Viivakuormituksen potentiaalienergia saadaan summaamalla viivan pituuden yli

Koko: px
Aloita esitys sivulta:

Download "Viivakuormituksen potentiaalienergia saadaan summaamalla viivan pituuden yli"

Transkriptio

1 hum.9. oiman potentiaalienergia Potentiaalienergiata puhutaan, kun kappaleeeen vaikuttaa jokin konervatiivinen voima. oima on konervatiivinen, jo en tekemä tö vaikutupieen iirteä tiettä paikata toieen on riippumaton kuljetuta reititä. ällöin e ei muuta energiaa lämmöki. Konervatiiviia voimia ovat muun muaa gravitaatiovoima ja jouivoima. Sitä vatoin eimerkiki kitka ei ole konervatiivinen voima, illä e muuttaa liike-energiaa lämmöki. ällä kurilla käitellään voimia, joiden uuruu ja uunta pvät vakioina niiden iirteä. ällöin pitevoiman F tekemä tö W = F u ja en potentiaalienergia WP = - W = -F u, jolloin potentiaalienergian nollatao on valittu kappaleen kuormittamattomaan aemaan ja iirtmä u on voiman uuntainen. Potentiaalienergiata on mö kätöä muun muaa euraavat merkinnät ja E p. iivakuormituken potentiaalienergia aadaan ummaamalla viivan pituuden li = ( ) ( ) () WP q u d u miä q u on viivakuormitu iirtmän u uuntaan. atavati painekuormitu ummataan en vaikutualueen li. ilavuuvoiman potentiaalienergia aadaan () WP = f u d = A f u d Koottuna hteen ja iirrttäeä leieen kolmiulotteieen tapaukeen voidaan ulkoien voiman potentiaalienergia lauua WP = u f d u p ds u F (3) i i S i p miä on kätett merkintöjä: iirtmä = ( u v w) p = ( p ) p p ja pitevoima F = ( F ) F F f = f f f u, tilavuuvoima ( ) eri kirjaimilla, mutta muuten energialaueke on tämälleen ama., paine. Merkinnät Chandrupatlan kirjaa ovat hieman

2 hum.9. Kimmoenergia arkatellaan kuvan akiaalita jännittilaa d σ P d σ d Elementin -uuntaieen tahkoon kohdituva voima tekemä muodonmuutotö F = σ d d. oiman F tilavuuelementtiin dw = σ F( ) d (4) miä = d eli dwσ = σ ( ) d d d d = σ ( ) d d (5) Kimmoiella materiaalilla muodonmuutotötä kututaan kimmoenergiaki du. Oamäärää U dwσ σ ( ) d d = = (6) anotaan tilavuuelementtiin kuuluvan piteen kimmoenergiatihedeki. Jo materiaali on =. lineaarieti kimmoita, niin σ = E ja U E Kappaleen kimmoenergia aadaan ummaamalla U = U d = d σ (7) Homogeenien, uoran auvan, jonka pituu on ja poikkileikkauala A, kekeieä vedoa tai puritukea aadaan auvan kimmoenergialle laueke ( = u, ) U = EAu, d (8)

3 hum.9. Otetaan tää toitaieki ilman peruteluja mö uoran taopalkin taivutuongelman kimmoenergia, kun palkin materiaali on lineaarieti kimmoita U EI v, d = (9) ineaarieti kimmoien kappaleen, joa on leinen jännittila, kimmoenergia aadaan U = U d = d miä σ () σ = = ( σ, σ, σ ) (,, ) () Potentiaalienergian minimin periaate Kimmoien kappaleen, johon vaikuttaa konervatiivinen ulkoinen voimakuormitu, kokonaipotentiaalienergia on Π = U + WP () aue: Kaikita kinemaattieti kävitä iirtmäkentitä u(,,) e, joka tuottaa kokonaipotentiaalienergialle Π = Π ( u ) minimin, toteuttaa mö taapainoehdot ja on tarkka ratkaiu. Kinemaattieti käpä iirtmäkenttä toteuttaa oleelliet reunaehdot, jotka leenä ovat annettuja iirtmiä (tai kiertmiä), kuten kappaleen kiinnit. Jo kappaleen iirtmäkenttä ritetään määrittää likimääräieti kättäen ritettä n uɶ (,, ) = Qi Gi (,, ) (3) i= niin kantafunktiot G i tulee valita niin, että rite toteuttaa oleelliet reunaehdot. Näitä reunaehdoita on ii ite huolehdittava ritettä (etimaattia) valittaea. untemattomat kertoimet Q i voidaan ratkaita ääriarvoehdoita Π ( uɶ ) Q i = (4) jotka johtavat lujuuopin tehtäviä lineaarieen htälörhmään, joa on n kappaletta tuntemattomia. Määritettäeä kappaleen iirtmäkenttä likimääräieti kättäen ritettä (3), niin menettelä kututaan Raleigh-Ritin menetelmäki.

4 hum.9. Mainittakoon tää htedeä vielä, että palkkirakenteella mö ritteen derivaatta voi olla oleellinen reunaehto. Eimerkiki palkin pää voi olla jäkäti kiinnitett, jolloin iirtmäetimaatin derivaatta tulee olla nolla palkin ko. päää. Alla olevaa kuvaa on palkkirakenteen erilaiia kiinnitkiä. Huomaa, että kuvaa ˆQ on leikkauvoima. Enimmäieä tapaukea oleellinen reunaehto on v() =. oiea tapaukea oleellita iirtmäreunaehtoa ei ole. Jäkätä kiinnitketä euraa ehdot v() = ja v, () =. iukujohteeta aadaan ehto v, () =. Eimerkki. Siirtmäetimaatti uɶ ( ) on kinemaattieti käpä, illä e toteuttaa iirtmäreunaehdon ( ) Poikkileikkauken pinta-alalla on laueke A( ) = A ( ). Sauvan potentiaalienergia on Π = + = ( uɶ ) U WP EAuɶ, d F uɶ ( ) Π = Π = / ( uɶ ) ( C ) EA ( / ) C d F C (5) 3 Π ( ) = 4 C EA C F C u ɶ =. Potentiaalienergian minimin välttämätön ehto on

5 hum.9. d Π 6 F = EA C F = C = d C 4 3EA F F uɶ ( ) = C = EA EA (6)

4 YLEINEN ELEMENTTIMENETELMÄ

4 YLEINEN ELEMENTTIMENETELMÄ Elementtimenetelmän perusteet 4. 4 YLEINEN ELEMENIMENEELMÄ 4. Johdanto Elementtimenetelmä on osittaisdifferentiaalihtälörhmän reuna-arvotehtävän likimääräinen ratkaisumenetelmä. ällöin tarkastellaan tiettä

Lisätiedot

4.3 Liikemäärän säilyminen

4.3 Liikemäärän säilyminen Tämän kappaleen aihe liikemäärän äilyminen törmäykiä. Törmäy on uora ja kekeinen, jo törmäävät kappaleet liikkuvat maakekipiteitten kautta kulkevaa uoraa pitkin ja jo törmäykohta on tällä amalla uoralla.

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 14: Yleisen lujuusopin elementtimenetelmän perusteita.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 14: Yleisen lujuusopin elementtimenetelmän perusteita. 4/ LMNIMNLMÄN PRS SSSIO 4: Yleisen lujuusopin elementtimenetelmän perusteita. JOHDANO A A A A Yleinen elementtimenetelmä on osittaisdifferentiaalihtälörhmän reuna-arvotehtävän likimääräinen ratkaisumenetelmä.

Lisätiedot

12. ARKISIA SOVELLUKSIA

12. ARKISIA SOVELLUKSIA MAA. Arkiia ovellukia. ARKISIA SOVELLUKSIA Oleeaan, eä kappale liikkuu ykiuloeia raaa, eimerkiki -akelia pikin. Kappaleen nopeuden vekoriluonne riiää oaa vauhdin eumerkin avulla huomioon, ja on ehkä arkoiukenmukaiina

Lisätiedot

X 2 = k 21X 1 + U 2 s + k 02 + k 12. (s + k 02 + k 12 )U 1 + k 12 U 2. s 2 + (k 01 + k 21 + k 02 + k 12 ) s + k

X 2 = k 21X 1 + U 2 s + k 02 + k 12. (s + k 02 + k 12 )U 1 + k 12 U 2. s 2 + (k 01 + k 21 + k 02 + k 12 ) s + k Aalto-yliopiton Perutieteiden korkeakoulu Matematiikan ja yteemianalyyin laito Mat-49 Syteemien Identifiointi 0 harjoituken ratkaiut äytetään enin iirtofunktiomalli Tehdään Laplace-muunno: ẋ k 0 k x +

Lisätiedot

RATKAISUT: 17. Tasavirtapiirit

RATKAISUT: 17. Tasavirtapiirit Phyica 9. paino 1(6) ATKAST 17. Taavirtapiirit ATKAST: 17. Taavirtapiirit 17.1 a) Napajännite on laitteen navoita mitattu jännite. b) Lähdejännite on kuormittamattoman pariton napajännite. c) Jännitehäviö

Lisätiedot

gallup gallup potentiaali ja voima potentiaali ja voima potentiaali ja voima potentiaali ja voima

gallup gallup potentiaali ja voima potentiaali ja voima potentiaali ja voima potentiaali ja voima aup Kuinka pajon käytät kurikirjaa (tai jotain muuta oppikirjaa)? a) Tututun aiheeeen ennen uentoja b) Luen kirjaa uentojen jäkeen c) Luen oppikirjaa ähinnä akareita tehdeä d) n koke oppikirjaan aup Kappae

Lisätiedot

RATKAISUT: 3. Voimakuvio ja liikeyhtälö

RATKAISUT: 3. Voimakuvio ja liikeyhtälö Phyica 9. paino (8) 3. Voiakuvio ja liikeyhtälö : 3. Voiakuvio ja liikeyhtälö 3. a) Newtonin I laki on nieltään jatkavuuden laki. Kappale jatkaa liikettään uoraviivaieti uuttuattoalla nopeudella tai pyyy

Lisätiedot

Rak-54.116 Rakenteiden mekaniikka C, RM C (4 ov) Tentti 30.8.2007

Rak-54.116 Rakenteiden mekaniikka C, RM C (4 ov) Tentti 30.8.2007 Rak-54.116 Rakeneden mekankka, RM (4 ov) Ten.8.7 Krjoa jokaeen koepapern elvä - koko nme, puhuelunm allevvauna - oao, vuokur, enn pävämäärä ekä enävä opnojako koodeneen - opkeljanumero, mukaan luken arkukrjan

Lisätiedot

POSITIIVISEN LINSSIN POLTTOVÄLI

POSITIIVISEN LINSSIN POLTTOVÄLI S-108110 OPTIIKKA 1/6 POSITIIVISEN LINSSIN POLTTOVÄLI Laboratoriotyö S-108110 OPTIIKKA /6 SISÄLLYSLUETTELO 1 Poitiivien linin polttoväli 3 11 Teoria 3 1 Mittauken uoritu 5 LIITE 1 6 Mittaupöytäkirja 6

Lisätiedot

C B A. Kolmessa ensimmäisessä laskussa sovelletaan Newtonin 2. ja 3. lakia.

C B A. Kolmessa ensimmäisessä laskussa sovelletaan Newtonin 2. ja 3. lakia. Jako 4: Dynamiikan peruteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautu- tai näyttöpäivä on tiitaina 23.5.2017. Ektra-tehtävät vataavat kolmea tehtävää, kun kurin lopua laketaan lakuharjoitupiteitä.

Lisätiedot

Jakso 4: Dynamiikan perusteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautus- tai näyttöpäivä on maanantaina

Jakso 4: Dynamiikan perusteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautus- tai näyttöpäivä on maanantaina Jako 4: Dynamiikan peruteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautu- tai näyttöpäivä on maanantaina 8.8.2016. Kolmea enimmäieä lakua ovelletaan Newtonin 2. ja 3. lakia. T 4.1 (pakollinen):

Lisätiedot

RATKAISUT: 8. Momentti ja tasapaino

RATKAISUT: 8. Momentti ja tasapaino Phyica 9. paino (7) : 8. Voian vari r on voian vaikutuuoran etäiyy pyöriiakelita. Pyöriiakeli on todellinen tai kuviteltu akeli, jonka ypäri kappale pyörii. Voian oentti M kuvaa voian vääntövaikututa tietyn

Lisätiedot

Kahdeksansolmuinen levyelementti

Kahdeksansolmuinen levyelementti Levy8 ja RS hm 7.. Kahdekanolminen levyelementti akatellaan kvan kahdekanolmita levyelementtiä. q 6 y (,y q 8 ( 8,y 8 8 q 7 q 6 (,y q 5 q q q 7 q q ( 7,y 7 v ( 6,y 6 P 5 ( 5,y 5 q 9 6 q 5 (,y q (,y q q

Lisätiedot

12. laskuharjoituskierros, vko 16, ratkaisut

12. laskuharjoituskierros, vko 16, ratkaisut 1. lakuharjoitukierro, vko 16, ratkaiut D1. Muuttujien x ja Y havaitut arvot ovat: x 1 3 4 6 8 9 11 14 Y 1 4 4 5 7 8 9 a) Määrää regreiomallin Y i = α +βx i +ǫ i regreiokertoimien PNS-etimaatit ja piirrä

Lisätiedot

Kertausosa. 2. Kuvaan merkityt kulmat ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia, kulmat ovat yhtä suuria.

Kertausosa. 2. Kuvaan merkityt kulmat ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia, kulmat ovat yhtä suuria. 5. Veitoken tilavuu on V,00 m 1,00 m,00 m 6,00 m. Pienoimallin tilavuu on 1 V malli 6,00 m 0,06m. 100 Mittakaava k aadaan tälötä. 0,06 1 k 6,00 100 1 k 0,1544... 100 Mitat ovat. 1,00m 0,408...m 100 0,41

Lisätiedot

Luento 11: Potentiaalienergia. Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia

Luento 11: Potentiaalienergia. Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia Luento 11: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia 1 / 22 Luennon sisältö Potentiaalienergia Konservatiiviset voimat

Lisätiedot

PD-säädin PID PID-säädin

PD-säädin PID PID-säädin -äädin - äätö on ykinkertainen äätömuoto, jota voidaan kutua myö uhteuttavaki äädöki. Sinä lähtöignaali on uoraa uhteea tuloignaalin. -äätimen uhdealue kertoo kuinka paljon mittauuure aa muuttua ennen

Lisätiedot

Fy07 Koe Kuopion Lyseon lukio (KK) 1 / 5

Fy07 Koe Kuopion Lyseon lukio (KK) 1 / 5 y07 Koe 8.9.05 Kuopion yeon lukio (KK) / 5 Vataa kolmeen tehtävään. Vatuken reitani on 60, käämin induktani on 0,60 H ja reitani 8 ja kondenaattorin kapaitani on 80. Komponentit ovat arjaan kytkettyinä

Lisätiedot

Intensiteettitaso ja Doplerin ilmiö

Intensiteettitaso ja Doplerin ilmiö Inteniteettitao ja Doplerin ilmiö Tehtävä Erkki työkentelee airaalaa. Sairaalalta 6,0 km päää on tapahtunut tieliikenneonnettomuu ja onnettomuupaikalta lähteneen ambulanin ireenin ääni kuuluu Erkille 60,0

Lisätiedot

Viikkotehtävät IV, ratkaisut

Viikkotehtävät IV, ratkaisut Viikkotehtävät IV, ratkaiut. 7,40 V (pariton napajännite) I 7 ma (lampun A ähkövirta rinnankytkennää) I 5 ma (lampun B ähkövirta rinnankytkennää) a) eitani on, joten lamppujen reitanit voidaan lakea tehtävää

Lisätiedot

7. Pyörivät sähkökoneet

7. Pyörivät sähkökoneet Pyörivät ähkökoneet 7-1 7. Pyörivät ähkökoneet Mekaanien energian muuntamieen ähköenergiaki ekä ähköenergian muuntamieen takaiin mekaanieki energiaki käytetään ähkökoneita. Koneita, jotka muuntavat mekaanien

Lisätiedot

b) Laskiessani suksilla mäkeä alas ja hypätessäni laiturilta järveen painovoima tekee työtä minulle.

b) Laskiessani suksilla mäkeä alas ja hypätessäni laiturilta järveen painovoima tekee työtä minulle. nergia. Työ ja teho OHDI JA TSI -. Opettaja ja opikelija tekevät hyvin paljon aanlaita ekaanita työtä, kuten liikkuinen, kirjojen ja eineiden notainen, liikkeellelähtö ja pyähtyinen. Uuien aioiden oppiinen

Lisätiedot

KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoski, professori. Lappeenrannan teknillinen yliopisto

KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoski, professori. Lappeenrannan teknillinen yliopisto KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoki, proeori Lappeenrannan teknillinen yliopito Näin uuden vuoden alkaea ueat meitä miettivät ijoitualkkuna kootumuta. Yki kekeiitä kyymykitä on päätö eri

Lisätiedot

Luento 9: Potentiaalienergia

Luento 9: Potentiaalienergia Luento 9: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Laskettuja esimerkkejä Luennon sisältö Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta

Lisätiedot

Väliestimointi. Väliestimointi. Väliestimointi: Mitä opimme? 2/3. Väliestimointi: Mitä opimme? 1/3. Väliestimointi: Mitä opimme?

Väliestimointi. Väliestimointi. Väliestimointi: Mitä opimme? 2/3. Väliestimointi: Mitä opimme? 1/3. Väliestimointi: Mitä opimme? TKK (c) Ilkka Melli (004) Välietimoiti Todeäköiyyjakaumie parametrie etimoiti Normaalijakauma variai luottamuväli Beroulli-jakauma odotuarvo luottamuväli Johdatu tilatotieteeee Välietimoiti TKK (c) Ilkka

Lisätiedot

LUKION FYSIIKKAKILPAILU 8.11.2005 avoimen sarjan vast AVOIN SARJA

LUKION FYSIIKKAKILPAILU 8.11.2005 avoimen sarjan vast AVOIN SARJA LKION FYSIIKKAKILPAIL 8..5 avoien arjan vat AVOIN SARJA Kirjoita tektaten koepaperiin oa niei, kotiooitteei, ähköpotiooitteei, opettajai nii ekä koului nii. Kilpailuaikaa on inuuttia. Sekä tehtävä- että

Lisätiedot

RATKAISUT: Kertaustehtäviä

RATKAISUT: Kertaustehtäviä Phyica 1 uuditettu paino OPETTAJAN OPAS 1(9) Kertautehtäiä RATKAISUT: Kertautehtäiä LUKU 3. Luua on a) 4 eriteää nueroa b) 3 eriteää nueroa c) 7 eriteää nueroa. 4. Selitetään erieen yhtälön olepien puolien

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.3.2016 Susanna Hurme Rotaatioliikkeen liike-energia, teho ja energiaperiaate (Kirjan luku 18) Osaamistavoitteet Ymmärtää, miten liike-energia määritetään kiinteän

Lisätiedot

10 Suoran vektorimuotoinen yhtälö

10 Suoran vektorimuotoinen yhtälö 10 Suran vektrimutinen htälö J aluki tarkatellaan -tan kuuluvaa, rign kautta kulkevaa uraa, niin ura n täin määrätt, mikäli tunnetaan en uunta. Tavallieti tämä annetaan uuntakulman tangentin = kulmakertimen

Lisätiedot

CST-elementti hum

CST-elementti hum CS-lmntti hm 4..3 CS-lmntti arkatllaan kan kolmiolmita kolmiolmnttiä, jota kttaan akionmän kolmiolmntiki (Contant Strain riangl). q 6 3 q 5 ( 3, 3 ) (, ) q 4 q 3 P q (, ) q O Pitn P koordinaatit oidaan

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Lokaalit ääriarvot Yhden muuttujan funktion f (x) lokaali maksimi on piste x 0, jossa f (x) on suurempi kuin muualle pisteen x 0 ympäristössä, eli kun f (x 0 )

Lisätiedot

S FYSIIKKA IV (ES), Koulutuskeskus Dipoli, Kevät 2003, LH2. f i C C. λ 2, m 1 cos60,0 1, m 1,2 pm. λi λi

S FYSIIKKA IV (ES), Koulutuskeskus Dipoli, Kevät 2003, LH2. f i C C. λ 2, m 1 cos60,0 1, m 1,2 pm. λi λi S-11436 FYSIIKKA IV (S), Kulutukeku Dipli, Kevät 003, LH LH-1 Ftni, jnka energia n 10,0 kev, törmää leva levaan vapaaeen elektrniin ja irttuu uuntaan, jka mudtaa 60,0 kulman ftnin alkuperäien liikeuunnan

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet

KJR-C2002 Kontinuumimekaniikan perusteet KJR-C2002 Kontinuumimekaniikan perusteet Luento 25.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Tämän päivän luento Aiemmin ollaan johdettu palkin voimatasapainoyhtälöt differentiaaligeometrisella tavalla

Lisätiedot

Kuva 22: Fraktaalinen kukkakaali. pituus on siis 4 AB. On selvää, että käyrän pituus kasvaa n:n kasvaessa,

Kuva 22: Fraktaalinen kukkakaali. pituus on siis 4 AB. On selvää, että käyrän pituus kasvaa n:n kasvaessa, Tortai 6..999 = Geometria o hyvä tapa kuvata ykikertaiia kappaleita, mutta kappaleie tullea äärettömä moimutkaiiki, käy iie kuvaamie klaie geometria avulla mahottomaki. Eimerkiki rataviiva pituue määrittämie

Lisätiedot

Galerkin in menetelmä

Galerkin in menetelmä hum.9.3 Galerkn n menetelmä Galerknn menetelmän soveltamnen e ole rajottunut van ongelmn, jotka vodaan pukea sellaseen varaatomuotoon, joka on seurauksena funktonaaln mnmomsesta, kuten potentaalenergan

Lisätiedot

Exam III 10 Mar 2014 Solutions

Exam III 10 Mar 2014 Solutions TTY/ Department o Mechanical Engineering and Industrial Systems TE III / EDE_ / S EDE- Finite Ement Method Exam III Mar Solutions. Compute the dection at right end o the y,v / F structure using the potential

Lisätiedot

Lyhyt yhteenvetokertaus nodaalimallista SÄTEILYTURVAKESKUS STRÅLSÄKERHETSCENTRALEN RADIATION AND NUCLEAR SAFETY AUTHORITY

Lyhyt yhteenvetokertaus nodaalimallista SÄTEILYTURVAKESKUS STRÅLSÄKERHETSCENTRALEN RADIATION AND NUCLEAR SAFETY AUTHORITY Lyhyt yhteenvetokertaus nodaalimallista SÄTELYTUVAKESKUS STÅLSÄKEHETSCENTALEN ADATON AND NUCLEA SAFETY AUTHOTY Ei enää tarkastella neutronien kulkua, vaan työn alla on simppeli tuntemattoman differentiaaliyhtälöryhmä

Lisätiedot

Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat:

Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat: Mat-.090 Sovellettu todeäköiyylaku A 0. harjoituket Mat-.09 Sovellettu todeäköiyylaku 0. harjoituket / Ratkaiut Aiheet: Avaiaat: Tilatolliet tetit Aritmeettie kekiarvo, Beroulli-jakauma, F-jakauma, F-teti,

Lisätiedot

TL5362DSK-algoritmit (J. Laitinen) TTE2SN4X/4Z, TTE2SN5X/5Z Välikoe 1, ratkaisut

TL5362DSK-algoritmit (J. Laitinen) TTE2SN4X/4Z, TTE2SN5X/5Z Välikoe 1, ratkaisut TL536DSK-algoritmit (J. Laitie) 4. - 5..4 TTESN4X/4Z, TTESN5X/5Z Välikoe, ratkaiut a) Maiite väitää kaki digitaalite FIR-uotimie etua verrattua IIR-uotimii. b) Mite Reme-meetelmällä uuitellu FIR-uotime

Lisätiedot

Luento 9: Potentiaalienergia

Luento 9: Potentiaalienergia Luento 9: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Laskettuja esimerkkejä ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2015 Mikro- ja nanotekniikan

Lisätiedot

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Harjoituksen 1 ratkaisuehdotukset

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Harjoituksen 1 ratkaisuehdotukset SMG-4200 Sähkömagneettiten järjetelmien lämmöniirto Harjoituken 1 ratkaiuehdotuket Vata 1800-luvun puoliväliä ymmärrettiin että lämpöenergia on atomien ja molekyylien atunnaieen liikkeeeen värähtelyyn

Lisätiedot

KOE 2 Ympäristöekonomia

KOE 2 Ympäristöekonomia Helingin yliopio Valinakoe.5. Maaalou-meäieeellinen iedekuna KOE Ympäriöekonomia Sekä A- eä B-oioa ulee aada vähinään 5 pieä. Mikäli A-oion piemäärä on vähemmän kuin 5 pieä B-oio jäeään arvoelemaa. B-OSIO

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

S-55.1220 Piirianalyysi 2 Tentti 4.1.2007

S-55.1220 Piirianalyysi 2 Tentti 4.1.2007 S-55.2 Piirianalyyi 2 Tentti 4..07. Piiriä yöttää kaki lähdettä, joilla on eri taajuudet. Kuinka uuri on lämmöki muuttuva teho P? Piiri on jatkuvuutilaa. J 2 00 Ω 5µH 0 pf 0/0 V J 2 00/0 ma f MHz f 2 2MHz.

Lisätiedot

Aalto-yliopisto, Teknillisen fysiikan laitos PHYS-E0460 Reaktorifysiikan perusteet Harjoitus 3, mallivastaukset Syksy 2016

Aalto-yliopisto, Teknillisen fysiikan laitos PHYS-E0460 Reaktorifysiikan perusteet Harjoitus 3, mallivastaukset Syksy 2016 Aalto-yliopito, Teknillien fyiikan laito Sipilä/Heikinheimo PHYS-E0460 Reaktorifyiikan peruteet Harjoitu 3, mallivatauket Syky 2016 Tehtävä 3 on tämän harjoitukierroken taulutehtävä Valmitaudu eittelemään

Lisätiedot

Pinta-alan variaatio. Rakenteiden Mekaniikka Vol. 44, Nro 1, 2011, s Eero-Matti Salonen ja Mika Reivinen

Pinta-alan variaatio. Rakenteiden Mekaniikka Vol. 44, Nro 1, 2011, s Eero-Matti Salonen ja Mika Reivinen Rakenteien Mekaniikka Vol. 44, Nro, 0,. 93-97 Pinta-alan variaatio Eero-Matti Salonen ja Mika Reivinen Tiivitelmä. Artikkelia tarkatellaan taoalueen pinta-alan variaation eittämitä vektorilakennan avulla.

Lisätiedot

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen)

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen) Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen Vapaaseen hiukkaseen ei vaikuta voimia, joten U(x = 0. Vapaan hiukkasen energia on sen liike-energia eli E=p /m. Koska hiukkasella on määrätty energia,

Lisätiedot

LUKION FYSIIKKAKILPAILU 10.11.2009, ratkaisut PERUSSARJA

LUKION FYSIIKKAKILPAILU 10.11.2009, ratkaisut PERUSSARJA LUKION FYSIIKKAKILPAILU 0..009, ratkaiut PERUSSARJA Vataa huolellieti ja iititi! Kirjoita tektaten koepaperiin oa niei, kotiooitteei, ähköpotiooite, opettajai nii ekä koului nii. Kilpailuaikaa on 00 inuuttia.

Lisätiedot

S Fysiikka III (Est) Tentti

S Fysiikka III (Est) Tentti S-114137 Fyiikka III (Et) Tentti 9008 1 Vetyatomin elektronin kulmaliikemäärää kuvaa kvanttiluku l =3 Lake miä kaikia kulmia kulmaliikemäärävektori voi olla uhteea kulmaliikemäärän z-komponenttiin ( )

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 8 To 29.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 8 To 29.9.2011 p. 1/36 p. 1/36 Interpolointi kuutiosplinillä Osavälit: I i = [t i 1,t i ], i = 1,2,...,n

Lisätiedot

1 Eksergia ja termodynaamiset potentiaalit

1 Eksergia ja termodynaamiset potentiaalit 1 PHYS-C0220 Termodynamiikka ja statistinen fysiikka, kevät 2017 Emppu Salonen 1 Eksergia ja termodynaamiset potentiaalit 1.1 Suurin mahdollinen hyödyllinen työ Tähän mennessä olemme tarkastelleet sisäenergian

Lisätiedot

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 5

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 5 5384A RADIOTEKNIIKAN PERUSTEET Haroitu 5. Häviötön 5 Ω:n aaltoohto on päätetty tuntemattomaan impedaniin. Aaltoohdolla olevaki ännitteen eiovan aallon uhteeki aadaan 3 a enimmäinen minimi havaitaan 5 cm:n

Lisätiedot

Sauvaelementti hum

Sauvaelementti hum Sauvalmntti hum.9. Yhdn solmuvapausastn sauvalmntti akastllaan kuvan mukaista sauvalmnttiä. Sauvan vasmmassa päässä on sauvan lokaalisolmu numo, jonka -koodinaatti on ja vastaavasti oikassa päässä lokaalisolmu

Lisätiedot

Physica 9 1. painos 1(8) 20. Varattu hiukkanen sähkö- ja magneettikentässä

Physica 9 1. painos 1(8) 20. Varattu hiukkanen sähkö- ja magneettikentässä Phyica 9 aino (8) 0 Varattu hiukkann ähkö- ja agnttikntää : 0 Varattu hiukkann ähkö- ja agnttikntää 0 a) Sähköknttä aikuttaa arattuun hiukkan oialla F = QE Poitiiiti aratull hiukkall oian uunta on ähkökntän

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet

KJR-C2002 Kontinuumimekaniikan perusteet KJR-C2002 Kontinuumimekaniikan perusteet Luento 23.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Luennon sisältö Hooken laki lineaaris-elastiselle materiaalille (Reddy, kpl 6.2.3) Lujuusoppia: sauva (Reddy,

Lisätiedot

Luento 11: Potentiaalienergia

Luento 11: Potentiaalienergia Luento 11: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia Ajankohtaista Konseptitesti 1 Kysymys Levossa oleva kappale lähtee

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 6 1 Korkolaskentaa Oletetaan, että korkoaste on r Jos esimerkiksi r = 0, 02, niin korko on 2 prosenttia Tätä korkoastetta käytettään diskonttaamaan tulevia tuloja ja

Lisätiedot

Laplacemuunnosten perusteet kurssilla S1; v.1.0

Laplacemuunnosten perusteet kurssilla S1; v.1.0 Laplacemuunnoten peruteet kurilla S; v.. Jarmo Malinen. joulukuuta 29 Siältö Alkuanat 2 2 Määritelmiä 2 3 Laplace-muunnoken ominaiuukia 6 4 Sovellutu vakiokertoimiiin lineaariiin differentiaaliyhtälöihin

Lisätiedot

Kuva 1: Tehtävä 1a. = 2π. 3 x3 1 )

Kuva 1: Tehtävä 1a. = 2π. 3 x3 1 ) BMA58 - Integraalilaskenta ja sovellukset Harjoitus 3, Kevät 6 = Kuva : Tehtävä a. a Slinterinkuorelle tässä h = ja r = ja kä läpi välin [,], joka johtaa lausekkeeseen: V = π 6 / 3 d 3 3 3 = 3 Kuva : Tehtävä

Lisätiedot

S-55.1220 Piirianalyysi 2 Tentti 1.9.2011

S-55.1220 Piirianalyysi 2 Tentti 1.9.2011 S-55.2 Piirianalyyi 2 Tentti.9.. e(t) L j(t) Lake vatukea lämmöki muuttuva teho P. = Ω L = mh = 2mF ω = 0 3 rad/ e = ê in(ωt) j = ĵ in(2ωt) ĵ = 0 A ê = 2 2 V. 2. u(t) k Kuvan mukainen taajännitelähteen

Lisätiedot

Mat-2.090 Sovellettu todennäköisyyslasku A

Mat-2.090 Sovellettu todennäköisyyslasku A Mat-.090 Sovellettu todeäköiyylaku A Mat-.090 Sovellettu todeäköiyylaku A / Ratkaiut Aiheet: Avaiaat: Tilatollite aieito keräämie ja mittaamie Tilatollite aieitoje kuvaamie Oto ja otojakaumat Aritmeettie

Lisätiedot

JÄÄMEREN RAUTATIE ROVANIEMI-KIRKKONIEMI WWW.ARCTICCORRIDOR.FI

JÄÄMEREN RAUTATIE ROVANIEMI-KIRKKONIEMI WWW.ARCTICCORRIDOR.FI JÄÄMEREN RAUTATIE ROVANIEMI-KIRKKONIEMI WWW.ARCTICCORRIDOR.FI KILPAILUKYKYÄ INVESTOIJILLE JA YRITYKSILLE Jäämeren rautatie parantaa yrityten ja invetoijien toimintamahdolliuukia arktiella alueella. Uuia

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet, viikko 47/2017

KJR-C2002 Kontinuumimekaniikan perusteet, viikko 47/2017 KJR-C00 Kontinuumimekaniikan perusteet, viikko 47/017 1. Määritä oheisen kuvan mukaisen kanaalin portin

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 7 Harjoitus 3: ratkaisut Tehtävä Tarkastellaan äärettömän syvässä laatikossa (väli [, L) olevaa hiukkasta. Kirjoita energiatiloja E n vastaavat aaltofunktiot muodossa ψ n (x,

Lisätiedot

= ( F dx F dy F dz).

= ( F dx F dy F dz). 17 VEKTORIANALYYSI Luento 2 3.4 Vektorikentän käyräintegraali Voiman tekemä työ on matka (d) kertaa voiman (F) projektio liikkeen suunnassa, yksinkertaisimmillaan W Fd. Jos liike tapahtuu käyrää pitkin

Lisätiedot

Suoran yhtälöt. Suoran ratkaistu ja yleinen muoto: Suoran yhtälö ratkaistussa, eli eksplisiittisessä muodossa, on

Suoran yhtälöt. Suoran ratkaistu ja yleinen muoto: Suoran yhtälö ratkaistussa, eli eksplisiittisessä muodossa, on Suoran htälöt Suoran ratkaistu ja leinen muoto: Suoran htälö ratkaistussa, eli eksplisiittisessä muodossa, on ANALYYTTINEN GEOMETRIA MAA5 = k + b, tai = a missä vakiotermi b ilmoittaa suoran ja -akselin

Lisätiedot

[ k ] ja ekvivalenttisen solmukuormitusvektorin { r } määritystä kaavoista (4.20) ja

[ k ] ja ekvivalenttisen solmukuormitusvektorin { r } määritystä kaavoista (4.20) ja Elementtimenetelmän perusteet 7. 7 D-SOLIDIRAKEEE 7. ohdanto Edellä tarkasteltiin interpolointia ja numeerista integrointia emoneliön ja emokolmion alueissa. Emoelementtien avulla voidaan muodostaa vaihtelevan

Lisätiedot

Olkoon R S otosavaruuksien R ja S karteesinen tulo: Satunnaismuuttujien X ja Y järjestetty pari (X, Y) määrittelee kaksiulotteisen satunnaismuuttujan:

Olkoon R S otosavaruuksien R ja S karteesinen tulo: Satunnaismuuttujien X ja Y järjestetty pari (X, Y) määrittelee kaksiulotteisen satunnaismuuttujan: Mat-.6 Sovellettu todennäköisslaskenta B Mat-.6 Sovellettu todennäköisslaskenta B / Ratkaisut Aiheet: Moniulotteiset satunnaismuuttujat ja todennäköissjakaumat Moniulotteisia jakaumia Avainsanat: Diskreetti

Lisätiedot

OPINTOJAKSO FYSIIKKA 1 OV OPINTOKOKONAISUUTEEN FYSIIKKA JA KEMIA 2 OV. Isto Jokinen 2012. 1. Mekaniikka 2

OPINTOJAKSO FYSIIKKA 1 OV OPINTOKOKONAISUUTEEN FYSIIKKA JA KEMIA 2 OV. Isto Jokinen 2012. 1. Mekaniikka 2 OPINTOJAKSO FYSIIKKA 1 OV OPINTOKOKONAISUUTEEN FYSIIKKA JA KEMIA OV Io Jokinen 01 SISÄLTÖ SIVU 1. Mekaniikka Nopeu Kekinopeu Kehänopeu 3 Kiihyvyy 3 Puoamikiihyvyy 4 Voima 5 Kika 6 Työ 7 Teho 8 Paine 9

Lisätiedot

JYVÄSKYLÄN YLIOPISTO. Matemaatiikan historia Ratkaisut 6 / 2011

JYVÄSKYLÄN YLIOPISTO. Matemaatiikan historia Ratkaisut 6 / 2011 JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS Matemaatiikan historia Ratkaisut 6 / 011 1. Osoita oikeaksi Bombellin väite, että 4 + 1 on luvun 5 + 09 kuutiojuuri. (Mikä mies olikaan Bombelli?)

Lisätiedot

1 Clausiuksen epäyhtälö

1 Clausiuksen epäyhtälö 1 PHYS-C0220 ermodynamiikka ja statistinen fysiikka, kevät 2017 Emppu Salonen 1 Clausiuksen epäyhtälö Carnot n koneen syklissä lämpötilassa H ja L vastaanotetuille lämmöille Q H ja Q L pätee oisin ilmaistuna,

Lisätiedot

Ratkaisut 3. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016

Ratkaisut 3. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016 Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit

Lisätiedot

Fr ( ) Fxyz (,, ), täytyy integroida:

Fr ( ) Fxyz (,, ), täytyy integroida: 15 VEKTORIANALYYSI Luento Vektorikentän käyräintegraali Voiman tekemä työ on matka (d) kertaa voiman (F) projektio liikkeen suunnassa, yksinkertaisimmillaan W Fd. Jos liike tapahtuu käyrää pitkin ja voima

Lisätiedot

normaali- ja leikkaus jännitysten laskemiseen pisteessä Määritetään ne tasot, joista suurimmat normaali- ja leikkausjännitykset löytyvät

normaali- ja leikkaus jännitysten laskemiseen pisteessä Määritetään ne tasot, joista suurimmat normaali- ja leikkausjännitykset löytyvät TAVOITTEET Johdetaan htälöt, joilla muutetaan jännitskomponentit koordinaatistosta toiseen Kätetään muunnoshtälöitä suurimpien normaali- ja leikkaus jännitsten laskemiseen pisteessä Määritetään ne tasot,

Lisätiedot

Tilastotieteen jatkokurssi 8. laskuharjoitusten ratkaisuehdotukset (viikot 13 ja 14)

Tilastotieteen jatkokurssi 8. laskuharjoitusten ratkaisuehdotukset (viikot 13 ja 14) Tilatotietee jatkokuri 8. lakuharjoitute ratkaiuehdotuket (viikot 13 ja 14) 1) Perujoukko o aluee A aukkaat ja tutkittavaa omiaiuutea ovat tulot, Tiedämme, että perujouko tulot oudattaa ormaalijakaumaa,

Lisätiedot

S Piirianalyysi 2 2. välikoe

S Piirianalyysi 2 2. välikoe S-55.22 Piirianalyyi 2 2. välikoe 6.5.23 Lake tehtävät 2 eri paperille kuin tehtävät 3 5. Muita kirjoittaa jokaieen paperiin elväti nimi, opikelijanumero, kurin nimi ja koodi. Epäelvät vataupaperit voidaan

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 9.3.2016 Susanna Hurme Päivän aihe: Palkin leikkausvoima- ja taivutusmomenttijakaumat ja kuviot (Kirjan luvut 7.2 ja 7.3) Osaamistavoitteet: Ymmärtää, miten leikkausvoima

Lisätiedot

Jännite, virran voimakkuus ja teho

Jännite, virran voimakkuus ja teho Jukka Kinkamo, OH2JIN oh2jin@oh3ac.fi +358 44 965 2689 Jännite, virran voimakkuus ja teho Jännite eli potentiaaliero mitataan impedanssin yli esiintyvän jännitehäviön avulla. Koska käytännön radioamatöörin

Lisätiedot

lnx x 1 = = lim x = = lim lim 10 = x x0

lnx x 1 = = lim x = = lim lim 10 = x x0 BM0A580 - Differentiaalilaskenta ja sovellukset Harjoitus 5, Syksy 05. (a) (b) ln = sin(t π ) t π t π = = 0 = = cos(t π = ) = 0 t π (c) e [ = ] = = e e 3 = e = 0 = 0 (d) (e) 3 3 + 6 + 8 + 6 5 + 4 4 + 4

Lisätiedot

k = 1,...,r. L(x 1 (t), x

k = 1,...,r. L(x 1 (t), x Mat-2.148 Dynaaminen optimointi Mitri Kitti/Ilkka Leppänen Mallivastaukset, kierros 6 1. Johdetaan välttämättömät ehdot funktionaalin J(y) = t g(y(t), ẏ(t),..., dr y(t), t) dt dt r ekstremaalille, kun

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 3.3.2016 Susanna Hurme Päivän aihe: Ristikon sauvavoimat (Kirjan luvut 6.1-6.4) Osaamistavoitteet: Ymmärtää, mikä on ristikkorakenne Osata soveltaa aiemmin kurssilla

Lisätiedot

7 Vapaus. 7.1 Vapauden määritelmä

7 Vapaus. 7.1 Vapauden määritelmä 7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan

Lisätiedot

1 Määrittele lyhyesti seuraavat käsitteet. a) Kvantisointivirhe. b) Näytetaajuuden interpolointi. c) Adaptiivinen suodatus.

1 Määrittele lyhyesti seuraavat käsitteet. a) Kvantisointivirhe. b) Näytetaajuuden interpolointi. c) Adaptiivinen suodatus. TL536DSK-algoritmit (J. Laitinen) 6.4.5 Määrittele lyyeti euraavat käitteet a) Kvantiointivire. b) äytetaajuuden interpolointi. ) Adaptiivinen uodatu. a) Kvantiointivire yntyy, kun ignaalin ykittäinen

Lisätiedot

Luottamusmiehen / -valtuutetun valinta, asema ja oikeudet

Luottamusmiehen / -valtuutetun valinta, asema ja oikeudet YLEMMÄT TOIMIHENKILÖT YTN RY OHJE YRY+K -ryhmä / Mko 19.8.2009 1 (13) Luottamumiehen / -valtuutetun valinta, aema ja oikeudet Siällyluettelo: Yleitä... 2 Oikeu luottamumiehen valintaan... 2 Luottamumiehen

Lisätiedot

( ) ( ) 14 HARJOITUSTEHTÄVIÄ SÄHKÖISET PERUSSUUREET SÄHKÖVERKON PIIRIKOMPONENTIT

( ) ( ) 14 HARJOITUSTEHTÄVIÄ SÄHKÖISET PERUSSUUREET SÄHKÖVERKON PIIRIKOMPONENTIT 4 HAJOTUSTHTÄVÄ SÄHKÖST PUSSUUT -auton akku (84 V, 700 mah on ladattu täyteen Kuinka uuri oa akun energiata kuluu enimmäien viiden minuutin aikana, kun oletetaan moottorin ottavan vakiovirran 5 A? Oletetaan

Lisätiedot

Sähköstaattinen energia

Sähköstaattinen energia Luku 4 Sähköstaattinen energia oiman, työn ja energian käsitteet ovat keskeisiä kaikessa fysiikassa. Sähköja magneettikenttiä mitataan voimavaikutuksen kautta. Kun voima vaikuttaa varaukselliseen hiukkaseen,

Lisätiedot

1 Magneetin ympärillä on magneettikenttä Perustehtävät

1 Magneetin ympärillä on magneettikenttä Perustehtävät Phyica 7 Opettajan OPAS (6) Magneetin ympärillä on magneettikenttä Magneetin ympärillä on magneettikenttä Perutehtävät. a) Aineet voidaan luokitella magneettiiin ja ei-magneettiiin aineiiin. Oa ei-magneettiita

Lisätiedot

MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI

MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI 1a. Täydellisen kilpailun vallitessa yrityksen A tuotteen markkinahinta on 18 ja kokonaiskustannukset

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 26. syyskuuta 2016 Sähköstatiikka (Ulaby, luku 4.1 4.5) Maxwellin yhtälöt statiikassa Coulombin voimalaki Gaussin laki Potentiaali Dipolin potentiaali

Lisätiedot

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 11: ti klo 13:00-15:30

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 11: ti klo 13:00-15:30 DI matematiikan opettajaksi: Tädennskurssi, kevät Luentorunkoa ja harjoituksia viikolle : ti 6 klo :-5: Kädään läpi: funktioita f : D f R n R m ja integrointia R n :ssä Oletetaan, että, R n ovat mielivaltaisia

Lisätiedot

Helsinki University of Technology Laboratory of Telecommunications Technology

Helsinki University of Technology Laboratory of Telecommunications Technology Helinki Univerity of echnology Laboratory of elecommunication echnology Digitaalinen iirtojärjetelmä S-38. Signaalinkäittely tietoliikenteeä I Signal Proceing in Communication ( ov) Syky 998. Luento: Pulinmuokkauuodatu

Lisätiedot

PARTIKKELIN KINETIIKKA

PARTIKKELIN KINETIIKKA PTKKELN KNETKK Newonin laki ma m& - on paikkeliin aikuaien oimien eulani - m on paikkelin maa - a & on paikkelin aboluuinen kiih Suoaiiaien liikkeen liikehälö (liikeuuna : m a 0 z 0 Taoliikkeen liikehälö

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

= vakio = λ. V (x) V (0) = V (l) = 0.

= vakio = λ. V (x) V (0) = V (l) = 0. 6. Aatoyhtäö I 6.1. Ratkaisu Fourier-sarjojen avua. Oetetaan, että värähteevän angan muodon hetkeä t = määrää funktio u ja nopeuden funktio u 1. Otetaan tehtäväksi määrätä seuraavan akuarvo- reuna-arvotehtävän

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3

Differentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3 MS-A35 Differentiaali- ja integraalilaskenta 3, I/27 Differentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3 Tehtävä : Hahmottele seuraavat vektorikentät ja piirrä niiden kenttäviivat. a) F(x, y) =

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017 763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 207. Nelinopeus ympyräliikkeessä On siis annettu kappaleen paikkaa kuvaava nelivektori X x µ : Nelinopeus U u µ on määritelty kaavalla x µ (ct,

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle / MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,

Lisätiedot