LUKION FYSIIKKAKILPAILU avoimen sarjan vast AVOIN SARJA

Koko: px
Aloita esitys sivulta:

Download "LUKION FYSIIKKAKILPAILU 8.11.2005 avoimen sarjan vast AVOIN SARJA"

Transkriptio

1 LKION FYSIIKKAKILPAIL 8..5 avoien arjan vat AVOIN SARJA Kirjoita tektaten koepaperiin oa niei, kotiooitteei, ähköpotiooitteei, opettajai nii ekä koului nii. Kilpailuaikaa on inuuttia. Sekä tehtävä- että koepaperit palautetaan kilpailun loputtua.. Määritä pyörillä kulkevaan laitteeeen (leikkiauto, vaunu t.) vaikuttavan liikevatuvoian uuruu. Selvitä tarkati, itä ittaat ja iten olet päätynyt lopputulokeen. välineitä: tutkittava laite, ittanauha, kello, vaaka Ratkaiu: Punnitaan vaunu, jolloin aadaan aa. Syätään vaunu liikkeelle vaakauoralla pöydällä tai lattialla ja itataan aika t jonka vaunu on liikkeeä ekä atka jonka vaunu liikkuu ajan ittauken aluta pyähtyihetkeen. Oletetaan liike taaieti hidatuvaki. Tällöin nopeu v ajan ittauken alkaea on vkt t v. Vaunun liike-energia uuttuu t v b t g liikevatuten tekeäki työki: F E v F. µ k µ t Sijoitetaan tähän itautuloket ja laketaan arvio liikevatuvoiille (tai laketaan v ja ijoitetaan e liikevatuvoiien lakeieki). piteyty: periaate p taaien liikkeen oletu (jo kalteva tao, taaieti kiihtyvän liikkeen oletu) p loppunopeu kekinopeudeta (atkata ja ajata) p liike-energia työki ja liikevatuvoian ratkaieinen (jo kalteva tao, potentiaalienergia liike-energiaki ja työki) p ittautuloket ja järkevä arvo liikevatuvoiille p anioka virhelähdetarkatelu p (kuitenkin tehtävätä ax 6p...)

2 LKION FYSIIKKAKILPAIL 8..5 avoien arjan vat. Kanuuna on kiinnitetty herkäti liikkuvaan alutaan ja aluta on kiinnitetty einäään jouella, jonka jouivakio on,. Kanuunalla autaan kuula, 4 N jonka aa on kg ja lähtönopeu putken uulla 5. Jo kanuunan ja alutan yhteenlakettu aa ennen laukauta on 55 kg, niin kuinka pitkän atkan vaealle päin aluta kanuunoineen liikkuu laukauken jälkeen? Ratkaiu: Määritetään enin nopeu, jolla yteei eli aluta kanuunoineen (aa M 55kg-kg, koka kuula on poitunut putketa) liikkuu välittöäti laukauken jälkeen. Liikeäärä äilyy p p ; v coα M v, jota alutan kanuunoineen eli ennen jälkeen lähtövauhdiki v yteei kuula kuula yteei kg 5 co 45 kuula vkuula coα 3, 68 vaealle. M (55 )kg Alutan ja kanuunan (ilan kuulaa) liike-energia on uuttunut ääriaennoa kokonaan jouen potentiaalienergiaki Eyteei M vyteei Ejoui k, jota E M vyteei (55 )kg (3, 68 ) yteei, 9. k k N 4, piteyty: liikeäärän äilyinen ja nopeu (ei välttäättä nueerita arvoa) 3p energian äilyinen ja kanuunan iirtyä atka (jouen venyä) 3p jo aaa ei ole huoattu huoioda kuulan poituita p

3 LKION FYSIIKKAKILPAIL 8..5 avoien arjan vat 3. Kun koeputken avoieen päähän puhalletaan ivuuunnata, yntyy koeputkeen eiova aalto äänen heijatuea koeputken pohjata. Äänen korkeu uuttuu, kun koeputkeen liätään vettä. Eräää ittaukea tutkittiin koeputkeen yntyvän äänen perutaajuutta. Äänen taajuu itattiin tietokoneeeen liitetyllä ikrofonilla ja koeputken ilapataan korkeu itattiin viivottiella, jolloin aatiin oheiet tuloket. ilapataan korkeu (),6,8,,,5 taajuu (Hz) Koeputkeen yntyvän äänen kupukohta on hiean koeputken reunan ulkopuolella. Määritä opivaa graafita eitytä käyttäen tään kupukohdan etäiyy putken uuta ekä äänen nopeu ilaa. Pohdi, iki itattu äänen nopeu poikkeaa taulukkokirjan antaata arvota. Ratkaiu: Äänen voiituinen johtuu iitä, että putkea oleva ilapata alkaa värähdellä oalla oinaitaajuudellaan. Äänen heijatuea vedetä uodotuu eiovan aallon olu veden pintaan ja kupu putken uun ulkopuolelle. Eniäinen akii kuullaan, kun veden pinta on putken uulta etäiyydellä l d λ, joa l on putken ilapataan pituu, d kupukohdan 4 etäiyy putken uulta ja λ äänen aallonpituu. Tällöin aallonpituudeki aadaan λ 4( l d ). Äänen nopeudeki aadaan aalto-opin peruyhtälön peruteella v fλ f 4( l d). Putken v pituu taajuuden funktiona on ii l d. 4 f ilapataan korkeu (),6,8,,,5 taajuu (Hz) /taajuu ( -3 /Hz),79,,3,48,8 Piirretään ittautulokita kuvaaja, l -koordinaatitoon. Kuvaajan ja pituuakelin leikkaukohta ilaiee etäiyyden, johon kupukohta putken ulkopuolelle yntyy, joka on 97, f. Kuvaajan kulakertoieki kk aadaan 88,5 /, jota laketaan äänen nopeu: kk v 4 kk 4 88, 5 354, v 4 eli Äänen nopeuteen vaikuttaa. kaaun läpötila ( v T, iä T on aboluuttinen läpötila) ja kootuu ( v, iä M on ooliaa). Tehtävän tilanteea läpötila M lienee erkittäväpi elittäjä. lohengitetty ila on huoneilaa läpöiepää; huoneenläpötilaa t o äänen nopeu on v 343 /. Tulokita aadaan 3

4 LKION FYSIIKKAKILPAIL 8..5 avoien arjan vat v T 354 v T ( ) T ( ) ( 73 ) K 3 K 39 o. Liäki hiean vaikuttanee e, että ulohengityilan kootuu poikkeaa huoneilata: veihöyryä ja v T v 343 hiilidiokidia on eneän ja happea väheän. piteyty: tilanteen pohdinta, yhtälön johtainen ja kuvaajan piirtäinen 3p kupukohdan etäiyy putken päätä p äänen nopeu p pohdinta äänen nopeuden poikkeaalle; läpötilan erkity riittää p (läpötilan lakeita ei vaadita) 4

5 LKION FYSIIKKAKILPAIL 8..5 avoien arjan vat 5 4. Kondenaattoria, jonka kapaitani on, ladataan paritolla, kunne en napojen välinen jännite on. Toinen lataaaton kondenaattori ( ) kytketään eniäieen kondenaattoriin kuvan ukaieti. Määritä kytkennää tapahtuvan energiahäviön uuruu. Miki energia pienenee? Ratkaiu: Ladatulla kondenaattorilla on aluki varau Q ja energia. Kun lataaaton kondenaattori kytketään toieen kondenaattoriin, virta pienenee akiiarvota nollaan, ja kondenaattoreilla on yhtä uuri jännite. Tällöin alua ollut varau on Q Q Q ja energia lopua on ) (. Energiahäviö on tällöin ) ( ) (. Kondenaattoreiden kytkeien jälkeen johtiia kulkee virta jonkin aikaa. Oa alkuperäietä energiata kuluu johtiien läpeneieen. piteyty: jännite kondenaattorien kytkeien jälkeen p energia kondenaattorien kytkeien jälkeen p energiahäviö p elity energiahäviölle p

6 LKION FYSIIKKAKILPAIL 8..5 avoien arjan vat 5. Taikuun. päivänä 83 englantilainen fyyikko Michael Faraday teki euraavan kokeen Lontooa aterloo-illalla: Ratkaiu Hän upotti Thae-jokeen en ylittävän illan kupaankin päähän kuparilevyt ja yhditi ne eritetyillä johtiilla herkkään jänniteittariin. Levyt olivat 3 etrin päää toiitaan. Faraday havaiti levyjen välillä jännitteen, jonka napaiuu vaihtui äännölliin väliajoin. a) Miki Faraday havaiti jännitteen kuparilevyjen välillä? b) Miki jännitteen napaiuu vaihteli ja ikä luonnoniliö tuli näin näkyviin? c) Eräällä kerralla Faraday ittai jännitteen uuruudeki 9 V. Maan agneettikentän agneettivuon tihey on Lontooa 43 µt ja inklinaatio eli agneettikentän ja vaakataon välinen kula on 7 o. Kuinka uuri oli veden virtaunopeu? a) Vei iältää varaukelliia hiukkaia, ioneja, joihin kohdituu Maan agneettikentää liikkuea voia ( F B qv B ; uunnan voi päätellä oikean käden äännöllä: voia on kohtiuoraa nopeuden ja agneettivuon tiheyden äärääää taoa vataan). Magneettikentän uunta on pohjoiella pallonpuolikolla alaviitoon; pytykoponentti ii alapäin. Niinpä poitiiviet ionit kulkeutuvat veden virtauuuntaan nähden vaealle ja negatiiviet ionit oikealle, jolloin joenrantojen välille yntyy ähköien tilan ero eli jännite. (havainnollitava kuva olii hyvä ) b) Koka Maan agneettikentän uunnan vaihtuinen ei voi näin lyhyellä aikavälillä tulla näkyviin, jännitteen kääntyien täytyy aiheutua veden virtauuunnan kääntyietä. Vuorovei-iliö aiheuttaa veden virtauken jonkin atkaa iäaahan päin, jo ulut eivät ole käytöä. c) Veden ukana liikkuvan ionin varau on q ja nopeu v. Tällöin iihen kohdituu Maan agneettikentää voia F B qvbv, iä B v on agneettikentän pytykoponentti (kohtiuoraa liikeuuntaan nähden!). Ionien iirtyien euraukena rantojen välille yntyy ähkökenttä, jonka voiakkuu on E. Sähkökentän ioniin kohditaa voia d taa on F E q, joka on uunnaltaan päinvatainen kuin agneettikentän vaikutuketa d ioniin kohdituva voia. Ioneja iirtyy, kunne uodotuu taapaino: F B FE, jota,9v aadaan veden virtaunopeudeki v,6 /. (Myö 6 o Bvd 43 T in 7 3 taulukkokirjata löytyvän yhtälön elvbinα peruteltu käyttö hyväkytään. Yhtälöhän on johdetavia edellä eitetytä.) piteyty: a) p b) p c) 3p 6

RATKAISUT: 8. Momentti ja tasapaino

RATKAISUT: 8. Momentti ja tasapaino Phyica 9. paino (7) : 8. Voian vari r on voian vaikutuuoran etäiyy pyöriiakelita. Pyöriiakeli on todellinen tai kuviteltu akeli, jonka ypäri kappale pyörii. Voian oentti M kuvaa voian vääntövaikututa tietyn

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2004

MAOL-Pisteitysohjeet Fysiikka kevät 2004 MAOL-Piteityohjeet Fyiikka kevät 004 Tyypilliten virheiden aiheuttaia piteenetykiä (6 piteen kaalaa): - pieni lakuvirhe -1/3 p - lakuvirhe, epäielekä tulo, vähintään - - vataukea yki erkitevä nuero liikaa

Lisätiedot

Fy07 Koe Kuopion Lyseon lukio (KK) 1 / 5

Fy07 Koe Kuopion Lyseon lukio (KK) 1 / 5 y07 Koe 8.9.05 Kuopion yeon lukio (KK) / 5 Vataa kolmeen tehtävään. Vatuken reitani on 60, käämin induktani on 0,60 H ja reitani 8 ja kondenaattorin kapaitani on 80. Komponentit ovat arjaan kytkettyinä

Lisätiedot

Äänen nopeus pitkässä tangossa

Äänen nopeus pitkässä tangossa IXPF24 Fyiikka, ryhälaboratoriotyö IST4S1 / E1 / A Okanen Janne, Vaitti Mikael, Vähäartti Pai Jyväkylän Aattikorkeakoulu, IT-intituutti IXPF24 Fyiikka, Kevät 2005, 6 ECTS Opettaja Pai Repo Äänen nopeu

Lisätiedot

LUKION FYSIIKKAKILPAILU 10.11.2009, ratkaisut PERUSSARJA

LUKION FYSIIKKAKILPAILU 10.11.2009, ratkaisut PERUSSARJA LUKION FYSIIKKAKILPAILU 0..009, ratkaiut PERUSSARJA Vataa huolellieti ja iititi! Kirjoita tektaten koepaperiin oa niei, kotiooitteei, ähköpotiooite, opettajai nii ekä koului nii. Kilpailuaikaa on 00 inuuttia.

Lisätiedot

b) Laskiessani suksilla mäkeä alas ja hypätessäni laiturilta järveen painovoima tekee työtä minulle.

b) Laskiessani suksilla mäkeä alas ja hypätessäni laiturilta järveen painovoima tekee työtä minulle. nergia. Työ ja teho OHDI JA TSI -. Opettaja ja opikelija tekevät hyvin paljon aanlaita ekaanita työtä, kuten liikkuinen, kirjojen ja eineiden notainen, liikkeellelähtö ja pyähtyinen. Uuien aioiden oppiinen

Lisätiedot

RATKAISUT: 3. Voimakuvio ja liikeyhtälö

RATKAISUT: 3. Voimakuvio ja liikeyhtälö Phyica 9. paino (8) 3. Voiakuvio ja liikeyhtälö : 3. Voiakuvio ja liikeyhtälö 3. a) Newtonin I laki on nieltään jatkavuuden laki. Kappale jatkaa liikettään uoraviivaieti uuttuattoalla nopeudella tai pyyy

Lisätiedot

Kertaustehtäviä. Luku 1. Physica 3 Opettajan OPAS

Kertaustehtäviä. Luku 1. Physica 3 Opettajan OPAS (4) Luku 57. a) Mekaaniea poikittaiea aaltoliikkeeä aineen rakenneoat värähtelevät eteneiuuntaan vataan kohtiuoraa uunnaa. Eierkkejä ovat uun uaa jouen poikittainen aaltoliike tai veden pinnan aaltoilu.

Lisätiedot

Intensiteettitaso ja Doplerin ilmiö

Intensiteettitaso ja Doplerin ilmiö Inteniteettitao ja Doplerin ilmiö Tehtävä Erkki työkentelee airaalaa. Sairaalalta 6,0 km päää on tapahtunut tieliikenneonnettomuu ja onnettomuupaikalta lähteneen ambulanin ireenin ääni kuuluu Erkille 60,0

Lisätiedot

1. Oheinen kuvio esittää kolmen pyöräilijän A, B ja C paikkaa ajan funktiona.

1. Oheinen kuvio esittää kolmen pyöräilijän A, B ja C paikkaa ajan funktiona. Fotoni 4 Kertau - 1 Kertautehtäviä Luku 1 1. Oheinen kuvio eittää kolen pyöräilijän A, B ja C paikkaa ajan funktiona. a) Kuka on kulkenut piiän atkan aikavälinä 0...7? b) Milloin B aavuttaa C:n? c) Kenellä

Lisätiedot

RATKAISUT: Kertaustehtäviä

RATKAISUT: Kertaustehtäviä Phyica 1 uuditettu paino OPETTAJAN OPAS 1(9) Kertautehtäiä RATKAISUT: Kertautehtäiä LUKU 3. Luua on a) 4 eriteää nueroa b) 3 eriteää nueroa c) 7 eriteää nueroa. 4. Selitetään erieen yhtälön olepien puolien

Lisätiedot

4.3 Liikemäärän säilyminen

4.3 Liikemäärän säilyminen Tämän kappaleen aihe liikemäärän äilyminen törmäykiä. Törmäy on uora ja kekeinen, jo törmäävät kappaleet liikkuvat maakekipiteitten kautta kulkevaa uoraa pitkin ja jo törmäykohta on tällä amalla uoralla.

Lisätiedot

Physica 9 1. painos 1(8) 20. Varattu hiukkanen sähkö- ja magneettikentässä

Physica 9 1. painos 1(8) 20. Varattu hiukkanen sähkö- ja magneettikentässä Phyica 9 aino (8) 0 Varattu hiukkann ähkö- ja agnttikntää : 0 Varattu hiukkann ähkö- ja agnttikntää 0 a) Sähköknttä aikuttaa arattuun hiukkan oialla F = QE Poitiiiti aratull hiukkall oian uunta on ähkökntän

Lisätiedot

7. Pyörivät sähkökoneet

7. Pyörivät sähkökoneet Pyörivät ähkökoneet 7-1 7. Pyörivät ähkökoneet Mekaanien energian muuntamieen ähköenergiaki ekä ähköenergian muuntamieen takaiin mekaanieki energiaki käytetään ähkökoneita. Koneita, jotka muuntavat mekaanien

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2010

MAOL-Pisteitysohjeet Fysiikka kevät 2010 MAOL-Piteityohjeet Fyiikka kevät 010 Tyypilliten virheiden aiheuttaia piteenetykiä (6 piteen kaalaa): - pieni lakuvirhe -1/3 p - lakuvirhe, epäielekä tulo, vähintään - - vataukea yki erkitevä nuero liikaa

Lisätiedot

Viikkotehtävät IV, ratkaisut

Viikkotehtävät IV, ratkaisut Viikkotehtävät IV, ratkaiut. 7,40 V (pariton napajännite) I 7 ma (lampun A ähkövirta rinnankytkennää) I 5 ma (lampun B ähkövirta rinnankytkennää) a) eitani on, joten lamppujen reitanit voidaan lakea tehtävää

Lisätiedot

Fysiikkakilpailu 6.11.2007, avoimen sarjan vastaukset AVOIN SARJA

Fysiikkakilpailu 6.11.2007, avoimen sarjan vastaukset AVOIN SARJA Fyiikkakilpailu 6.11.007, avoimen ajan vatauket AVOIN SARJA Kijoita tektaten koepapeiin oma nimei, kotiooitteei, ähköpotiooitteei, opettajai nimi ekä koului nimi. Kilpailuaikaa on 100 minuuttia. Sekä tehtävä-

Lisätiedot

KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoski, professori. Lappeenrannan teknillinen yliopisto

KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoski, professori. Lappeenrannan teknillinen yliopisto KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoki, proeori Lappeenrannan teknillinen yliopito Näin uuden vuoden alkaea ueat meitä miettivät ijoitualkkuna kootumuta. Yki kekeiitä kyymykitä on päätö eri

Lisätiedot

RATKAISUT: 7. Gravitaatiovoima ja heittoliike

RATKAISUT: 7. Gravitaatiovoima ja heittoliike Phyica 9. paino () 7. Gaitaatiooia ja heittoliike : 7. Gaitaatiooia ja heittoliike 7. a) Gaitaatiooia aikuttaa kaikkien kappaleiden älillä. Gaitaatiooian uuuu iippuu kappaleiden aoita ja niiden älietä

Lisätiedot

S-55.1220 Piirianalyysi 2 Tentti 4.1.2007

S-55.1220 Piirianalyysi 2 Tentti 4.1.2007 S-55.2 Piirianalyyi 2 Tentti 4..07. Piiriä yöttää kaki lähdettä, joilla on eri taajuudet. Kuinka uuri on lämmöki muuttuva teho P? Piiri on jatkuvuutilaa. J 2 00 Ω 5µH 0 pf 0/0 V J 2 00/0 ma f MHz f 2 2MHz.

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2002

MAOL-Pisteitysohjeet Fysiikka kevät 2002 MAOL-Piteityhjeet Fyiikka kevät 00 Tyypilliten virheiden aiheuttaia piteenetykiä (6 piteen kaalaa): - pieni lakuvirhe -/3 p - lakuvirhe, epäielekä tul, vähintään - - vataukea yki erkitevä nuer liikaa -0

Lisätiedot

PD-säädin PID PID-säädin

PD-säädin PID PID-säädin -äädin - äätö on ykinkertainen äätömuoto, jota voidaan kutua myö uhteuttavaki äädöki. Sinä lähtöignaali on uoraa uhteea tuloignaalin. -äätimen uhdealue kertoo kuinka paljon mittauuure aa muuttua ennen

Lisätiedot

S Piirianalyysi 2 2. välikoe

S Piirianalyysi 2 2. välikoe S-55.22 Piirianalyyi 2 2. välikoe 6.5.23 Lake tehtävät 2 eri paperille kuin tehtävät 3 5. Muita kirjoittaa jokaieen paperiin elväti nimi, opikelijanumero, kurin nimi ja koodi. Epäelvät vataupaperit voidaan

Lisätiedot

Jakso 4: Dynamiikan perusteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautus- tai näyttöpäivä on maanantaina

Jakso 4: Dynamiikan perusteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautus- tai näyttöpäivä on maanantaina Jako 4: Dynamiikan peruteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautu- tai näyttöpäivä on maanantaina 8.8.2016. Kolmea enimmäieä lakua ovelletaan Newtonin 2. ja 3. lakia. T 4.1 (pakollinen):

Lisätiedot

( ) ( ) 14 HARJOITUSTEHTÄVIÄ SÄHKÖISET PERUSSUUREET SÄHKÖVERKON PIIRIKOMPONENTIT

( ) ( ) 14 HARJOITUSTEHTÄVIÄ SÄHKÖISET PERUSSUUREET SÄHKÖVERKON PIIRIKOMPONENTIT 4 HAJOTUSTHTÄVÄ SÄHKÖST PUSSUUT -auton akku (84 V, 700 mah on ladattu täyteen Kuinka uuri oa akun energiata kuluu enimmäien viiden minuutin aikana, kun oletetaan moottorin ottavan vakiovirran 5 A? Oletetaan

Lisätiedot

12. laskuharjoituskierros, vko 16, ratkaisut

12. laskuharjoituskierros, vko 16, ratkaisut 1. lakuharjoitukierro, vko 16, ratkaiut D1. Muuttujien x ja Y havaitut arvot ovat: x 1 3 4 6 8 9 11 14 Y 1 4 4 5 7 8 9 a) Määrää regreiomallin Y i = α +βx i +ǫ i regreiokertoimien PNS-etimaatit ja piirrä

Lisätiedot

rad s rad s km s km s

rad s rad s km s km s otoni 5 6- Ketautehtävien atkaiut Luku. Satelliitti kietää Maata päiväntaaajataoa 50 k Maan pinnan yläpuolella. Sen kietoaika on 90 in. Määitä atelliitin kulanopeu ja atanopeu. Maan ekvaattoiäde on noin

Lisätiedot

POSITIIVISEN LINSSIN POLTTOVÄLI

POSITIIVISEN LINSSIN POLTTOVÄLI S-108110 OPTIIKKA 1/6 POSITIIVISEN LINSSIN POLTTOVÄLI Laboratoriotyö S-108110 OPTIIKKA /6 SISÄLLYSLUETTELO 1 Poitiivien linin polttoväli 3 11 Teoria 3 1 Mittauken uoritu 5 LIITE 1 6 Mittaupöytäkirja 6

Lisätiedot

S-55.1220 Piirianalyysi 2 Tentti 1.9.2011

S-55.1220 Piirianalyysi 2 Tentti 1.9.2011 S-55.2 Piirianalyyi 2 Tentti.9.. e(t) L j(t) Lake vatukea lämmöki muuttuva teho P. = Ω L = mh = 2mF ω = 0 3 rad/ e = ê in(ωt) j = ĵ in(2ωt) ĵ = 0 A ê = 2 2 V. 2. u(t) k Kuvan mukainen taajännitelähteen

Lisätiedot

RATKAISUT: 17. Tasavirtapiirit

RATKAISUT: 17. Tasavirtapiirit Phyica 9. paino 1(6) ATKAST 17. Taavirtapiirit ATKAST: 17. Taavirtapiirit 17.1 a) Napajännite on laitteen navoita mitattu jännite. b) Lähdejännite on kuormittamattoman pariton napajännite. c) Jännitehäviö

Lisätiedot

C B A. Kolmessa ensimmäisessä laskussa sovelletaan Newtonin 2. ja 3. lakia.

C B A. Kolmessa ensimmäisessä laskussa sovelletaan Newtonin 2. ja 3. lakia. Jako 4: Dynamiikan peruteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautu- tai näyttöpäivä on tiitaina 23.5.2017. Ektra-tehtävät vataavat kolmea tehtävää, kun kurin lopua laketaan lakuharjoitupiteitä.

Lisätiedot

S-55.1220 Piirianalyysi 2 Tentti 27.10.2011

S-55.1220 Piirianalyysi 2 Tentti 27.10.2011 S-55.220 Piirianalyyi 2 Tentti 27.0. j(t) u(t) -piiriin vaikuttaa lähdevirta j(t) = A ĵ in(ωt)]. Lake piirin jännite u(t) ajan funktiona ja vatukea kuluva teho. Piiri on jatkuvuutilaa. ĵ = 0,5A = 2µF ω

Lisätiedot

1 LAMMIMUURIN RAKENNE JA OMINAISUUDET 2 2 KÄYTTÖKOHTEET 2 3 MUURITYYPIT 2 4 LASKENTAOTAKSUMAT 3 4.1 Materiaalien ominaisuudet 3 4.2 Maanpaine 3 4.

1 LAMMIMUURIN RAKENNE JA OMINAISUUDET 2 2 KÄYTTÖKOHTEET 2 3 MUURITYYPIT 2 4 LASKENTAOTAKSUMAT 3 4.1 Materiaalien ominaisuudet 3 4.2 Maanpaine 3 4. 1 LAIUURIN RAKENNE JA OINAISUUDET KÄYTTÖKOHTEET 3 UURITYYPIT 4 LASKENTAOTAKSUAT 3 4.1 ateriaalien ominaiuudet 3 4. aanpaine 3 4.3 uurin ketävyy npaineelle 4 4.4 Kaatumi- ja liukumivarmuu 5 4.4.1. Kaatumivarmuu

Lisätiedot

RATKAISUT: 18. Sähkökenttä

RATKAISUT: 18. Sähkökenttä Physica 9 1. painos 1(7) : 18.1. a) Sähkökenttä on alue, jonka jokaisessa kohdassa varattuun hiukkaseen vaikuttaa sähköinen voia. b) Potentiaali on sähkökenttää kuvaava suure, joka on ääritelty niin, että

Lisätiedot

12. ARKISIA SOVELLUKSIA

12. ARKISIA SOVELLUKSIA MAA. Arkiia ovellukia. ARKISIA SOVELLUKSIA Oleeaan, eä kappale liikkuu ykiuloeia raaa, eimerkiki -akelia pikin. Kappaleen nopeuden vekoriluonne riiää oaa vauhdin eumerkin avulla huomioon, ja on ehkä arkoiukenmukaiina

Lisätiedot

Metallikuulan vieriminen kaltevalla tasolla

Metallikuulan vieriminen kaltevalla tasolla 1 Metallikuulan vieriinen kaltevalla taolla Mikko Vetola Koulun nii Fyiikka luonnontieteenä FY1-Projektityö 4.6.2002 Arvoana: K+ (10) 2 1. Työn tarkoitu Tehtävänä oli tutkia illaiia liikeiliöitä eiintyy

Lisätiedot

Kertausosa. 2. Kuvaan merkityt kulmat ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia, kulmat ovat yhtä suuria.

Kertausosa. 2. Kuvaan merkityt kulmat ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia, kulmat ovat yhtä suuria. 5. Veitoken tilavuu on V,00 m 1,00 m,00 m 6,00 m. Pienoimallin tilavuu on 1 V malli 6,00 m 0,06m. 100 Mittakaava k aadaan tälötä. 0,06 1 k 6,00 100 1 k 0,1544... 100 Mitat ovat. 1,00m 0,408...m 100 0,41

Lisätiedot

Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö.

Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö. Yleistä sähkömagnetismista IÄLTÖ: ähkömagnetismi käsitekarttana ähkömagnetismin kaavakokoelma ähkö- ja magneettikentistä Maxwellin yhtälöistä ÄHKÖMAGNETIMI KÄITEKARTTANA: Kapasitanssi Kondensaattori Varaus

Lisätiedot

BH60A0900 Ympäristömittaukset

BH60A0900 Ympäristömittaukset BH60A0900 Yäitöittauket Lakuhajoitu Kuiva ja kotea kaau, tilavuuvita ehtävä Savukaau läötila o 00 ja aie 99 kpa. ekittäviät kaaukooetit ovat 0 %, H 0 %, 0 % ja lout tyeä. ikä o a) kotea ja kuiva kaau tilavuukie

Lisätiedot

X 2 = k 21X 1 + U 2 s + k 02 + k 12. (s + k 02 + k 12 )U 1 + k 12 U 2. s 2 + (k 01 + k 21 + k 02 + k 12 ) s + k

X 2 = k 21X 1 + U 2 s + k 02 + k 12. (s + k 02 + k 12 )U 1 + k 12 U 2. s 2 + (k 01 + k 21 + k 02 + k 12 ) s + k Aalto-yliopiton Perutieteiden korkeakoulu Matematiikan ja yteemianalyyin laito Mat-49 Syteemien Identifiointi 0 harjoituken ratkaiut äytetään enin iirtofunktiomalli Tehdään Laplace-muunno: ẋ k 0 k x +

Lisätiedot

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7 Fy06 Koe 0.5.015 Kuopion Lyseon lukio (KK) 1/7 alitse kolme tehtävää. 6p/tehtävä. 1. Mitä mieltä olet seuraavista väitteistä. Perustele lyhyesti ovatko väitteet totta vai tarua. a. irtapiirin hehkulamput

Lisätiedot

Vallox TEKNINENOHJE. Vallox SILENT. Tyyppi 3510 Mallit: VALLOX 75 VALLOX 75 VKL VALLOX 95 VALLOX 95 VKL VALLOX 95 SILENT VALLOX 95 SILENT VKL

Vallox TEKNINENOHJE. Vallox SILENT. Tyyppi 3510 Mallit: VALLOX 75 VALLOX 75 VKL VALLOX 95 VALLOX 95 VKL VALLOX 95 SILENT VALLOX 95 SILENT VKL 75 95.9.59F 9.. yyppi 5 VAOX yyppi 5 Mallit: VAOX 75 VAOX 75 VK VAOX 95 VAOX 95 VK Huoneitokohtaieen ilanvaihtoon pien-, rivi- ja kerrotaloihin ulo-/poitoilanvaihto läöntalteenotolla Hyvä uodatu Siäänrakennettu

Lisätiedot

RATKAISUT: 9. Pyörimisen peruslaki ja pyörimismäärä

RATKAISUT: 9. Pyörimisen peruslaki ja pyörimismäärä Phyic 9. pino (9) 9. Pyöiien peulki j pyöiiäää : 9. Pyöiien peulki j pyöiiäää 9. ) Hituoentti on uue, jok kuv kppleen pyöiihitutt, toiin noen itä, iten vike kppleen pyöiitä on uutt. b) Syteein pyöiiäää

Lisätiedot

LUKION FYSIIKKAKILPAILU 8.11.2005 perussarjan vastaukset PERUSSARJA

LUKION FYSIIKKAKILPAILU 8.11.2005 perussarjan vastaukset PERUSSARJA PERUSSARJA Vataa hulellieti ja iititi iiteen tehtäään! Kirjita tetaten epaperiin a niei, tiitteei, ähöptiite, pettajai nii eä ului nii. Kilpailuaiaa n 00 inuuttia. Seä tehtää- että epaperit palautetaan

Lisätiedot

ELEC-C4120 Piirianalyysi II 2. välikoe

ELEC-C4120 Piirianalyysi II 2. välikoe LC-C4 Piirianalyyi II 2. välikoe 8.4.4 Vataa KOLMN tehtävään.. e (t) R C Oheiea piiriä vaikuttaa taajännitelähde = V ekä e (t) = ê in(ω 0 t)+ê 2 in(2ω 0 t). Lake vatukea kuluva pätöteho P. ê = 2 V ê 2

Lisätiedot

MP069 alueen sähköteknisten reunaehtojen laskeminen.

MP069 alueen sähköteknisten reunaehtojen laskeminen. M069 alueen ähkötekniten reunaehtojen lakeinen. Kekiteho tälle alueelle aatiin kun otettiin Tornion irkkiötä ataaa oakotitalo alue ja niiden talojen kulututen peruteella äärättiin kullekin tontille kulutupite

Lisätiedot

1.5 Tasaisesti kiihtyvä liike

1.5 Tasaisesti kiihtyvä liike Jos pudotat lyijykuulan aanpinnan läheisyydessä, sen vauhti kasvaa joka sekunti noin 9,8 etrillä sekunnissa kunnes törää aahan. Tai jos suoritat autolla lukkojarrutuksen kuivalla asvaltilla jostain kohtuullisesta

Lisätiedot

Viivakuormituksen potentiaalienergia saadaan summaamalla viivan pituuden yli

Viivakuormituksen potentiaalienergia saadaan summaamalla viivan pituuden yli hum.9. oiman potentiaalienergia Potentiaalienergiata puhutaan, kun kappaleeeen vaikuttaa jokin konervatiivinen voima. oima on konervatiivinen, jo en tekemä tö vaikutupieen iirteä tiettä paikata toieen

Lisätiedot

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Harjoituksen 1 ratkaisuehdotukset

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Harjoituksen 1 ratkaisuehdotukset SMG-4200 Sähkömagneettiten järjetelmien lämmöniirto Harjoituken 1 ratkaiuehdotuket Vata 1800-luvun puoliväliä ymmärrettiin että lämpöenergia on atomien ja molekyylien atunnaieen liikkeeeen värähtelyyn

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA SMG-: SÄHKÖTEKNIIKKA Passiiviset piirikomponentit vastus kondensaattori käämi Tarkoitus on yrittää ymmärtää passiivisten piirikomponenttien toiminnan taustalle olevat luonnonilmiöt. isäksi johdetaan näiden

Lisätiedot

Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat:

Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat: Mat-.090 Sovellettu todeäköiyylaku A 0. harjoituket Mat-.09 Sovellettu todeäköiyylaku 0. harjoituket / Ratkaiut Aiheet: Avaiaat: Tilatolliet tetit Aritmeettie kekiarvo, Beroulli-jakauma, F-jakauma, F-teti,

Lisätiedot

1 Määrittele lyhyesti seuraavat käsitteet. a) Kvantisointivirhe. b) Näytetaajuuden interpolointi. c) Adaptiivinen suodatus.

1 Määrittele lyhyesti seuraavat käsitteet. a) Kvantisointivirhe. b) Näytetaajuuden interpolointi. c) Adaptiivinen suodatus. TL536DSK-algoritmit (J. Laitinen) 6.4.5 Määrittele lyyeti euraavat käitteet a) Kvantiointivire. b) äytetaajuuden interpolointi. ) Adaptiivinen uodatu. a) Kvantiointivire yntyy, kun ignaalin ykittäinen

Lisätiedot

Luku 16 Markkinatasapaino

Luku 16 Markkinatasapaino 68 Luku 16 Markkinataaaino 16.1 Markkinataaainon määrity Tarkatelemme kilailulliia markkinoita kaikki talouenitäjät hinnanottajia kaikki määrittävät arhaat ratkaiuna uhteea makimihintoihin talouenitäjien

Lisätiedot

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ TYÖOHJE 14.7.2010 JMK, TSU 33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ Laitteisto: Kuva 1. Kytkentä solenoidin ja toroidin magneettikenttien mittausta varten. Käytä samaa digitaalista jännitemittaria molempien

Lisätiedot

2. Pystyasennossa olevaa jousta kuormitettiin erimassaisilla kappaleilla (kuva), jolloin saatiin taulukon mukaiset tulokset.

2. Pystyasennossa olevaa jousta kuormitettiin erimassaisilla kappaleilla (kuva), jolloin saatiin taulukon mukaiset tulokset. Fysiikka syksy 2005 1. Nykyinen käsitys Aurinkokunnan rakenteesta syntyi 1600-luvulla pääasiassa tähtitieteellisten havaintojen perusteella. Aineen pienimpien osasten rakennetta sitä vastoin ei pystytä

Lisätiedot

PT-36 Plasmarc-leikkausarvot

PT-36 Plasmarc-leikkausarvot PT-36 Plamarc-leikkauarvot Leikkauarvojen opa (FI) 0558007661 Verion 8.1 releaed on 28Oct11 VARMISTA, ETTÄ KÄYTTÄJÄ SAA NÄMÄ TIEDOT. VOIT TILATA MYYJÄLTÄ LISÄÄ KOPIOITA. VARO OHJEET on tarkoitettu kokeneille

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Peruskäsitteet Luennon keskeinen termistö ja tavoitteet sähkövaraus teho ja energia potentiaali ja jännite sähkövirta Tarkoitus on määritellä sähkötekniikan

Lisätiedot

Sähköstatiikka ja magnetismi

Sähköstatiikka ja magnetismi Sähköstatiikka ja magnetismi Johdatus magnetismiin Antti Haarto 19.11.2012 Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän

Lisätiedot

SMG-1100: PIIRIANALYYSI I

SMG-1100: PIIRIANALYYSI I SMG-00: PIIIANAYYSI I Passiiviset piirikomponentit vastus kondensaattori käämi Kirja: luku. (vastus), luku 6. (käämi), luku 6. (kondensaattori) uentomoniste: luvut 3., 3. ja 3.3 VASTUS ja ESISTANSSI (Ohm,

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2011

MAOL-Pisteitysohjeet Fysiikka kevät 2011 MAOL-Pisteitysohjeet Fysiikka kevät 0 Tyypillisten virheiden aiheuttaia pisteenetyksiä (6 pisteen skaalassa): - pieni laskuvirhe -/3 p - laskuvirhe, epäielekäs tulos, vähintään - - vastauksessa yksi erkitsevä

Lisätiedot

NAANTALI KARJALUOTO - PIRTTILUOTO ASEMAKAAVALUONNOS 3.10.06

NAANTALI KARJALUOTO - PIRTTILUOTO ASEMAKAAVALUONNOS 3.10.06 NAANTALI KARJALUOTO - PIRTTILUOTO ASEMAKAAVALUONNOS 3.0.06 Siniellä värillä on eitetty rakennuala/rakennualan oa, joka ijaitee kahden metrin korkeukäyrän alapuolella. Silta Epoon Suviaaritoa. Yleitä Aemakaavaonnoken

Lisätiedot

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! 1. Vastaa, ovatko seuraavat väittämät oikein vai väärin. Perustelua ei tarvitse kirjoittaa. a) Atomi ei voi lähettää

Lisätiedot

Kuva lämmönsiirtoprosessista Käytössä ristivirtalämmönvaihdin (molemmat puolet sekoittumattomat)

Kuva lämmönsiirtoprosessista Käytössä ristivirtalämmönvaihdin (molemmat puolet sekoittumattomat) Kemian laitetekniikka Kotilaku 3..008 Jarmo Vetola Kuva lämmöniirtoproeita Käytöä ritivirtalämmönvaihdin (molemmat puolet ekoittumattomat) kuuma maitovirta, eli ravaton maito patöroinnita virtau vaippapuolella

Lisätiedot

RATKAISUT: 5. Liikemäärä ja impulssi

RATKAISUT: 5. Liikemäärä ja impulssi Phyica 9 1. paino 1(9) 5. Liikeäärä ja ipuli : 5. Liikeäärä ja ipuli 5.1 a) Kappaleen liikeäärä on p, joa on kappaleen aa ja kappaleen nopeu. b) Ipuliperiaate: Syteein liikeäärän uuto Δ p aikaälillä Δt

Lisätiedot

7. PYÖRIVÄN SÄHKÖKONEEN SUUNNITTELUN ETENEMINEN JA KONEEN OMI- NAISUUDET

7. PYÖRIVÄN SÄHKÖKONEEN SUUNNITTELUN ETENEMINEN JA KONEEN OMI- NAISUUDET 7.1 LTY Juha Pyhönen 7. PYÖRIVÄN SÄHKÖKONEEN SUUNNITTELUN ETENEMINEN JA KONEEN OMI- NAISUUDET Pyöivän ähkökoneen uunnittelua voidaan noudattaa eiekiki euaavanlaita työjäjetytä. Tää opii uoaan epätahtioottoeille,

Lisätiedot

Vallox TEKNINENOHJE. Vallox SILENT. Tyyppi 3510 Mallit: VALLOX 75 VALLOX 75 VKL VALLOX 95 VALLOX 95 VKL VALLOX 95 SILENT VALLOX 95 SILENT VKL

Vallox TEKNINENOHJE. Vallox SILENT. Tyyppi 3510 Mallit: VALLOX 75 VALLOX 75 VKL VALLOX 95 VALLOX 95 VKL VALLOX 95 SILENT VALLOX 95 SILENT VKL Vallox 75 95.9.59F.5.9 yyppi 5 VAOX yyppi 5 Mallit: VAOX 75 VAOX 75 VK VAOX 95 VAOX 95 VK Huoneitokohtaieen ilanvaihtoon pien-, rivi- ja kerrotaloihin ulo-/poitoilanvaihto läöntalteenotolla Hyvä uodatu

Lisätiedot

Luku 6 Kysyntä. > 0, eli kysyntä kasvaa, niin x 1. < 0, eli kysyntä laskee, niin x 1

Luku 6 Kysyntä. > 0, eli kysyntä kasvaa, niin x 1. < 0, eli kysyntä laskee, niin x 1 40 Luku 6 Kysyntä Edellisessä luvussa näie, että ratkaisealla kuluttajan valintaongelan pitäällä paraetrit (p, p, ) yleisinä, saae eksplisiittisen kysyntäfunktion kuallekin hyödykkeelle. Ilaisie kysyntäfunktiot

Lisätiedot

Kahdeksansolmuinen levyelementti

Kahdeksansolmuinen levyelementti Levy8 ja RS hm 7.. Kahdekanolminen levyelementti akatellaan kvan kahdekanolmita levyelementtiä. q 6 y (,y q 8 ( 8,y 8 8 q 7 q 6 (,y q 5 q q q 7 q q ( 7,y 7 v ( 6,y 6 P 5 ( 5,y 5 q 9 6 q 5 (,y q (,y q q

Lisätiedot

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina 31.5.2012. T 6.1 (pakollinen): Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä.

Lisätiedot

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa

Lisätiedot

KERTAUSTEHTÄVIÄ. LUKU v k = 12 m/s, x = 3,0 km, t =? x. LUKU v = 90 km/h = (90/3,6) m/s = 25 m/s, t = 1 s, s =? Kuljettu matka on m s

KERTAUSTEHTÄVIÄ. LUKU v k = 12 m/s, x = 3,0 km, t =? x. LUKU v = 90 km/h = (90/3,6) m/s = 25 m/s, t = 1 s, s =? Kuljettu matka on m s Phyica 4 Opettajan OPAS (8) LUKU 46 v k = /, x = 3,0 k, t =? x x Kekinopeuden uuruu on vk = Ratkaitaan aika t = t v 3,0 k t = = 50 = 50 in = 4,667 in 4, in 60 k 47 v k = 50 k/h, x =,5 k, v k = 80 k/h,

Lisätiedot

S Fysiikka III (Est) Tentti

S Fysiikka III (Est) Tentti S-114137 Fyiikka III (Et) Tentti 9008 1 Vetyatomin elektronin kulmaliikemäärää kuvaa kvanttiluku l =3 Lake miä kaikia kulmia kulmaliikemäärävektori voi olla uhteea kulmaliikemäärän z-komponenttiin ( )

Lisätiedot

RATKAISUT: 19. Magneettikenttä

RATKAISUT: 19. Magneettikenttä Physica 9 1. painos 1(6) : 19.1 a) Magneettivuo määritellään kaavalla Φ =, jossa on magneettikenttää vastaan kohtisuorassa olevan pinnan pinta-ala ja on magneettikentän magneettivuon tiheys, joka läpäisee

Lisätiedot

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän 3. MAGNEETTIKENTTÄ Magneettikenttä Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän Havaittuja magneettisia perusilmiöitä: Riippumatta magneetin muodosta, sillä on aina

Lisätiedot

2.4 Erikoistapaus kantalukuna 10 eli kymmenen potenssit

2.4 Erikoistapaus kantalukuna 10 eli kymmenen potenssit 2.4 Kyenen potenit 2.4 Erikoitapau kantaukuna ei kyenen potenit Potenin kantaukuna käytetään kyentä erityieti, kun uku on erittäin uuri tai erittäin pieni. Tää auttaa näitten ääritapauten hahottaiea. Tarkateaan

Lisätiedot

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET Kurssin esittely Sähkömagneettiset ilmiöt varaus sähkökenttä magneettikenttä sähkömagneettinen induktio virta potentiaali ja jännite sähkömagneettinen energia teho Määritellään

Lisätiedot

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Sähköstatiikka Coulombin laki ja sähkökentän

Lisätiedot

Elektroniikan perusteet, Radioamatööritutkintokoulutus

Elektroniikan perusteet, Radioamatööritutkintokoulutus Elektroniikan perusteet, Radioamatööritutkintokoulutus Antti Karjalainen, PRK 14.11.2013 Komponenttien esittelytaktiikka Toiminta, (Teoria), Käyttö jännite, virta, teho, taajuus, impedanssi ja näiden yksiköt:

Lisätiedot

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET DEE-0: SÄHKÖTEKNIIKAN PEUSTEET Passiiviset piirikomponentit vastus kondensaattori käämi Tarkoitus on yrittää ymmärtää passiivisten piirikomponenttien toiminnan taustalle olevat luonnonilmiöt. isäksi johdetaan

Lisätiedot

Mat-2.090 Sovellettu todennäköisyyslasku A

Mat-2.090 Sovellettu todennäköisyyslasku A Mat-.090 Sovellettu todeäköiyylaku A Mat-.090 Sovellettu todeäköiyylaku A / Ratkaiut Aiheet: Avaiaat: Tilatollite aieito keräämie ja mittaamie Tilatollite aieitoje kuvaamie Oto ja otojakaumat Aritmeettie

Lisätiedot

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 5

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 5 5384A RADIOTEKNIIKAN PERUSTEET Haroitu 5. Häviötön 5 Ω:n aaltoohto on päätetty tuntemattomaan impedaniin. Aaltoohdolla olevaki ännitteen eiovan aallon uhteeki aadaan 3 a enimmäinen minimi havaitaan 5 cm:n

Lisätiedot

Valtion eläkemaksun laskuperusteet

Valtion eläkemaksun laskuperusteet VALTIOKONTTORI PÄÄTÖS Dnro 62/30/2005 Valtion eläkemakn lakperteet Valtiokonttori on 2262005 hyäkynyt nämä lakperteet nodatettaaki lakettaea Valtion eläkerahatolaia tarkoitettja työnantajan eläkemakja

Lisätiedot

10 Suoran vektorimuotoinen yhtälö

10 Suoran vektorimuotoinen yhtälö 10 Suran vektrimutinen htälö J aluki tarkatellaan -tan kuuluvaa, rign kautta kulkevaa uraa, niin ura n täin määrätt, mikäli tunnetaan en uunta. Tavallieti tämä annetaan uuntakulman tangentin = kulmakertimen

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut A1 Ampumahiihtäjä ampuu luodin vaakasuoraan kohti maalitaulun keskipistettä. Luodin lähtönopeus on v 0 = 445 m/s ja etäisyys maalitauluun s = 50,0 m. a) Kuinka pitkä on luodin lentoaika? b) Kuinka kauaksi

Lisätiedot

Physica 7 Opettajan OPAS 1(29)

Physica 7 Opettajan OPAS 1(29) Phyica 7 Opttajan OPAS 1(9) 1. luku 06. Magnttivuontihyttä kuvaava vktori on magnttiknttää kuvaavan knttäviivan tangntin uuntainn. Vktorin pituu on uurin auvamagntin napojn lähiyydä ja pinn täiyydn kavaa.

Lisätiedot

SÄHKÖMAGNEETTISTEN KENTTIEN BIOLOGISET VAIKUTUKSET JA TERVEYSRISKIT

SÄHKÖMAGNEETTISTEN KENTTIEN BIOLOGISET VAIKUTUKSET JA TERVEYSRISKIT Sähkö- ja magneettikentät työpaikoilla 11.10. 2006, Teknologiakeskus Pripoli SÄHKÖMAGNEETTISTEN KENTTIEN BIOLOGISET VAIKUTUKSET JA TERVEYSRISKIT Kari Jokela Ionisoimattoman säteilyn valvonta Säteilyturvakeskus

Lisätiedot

METSÄSTYSPUHELIMET. www.zodiacfinland.fi

METSÄSTYSPUHELIMET. www.zodiacfinland.fi METSÄSTYSPUHELIMET www.zodiacfinland.fi Z O D I A C T E A M P R O WAT E R P R O O F ZODIAC Zodiac Team Pro Waterproof radiopuhelin on valintai, kun toiminnot ja uoritukyky ratkaievat. TAKUU 3 VUOTTA Open

Lisätiedot

Vuoden Beauceron -säännöt (voimassa alkaen) Yleisiä periaatteita

Vuoden Beauceron -säännöt (voimassa alkaen) Yleisiä periaatteita Vuoden Beauceron -äännöt (vomaa 1.1.2017 alkaen) Yleä peraatteta Klpalukau on kalentervuo. Mukaan hyväkytään van KoraNetta löytyvät tuloket pl. erkeen pteytetyt arvoklpalut. Yhden uortuken pteet muodotuvat

Lisätiedot

RATKAISUT: 13. Harmoninen värähtely

RATKAISUT: 13. Harmoninen värähtely Phyica 9 1 paino 1(7) 13 Haroninen värähtely : 13 Haroninen värähtely 131 a) Voia, jona uuruu on uoraan verrannollinen poieaaan taapainoaeata ja jona uunta on ohti taapainoaeaa b) Suure, joa ilaiee aiayiöä

Lisätiedot

Tilastotieteen jatkokurssi 8. laskuharjoitusten ratkaisuehdotukset (viikot 13 ja 14)

Tilastotieteen jatkokurssi 8. laskuharjoitusten ratkaisuehdotukset (viikot 13 ja 14) Tilatotietee jatkokuri 8. lakuharjoitute ratkaiuehdotuket (viikot 13 ja 14) 1) Perujoukko o aluee A aukkaat ja tutkittavaa omiaiuutea ovat tulot, Tiedämme, että perujouko tulot oudattaa ormaalijakaumaa,

Lisätiedot

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi Magneettikentät Haarto & Karhunen Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän Magneettikenttä aiheuttaa voiman liikkuvaan

Lisätiedot

Rak-54.116 Rakenteiden mekaniikka C, RM C (4 ov) Tentti 30.8.2007

Rak-54.116 Rakenteiden mekaniikka C, RM C (4 ov) Tentti 30.8.2007 Rak-54.116 Rakeneden mekankka, RM (4 ov) Ten.8.7 Krjoa jokaeen koepapern elvä - koko nme, puhuelunm allevvauna - oao, vuokur, enn pävämäärä ekä enävä opnojako koodeneen - opkeljanumero, mukaan luken arkukrjan

Lisätiedot

Elektroniikan perusteet, Radioamatööritutkintokoulutus

Elektroniikan perusteet, Radioamatööritutkintokoulutus Elektroniikan perusteet, Radioamatööritutkintokoulutus Antti Karjalainen, PRK 30.10.2014 Komponenttien esittelytaktiikka Toiminta, (Teoria), Käyttö jännite, virta, teho, taajuus, impedanssi ja näiden yksiköt:

Lisätiedot

Kuva 22: Fraktaalinen kukkakaali. pituus on siis 4 AB. On selvää, että käyrän pituus kasvaa n:n kasvaessa,

Kuva 22: Fraktaalinen kukkakaali. pituus on siis 4 AB. On selvää, että käyrän pituus kasvaa n:n kasvaessa, Tortai 6..999 = Geometria o hyvä tapa kuvata ykikertaiia kappaleita, mutta kappaleie tullea äärettömä moimutkaiiki, käy iie kuvaamie klaie geometria avulla mahottomaki. Eimerkiki rataviiva pituue määrittämie

Lisätiedot

Ympäristöministeriön asetus puurakenteista. Annettu Helsingissä 6 päivänä lokakuuta 2000

Ympäristöministeriön asetus puurakenteista. Annettu Helsingissä 6 päivänä lokakuuta 2000 B0 SUOMEN RAKENTAMISMÄÄRÄYSKOKOELMA YMPÄRISTÖMINISTERIÖ, Aunto- ja rakennuoato Puurakenteet OHJEET 00 Ympäritöminiteriön aetu puurakenteita Annettu Helingiä 6 päivänä lokakuuta 000 Ympäritöminiteriön päätöken

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Täydennä kuhunkin kohtaan yhtälöstä puuttuva suure tai vakio alla olevasta taulukosta. Anna vastauksena kuhunkin kohtaan ainoastaan

Lisätiedot

SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO

SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO LiikeJla vaiku5aa siihen, miten kentät syntyvät ja miten hiukkaset kokevat kenben väli5ämät vuorovaikutukset ja miltä kentät näy5ävät. Vara5u hiukkanen kokee sähkömagneebsen

Lisätiedot

FYSA220/1 (FYS222/1) HALLIN ILMIÖ

FYSA220/1 (FYS222/1) HALLIN ILMIÖ FYSA220/1 (FYS222/1) HALLIN ILMIÖ Työssä perehdytään johteissa ja tässä tapauksessa erityisesti puolijohteissa esiintyvään Hallin ilmiöön, sekä määritetään sitä karakterisoivat Hallin vakio, varaustiheys

Lisätiedot

METSÄNTUTKIMUSLAITOS. tutkimusosasto. Metsäteknologian WÄRTSILA. Kenttäkoe. Tutkimusselostus

METSÄNTUTKIMUSLAITOS. tutkimusosasto. Metsäteknologian WÄRTSILA. Kenttäkoe. Tutkimusselostus METSÄNTUTKIMUSLAITOS Metäteknologian Uniinkatu WÄRTSILA 40 A tutkimuoato Helinki TELESKOOPPIKUORMAIN AUTOKUORMAUKSESSA Kenttäkoe Tutkimuelotu Juhani Helinki Lukkari 97 7 Ainto Tutkimuken kenttäkoe Ruokolahdella.

Lisätiedot