S /142 Piirianalyysi 2 1. Välikoe

Koko: px
Aloita esitys sivulta:

Download "S-55.1220/142 Piirianalyysi 2 1. Välikoe 10.3.2006"

Transkriptio

1 S-55.0/4 Piirianalyyi. Välioe ae tehtävät 3 eri paperille in tehtävät 4 5. Mita irjoittaa joaieen paperiin elväti nimi, opielijanmero, rin nimi ja oodi. Tehtävät laetaan oaton oepaperille. Mita papereita ei tarateta.. J 3 i (t) Kytin ljetaan hetellä t 0.aei (t). Piiri on jatvtilaa ennen ytimen lemita. J 5A Ω Ω 3 4Ω 0H.. Johda viereien van motoien plin aplacemnno n t b. 0 t b t 3. Kytin ljetaan hetellä t 0.ae (t). Piiri on jatvtilaa ennen ytimen lemita. (t) 3V V Ω 4F H. 4. i (t) Oheiea piiriä ytin avataan hetellä t 0.ae reitanin virta i (t) ytimen avaamien jäleen, n ê co ωt. Piiri on jatvtilaa ennen ytimen avaamita. ê V ω 000 rad/ Ω mf mh. 5. i (t) Taantaajaa voidaan vata jännitelähteellä, jona lähdejännite on jaiäreitani. ae ormitena olevan indtanin virran hetelliarvo i (t) ja teholliarvo I jatvtilaa. 0 ê co ωt ê 4 co 4ωt 0 63,7V ê 4,4V ê 4 8,5V ω 00π rad/ 40Ω 00 mh. Ttintoääntö antaa mahdolliden järjetää liäharjoitta niille opielijoille, jota ovat aaneet olmeti hylätyn arvoanan välioeita tai tentitä. Tämä taroittaaitä, että aataan olme nollaa, opielijan on palatettava laettna 0 aitentin määräämää liätehtävää ennen eraavaan tenttiin tai välioeeeen oallitmita. Välioeet ja välioeen inta tai intatilaidea tehty tentti laetaan yhdei yrityei. Yittäinen välioe laetaan poliaai oriterrai. änäolo oetilaidea laetaan yrityei, amoin tenttiin ilmoittatminen.

2 0. J 3 i (t) Kytin ljetaan hetellä t 0.aei (t). Piiri on jatvtilaa ennen ytimen lemita. J 5A Ω Ω 3 4Ω 0H. ataitaan piirin altila ennen ytimen lemita. I 0 J A. Kytin ljetaan. Yinertaitetaan piiriä yhditämällä rinnanytetyt reitanit. 4 Ω + Tehdään lähdemnno, jolloin jännitelähteen arvoi aadaan J 4 5 V ja yhditetään vielä arjareitanit Ω. Modotetaan ijaiytentä. I (t) I 0 Kirjoitetaan piirille ilmayhtälö ( + )I + I 0 ja rataitaan iitä I + I ( + ) Tehdään oamrtoehitelmä: I ( + ) + 3 ( + ). opi vielä aplace-äänteimnnetaan. ( ) i (t) 3 e t/ + ε(t)

3 0. Johda viereien van motoien plin aplacemnno n t b. 0 t b t Tapa I: Kirjoitetaan llein aleelle yhtälö, jota errotaan plifntiolla. Sijoitetaan heti ala t b. Saadaan: (t) U [ a t [ε(t) ε(t )] + U ] a t + [ε(t ) ε(t )] Kerrotaan li: (t) tε(t) tε(t )+ tε(t )+ ε(t ) ε(t ) Mnnotalon aava 7 edellyttää, että viivätetyllä aelfntiolla painotetta fntiota viivätetään yhtä paljon in aelfntiotain. Sii toiin anoen f(t )ε(t ) voidaan mntaa, mtta f(t )ε(t ) ei voida mntaa. Yhditetään termit, joia ε-termin argmentit ovat amat ja irjoitetaan liäi motoon Ua. (t) tε(t) (t )ε(t )+ (t )ε(t ) aee on nyt oieaa motoa ja ille voidaan etiä aplace-mnno. Mnnettavana on fntio f(t) t eli f(t )t. U() e ta Ua +e ta Ua atai voidaan ieventää motoon: U() ( e ta ). Tapa II: Aloitetaan etimällä plia vaava ajan fntio. Kvan mainen paloittain lineaarinen fntio voidaan oota orita, joita painotetaan aelfntioilla. (t) 3 (t) (t)+ (t) (t)+ (t) 0 t b t 0 t b t 0 t b t (t) va va va 3 nimmäielle van orita aadaan laee: (t) t ε(t). Toien oran laee on (t) (t ) ε(t ). Viivätetty aelfntio ε(t )pitää fntion (t) nollaa ennen ajan heteä t. Kerroin t on pitänyt orvata ertoimella t origon iirtämiei ohtaan t. Jo nämä ai fntiota laetaan yhteen (va ), aadaan fntio, joa on ali nolla ja alaa avaa lmaertoimella Ua.Hetellä t fntio aavttaa arvon ja pyyy en jäleen vaiona. Kn tähän liätään vielä toien erran (t), (va 3) aadaan fntio, joa pienenee heten t jäleen

4 lmaertoimella Ua. Fntio pitää aadavieläjäämään nollaan heten t jäleen. Tarvitaan ii vielä olma fntio 3 (t), jolla la pyäytetään. 3 (t) (t ) ε(t ) Kn verrataan fntioita (t), (t) ja 3 (t) homataan, että (t) ja 3 (t) voidaan irjoittaa fntion (t) avlla. (t) (t ) ja 3 (t) (t ) Koo fntio voidaan ii irjoittaa modoa (t) (t) (t )+ (t ). (t):n aplace-mnno on (t) t ε(t) U (). Aelfntiota ε(t) ei erieen mnneta, oa e iältyy aiiin talon fntioihin. Fntiot (t) ja 3 (t) voidaan mntaa talon aavan 7 avlla. (t) (t ) U () e ta U () 3 (t) (t ) U 3 () e ta U (). Koo fntion aplace-mnno aadaan nyt yhditämällä edelliet tloet: (t) (t)+ (t)+ 3 (t) U() U ()+U ()+U 3 () e ta Ua +e ta Ua Kn otetaan Ua yhteiei teijäi, aadaan edellinen ievennettyä motoon U() ( e ta ).

5 0.3 Kytin ljetaan hetellä t 0.ae (t). Piiri on jatvtilaa ennen ytimen lemita. (t) 3V V Ω 4F H. Altila: I 0 0AjaU 0 V. Sljetaan ytin:.. - I A. U 0 I B. Kirjoitetaan ilmayhtälöt: [ ][ ] + IA + I B Sijoitetaan larvot: [ ataitaan I A : I A ][ IA ] I B Kapaitanin oonaijännite on [ [ U0 U I A + U Jännitteen laee voidaan moata motoon ] ] U ( + 6 ) +( ) ja aia-aleea jännite on [ ( ) ] 4 63 (t) in 63 6 t e t/6 + ε(t).

6 0.4 i (t) Oheiea piiriä ytin avataan hetellä t 0.ae reitanin virta i (t) ytimen avaamien jäleen, n ê co ωt. Piiri on jatvtilaa ennen ytimen avaamita. ê V ω 000 rad/ Ω mf mh. aetaan alarvot ennen ytimen avaamita: U I ê co ωt ê in(ωt + π ) U ê /90 o /90 o (t) in(ωt + π ) U 0 (0) in π. I i (t) +jω /90 o +j in(ωt + π 4 ) /90 o /45 o /45o I 0 i (0) in π 4. aplace-mnnetaan piiri: I 0 I() U 0 I() U 0 Sijoitetaan larvot: + I U 0 + I I 0 + U0 + + I() ( + 500) + (500 3) [ ( + 500) + (500 3) ] 3 3 ( + 500) + (500 3) Tehdään äänteimnno: i(t) e 500t [co(500 3t)+ 3 in(500 3t)]ε(t) e 500t in(500 3t + π 6 )ε(t)

7 0.5 i (t) Taantaajaa voidaan vata jännitelähteellä, jona lähdejännite on jaiäreitani. ae ormitena olevan indtanin virran hetelliarvo i (t) ja teholliarvo I jatvtilaa. 0 ê co ωt ê 4 co 4ωt 0 63,7V ê 4,4V ê 4 8,5V ω 00π rad/ 40Ω 00 mh. Taratellaan taajia erieen. Taajännite: I 0 0, 59 A Taaj ω: ê /0 o 9, 98/0 o V I 9, 98/0o +jω 40 + j6, 83 i (t) 0, 569 co(ωt 57, 5 o Taaj 4ω: 4 ê4 /0 o 6, 0/0 o V 9, 98/0o 0, 403/ 57, 5o 74, 48/57, 5o π 80 o )A. I 4 4 6, 0/0o 6, 0/0o 0, 046/ 7, 34o +j4ω 40 + j5, 66 3, 88/7, 34o i 4 (t) 0, 064 co(4ωt 7, 34 o π 80 o )A. aetaan todellinen oonaivirta oatloien avlla. Hetelliarvo: i(t), 59 0, 569 co(ωt 57, 5 o π 80 o ) 0, 064 co(4ωt 7, π 34o 80 o )A. Teholliarvo: I I 0 + I + I 4 I 0 + î + î 4, , 6 + 0, 00, 643 A.

S-55.1220 Piirianalyysi 2 Tentti 27.10.2011

S-55.1220 Piirianalyysi 2 Tentti 27.10.2011 S-55.220 Piirianalyyi 2 Tentti 27.0. j(t) u(t) -piiriin vaikuttaa lähdevirta j(t) = A ĵ in(ωt)]. Lake piirin jännite u(t) ajan funktiona ja vatukea kuluva teho. Piiri on jatkuvuutilaa. ĵ = 0,5A = 2µF ω

Lisätiedot

S-55.1220 Piirianalyysi 2 Tentti 1.9.2011

S-55.1220 Piirianalyysi 2 Tentti 1.9.2011 S-55.2 Piirianalyyi 2 Tentti.9.. e(t) L j(t) Lake vatukea lämmöki muuttuva teho P. = Ω L = mh = 2mF ω = 0 3 rad/ e = ê in(ωt) j = ĵ in(2ωt) ĵ = 0 A ê = 2 2 V. 2. u(t) k Kuvan mukainen taajännitelähteen

Lisätiedot

S-55.1220 Piirianalyysi 2 Tentti 4.1.2007

S-55.1220 Piirianalyysi 2 Tentti 4.1.2007 S-55.2 Piirianalyyi 2 Tentti 4..07. Piiriä yöttää kaki lähdettä, joilla on eri taajuudet. Kuinka uuri on lämmöki muuttuva teho P? Piiri on jatkuvuutilaa. J 2 00 Ω 5µH 0 pf 0/0 V J 2 00/0 ma f MHz f 2 2MHz.

Lisätiedot

RATKAISUT: Kertaustehtäviä

RATKAISUT: Kertaustehtäviä Phyica 1 uuditettu paino OPETTAJAN OPAS 1(9) Kertautehtäiä RATKAISUT: Kertautehtäiä LUKU 3. Luua on a) 4 eriteää nueroa b) 3 eriteää nueroa c) 7 eriteää nueroa. 4. Selitetään erieen yhtälön olepien puolien

Lisätiedot

Physica 9 1. painos 1(8) 20. Varattu hiukkanen sähkö- ja magneettikentässä

Physica 9 1. painos 1(8) 20. Varattu hiukkanen sähkö- ja magneettikentässä Phyica 9 aino (8) 0 Varattu hiukkann ähkö- ja agnttikntää : 0 Varattu hiukkann ähkö- ja agnttikntää 0 a) Sähköknttä aikuttaa arattuun hiukkan oialla F = QE Poitiiiti aratull hiukkall oian uunta on ähkökntän

Lisätiedot

Pakkauksen sisältö: Sire e ni

Pakkauksen sisältö: Sire e ni S t e e l m a t e p u h u v a n v a r a s h ä l y t ti m e n a s e n n u s: Pakkauksen sisältö: K e s k u s y k sikk ö I s k u n t u n n i s ti n Sire e ni P i u h a s a rj a aj o n e st or el e Ste el

Lisätiedot

Valtion eläkemaksun laskuperusteet

Valtion eläkemaksun laskuperusteet VALTIOKONTTORI PÄÄTÖS Dnro 62/30/2005 Valtion eläkemakn lakperteet Valtiokonttori on 2262005 hyäkynyt nämä lakperteet nodatettaaki lakettaea Valtion eläkerahatolaia tarkoitettja työnantajan eläkemakja

Lisätiedot

RATKAISUT: 8. Momentti ja tasapaino

RATKAISUT: 8. Momentti ja tasapaino Phyica 9. paino (7) : 8. Voian vari r on voian vaikutuuoran etäiyy pyöriiakelita. Pyöriiakeli on todellinen tai kuviteltu akeli, jonka ypäri kappale pyörii. Voian oentti M kuvaa voian vääntövaikututa tietyn

Lisätiedot

RATKAISUT: 3. Voimakuvio ja liikeyhtälö

RATKAISUT: 3. Voimakuvio ja liikeyhtälö Phyica 9. paino (8) 3. Voiakuvio ja liikeyhtälö : 3. Voiakuvio ja liikeyhtälö 3. a) Newtonin I laki on nieltään jatkavuuden laki. Kappale jatkaa liikettään uoraviivaieti uuttuattoalla nopeudella tai pyyy

Lisätiedot

l s, c p T = l v = l l s c p. Z L + Z 0

l s, c p T = l v = l l s c p. Z L + Z 0 1.1 i k l s, c p Tasajännite kytketään hetkellä t 0 johtoon, jonka pituus on l ja jonka kapasitanssi ja induktanssi pituusyksikköä kohti ovat c p ja l s. Mieti, kuinka virta i käyttäytyy ajan t funktiona

Lisätiedot

C (4) 1 x + C (4) 2 x 2 + C (4)

C (4) 1 x + C (4) 2 x 2 + C (4) http://matematiialehtisolmu.fi/ Kombiaatio-oppia Kuia mota erilaista lottoriviä ja poeriättä o olemassa? Lotossa arvotaa 7 palloa 39 pallo jouosta. Poeriäsi o viide orti osajouo 52 orttia äsittävästä paasta.

Lisätiedot

2. Laskuharjoitus 2. siis. Tasasähköllä Z k vaipan resistanssi. Muilla taajuuksilla esim. umpinaiselle koaksiaalivaipalle saadaan = =

2. Laskuharjoitus 2. siis. Tasasähköllä Z k vaipan resistanssi. Muilla taajuuksilla esim. umpinaiselle koaksiaalivaipalle saadaan = = 2 Lasuarjoitus 2 21 Kytentäimpedanssin asenta Mitä taroittaa ytentäimpedanssi? 5 ma:n suuruinen äiriövirta oasiaaiaapein vaipassa (uojoto) aieuttaa 1 mv:n suuruisen äiriöjännitteen 1 m:n mataa Miä on ytentäimpedanssin

Lisätiedot

Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat:

Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat: Mat-.090 Sovellettu todeäköiyylaku A 0. harjoituket Mat-.09 Sovellettu todeäköiyylaku 0. harjoituket / Ratkaiut Aiheet: Avaiaat: Tilatolliet tetit Aritmeettie kekiarvo, Beroulli-jakauma, F-jakauma, F-teti,

Lisätiedot

PIIRIANALYYSI. Harjoitustyö nro 7. Kipinänsammutuspiirien mitoitus. Mika Lemström

PIIRIANALYYSI. Harjoitustyö nro 7. Kipinänsammutuspiirien mitoitus. Mika Lemström PIIRIANAYYSI Harjoitustyö nro 7 Kipinänsammutuspiirien mitoitus Mika emström Sisältö 1 Johdanto 3 2 RC-suojauspiiri 4 3 Diodi suojauspiiri 5 4 Johtopäätos 6 sivu 2 [6] Piirianalyysi Kipinänsammutuspiirien

Lisätiedot

1. Tasavirtapiirit ja Kirchhoffin lait

1. Tasavirtapiirit ja Kirchhoffin lait Kimmo Silvonen, Sähkötekniikka ja elektroniikka, Otatieto 2003. Tasavirtapiirit ja Kirchhoffin lait Sähkötekniikka ja elektroniikka, sivut 5-62. Versio 3..2004. Kurssin Sähkötekniikka laskuharjoitus-,

Lisätiedot

Ñòåêëîêåðàìè åñêàÿ ïîâåðõíîñòü Glaskeramikhäll Keraaminen keittotaso ZVM64X

Ñòåêëîêåðàìè åñêàÿ ïîâåðõíîñòü Glaskeramikhäll Keraaminen keittotaso ZVM64X Ñòåêëîêåðàìè åñêàÿ ïîâåðõíîñòü Glaskeramikhäll Keraaminen keittotaso ZVM64X Èíñòðóêöèÿ ïî ìîíòàæó è ýêñïëóàòàöèè Installations- och bruksanvisning Asennus- ja käyttöohje u s q Óâàæàåìûé ïîêóïàòåëü, Áëàãîäàðèì

Lisätiedot

i lc 12. Ö/ LS K KY: n opiskelijakysely 2014 (toukokuu) 1. O pintojen ohjaus 4,0 3,8 4,0 1 ( 5 ) L i e d o n a mma t ti - ja aiku isopisto

i lc 12. Ö/ LS K KY: n opiskelijakysely 2014 (toukokuu) 1. O pintojen ohjaus 4,0 3,8 4,0 1 ( 5 ) L i e d o n a mma t ti - ja aiku isopisto i lc 12. Ö/ 1 ( 5 ) LS K KY: n opiskelijakysely 2014 (toukokuu) 1. O pintojen ohjaus 1=Täysi n en mi eltä. 2=Jokseenki n er i m ieltä, 3= En osaa sanoa 4= Jokseenki n sa m a a mieltä, 5= Täysin sa ma a

Lisätiedot

2. Tutki toteuttaako seuraava vapaassa tilassa oleva kenttä Maxwellin yhtälöt:

2. Tutki toteuttaako seuraava vapaassa tilassa oleva kenttä Maxwellin yhtälöt: 84 RDIOTKNIIKN PRUSTT aois. Las a gadini f, n f,, b divgnssi, n c oooi, n on n b- ohdassa.. Ti oaao saava vapaassa ilassa olva nä Mawllin hälö:.. Oloon vapaassa ilassa sähönä oplsivoina sinä. Määiä a aallon

Lisätiedot

Esimerkkilaskelma. Jäykistävä CLT-seinä

Esimerkkilaskelma. Jäykistävä CLT-seinä Eimerilaelma Jäyitävä CLT-einä 30.5.014 Siällyluettelo 1 LÄHTÖTIEDOT... - 3 - LEVYJÄYKISTEEN TIEDOT... - 3-3 ATERIAALI... - 4-4 PANEELILEIKKAUSKESTÄVYYS... - 4-5 LAELLIN LEIKKAUSKESTÄVYYS... - 5-6 LAELLIEN

Lisätiedot

Luentomoniste: Mekaniikka Pasi Repo & Pekka Varis (päivitetty 2.1.06)

Luentomoniste: Mekaniikka Pasi Repo & Pekka Varis (päivitetty 2.1.06) Fyiia evät 006 JAMK/IT -Intituutti Luentoonite: Meaniia Pai Repo & Pea Vai (päivitetty..06) 0. Johdanto... 0.. Fyiian ääitelä... 0.. Mittau ja yiöt.... -ulotteita ineatiiaa... 3.. Keivauhti... 3.. Keinopeu...

Lisätiedot

4.7 Todennäköisyysjakaumia

4.7 Todennäköisyysjakaumia MAB5: Todeäöisyyde lähtöohdat.7 Todeäöisyysjaaumia Luvussa 3 Tuusluvut perehdyimme jo jaauma äsitteesee yleesä ja ormaalijaaumaa vähä taremmi. Lähdetää yt tutustumaa biomijaaumaa ja otetaa se jälee ormaalijaauma

Lisätiedot

Luku 1: Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt

Luku 1: Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt SMG-00 Piirianalyysi II Luentomonisteen harjoitustehtävien vastauset Luu : Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt. Järjestelmien lineaarisuus: Järjestelmä on lineaarinen,

Lisätiedot

PD-säädin PID PID-säädin

PD-säädin PID PID-säädin -äädin - äätö on ykinkertainen äätömuoto, jota voidaan kutua myö uhteuttavaki äädöki. Sinä lähtöignaali on uoraa uhteea tuloignaalin. -äätimen uhdealue kertoo kuinka paljon mittauuure aa muuttua ennen

Lisätiedot

RATKAISUT: 17. Tasavirtapiirit

RATKAISUT: 17. Tasavirtapiirit Phyica 9. paino 1(6) ATKAST 17. Taavirtapiirit ATKAST: 17. Taavirtapiirit 17.1 a) Napajännite on laitteen navoita mitattu jännite. b) Lähdejännite on kuormittamattoman pariton napajännite. c) Jännitehäviö

Lisätiedot

4.3 Liikemäärän säilyminen

4.3 Liikemäärän säilyminen Tämän kappaleen aihe liikemäärän äilyminen törmäykiä. Törmäy on uora ja kekeinen, jo törmäävät kappaleet liikkuvat maakekipiteitten kautta kulkevaa uoraa pitkin ja jo törmäykohta on tällä amalla uoralla.

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA Vaihtosähkö SMG-2100: SÄHKÖTEKNIIKKA Sinimuotoiset suureet Tehollisarvo Sinimuotoinen vaihtosähkö & passiiviset piirikomponentit Käydään läpi, mistä sinimuotoiset jännite ja virta ovat peräisin. Näytetään,

Lisätiedot

S-55.1100 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S-55.1100 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.00 SÄHKÖKNKKA A KONKKA. välikoe 2..2008. Saat vastata vain neljään tehtävään!. aske jännite U. = 4 Ω, 2 = Ω, = Ω, = 2, 2 =, = A, 2 = U 2 2 2 2. ännitelähde tuottaa hetkestä t = t < 0 alkaen kaksiportaisen

Lisätiedot

VIRTAPIIRILASKUT II Tarkastellaan sinimuotoista vaihtojännitettä ja vaihtovirtaa;

VIRTAPIIRILASKUT II Tarkastellaan sinimuotoista vaihtojännitettä ja vaihtovirtaa; VITAPIIIASKUT II Tarkastellaan sinimutista vaihtjännitettä ja vaihtvirtaa; u sin π ft ja i sin π ft sekä vaihtvirtapiiriä, jssa n sarjaan kytkettyinä vastus, käämi ja kndensaattri (-piiri) ulkisen vastuksen

Lisätiedot

èíñòðóêöèÿ ïî ýêñïëóàòàöèè bruksanvisning käyttöohje

èíñòðóêöèÿ ïî ýêñïëóàòàöèè bruksanvisning käyttöohje èíñòðóêöèÿ ïî ýêñïëóàòàöèè bruksanvisning käyttöohje Èíäóêöèîííàÿ ñòåêëîêåðàìè åñêàÿ âàðî íàÿ ïîâåðõíîñòü Induktionshäll Induktiokeittotaso EHD 60150 P 2 electrolux Electrolux. Thinking of you. Share more

Lisätiedot

KUNTIEN ELÄKEVAKUUTUS 30.10.2008 VARHAISELÄKEMENOPERUSTEISESSA MAKSUSSA 1.1.2009 LÄHTIEN NOUDATETTAVAT LASKUPERUSTEET

KUNTIEN ELÄKEVAKUUTUS 30.10.2008 VARHAISELÄKEMENOPERUSTEISESSA MAKSUSSA 1.1.2009 LÄHTIEN NOUDATETTAVAT LASKUPERUSTEET KUNTIN LÄKVKUUTU 328 VRHILÄKMNORUTI MKU 29 LÄHTIN NOUDTTTVT LKURUTT Valtuusuta ahstaa arhaseläemeoperustese masu eaode yhtesmäärä uodelle euromääräsest Tämä ahstettu masu o samalla lopullste masue yhtesmäärä

Lisätiedot

RATKAISUT: 7. Gravitaatiovoima ja heittoliike

RATKAISUT: 7. Gravitaatiovoima ja heittoliike Phyica 9. paino () 7. Gaitaatiooia ja heittoliike : 7. Gaitaatiooia ja heittoliike 7. a) Gaitaatiooia aikuttaa kaikkien kappaleiden älillä. Gaitaatiooian uuuu iippuu kappaleiden aoita ja niiden älietä

Lisätiedot

SOSIAALIPÄIVYSTYKSEN KEHITTÄMISEN VUODET KESKI-SUOMESSA

SOSIAALIPÄIVYSTYKSEN KEHITTÄMISEN VUODET KESKI-SUOMESSA 0..0 () SOSIAALIPÄIVYSTYKSEN KEHITTÄMISEN VUODET KESKI-SUOMESSA Soiaalipäivytyke kehittämiellä o maakaamme eide voie jatkmo. Alkyäyke ille atoi vode valtioevoto periaatepäätö, joa aetettii tavoitteeki

Lisätiedot

LAPPEENRANNAN TEKNILLINEN YLIOPISTO

LAPPEENRANNAN TEKNILLINEN YLIOPISTO LAPPEENRANNAN TEKNILLINEN YLIOPITO TYÖOHJE 2009 Keianteniian osasto Tenillisen eian laboratorio BJ90A0900 Tenillisen eian ja tenillisen polyeerieian laboratoriotyöt Ohje: Irina Turu, Katriina Liiatainen,

Lisätiedot

Sähköstatiikka ja magnetismi Sähkömagneetinen induktio

Sähköstatiikka ja magnetismi Sähkömagneetinen induktio Sähköstatiikka ja magnetismi Sähkömagneetinen induktio Antti Haarto.05.013 Magneettivuo Magneettivuo Φ on magneettivuon tiheyden B ja sen läpäisemän pinta-alavektorin A pistetulo Φ B A BAcosθ missä θ on

Lisätiedot

1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa.

1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa. 1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa. Vuodessa Maahan satava massa on 3.7 10 7 kg. Maan massoina tämä on

Lisätiedot

12. laskuharjoituskierros, vko 16, ratkaisut

12. laskuharjoituskierros, vko 16, ratkaisut 1. lakuharjoitukierro, vko 16, ratkaiut D1. Muuttujien x ja Y havaitut arvot ovat: x 1 3 4 6 8 9 11 14 Y 1 4 4 5 7 8 9 a) Määrää regreiomallin Y i = α +βx i +ǫ i regreiokertoimien PNS-etimaatit ja piirrä

Lisätiedot

S-55.1100 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S-55.1100 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.1100 SÄHKÖTKNIIKKA JA KTONIIKKA 2. välikoe 5.5.2008. Saa vasaa vain neljään ehävään! Kimmo Silven 1. aske vira. = 1 kω, = 2 kω, 3 = 4 kω, = 10 V. Diodin ominaiskayra, aseikko 0... 4 ma + 3 Teh. 2.

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut MS-C34 Lineaarialgebra ja differentiaaliyhtälöt, IV/26 Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / t Alkuviikon tuntitehtävä Hahmottele matriisia A ( 2 6 3 vastaava vektorikenttä Matriisia A

Lisätiedot

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Suhteellisen liikkeen nopeuden ja kiihtyvyyden yhtälöt. Jäykän kappaleen partikkelin liike. Jäykän

Lisätiedot

96901KFE-N. Ñòåêëîêåðàìè åñêàÿ ïîâåðõíîñòü Glaskeramikhäll Keraaminen keittotaso

96901KFE-N. Ñòåêëîêåðàìè åñêàÿ ïîâåðõíîñòü Glaskeramikhäll Keraaminen keittotaso 96901KFE-N Ñòåêëîêåðàìè åñêàÿ ïîâåðõíîñòü Glaskeramikhäll Keraaminen keittotaso Èíñòðóêöèÿ ïî ìîíòàæó è ýêñïëóàòàöèè Installations- och bruksanvisning Asennus- ja käyttöohje Óâàæàåìàÿ ïîêóïàòåëüíèöà, óâàæàåìûé

Lisätiedot

2.8 Mallintaminen ensimmäisen asteen polynomifunktion avulla

2.8 Mallintaminen ensimmäisen asteen polynomifunktion avulla MAB Matemaattisia malleja I.8. Mallintaminen ensimmäisen asteen.8 Mallintaminen ensimmäisen asteen polynomifuntion avulla Tutustutaan mallintamiseen esimerien autta. Esimeri.8. Määritä suoran yhtälö, un

Lisätiedot

Palkkielementti hum 3.10.13

Palkkielementti hum 3.10.13 Palilmntti hum.0. Palilmnttjä Tarastllaan tässä sitysssä vain Eulr-Brnoullin palitoriaan prustuvia palilmnttjä. Tässä palitoriassa olttaan, ttä palin poiiliaus säilyy taivutttunain tasona, joa on ohtisuorassa

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 19: Usean vapausasteen systeemin liikeyhtälöiden johto Newtonin lakia käyttäen

VÄRÄHTELYMEKANIIKKA SESSIO 19: Usean vapausasteen systeemin liikeyhtälöiden johto Newtonin lakia käyttäen 9/ VÄRÄHTELYMEKANIIKKA SESSIO 9: Usean vapausasteen systeemin liieyhtälöiden johto Newtonin laia äyttäen JOHDANTO Usean vapausasteen systeemillä taroitetaan meaanista systeemiä, jona liietilan uvaamiseen

Lisätiedot

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa S-4.7 Fysiia III (EST) Tetti..6. Tarastellaa systeemiä, jossa ullai hiuasella o olme mahdollista eergiatasoa, ε ja ε, missä ε o eräs vaio. Oletetaa, että systeemi oudattaa Maxwell-Boltzma jaaumaa ja, että

Lisätiedot

FYSA220/K2 (FYS222/K2) Vaimeneva värähtely

FYSA220/K2 (FYS222/K2) Vaimeneva värähtely FYSA/K (FYS/K) Vaimeneva värähtely Työssä tutkitaan vaimenevaa sähköistä värähysliikettä. Erityisesti pyritään havainnollistamaan kelan inuktanssin, konensaattorin kapasitanssin ja ohmisen vastuksen suuruuksien

Lisätiedot

JLP:n käyttämättömät mahdollisuudet. Juha Lappi

JLP:n käyttämättömät mahdollisuudet. Juha Lappi JLP:n äyämäömä mahdollisuude Juha Lappi LP ehävä p z = a x + b z 0 Max or Min (.) 0 0 = = subjec o he following consrains: c a x + b z C, =,, q p q K r (.2) = = m n i ij K (.3) i= j= ij x xw= 0, =,, p

Lisätiedot

MAB7 Talousmatematiikka. Otavan Opisto / Kati Jordan

MAB7 Talousmatematiikka. Otavan Opisto / Kati Jordan 3.3 Laiat MAB7 Talousmatematiia Otava Opisto / Kati Jorda Laia ottamie Suuri osa ihmisistä ottaa laiaa jossai elämävaiheessa. Pailaiaa tarvitaa yleesä vauusia ja/tai taausia. Laiatulle pääomalle masetaa

Lisätiedot

Kolmivaihejärjestelmän oikosulkuvirran laskemista ja vaikutuksia käsitellään standardeissa IEC-60909, 60909-1, 60909-2, 60781, 60865-1 ja 60865-2.

Kolmivaihejärjestelmän oikosulkuvirran laskemista ja vaikutuksia käsitellään standardeissa IEC-60909, 60909-1, 60909-2, 60781, 60865-1 ja 60865-2. Luu 7: Oiosulusuojaus 7. OIKOLKOJA 7.. Yleistä Vero laitteide mitoittamisessa, oiosulusuojause suuittelussa ja turvallise äytö suuittelussa o tuettava oiosuluvirrat eri tilateissa ja eri osissa veroa.

Lisätiedot

V astaano ttav aa antennia m allinnetaan k u v an 2-1 8 m u k aisella piirillä, jo ssa o n jänniteläh d e V sarjassa

V astaano ttav aa antennia m allinnetaan k u v an 2-1 8 m u k aisella piirillä, jo ssa o n jänniteläh d e V sarjassa Antennit osana viestintäjärjestelm ää Antennien pääk äy ttö tark o itu s o n to im inta v iestintäjärjestelm issä. V astaano ttav aa antennia m allinnetaan k u v an 2-1 8 m u k aisella piirillä, jo ssa

Lisätiedot

Sattuman matematiikkaa III

Sattuman matematiikkaa III Sattuman matematiiaa III Kolmogorovin asioomat ja frevenssitulinta Tommi Sottinen Tutija Matematiian ja tilastotieteen laitos, Helsingin yliopisto Laboratoire de Probabilités et Modèles Aléatoires, Université

Lisätiedot

b) Laskiessani suksilla mäkeä alas ja hypätessäni laiturilta järveen painovoima tekee työtä minulle.

b) Laskiessani suksilla mäkeä alas ja hypätessäni laiturilta järveen painovoima tekee työtä minulle. nergia. Työ ja teho OHDI JA TSI -. Opettaja ja opikelija tekevät hyvin paljon aanlaita ekaanita työtä, kuten liikkuinen, kirjojen ja eineiden notainen, liikkeellelähtö ja pyähtyinen. Uuien aioiden oppiinen

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Maarit Vesapuisto SATE.2010 DYNAAMINEN KENTTÄTEORIA. Opetusmoniste: Antennit

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Maarit Vesapuisto SATE.2010 DYNAAMINEN KENTTÄTEORIA. Opetusmoniste: Antennit VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Maarit Vesapuisto SATE.010 DYNAAMINEN KENTTÄTEOIA Opetusmoniste: Antennit Vaasassa 04.1.009 ALKULAUSE Tämä opetusmoniste laadittiin marras-joulukuun

Lisätiedot

Lukujärjestys vko 41 5.10. - 9.10.2015

Lukujärjestys vko 41 5.10. - 9.10.2015 1 (5) AmmattitaitoinenSihteeri 7.10.2015 8:00 7.10.2015 3:00 MaL Mikro 2 AvustajanaArjessa 5.10.2015 8:00 5.10.2015 3:00 Ulkop. kouluttaja / AvustajanaArjessa 6.10.2015 8:00 6.10.2015 3:00 Ulkop. kouluttaja

Lisätiedot

3 x ja 4. A2. Mikä on sen ympyräsektorin säde, jonka ympärysmitta on 12 ja pinta-ala mahdollisimman

3 x ja 4. A2. Mikä on sen ympyräsektorin säde, jonka ympärysmitta on 12 ja pinta-ala mahdollisimman HTKK, TTKK, LTKK, OY, ÅA/Insinööriosastot alintauulustelujen matematiian oe 900 Sarja A A Lase äyrien y, (Tara vastaus) y, ja rajaaman äärellisen alueen inta-ala A Miä on sen ymyräsetorin säde, jona ymärysmitta

Lisätiedot

SYNKRONIKONEET RELUKTANS- SIKONEET RM RM RM + >>L q. L d >>L q. Harjalliset -pyörivä PMSM upotetu magneetit

SYNKRONIKONEET RELUKTANS- SIKONEET RM RM RM + >>L q. L d >>L q. Harjalliset -pyörivä PMSM upotetu magneetit 7.48 TY Juha Pyrhönen 7. Tahtikone Tahtikoneet muootavat kokonaien ähkökoneperheen. Päätyyppejä ovat vieramagnetoiut tahtikoneet, ynkroniet reluktanikoneet ja ketomagneettitahtikoneet. Vieramagnetoiut

Lisätiedot

LUKION FYSIIKKAKILPAILU 10.11.2009, ratkaisut PERUSSARJA

LUKION FYSIIKKAKILPAILU 10.11.2009, ratkaisut PERUSSARJA LUKION FYSIIKKAKILPAILU 0..009, ratkaiut PERUSSARJA Vataa huolellieti ja iititi! Kirjoita tektaten koepaperiin oa niei, kotiooitteei, ähköpotiooite, opettajai nii ekä koului nii. Kilpailuaikaa on 00 inuuttia.

Lisätiedot

Intensiteettitaso ja Doplerin ilmiö

Intensiteettitaso ja Doplerin ilmiö Inteniteettitao ja Doplerin ilmiö Tehtävä Erkki työkentelee airaalaa. Sairaalalta 6,0 km päää on tapahtunut tieliikenneonnettomuu ja onnettomuupaikalta lähteneen ambulanin ireenin ääni kuuluu Erkille 60,0

Lisätiedot

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011 1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan

Lisätiedot

Funktion määrittely (1/2)

Funktion määrittely (1/2) Funktion määrittely (1/2) Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon a täsmälleen yhden B:n alkion b. Merkitään b = f (a). Tässä A = M f on f :n määrittelyjoukko, B on f :n maalijoukko.

Lisätiedot

Tarnpereen Teknillinen Yliopisto Paperinjalostustekniikka PAP - 1020 PAPERITEKNIIKKA 1 PAPER TECHNOLOGY

Tarnpereen Teknillinen Yliopisto Paperinjalostustekniikka PAP - 1020 PAPERITEKNIIKKA 1 PAPER TECHNOLOGY - /. Tarnpereen Teknillinen Yliopisto Paperinjalostustekniikka PAP - 1020 PAPERITEKNIIKKA 1 PAPER TECHNOLOGY Tentin kysymykset 30.1 1.2005. Oppilaan nimi: Opintokirjan numero: Kysymykset on laadittu siten,

Lisätiedot

( ) ( ) 14 HARJOITUSTEHTÄVIÄ SÄHKÖISET PERUSSUUREET SÄHKÖVERKON PIIRIKOMPONENTIT

( ) ( ) 14 HARJOITUSTEHTÄVIÄ SÄHKÖISET PERUSSUUREET SÄHKÖVERKON PIIRIKOMPONENTIT 4 HAJOTUSTHTÄVÄ SÄHKÖST PUSSUUT -auton akku (84 V, 700 mah on ladattu täyteen Kuinka uuri oa akun energiata kuluu enimmäien viiden minuutin aikana, kun oletetaan moottorin ottavan vakiovirran 5 A? Oletetaan

Lisätiedot

Markov-prosessit (Jatkuva-aikaiset Markov-ketjut)

Markov-prosessit (Jatkuva-aikaiset Markov-ketjut) J. Virtamo 38.3143 Jonoteoria / Markov-prosessit 1 Markov-prosessit (Jatkuva-aikaiset Markov-ketut) Tarkastellaan (stationaarisia) Markov-prosessea, oiden parametriavaruus on atkuva (yleensä aika). Siirtymät

Lisätiedot

Kuntajohtajien työhyvinvointi 2013

Kuntajohtajien työhyvinvointi 2013 Kuntajohtajin työhyvinvointi 2013 Prustuu julkaisuun Kuntajohtajin työhyvinvointi 2013 Kvan tutkimuksia 2/2013. Pauli Forma Toni Pkka Pirjo Saari Tausta Totutttu Kvan ja Kuntajohtajat Ry:n yhtistyönä nyt

Lisätiedot

76132S Sähkömagneettinen säteily 1

76132S Sähkömagneettinen säteily 1 763 ähkömagnttinn säti. MAXWELLIN YHTÄLÖT Kaikki sähkömagnttisia knttiä koskvat kassist imiöt voidaan johtaa njästä htäöstä. Thjössä nämä sähköknttää E ja magnttiknttää B kuvaavat htäöt saavat suraavan

Lisätiedot

Todellinen vuosikorko. Efektiivinen/sisäinen korkokanta. Huomioitavaa

Todellinen vuosikorko. Efektiivinen/sisäinen korkokanta. Huomioitavaa Todellinen vuosikorko Huomioitavaa Edellinen keskimaksuhetkeen perustuva todellinen vuosikorko antaa vain arvion vuosikorosta. Tarkempi arvio todellisesta korosta saadaan ottamalla huomioon mm. koronkorko.

Lisätiedot

F Y S I I K K A KERTAUSTEHTÄVIÄ 1-20

F Y S I I K K A KERTAUSTEHTÄVIÄ 1-20 F Y S I I K K A KERTAUSTEHTÄVIÄ - 0 Oalla eieyiä kyyykiä vaauke ova huoaavai pidepiä kuin iä eierkiki kokeea vaaukela vaadiaan. Kokeea on oaava vain olennainen aia per ehävä. . Muua SI järjeelän ykiköihin

Lisätiedot

F {f(t)} ˆf(ω) = 1. F { f (n)} = (iω) n F {f}. (11) BM20A5700 - INTEGRAALIMUUNNOKSET Harjoitus 10, viikko 46/2015. Fourier-integraali:

F {f(t)} ˆf(ω) = 1. F { f (n)} = (iω) n F {f}. (11) BM20A5700 - INTEGRAALIMUUNNOKSET Harjoitus 10, viikko 46/2015. Fourier-integraali: BMA57 - INTEGRAALIMUUNNOKSET Harjoitus, viikko 46/5 Fourier-integraali: f(x) A() π B() π [A() cos x + B() sin x]d, () Fourier-muunnos ja käänteismuunnos: f(t) cos tdt, () f(t) sin tdt. (3) F {f(t)} ˆf()

Lisätiedot

CLEAR Virta 1 A 1 100100000 ka Teksti X-akseli Virta A. Muuta kaikki Kaavio selitysosio Verkon jännite U1 = 1 kv U2 = 1 kv U2

CLEAR Virta 1 A 1 100100000 ka Teksti X-akseli Virta A. Muuta kaikki Kaavio selitysosio Verkon jännite U1 = 1 kv U2 = 1 kv U2 Sähkötekniet lakentaohjelmat. Helinki 24.11.2014 Selektiiviyy (1-1-29) ohjelman eittely Selektiiviyy ohjelma on Microoft Excel ohjelmalla tehty lakentaovellu. Ohjelmat toimitetaan Microoft Office Excel

Lisätiedot

Säätökeskus RVA36.531

Säätökeskus RVA36.531 Säätökeskus Asennusohje 1. Johdanto Tämä ohje koskee säätökeskusta joka on tarkoitettu lämmönsäätöön pientaloissa jossa on vesikiertoinen lämmitysjärjestelmä.ohje tulee säilyttää lähellä säädintä.. Säätökeskus

Lisätiedot

Luento 6 Luotettavuus ja vikaantumisprosessit

Luento 6 Luotettavuus ja vikaantumisprosessit Tkll korkakoulu ysmaalyys laboraoro Luo 6 Luoavuus a vkaaumsrosss Ah alo ysmaalyys laboraoro Tkll korkakoulu PL 00, 005 TKK Tkll korkakoulu ysmaalyys laboraoro Määrlmä Tarkaslava ykskö luoavuus o s odäkösyys,

Lisätiedot

Kertausosa. 2. Kuvaan merkityt kulmat ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia, kulmat ovat yhtä suuria.

Kertausosa. 2. Kuvaan merkityt kulmat ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia, kulmat ovat yhtä suuria. 5. Veitoken tilavuu on V,00 m 1,00 m,00 m 6,00 m. Pienoimallin tilavuu on 1 V malli 6,00 m 0,06m. 100 Mittakaava k aadaan tälötä. 0,06 1 k 6,00 100 1 k 0,1544... 100 Mitat ovat. 1,00m 0,408...m 100 0,41

Lisätiedot

Monisilmukkainen vaihtovirtapiiri

Monisilmukkainen vaihtovirtapiiri Monisilmukkainen vaihovirapiiri Oeaan arkaselun koheeksi RLC-vaihovirapiiri jossa on käämejä, vasuksia ja kondensaaoreia. Kykenä Tarkasellaan virapiiriä, jossa yksinkeraiseen RLC-piiriin on kodensaaorin

Lisätiedot

F_l/ mlmz SOVE LLU STE HTÄV Ä G RAVITAATI O LA I STA. Fon. (vetovoima) mr ja lxz välinen gravitaatiovoima. kappaleiden massat ovat mr ja mz (kg)

F_l/ mlmz SOVE LLU STE HTÄV Ä G RAVITAATI O LA I STA. Fon. (vetovoima) mr ja lxz välinen gravitaatiovoima. kappaleiden massat ovat mr ja mz (kg) SOVE LLU STE HTÄV Ä G RAVITAATI O LA I STA ltl ka ppa leiden (vetovoima) m ja lxz välinen gavitaatiovoima Fon F_l/ mlmz 2 kappaleiden massat ovat m ja mz (kg) on kappaleiden keskipisteiden välinen etäisyys

Lisätiedot

PUUT T E H TÄV. käyttää hyödyksi.

PUUT T E H TÄV. käyttää hyödyksi. PUU / j j l Y / E H ÄÄ l l l l r r Ä E H Ä l l j l j H rl r j K PUU j r r j r IE OA P P r j r l J rj r P r l j r l l j l r r j r j r P P l r j r l j P j Ml r j rg j r r l M A R JA r l l O E H ÄÄ l / l

Lisätiedot

MINI 240 Pinnakorkeusmittari Käyttö- ja asennusohje

MINI 240 Pinnakorkeusmittari Käyttö- ja asennusohje Labkotec Oy Myllyhaantie 6 33960 PIRKKALA Vaihde: 029 006 260 Fax: 029 006 1260 22.7.2014 Internet: www.labkotec.fi 1/9 MINI 240 Pinnakorkeusmittari Copyright 2014 Labkotec Oy Varaamme oikeuden muutoksiin

Lisätiedot

OPINTOJAKSO FYSIIKKA 1 OV OPINTOKOKONAISUUTEEN FYSIIKKA JA KEMIA 2 OV. Isto Jokinen 2012. 1. Mekaniikka 2

OPINTOJAKSO FYSIIKKA 1 OV OPINTOKOKONAISUUTEEN FYSIIKKA JA KEMIA 2 OV. Isto Jokinen 2012. 1. Mekaniikka 2 OPINTOJAKSO FYSIIKKA 1 OV OPINTOKOKONAISUUTEEN FYSIIKKA JA KEMIA OV Io Jokinen 01 SISÄLTÖ SIVU 1. Mekaniikka Nopeu Kekinopeu Kehänopeu 3 Kiihyvyy 3 Puoamikiihyvyy 4 Voima 5 Kika 6 Työ 7 Teho 8 Paine 9

Lisätiedot

Vakuutusmatematiikan sovellukset 20.11.2008 klo 9-15

Vakuutusmatematiikan sovellukset 20.11.2008 klo 9-15 SHV-tutinto Vauutusmatematiian sovelluset 20.11.2008 lo 9-15 1(7) Y1. Seuraava tauluo ertoo vauutusyhtiön masamat orvauset vahinovuoden ja orvausen masuvuoden muaan ryhmiteltynä (tuhansina euroina): Vahinovuosi

Lisätiedot

Research Institute-af. Agricultural Engirieering. SALAMA-AKKU malli 6E405

Research Institute-af. Agricultural Engirieering. SALAMA-AKKU malli 6E405 VA KOL 40) Helsinki Rukkila 92 Helsinki 43 41 61 7s,k, Pitäjänmäki VALTION MAATALOUSKON EI DE N TUTKIMUSLAITOS 'Finnish Research Institute-af. Agricultural Engirieering 1962 Koetusselostus 421 SALAMA-AKKU

Lisätiedot

SÄHKÖASEMAN ENSIÖPUOLEN SUUNNITTELUSSA KÄYTETTÄ- VIEN LASKENTAMENETELMIEN KEHITTÄMINEN

SÄHKÖASEMAN ENSIÖPUOLEN SUUNNITTELUSSA KÄYTETTÄ- VIEN LASKENTAMENETELMIEN KEHITTÄMINEN aalto-yliopito tenillinen oreaoulu Eletroniian, tietoliienteen ja automaation tiedeunta Rauno Hirvonen SÄHKÖASEMAN ENSIÖPUOLEN SUUNNIELUSSA KÄYEÄ- VIEN LASKENAMENEELMIEN KEHIÄMINEN Diplomityö, joa on jätetty

Lisätiedot

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008 Korko riippuu usein laina-ajan pituudesta ja pitkille talletuksille maksetaan korkeampaa korkoa. Spot-korko s t on se korko, joka kertyy lainatulle pääomalle hetkeen t (=kokonaisluku) mennessä. Spot-korot

Lisätiedot

INTENSIIVIPERHETYÖ: JÄRVI-POHJANMAAN MALLI 2011

INTENSIIVIPERHETYÖ: JÄRVI-POHJANMAAN MALLI 2011 INTENSIIVITYÖ: JÄRVI-POHJANMAAN MALLI 2011 M ITÄ INTENSIIVIPE RHETYÖ O N? Mallinnus on tot eutet tu osana Et elä-pohjanmaan lapset, nuoret ja lapsiperheet -hankkeen kehitt ämist yöt ä.mallinnus on laaditt

Lisätiedot

1, MITÄ TARKOITETAAN SEURAAVILLA TERMEILLÄ:

1, MITÄ TARKOITETAAN SEURAAVILLA TERMEILLÄ: KRANPDON TNTT 14.4.2014 LAY/OTK OT: Vst jkseen kysymykseen erllselle pperlle (must merktä nm myös krjnptu"t.u"ppern). ös et vst jhnkn kysymykseen, jätä nmetty vstuspper myös kysesen tehtävän slt' rrävär:

Lisätiedot

Luonnos 1 (13) 17.6.2011 Sosiaali- ja terveystoimialan palvelustrategia (linjaukset) Yleistä

Luonnos 1 (13) 17.6.2011 Sosiaali- ja terveystoimialan palvelustrategia (linjaukset) Yleistä L 1 (13) - j rv pvrg (j) Yä Pvrg - j rv rg ä r pvrg. Pvrg j: 1. j v (= rppv pvj) 2. ä - j rvpv järjää 3. äärää pv p j j - j rvh v EU- ääöä j äääöä hj. Thj rää fr-hj p rhj. Nää vv r p h j r r. K -hää äääö

Lisätiedot

LTY/SÄTE Säätötekniikan laboratorio Sa2730600 Säätötekniikan ja signaalinkäsittelyn työkurssi. Servokäyttö (0,9 op)

LTY/SÄTE Säätötekniikan laboratorio Sa2730600 Säätötekniikan ja signaalinkäsittelyn työkurssi. Servokäyttö (0,9 op) LTY/SÄTE Säätötekniikan laboratorio Sa2730600 Säätötekniikan ja signaalinkäsittelyn työkurssi Servokäyttö (0,9 op) JOHDNTO Työssä tarkastellaan kestomagnetoitua tasavirtamoottoria. oneelle viritetään PI-säätäjä

Lisätiedot

Sisäpiirintiedon syntyminen

Sisäpiirintiedon syntyminen Kai Kotiranta Sisäpiirintiedon syntyminen Kontekstuaalinen tulkinta Y liopistollinen väitöskirja, jo k a Lapin yliopiston oikeustieteiden tiedekunnan suostum uksella esitetään julkisesti tarkastettavaksi

Lisätiedot

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5 MATRIISIALGEBRA Harjoitustehtäviä syksy 2014 Tehtävissä 1-3 käytetään seuraavia matriiseja: ( ) 6 2 3, B = 7 1 2 2 3, C = 4 4 2 5 3, E = ( 1 2 4 3 ) 1 1 2 3 ja F = 1 2 3 0 3 0 1 1. 6 2 1 4 2 3 2 1. Määrää

Lisätiedot

KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoski, professori. Lappeenrannan teknillinen yliopisto

KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoski, professori. Lappeenrannan teknillinen yliopisto KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoki, proeori Lappeenrannan teknillinen yliopito Näin uuden vuoden alkaea ueat meitä miettivät ijoitualkkuna kootumuta. Yki kekeiitä kyymykitä on päätö eri

Lisätiedot

Hyppy Pekingiin 2008 Tapani Keränen (Kihu) ja Juhani Evilä (SUL)

Hyppy Pekingiin 2008 Tapani Keränen (Kihu) ja Juhani Evilä (SUL) Hyppy Pekingiin 2008 Tapani Keränen (Kih ja Jhani Evilä (SUL Harjoitvoden 2008 aikana totetettiin SUL:n ja Kihn yhteityöprojekti Hyppy Pekingiin 2008. Projektia Kihn vt. biomekaniikan ttkija oli pithyppääjien

Lisätiedot

Lukion. Calculus. Analyyttinen geometria. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Analyyttinen geometria. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA Analttinen geometria Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Analttinen geometria (MAA) Pikatesti ja Kertauskokeet Tehtävien

Lisätiedot

Yl ä -S a von S O TE kunt a yhtym ä en Kuukausiraportti

Yl ä -S a von S O TE kunt a yhtym ä en Kuukausiraportti Ylä-Savon SOTE K U N T A Y H T Y M A Yl ä -S a von S O TE kunt a yhtym ä en Kuukausiraportti Tammikuu - Heinäkuu 213 Kuukausiraportti heinäkuu 213 Kuntayhtymä Talous Ta 213 Tot.71213 Tot-% Ennuste Toimintatuotot,

Lisätiedot

Tutkimusraportti. Raportin päivämäärä 18.3.2014. Yritys Oulun Lämpökuvaus Asiakas Malli Osoite Lithoviuksenlaita 12 91900 Liminka.

Tutkimusraportti. Raportin päivämäärä 18.3.2014. Yritys Oulun Lämpökuvaus Asiakas Malli Osoite Lithoviuksenlaita 12 91900 Liminka. 25.1.2014 11:10:52 IR_5757a.jpg OH, lattian ja seinän liittymässä lämpövuoto. 25.1.2014 11:13:13 IR_5762a.jpg OH. lämpövuoto seinän ja lattian liittymässä. 1 (7) 25.1.2014 11:20:01 IR_5768a.jpg OH, yläpohjassa

Lisätiedot

LUKION FYSIIKKAKILPAILU 8.11.2005 perussarjan vastaukset PERUSSARJA

LUKION FYSIIKKAKILPAILU 8.11.2005 perussarjan vastaukset PERUSSARJA PERUSSARJA Vataa hulellieti ja iititi iiteen tehtäään! Kirjita tetaten epaperiin a niei, tiitteei, ähöptiite, pettajai nii eä ului nii. Kilpailuaiaa n 00 inuuttia. Seä tehtää- että epaperit palautetaan

Lisätiedot

AS OY Tampereen Patruuna

AS OY Tampereen Patruuna 1. kerros IRTAIMISTO- VARASTO AS 3 A2 IIKIA 43,5m² AS 1 ÄMMÖN- JAKO- HUONE SÄHKÖ- ÄÄ- KEUS SIIVOUS UKOIUVÄINE- VARASTO KUIVAUS- HUONE VÄESTÖNSUOJA / IRTAIMISTOVARASTO 2.kerros AS 9 3H+K+S 66,5m² AS 8 AS

Lisätiedot

Laskennallisen kombinatoriikan perusongelmia

Laskennallisen kombinatoriikan perusongelmia Laseallise obiatoriia perusogelia Varsi oissa tehtävissä, joissa etsitää tietylaiste järjestelyje, jouoje ts luuääriä, o taustalla joi uutaista peruslasetatavoista tai lasetaogelista Tässä esitelläälyhyesti

Lisätiedot

K-KS vakuutussumma on kiinteä euromäärä

K-KS vakuutussumma on kiinteä euromäärä Kesinäinen Henivauutusyhtiö IIIELLA TEKNIIKALLA LAKUPERUTE H-TUTKINTOA ARTEN HENKIAKUUTU REKURIIIELLA TEKNIIKALLA OIMAAOLO 2 AIKALAKU JA AKUUTUIKÄ Tätä lasuperustetta sovelletaan..25 alaen myönnettäviin

Lisätiedot

omakotitontit omakotitontit Saaristokaupungin Pirttiniemessä

omakotitontit omakotitontit Saaristokaupungin Pirttiniemessä KUOPON KAUPUNK Maaoaisuuden hallintapalvelut Tarjousten Tarjousten perusteella perusteella yytävät yytävät oakotitontit oakotitontit Saaristokaupungin Pirttinieessä Tarjousten Tarjousten jättöaika jättöaika

Lisätiedot

METSÄNTUTKIMUSLAITOS. tutkimusosasto. Metsäteknologian WÄRTSILA. Kenttäkoe. Tutkimusselostus

METSÄNTUTKIMUSLAITOS. tutkimusosasto. Metsäteknologian WÄRTSILA. Kenttäkoe. Tutkimusselostus METSÄNTUTKIMUSLAITOS Metäteknologian Uniinkatu WÄRTSILA 40 A tutkimuoato Helinki TELESKOOPPIKUORMAIN AUTOKUORMAUKSESSA Kenttäkoe Tutkimuelotu Juhani Helinki Lukkari 97 7 Ainto Tutkimuken kenttäkoe Ruokolahdella.

Lisätiedot

Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet (Mikkola/Ärölä) 4. harjoituksen ratkaisut

Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet (Mikkola/Ärölä) 4. harjoituksen ratkaisut Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet Mikkola/Ärölä 4. harjoituksen ratkaisut Teht. 1 Jacobin determinantin J det F materiaalisen aikaderivaatan laskemiseksi lasketaan

Lisätiedot

10 Suoran vektorimuotoinen yhtälö

10 Suoran vektorimuotoinen yhtälö 10 Suran vektrimutinen htälö J aluki tarkatellaan -tan kuuluvaa, rign kautta kulkevaa uraa, niin ura n täin määrätt, mikäli tunnetaan en uunta. Tavallieti tämä annetaan uuntakulman tangentin = kulmakertimen

Lisätiedot

NAANTALI KARJALUOTO - PIRTTILUOTO ASEMAKAAVALUONNOS 3.10.06

NAANTALI KARJALUOTO - PIRTTILUOTO ASEMAKAAVALUONNOS 3.10.06 NAANTALI KARJALUOTO - PIRTTILUOTO ASEMAKAAVALUONNOS 3.0.06 Siniellä värillä on eitetty rakennuala/rakennualan oa, joka ijaitee kahden metrin korkeukäyrän alapuolella. Silta Epoon Suviaaritoa. Yleitä Aemakaavaonnoken

Lisätiedot