili, jossa heijastava pinta on kaarevan pinnan ulkopinnalla c) Polttopiste on piste,

Lisätiedot

2. DC-SWEEP, AC-SWEEP JA PSPICE A/D

2. DC-SWEEP, AC-SWEEP JA PSPICE A/D 11 2. DC-SWEEP, AC-SWEEP JA PSPICE A/D Oleellista sweep -sovelluksissa on se, että DC-sweep antaa PSpice A/D avulla graafisia esityksiä, joissa vaaka-akselina on virta tai jännite, AC-sweep antaa PSpice

Lisätiedot

Hahmottava kokonaisuus TASAVIRTAPIIRIT. Sirkka-Liisa Koskinen Tapio Penttilä Ryhmä: E5

Hahmottava kokonaisuus TASAVIRTAPIIRIT. Sirkka-Liisa Koskinen Tapio Penttilä Ryhmä: E5 DFCL3 Hahmottava kokonaisuus TASAVIRTAPIIRIT Tekijät: Sirkka-Liisa Koskinen Tapio Penttilä Ryhmä: E5 2 SISÄLLYSLUETTELO 1. Johdanto 3 2. Perushahmotus 3 3. Sähkövirta 4 3.1. Esikvantifiointi 4 3.2. Kvantifiointi

Lisätiedot