LUKION FYSIIKKAKILPAILU avoimen sarjan vast AVOIN SARJA

Koko: px
Aloita esitys sivulta:

Download "LUKION FYSIIKKAKILPAILU 8.11.2005 avoimen sarjan vast AVOIN SARJA"

Transkriptio

1 LKION FYSIIKKAKILPAIL 8..5 avoien arjan vat AVOIN SARJA Kirjoita tektaten koepaperiin oa niei, kotiooitteei, ähköpotiooitteei, opettajai nii ekä koului nii. Kilpailuaikaa on inuuttia. Sekä tehtävä- että koepaperit palautetaan kilpailun loputtua.. Määritä pyörillä kulkevaan laitteeeen (leikkiauto, vaunu t.) vaikuttavan liikevatuvoian uuruu. Selvitä tarkati, itä ittaat ja iten olet päätynyt lopputulokeen. välineitä: tutkittava laite, ittanauha, kello, vaaka Ratkaiu: Punnitaan vaunu, jolloin aadaan aa. Syätään vaunu liikkeelle vaakauoralla pöydällä tai lattialla ja itataan aika t jonka vaunu on liikkeeä ekä atka jonka vaunu liikkuu ajan ittauken aluta pyähtyihetkeen. Oletetaan liike taaieti hidatuvaki. Tällöin nopeu v ajan ittauken alkaea on vkt t v. Vaunun liike-energia uuttuu t v b t g liikevatuten tekeäki työki: F E v F. µ k µ t Sijoitetaan tähän itautuloket ja laketaan arvio liikevatuvoiille (tai laketaan v ja ijoitetaan e liikevatuvoiien lakeieki). piteyty: periaate p taaien liikkeen oletu (jo kalteva tao, taaieti kiihtyvän liikkeen oletu) p loppunopeu kekinopeudeta (atkata ja ajata) p liike-energia työki ja liikevatuvoian ratkaieinen (jo kalteva tao, potentiaalienergia liike-energiaki ja työki) p ittautuloket ja järkevä arvo liikevatuvoiille p anioka virhelähdetarkatelu p (kuitenkin tehtävätä ax 6p...)

2 LKION FYSIIKKAKILPAIL 8..5 avoien arjan vat. Kanuuna on kiinnitetty herkäti liikkuvaan alutaan ja aluta on kiinnitetty einäään jouella, jonka jouivakio on,. Kanuunalla autaan kuula, 4 N jonka aa on kg ja lähtönopeu putken uulla 5. Jo kanuunan ja alutan yhteenlakettu aa ennen laukauta on 55 kg, niin kuinka pitkän atkan vaealle päin aluta kanuunoineen liikkuu laukauken jälkeen? Ratkaiu: Määritetään enin nopeu, jolla yteei eli aluta kanuunoineen (aa M 55kg-kg, koka kuula on poitunut putketa) liikkuu välittöäti laukauken jälkeen. Liikeäärä äilyy p p ; v coα M v, jota alutan kanuunoineen eli ennen jälkeen lähtövauhdiki v yteei kuula kuula yteei kg 5 co 45 kuula vkuula coα 3, 68 vaealle. M (55 )kg Alutan ja kanuunan (ilan kuulaa) liike-energia on uuttunut ääriaennoa kokonaan jouen potentiaalienergiaki Eyteei M vyteei Ejoui k, jota E M vyteei (55 )kg (3, 68 ) yteei, 9. k k N 4, piteyty: liikeäärän äilyinen ja nopeu (ei välttäättä nueerita arvoa) 3p energian äilyinen ja kanuunan iirtyä atka (jouen venyä) 3p jo aaa ei ole huoattu huoioda kuulan poituita p

3 LKION FYSIIKKAKILPAIL 8..5 avoien arjan vat 3. Kun koeputken avoieen päähän puhalletaan ivuuunnata, yntyy koeputkeen eiova aalto äänen heijatuea koeputken pohjata. Äänen korkeu uuttuu, kun koeputkeen liätään vettä. Eräää ittaukea tutkittiin koeputkeen yntyvän äänen perutaajuutta. Äänen taajuu itattiin tietokoneeeen liitetyllä ikrofonilla ja koeputken ilapataan korkeu itattiin viivottiella, jolloin aatiin oheiet tuloket. ilapataan korkeu (),6,8,,,5 taajuu (Hz) Koeputkeen yntyvän äänen kupukohta on hiean koeputken reunan ulkopuolella. Määritä opivaa graafita eitytä käyttäen tään kupukohdan etäiyy putken uuta ekä äänen nopeu ilaa. Pohdi, iki itattu äänen nopeu poikkeaa taulukkokirjan antaata arvota. Ratkaiu: Äänen voiituinen johtuu iitä, että putkea oleva ilapata alkaa värähdellä oalla oinaitaajuudellaan. Äänen heijatuea vedetä uodotuu eiovan aallon olu veden pintaan ja kupu putken uun ulkopuolelle. Eniäinen akii kuullaan, kun veden pinta on putken uulta etäiyydellä l d λ, joa l on putken ilapataan pituu, d kupukohdan 4 etäiyy putken uulta ja λ äänen aallonpituu. Tällöin aallonpituudeki aadaan λ 4( l d ). Äänen nopeudeki aadaan aalto-opin peruyhtälön peruteella v fλ f 4( l d). Putken v pituu taajuuden funktiona on ii l d. 4 f ilapataan korkeu (),6,8,,,5 taajuu (Hz) /taajuu ( -3 /Hz),79,,3,48,8 Piirretään ittautulokita kuvaaja, l -koordinaatitoon. Kuvaajan ja pituuakelin leikkaukohta ilaiee etäiyyden, johon kupukohta putken ulkopuolelle yntyy, joka on 97, f. Kuvaajan kulakertoieki kk aadaan 88,5 /, jota laketaan äänen nopeu: kk v 4 kk 4 88, 5 354, v 4 eli Äänen nopeuteen vaikuttaa. kaaun läpötila ( v T, iä T on aboluuttinen läpötila) ja kootuu ( v, iä M on ooliaa). Tehtävän tilanteea läpötila M lienee erkittäväpi elittäjä. lohengitetty ila on huoneilaa läpöiepää; huoneenläpötilaa t o äänen nopeu on v 343 /. Tulokita aadaan 3

4 LKION FYSIIKKAKILPAIL 8..5 avoien arjan vat v T 354 v T ( ) T ( ) ( 73 ) K 3 K 39 o. Liäki hiean vaikuttanee e, että ulohengityilan kootuu poikkeaa huoneilata: veihöyryä ja v T v 343 hiilidiokidia on eneän ja happea väheän. piteyty: tilanteen pohdinta, yhtälön johtainen ja kuvaajan piirtäinen 3p kupukohdan etäiyy putken päätä p äänen nopeu p pohdinta äänen nopeuden poikkeaalle; läpötilan erkity riittää p (läpötilan lakeita ei vaadita) 4

5 LKION FYSIIKKAKILPAIL 8..5 avoien arjan vat 5 4. Kondenaattoria, jonka kapaitani on, ladataan paritolla, kunne en napojen välinen jännite on. Toinen lataaaton kondenaattori ( ) kytketään eniäieen kondenaattoriin kuvan ukaieti. Määritä kytkennää tapahtuvan energiahäviön uuruu. Miki energia pienenee? Ratkaiu: Ladatulla kondenaattorilla on aluki varau Q ja energia. Kun lataaaton kondenaattori kytketään toieen kondenaattoriin, virta pienenee akiiarvota nollaan, ja kondenaattoreilla on yhtä uuri jännite. Tällöin alua ollut varau on Q Q Q ja energia lopua on ) (. Energiahäviö on tällöin ) ( ) (. Kondenaattoreiden kytkeien jälkeen johtiia kulkee virta jonkin aikaa. Oa alkuperäietä energiata kuluu johtiien läpeneieen. piteyty: jännite kondenaattorien kytkeien jälkeen p energia kondenaattorien kytkeien jälkeen p energiahäviö p elity energiahäviölle p

6 LKION FYSIIKKAKILPAIL 8..5 avoien arjan vat 5. Taikuun. päivänä 83 englantilainen fyyikko Michael Faraday teki euraavan kokeen Lontooa aterloo-illalla: Ratkaiu Hän upotti Thae-jokeen en ylittävän illan kupaankin päähän kuparilevyt ja yhditi ne eritetyillä johtiilla herkkään jänniteittariin. Levyt olivat 3 etrin päää toiitaan. Faraday havaiti levyjen välillä jännitteen, jonka napaiuu vaihtui äännölliin väliajoin. a) Miki Faraday havaiti jännitteen kuparilevyjen välillä? b) Miki jännitteen napaiuu vaihteli ja ikä luonnoniliö tuli näin näkyviin? c) Eräällä kerralla Faraday ittai jännitteen uuruudeki 9 V. Maan agneettikentän agneettivuon tihey on Lontooa 43 µt ja inklinaatio eli agneettikentän ja vaakataon välinen kula on 7 o. Kuinka uuri oli veden virtaunopeu? a) Vei iältää varaukelliia hiukkaia, ioneja, joihin kohdituu Maan agneettikentää liikkuea voia ( F B qv B ; uunnan voi päätellä oikean käden äännöllä: voia on kohtiuoraa nopeuden ja agneettivuon tiheyden äärääää taoa vataan). Magneettikentän uunta on pohjoiella pallonpuolikolla alaviitoon; pytykoponentti ii alapäin. Niinpä poitiiviet ionit kulkeutuvat veden virtauuuntaan nähden vaealle ja negatiiviet ionit oikealle, jolloin joenrantojen välille yntyy ähköien tilan ero eli jännite. (havainnollitava kuva olii hyvä ) b) Koka Maan agneettikentän uunnan vaihtuinen ei voi näin lyhyellä aikavälillä tulla näkyviin, jännitteen kääntyien täytyy aiheutua veden virtauuunnan kääntyietä. Vuorovei-iliö aiheuttaa veden virtauken jonkin atkaa iäaahan päin, jo ulut eivät ole käytöä. c) Veden ukana liikkuvan ionin varau on q ja nopeu v. Tällöin iihen kohdituu Maan agneettikentää voia F B qvbv, iä B v on agneettikentän pytykoponentti (kohtiuoraa liikeuuntaan nähden!). Ionien iirtyien euraukena rantojen välille yntyy ähkökenttä, jonka voiakkuu on E. Sähkökentän ioniin kohditaa voia d taa on F E q, joka on uunnaltaan päinvatainen kuin agneettikentän vaikutuketa d ioniin kohdituva voia. Ioneja iirtyy, kunne uodotuu taapaino: F B FE, jota,9v aadaan veden virtaunopeudeki v,6 /. (Myö 6 o Bvd 43 T in 7 3 taulukkokirjata löytyvän yhtälön elvbinα peruteltu käyttö hyväkytään. Yhtälöhän on johdetavia edellä eitetytä.) piteyty: a) p b) p c) 3p 6

Fy07 Koe Kuopion Lyseon lukio (KK) 1 / 5

Fy07 Koe Kuopion Lyseon lukio (KK) 1 / 5 y07 Koe 8.9.05 Kuopion yeon lukio (KK) / 5 Vataa kolmeen tehtävään. Vatuken reitani on 60, käämin induktani on 0,60 H ja reitani 8 ja kondenaattorin kapaitani on 80. Komponentit ovat arjaan kytkettyinä

Lisätiedot

RATKAISUT: 3. Voimakuvio ja liikeyhtälö

RATKAISUT: 3. Voimakuvio ja liikeyhtälö Phyica 9. paino (8) 3. Voiakuvio ja liikeyhtälö : 3. Voiakuvio ja liikeyhtälö 3. a) Newtonin I laki on nieltään jatkavuuden laki. Kappale jatkaa liikettään uoraviivaieti uuttuattoalla nopeudella tai pyyy

Lisätiedot

Viikkotehtävät IV, ratkaisut

Viikkotehtävät IV, ratkaisut Viikkotehtävät IV, ratkaiut. 7,40 V (pariton napajännite) I 7 ma (lampun A ähkövirta rinnankytkennää) I 5 ma (lampun B ähkövirta rinnankytkennää) a) eitani on, joten lamppujen reitanit voidaan lakea tehtävää

Lisätiedot

Jakso 4: Dynamiikan perusteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautus- tai näyttöpäivä on maanantaina

Jakso 4: Dynamiikan perusteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautus- tai näyttöpäivä on maanantaina Jako 4: Dynamiikan peruteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautu- tai näyttöpäivä on maanantaina 8.8.2016. Kolmea enimmäieä lakua ovelletaan Newtonin 2. ja 3. lakia. T 4.1 (pakollinen):

Lisätiedot

POSITIIVISEN LINSSIN POLTTOVÄLI

POSITIIVISEN LINSSIN POLTTOVÄLI S-108110 OPTIIKKA 1/6 POSITIIVISEN LINSSIN POLTTOVÄLI Laboratoriotyö S-108110 OPTIIKKA /6 SISÄLLYSLUETTELO 1 Poitiivien linin polttoväli 3 11 Teoria 3 1 Mittauken uoritu 5 LIITE 1 6 Mittaupöytäkirja 6

Lisätiedot

Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö.

Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö. Yleistä sähkömagnetismista IÄLTÖ: ähkömagnetismi käsitekarttana ähkömagnetismin kaavakokoelma ähkö- ja magneettikentistä Maxwellin yhtälöistä ÄHKÖMAGNETIMI KÄITEKARTTANA: Kapasitanssi Kondensaattori Varaus

Lisätiedot

Metallikuulan vieriminen kaltevalla tasolla

Metallikuulan vieriminen kaltevalla tasolla 1 Metallikuulan vieriinen kaltevalla taolla Mikko Vetola Koulun nii Fyiikka luonnontieteenä FY1-Projektityö 4.6.2002 Arvoana: K+ (10) 2 1. Työn tarkoitu Tehtävänä oli tutkia illaiia liikeiliöitä eiintyy

Lisätiedot

BH60A0900 Ympäristömittaukset

BH60A0900 Ympäristömittaukset BH60A0900 Yäitöittauket Lakuhajoitu Kuiva ja kotea kaau, tilavuuvita ehtävä Savukaau läötila o 00 ja aie 99 kpa. ekittäviät kaaukooetit ovat 0 %, H 0 %, 0 % ja lout tyeä. ikä o a) kotea ja kuiva kaau tilavuukie

Lisätiedot

X 2 = k 21X 1 + U 2 s + k 02 + k 12. (s + k 02 + k 12 )U 1 + k 12 U 2. s 2 + (k 01 + k 21 + k 02 + k 12 ) s + k

X 2 = k 21X 1 + U 2 s + k 02 + k 12. (s + k 02 + k 12 )U 1 + k 12 U 2. s 2 + (k 01 + k 21 + k 02 + k 12 ) s + k Aalto-yliopiton Perutieteiden korkeakoulu Matematiikan ja yteemianalyyin laito Mat-49 Syteemien Identifiointi 0 harjoituken ratkaiut äytetään enin iirtofunktiomalli Tehdään Laplace-muunno: ẋ k 0 k x +

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA SMG-: SÄHKÖTEKNIIKKA Passiiviset piirikomponentit vastus kondensaattori käämi Tarkoitus on yrittää ymmärtää passiivisten piirikomponenttien toiminnan taustalle olevat luonnonilmiöt. isäksi johdetaan näiden

Lisätiedot

Kertausosa. 2. Kuvaan merkityt kulmat ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia, kulmat ovat yhtä suuria.

Kertausosa. 2. Kuvaan merkityt kulmat ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia, kulmat ovat yhtä suuria. 5. Veitoken tilavuu on V,00 m 1,00 m,00 m 6,00 m. Pienoimallin tilavuu on 1 V malli 6,00 m 0,06m. 100 Mittakaava k aadaan tälötä. 0,06 1 k 6,00 100 1 k 0,1544... 100 Mitat ovat. 1,00m 0,408...m 100 0,41

Lisätiedot

Vallox TEKNINENOHJE. Vallox SILENT. Tyyppi 3510 Mallit: VALLOX 75 VALLOX 75 VKL VALLOX 95 VALLOX 95 VKL VALLOX 95 SILENT VALLOX 95 SILENT VKL

Vallox TEKNINENOHJE. Vallox SILENT. Tyyppi 3510 Mallit: VALLOX 75 VALLOX 75 VKL VALLOX 95 VALLOX 95 VKL VALLOX 95 SILENT VALLOX 95 SILENT VKL 75 95.9.59F 9.. yyppi 5 VAOX yyppi 5 Mallit: VAOX 75 VAOX 75 VK VAOX 95 VAOX 95 VK Huoneitokohtaieen ilanvaihtoon pien-, rivi- ja kerrotaloihin ulo-/poitoilanvaihto läöntalteenotolla Hyvä uodatu Siäänrakennettu

Lisätiedot

2. Pystyasennossa olevaa jousta kuormitettiin erimassaisilla kappaleilla (kuva), jolloin saatiin taulukon mukaiset tulokset.

2. Pystyasennossa olevaa jousta kuormitettiin erimassaisilla kappaleilla (kuva), jolloin saatiin taulukon mukaiset tulokset. Fysiikka syksy 2005 1. Nykyinen käsitys Aurinkokunnan rakenteesta syntyi 1600-luvulla pääasiassa tähtitieteellisten havaintojen perusteella. Aineen pienimpien osasten rakennetta sitä vastoin ei pystytä

Lisätiedot

SMG-1100: PIIRIANALYYSI I

SMG-1100: PIIRIANALYYSI I SMG-00: PIIIANAYYSI I Passiiviset piirikomponentit vastus kondensaattori käämi Kirja: luku. (vastus), luku 6. (käämi), luku 6. (kondensaattori) uentomoniste: luvut 3., 3. ja 3.3 VASTUS ja ESISTANSSI (Ohm,

Lisätiedot

MP069 alueen sähköteknisten reunaehtojen laskeminen.

MP069 alueen sähköteknisten reunaehtojen laskeminen. M069 alueen ähkötekniten reunaehtojen lakeinen. Kekiteho tälle alueelle aatiin kun otettiin Tornion irkkiötä ataaa oakotitalo alue ja niiden talojen kulututen peruteella äärättiin kullekin tontille kulutupite

Lisätiedot

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! 1. Vastaa, ovatko seuraavat väittämät oikein vai väärin. Perustelua ei tarvitse kirjoittaa. a) Atomi ei voi lähettää

Lisätiedot

Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat:

Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat: Mat-.090 Sovellettu todeäköiyylaku A 0. harjoituket Mat-.09 Sovellettu todeäköiyylaku 0. harjoituket / Ratkaiut Aiheet: Avaiaat: Tilatolliet tetit Aritmeettie kekiarvo, Beroulli-jakauma, F-jakauma, F-teti,

Lisätiedot

Viivakuormituksen potentiaalienergia saadaan summaamalla viivan pituuden yli

Viivakuormituksen potentiaalienergia saadaan summaamalla viivan pituuden yli hum.9. oiman potentiaalienergia Potentiaalienergiata puhutaan, kun kappaleeeen vaikuttaa jokin konervatiivinen voima. oima on konervatiivinen, jo en tekemä tö vaikutupieen iirteä tiettä paikata toieen

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2011

MAOL-Pisteitysohjeet Fysiikka kevät 2011 MAOL-Pisteitysohjeet Fysiikka kevät 0 Tyypillisten virheiden aiheuttaia pisteenetyksiä (6 pisteen skaalassa): - pieni laskuvirhe -/3 p - laskuvirhe, epäielekäs tulos, vähintään - - vastauksessa yksi erkitsevä

Lisätiedot

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina 31.5.2012. T 6.1 (pakollinen): Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä.

Lisätiedot

1 Määrittele lyhyesti seuraavat käsitteet. a) Kvantisointivirhe. b) Näytetaajuuden interpolointi. c) Adaptiivinen suodatus.

1 Määrittele lyhyesti seuraavat käsitteet. a) Kvantisointivirhe. b) Näytetaajuuden interpolointi. c) Adaptiivinen suodatus. TL536DSK-algoritmit (J. Laitinen) 6.4.5 Määrittele lyyeti euraavat käitteet a) Kvantiointivire. b) äytetaajuuden interpolointi. ) Adaptiivinen uodatu. a) Kvantiointivire yntyy, kun ignaalin ykittäinen

Lisätiedot

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET Kurssin esittely Sähkömagneettiset ilmiöt varaus sähkökenttä magneettikenttä sähkömagneettinen induktio virta potentiaali ja jännite sähkömagneettinen energia teho Määritellään

Lisätiedot

Kuva lämmönsiirtoprosessista Käytössä ristivirtalämmönvaihdin (molemmat puolet sekoittumattomat)

Kuva lämmönsiirtoprosessista Käytössä ristivirtalämmönvaihdin (molemmat puolet sekoittumattomat) Kemian laitetekniikka Kotilaku 3..008 Jarmo Vetola Kuva lämmöniirtoproeita Käytöä ritivirtalämmönvaihdin (molemmat puolet ekoittumattomat) kuuma maitovirta, eli ravaton maito patöroinnita virtau vaippapuolella

Lisätiedot

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET DEE-0: SÄHKÖTEKNIIKAN PEUSTEET Passiiviset piirikomponentit vastus kondensaattori käämi Tarkoitus on yrittää ymmärtää passiivisten piirikomponenttien toiminnan taustalle olevat luonnonilmiöt. isäksi johdetaan

Lisätiedot

FY6 - Soveltavat tehtävät

FY6 - Soveltavat tehtävät FY6 - Soveltavat tehtävät 21. Origossa on 6,0 mikrocoulombin pistevaraus. Koordinaatiston pisteessä (4,0) on 3,0 mikrocoulombin ja pisteessä (0,2) 5,0 mikrocoulombin pistevaraus. Varaukset ovat tyhjiössä.

Lisätiedot

Elektroniikan perusteet, Radioamatööritutkintokoulutus

Elektroniikan perusteet, Radioamatööritutkintokoulutus Elektroniikan perusteet, Radioamatööritutkintokoulutus Antti Karjalainen, PRK 30.10.2014 Komponenttien esittelytaktiikka Toiminta, (Teoria), Käyttö jännite, virta, teho, taajuus, impedanssi ja näiden yksiköt:

Lisätiedot

SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO

SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO LiikeJla vaiku5aa siihen, miten kentät syntyvät ja miten hiukkaset kokevat kenben väli5ämät vuorovaikutukset ja miltä kentät näy5ävät. Vara5u hiukkanen kokee sähkömagneebsen

Lisätiedot

S Fysiikka III (Est) Tentti

S Fysiikka III (Est) Tentti S-114137 Fyiikka III (Et) Tentti 9008 1 Vetyatomin elektronin kulmaliikemäärää kuvaa kvanttiluku l =3 Lake miä kaikia kulmia kulmaliikemäärävektori voi olla uhteea kulmaliikemäärän z-komponenttiin ( )

Lisätiedot

Magneettinen energia

Magneettinen energia Luku 11 Magneettinen energia 11.1 Kelojen varastoima energia Sähköstatiikan yhteydessä havaittiin, että kondensaattori kykenee varastoimaan sähköstaattista energiaa. astaavalla tavalla kela, jossa kulkee

Lisätiedot

RATKAISUT: 5. Liikemäärä ja impulssi

RATKAISUT: 5. Liikemäärä ja impulssi Phyica 9 1. paino 1(9) 5. Liikeäärä ja ipuli : 5. Liikeäärä ja ipuli 5.1 a) Kappaleen liikeäärä on p, joa on kappaleen aa ja kappaleen nopeu. b) Ipuliperiaate: Syteein liikeäärän uuto Δ p aikaälillä Δt

Lisätiedot

Tilastotieteen jatkokurssi 8. laskuharjoitusten ratkaisuehdotukset (viikot 13 ja 14)

Tilastotieteen jatkokurssi 8. laskuharjoitusten ratkaisuehdotukset (viikot 13 ja 14) Tilatotietee jatkokuri 8. lakuharjoitute ratkaiuehdotuket (viikot 13 ja 14) 1) Perujoukko o aluee A aukkaat ja tutkittavaa omiaiuutea ovat tulot, Tiedämme, että perujouko tulot oudattaa ormaalijakaumaa,

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 28. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta 2016 1 / 22 Hieman kertausta

Lisätiedot

S-55.1220/142 Piirianalyysi 2 1. Välikoe 10.3.2006

S-55.1220/142 Piirianalyysi 2 1. Välikoe 10.3.2006 S-55.0/4 Piirianalyyi. Välioe 0.3.006 ae tehtävät 3 eri paperille in tehtävät 4 5. Mita irjoittaa joaieen paperiin elväti nimi, opielijanmero, rin nimi ja oodi. Tehtävät laetaan oaton oepaperille. Mita

Lisätiedot

Vuoden Beauceron -säännöt (voimassa alkaen) Yleisiä periaatteita

Vuoden Beauceron -säännöt (voimassa alkaen) Yleisiä periaatteita Vuoden Beauceron -äännöt (vomaa 1.1.2017 alkaen) Yleä peraatteta Klpalukau on kalentervuo. Mukaan hyväkytään van KoraNetta löytyvät tuloket pl. erkeen pteytetyt arvoklpalut. Yhden uortuken pteet muodotuvat

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

S Piirianalyysi 2 1. Välikoe

S Piirianalyysi 2 1. Välikoe S-55.0 Piirianalyyi. Välioe 9.3.007 ae tehtävät eri paperille uin tehtävät 3 5. Muita irjoittaa joaieen paperiin elväti nimi, opielijanumero, urin nimi ja oodi. Tehtävät laetaan oaton oepaperille. Muita

Lisätiedot

Rak-54.116 Rakenteiden mekaniikka C, RM C (4 ov) Tentti 30.8.2007

Rak-54.116 Rakenteiden mekaniikka C, RM C (4 ov) Tentti 30.8.2007 Rak-54.116 Rakeneden mekankka, RM (4 ov) Ten.8.7 Krjoa jokaeen koepapern elvä - koko nme, puhuelunm allevvauna - oao, vuokur, enn pävämäärä ekä enävä opnojako koodeneen - opkeljanumero, mukaan luken arkukrjan

Lisätiedot

Tarvittavat välineet: Kalorimetri, lämpömittari, jännitelähde, kaksi yleismittaria, sekuntikello

Tarvittavat välineet: Kalorimetri, lämpömittari, jännitelähde, kaksi yleismittaria, sekuntikello 1 LÄMPÖOPPI 1. Johdanto Työssä on neljä eri osiota, joiden avulla tutustutaan lämpöopin lakeihin ja ilmiöihin. Työn suoritettuaan opiskelijan on tarkoitus ymmärtää lämpöopin keskeiset käsitteet, kuten

Lisätiedot

TAMK, VALINTAKOE (12) 6 (6 p.) 7 (6 p.) - Kokeessa saa olla mukana laskin ja normaalit kirjoitusvälineet.

TAMK, VALINTAKOE (12) 6 (6 p.) 7 (6 p.) - Kokeessa saa olla mukana laskin ja normaalit kirjoitusvälineet. TAMK, VALINTAKOE 24.5.2016 1(12) Sähkö- ja automaatiotekniikan koulutus Insinööri (AMK) Monimuotototeutus NIMI Henkilötunnus Tehtävien pisteet: 1 (10 p.) 2 3 4 5 6 7 8 9 10 11 Yht. (max. 70 p.) OHJEITA

Lisätiedot

Mat-2.090 Sovellettu todennäköisyyslasku A

Mat-2.090 Sovellettu todennäköisyyslasku A Mat-.090 Sovellettu todeäköiyylaku A Mat-.090 Sovellettu todeäköiyylaku A / Ratkaiut Aiheet: Avaiaat: Tilatollite aieito keräämie ja mittaamie Tilatollite aieitoje kuvaamie Oto ja otojakaumat Aritmeettie

Lisätiedot

Maxwell ja hänen yhtälönsä mitä seurasi?

Maxwell ja hänen yhtälönsä mitä seurasi? Maxwell ja hänen yhtälönsä mitä seurasi? Oleteaan tyhjiö: ei virtoja ei varauksia Muutos magneettikentässä saisi aikaan sähkökentän. Muutos vuorostaan sähkökentässä saisi aikaan magneettikentän....ja niinhän

Lisätiedot

Aktiiviset piirikomponentit. DEE Piirianalyysi Risto Mikkonen

Aktiiviset piirikomponentit. DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Aktiiviset piirikomponentit 1 Aktiiviset piirikomponentit Sähköenergian lähteitä Jännitelähteet; jännite ei merkittävästi riipu lähteen antamasta virrasta (akut, paristot, valokennot)

Lisätiedot

Valosähköinen ilmiö. Kirkas valkoinen valo. Himmeä valkoinen valo. Kirkas uv-valo. Himmeä uv-valo

Valosähköinen ilmiö. Kirkas valkoinen valo. Himmeä valkoinen valo. Kirkas uv-valo. Himmeä uv-valo Valosähköinen ilmiö Vuonna 1887 saksalainen fyysikko Heinrich Hertz havaitsi sähkövarauksen purkautuvan metallikappaleen pinnalta, kun siihen kohdistui valoa. Tarkemmissa tutkimuksissa todettiin, että

Lisätiedot

2.1 Ääni aaltoliikkeenä

2.1 Ääni aaltoliikkeenä 2. Ääni Äänen tutkimusta kutsutaan akustiikaksi. Akustiikassa tutkitaan äänen tuottamista, äänen ominaisuuksia, soittimia, musiikkia, puhetta, äänen etenemistä ja kuulemisen fysiologiaa. Ääni kuljettaa

Lisätiedot

KERTAUSTEHTÄVIÄ. LUKU v k = 12 m/s, x = 3,0 km, t =? x. LUKU v = 90 km/h = (90/3,6) m/s = 25 m/s, t = 1 s, s =? Kuljettu matka on m s

KERTAUSTEHTÄVIÄ. LUKU v k = 12 m/s, x = 3,0 km, t =? x. LUKU v = 90 km/h = (90/3,6) m/s = 25 m/s, t = 1 s, s =? Kuljettu matka on m s Phyica 4 Opettajan OPAS (8) LUKU 46 v k = /, x = 3,0 k, t =? x x Kekinopeuden uuruu on vk = Ratkaitaan aika t = t v 3,0 k t = = 50 = 50 in = 4,667 in 4, in 60 k 47 v k = 50 k/h, x =,5 k, v k = 80 k/h,

Lisätiedot

Virrankuljettajat liikkuvat magneettikentässä ja sähkökentässä suoraan, kun F = F eli qv B = qe. Nyt levyn reunojen välinen jännite

Virrankuljettajat liikkuvat magneettikentässä ja sähkökentässä suoraan, kun F = F eli qv B = qe. Nyt levyn reunojen välinen jännite TYÖ 4. Magneettikenttämittauksia Johdanto: Hallin ilmiö Ilmiön havaitseminen Yhdysvaltalainen Edwin H. Hall (1855-1938) tutki mm. aineiden sähköjohtavuutta ja löysi menetelmän, jolla hän pystyi mittaamaan

Lisätiedot

2.5 Liikeyhtälö F 3 F 1 F 2

2.5 Liikeyhtälö F 3 F 1 F 2 Tässä kappaleessa esittelen erilaisia tapoja, joilla voiat vaikuttavat kappaleen liikkeeseen. Varsinainen kappaleen pääteea on assan liikeyhtälön laatiinen, kun assaan vaikuttavat voiat tunnetaan. Sitä

Lisätiedot

2 Staattinen sähkökenttä Sähkövaraus ja Coulombin laki... 9

2 Staattinen sähkökenttä Sähkövaraus ja Coulombin laki... 9 Sisältö 1 Johdanto 3 1.1 Mikä tämä kurssi on....................... 3 1.2 Hieman taustaa.......................... 4 1.3 Elektrodynamiikan perusrakenne................ 5 1.4 Pari sanaa laskennasta......................

Lisätiedot

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 5

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 5 5384A RADIOTEKNIIKAN PERUSTEET Haroitu 5. Häviötön 5 Ω:n aaltoohto on päätetty tuntemattomaan impedaniin. Aaltoohdolla olevaki ännitteen eiovan aallon uhteeki aadaan 3 a enimmäinen minimi havaitaan 5 cm:n

Lisätiedot

HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA

HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA 1 ALLIN ILMIÖ MOTIVOINTI allin ilmiötyössä tarkastellaan johteen varauksenkuljettajiin liittyviä suureita Työssä nähdään kuinka all-kiteeseen generoituu all-jännite allin ilmiön tutkimiseen soveltuvalla

Lisätiedot

METSÄNTUTKIMUSLAITOS. tutkimusosasto. Metsäteknologian WÄRTSILA. Kenttäkoe. Tutkimusselostus

METSÄNTUTKIMUSLAITOS. tutkimusosasto. Metsäteknologian WÄRTSILA. Kenttäkoe. Tutkimusselostus METSÄNTUTKIMUSLAITOS Metäteknologian Uniinkatu WÄRTSILA 40 A tutkimuoato Helinki TELESKOOPPIKUORMAIN AUTOKUORMAUKSESSA Kenttäkoe Tutkimuelotu Juhani Helinki Lukkari 97 7 Ainto Tutkimuken kenttäkoe Ruokolahdella.

Lisätiedot

Y56 Laskuharjoitukset 3 palautus ma klo 16 mennessä

Y56 Laskuharjoitukset 3 palautus ma klo 16 mennessä 1 Y6 Lakuharjoituket 3 alautu ma 3.. klo 16 menneä Harjoitu 1. Lue enin Vihmo, Jouni (006) Alkoholijuomien hintajoutot uomea vuoina 199 00, Yhteikuntaolitiikka 71, 006/1 ivut 9 ja vataa itten kyymykiin.

Lisätiedot

PHYS-A3131 Sähkömagnetismi (ENG1) (5 op)

PHYS-A3131 Sähkömagnetismi (ENG1) (5 op) PHYS-A3131 Sähkömagnetismi (ENG1) (5 op) Sisältö: Sähköiset vuorovaikutukset Magneettiset vuorovaikutukset Sähkö- ja magneettikenttä Sähkömagneettinen induktio Ajasta riippuvat tasa- ja vaihtovirtapiirit

Lisätiedot

a P en.pdf KOKEET;

a P  en.pdf KOKEET; Tässä on vanhoja Sähkömagnetismin kesäkurssin tenttejä ratkaisuineen. Tentaattorina on ollut Hanna Pulkkinen. Huomaa, että tämän kurssin sisältö on hiukan eri kuin Soveltavassa sähkömagnetiikassa, joten

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 10 Noste Nesteeseen upotettuun kappaleeseen vaikuttaa nesteen pintaa kohti suuntautuva nettovoima, noste F B Kappaleen alapinnan kohdalla nestemolekyylien

Lisätiedot

SMG-1100: PIIRIANALYYSI I

SMG-1100: PIIRIANALYYSI I SMG-1100: PIIRIANALYYSI I Keskinäisinduktanssi induktiivisesti kytkeytyneet komponentit muuntajan toimintaperiaate T-sijaiskytkentä kytketyn piirin energia KESKINÄISINDUKTANSSI M Faraday: magneettikentän

Lisätiedot

Miltä työn tekeminen tuntuu

Miltä työn tekeminen tuntuu Työ ja teho Miltä työn tekeminen tuntuu Millaisia töitä on? Mistä tiedät tekeväsi työtä? Miltä työ tuntuu? Mitä työn tekeminen vaatii? Ihmiseltä Koneelta Työ, W Yksikkö 1 J (joule) = 1 Nm Työnmäärä riippuu

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 26. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 26. syyskuuta 2016 1 / 14 Hieman kertausta

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2007

MAOL-Pisteitysohjeet Fysiikka kevät 2007 MAOL-Pisteityshjeet Fysiikka kevät 007 Tyypillisten virheiden aiheuttaia pisteenetyksiä (6 pisteen skaalassa): - pieni laskuvirhe -/3 p - laskuvirhe, epäielekäs tuls, vähintään - - vastauksessa yksi erkitsevä

Lisätiedot

Luottamusmiehen / -valtuutetun valinta, asema ja oikeudet

Luottamusmiehen / -valtuutetun valinta, asema ja oikeudet YLEMMÄT TOIMIHENKILÖT YTN RY OHJE YRY+K -ryhmä / Mko 19.8.2009 1 (13) Luottamumiehen / -valtuutetun valinta, aema ja oikeudet Siällyluettelo: Yleitä... 2 Oikeu luottamumiehen valintaan... 2 Luottamumiehen

Lisätiedot

Tehtävä 1. Vaihtoehtotehtävät.

Tehtävä 1. Vaihtoehtotehtävät. Kem-9.7 Proeiautomaation peruteet Perutehtävät Tentti 9.. Tehtävä. Vaihtoehtotehtävät. Oikea vatau,p, väärä vatau -,p ja ei vatauta p Makimi,p ja minimi p TÄMÄ PAPERI TÄYTYY EHDOTTOMASTI PALAUTTAA TENTIN

Lisätiedot

S if b then S else S S s. (b) Muodosta (a)-kohdan kieliopin kanssa ekvivalentti, so. saman kielen tuottava yksiselitteinen.

S if b then S else S S s. (b) Muodosta (a)-kohdan kieliopin kanssa ekvivalentti, so. saman kielen tuottava yksiselitteinen. T-79.148 yky 2003 Tietojenkäittelyteorian peruteet Harjoitu 7 Demontraatiotehtävien ratkaiut 4. Tehtävä: Ooita, että yhteydettömien kielten luokka on uljettu yhdite-, katenaatioja ulkeumaoperaatioiden

Lisätiedot

Luento 2. SMG-2100 Sähkötekniikka Risto Mikkonen

Luento 2. SMG-2100 Sähkötekniikka Risto Mikkonen SMG-2100 Sähkötekniikka Luento 2 1 Sähköenergia ja -teho Hetkellinen teho p( t) u( t) i( t) Teho = työ aikayksikköä kohti; [p] = J/s =VC/s = VA = W (watti) Energian kulutus aikavälillä [0 T] W T 0 p( t)

Lisätiedot

Osallistumislomakkeen viimeinen palautuspäivä on maanantai

Osallistumislomakkeen viimeinen palautuspäivä on maanantai Jakso : Materiaalihiukkasten aaltoluonne. Teoriaa näihin tehtäviin löytyy Beiserin kirjasta kappaleesta 3 ja hyvin myös peruskurssitasoisista kirjoista. Seuraavat videot demonstroivat vaihe- ja ryhmänopeutta:

Lisätiedot

T Luonnollisen kielen tilastollinen käsittely Vastaukset 8, ti , 8:30-10:00 Tilastolliset yhteydettömät kieliopit, Versio 1.

T Luonnollisen kielen tilastollinen käsittely Vastaukset 8, ti , 8:30-10:00 Tilastolliset yhteydettömät kieliopit, Versio 1. T-61.281 Luonnollisen kielen tilastollinen käsittely astaukset 8, ti 16.3.2004, 8:30-10:00 Tilastolliset yhteydettömät kielioit, ersio 1.0 1. Jäsennysuun todennäköisyys lasketaan aloittelemalla se säännöstön

Lisätiedot

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola 9 E matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava Yhteenlaskumenetelmän harjoittelua Joskus

Lisätiedot

järjestelmät Jatkuva-aikaiset järjestelmät muunnostason ratkaisu Lineaariset järjestelmät Risto Mikkonen

järjestelmät Jatkuva-aikaiset järjestelmät muunnostason ratkaisu Lineaariset järjestelmät Risto Mikkonen DEE- Lineiet jäjetelmät Jtkuv-ikiet jäjetelmät muunnoton tkiu Lineiet jäjetelmät Rito Mikkonen Lplce-muunno Aikton DY Aikton tkiu Lplcemuunno Käänteimuunno Rtkiu -to 2 Lineiet jäjetelmät Rito Mikkonen

Lisätiedot

Parametrisen EQ:n siirtofunktio. Analysoitava kytkentä. restart. Perinteinen parametrinen EQ voidaan toteuttaa vaikkapa seuraavasti:

Parametrisen EQ:n siirtofunktio. Analysoitava kytkentä. restart. Perinteinen parametrinen EQ voidaan toteuttaa vaikkapa seuraavasti: retart Parametrien E:n iirtofunktio Analyoitava kytkentä Perinteinen parametrinen E voidaan toteuttaa vaikkapa euraavati: R3 ja R4 korvataan yleenä potikalla, iten että pite G tulee potikan liukuun. Taajuuominaiuudet

Lisätiedot

DIGITAALISET PULSSIMODULAATIOT M JA PCM A Tietoliikennetekniikka I Osa 21 Kari Kärkkäinen Kevät 2015

DIGITAALISET PULSSIMODULAATIOT M JA PCM A Tietoliikennetekniikka I Osa 21 Kari Kärkkäinen Kevät 2015 1 DIGITAALISET PULSSIMODULAATIOT M JA PCM 521357A Tietoliikennetekniikka I Oa 21 Kari Kärkkäinen DELTAMODULAATIO M 2 M koodaa näytteen ± polariteetin omaavaki binääripuliki. Idea perutuu ignaalin m(t muutoken

Lisätiedot

53 ELEKTRONIN SUHTEELLISUUSTEOREETTINEN LIIKE- MÄÄRÄ

53 ELEKTRONIN SUHTEELLISUUSTEOREETTINEN LIIKE- MÄÄRÄ 53 LKTRONIN SUHTLLISUUSTORTTINN LIIK- MÄÄRÄ 53. Lorentz-uunnos instein esitti. 95 erikoisen suhteellisuusteorian eruseriaatteen, jonka ukaan kaikkien luonnonlakien tulee olla saoja haainnoitsijoille, jotka

Lisätiedot

LUT, Sähkötekniikan osasto. 1. Ilmassa etenevällä tasoaallolla on sähkökentän voimakkuus z. d) vaihekerroin

LUT, Sähkötekniikan osasto. 1. Ilmassa etenevällä tasoaallolla on sähkökentän voimakkuus z. d) vaihekerroin SÄHKÖMAGNETISMI LUT, Sähkötekniikan osasto LH5/216 P.I. Ketausta: 1. Ilassa etenevällä tasoaallolla on sähkökentän voiakkuus z t E cos t z Ex,. Aallon taajuus on 2 MHz. Kuvassa 1 on esitetty tasoaallon

Lisätiedot

Caring kuormanvarmistuslaskurissa käytetyt yhtälöt

Caring kuormanvarmistuslaskurissa käytetyt yhtälöt Carin kuoranvaritulakuria kätett htälöt Yliteidonta Silukkaidonta Valjaidonta Suora/ritikkäiidonta Verio 013 08 3 Pae 1 of 13 Sivu Siäll 1 YTÄÖIDEN MUUTTUJIA... 3 YITSESIDONTA KITKASIDONTA... 4.1 EN 1195-1:010...

Lisätiedot

YDINSPEKTROMETRIA TENTTI mallivastaukset ja arvostelu max 30 p, pisterajat 15p 1, 18p 2, 21p 3, 24p 4, 27p - 5

YDINSPEKTROMETRIA TENTTI mallivastaukset ja arvostelu max 30 p, pisterajat 15p 1, 18p 2, 21p 3, 24p 4, 27p - 5 5573-5 YDISPEKTROMETRIA TETTI 9.5.05 mallivatauket ja arvotelu max 30 p, piterajat 5p, 8p, p 3, 4p 4, 7p - 5. Mittautehokkuu ja iihen vaikuttavat aiat/ilmiöt gammapektrometriaa (yht. 6 p) Vatau: ilmaiimea

Lisätiedot

Esimerkkilaskelma. Jäykistävä CLT-seinä

Esimerkkilaskelma. Jäykistävä CLT-seinä Eimerilaelma Jäyitävä CLT-einä 30.5.014 Siällyluettelo 1 LÄHTÖTIEDOT... - 3 - LEVYJÄYKISTEEN TIEDOT... - 3-3 ATERIAALI... - 4-4 PANEELILEIKKAUSKESTÄVYYS... - 4-5 LAELLIN LEIKKAUSKESTÄVYYS... - 5-6 LAELLIEN

Lisätiedot

EMC Säteilevä häiriö

EMC Säteilevä häiriö EMC Säteilevä häiriö Kaksi päätyyppiä: Eromuotoinen johdinsilmukka (yleensä piirilevyllä) silmulla toimii antennina => säteilevä magneettikenttä Yhteismuotoinen ei-toivottuja jännitehäviöitä kytkennässä

Lisätiedot

KOE 2 Ympäristöekonomia

KOE 2 Ympäristöekonomia Helingin yliopio Valinakoe.5. Maaalou-meäieeellinen iedekuna KOE Ympäriöekonomia Sekä A- eä B-oioa ulee aada vähinään 5 pieä. Mikäli A-oion piemäärä on vähemmän kuin 5 pieä B-oio jäeään arvoelemaa. B-OSIO

Lisätiedot

Luentomoniste: Mekaniikka Pasi Repo & Pekka Varis (päivitetty 2.1.06)

Luentomoniste: Mekaniikka Pasi Repo & Pekka Varis (päivitetty 2.1.06) Fyiia evät 006 JAMK/IT -Intituutti Luentoonite: Meaniia Pai Repo & Pea Vai (päivitetty..06) 0. Johdanto... 0.. Fyiian ääitelä... 0.. Mittau ja yiöt.... -ulotteita ineatiiaa... 3.. Keivauhti... 3.. Keinopeu...

Lisätiedot

EMC MITTAUKSET. Ari Honkala SGS Fimko Oy

EMC MITTAUKSET. Ari Honkala SGS Fimko Oy EMC MITTAUKSET Ari Honkala SGS Fimko Oy 5.3.2009 SGS Fimko Oy SGS Fimko kuuluu maailman johtavaan testaus-, sertifiointi-, verifiointi- ja tarkastusyritys SGS:ään, jossa työskentelee maailmanlaajuisesti

Lisätiedot

Mikrofonien toimintaperiaatteet. Tampereen musiikkiakatemia Studioäänittäminen Klas Granqvist

Mikrofonien toimintaperiaatteet. Tampereen musiikkiakatemia Studioäänittäminen Klas Granqvist Mikrofonien toimintaperiaatteet Tampereen musiikkiakatemia Studioäänittäminen Klas Granqvist Mikrofonien luokittelu Sähköinen toimintaperiaate Akustinen toimintaperiaate Suuntakuvio Herkkyys Taajuusvaste

Lisätiedot

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina Jakso 1. iot-savartin laki, Ampèren laki, vektoripotentiaali Tässä jaksossa lasketaan erimuotoisten virtajohtimien aiheuttamien magneettikenttien suuruutta kahdella eri menetelmällä, iot-savartin lain

Lisätiedot

Lämpöoppia. Haarto & Karhunen. www.turkuamk.fi

Lämpöoppia. Haarto & Karhunen. www.turkuamk.fi Läpöoppia Haarto & Karhunen Läpötila Läpötila suuren atoi- tai olekyylijoukon oinaisuus Liittyy kiinteillä aineilla aineen atoeiden läpöliikkeeseen (värähtelyyn) ja nesteillä ja kaasuilla liikkeisiin Atoien

Lisätiedot

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon 30 SÄHKÖVAKIO 30 Sähkövakio ja Coulombin laki Coulombin lain mukaan kahden tyhjiössä olevan pistevarauksen q ja q 2 välinen voima F on suoraan verrannollinen varauksiin ja kääntäen verrannollinen varausten

Lisätiedot

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä Työ 3A VAIHTOVIRTAPIIRI Pari Jonas Alam Antti Tenhiälä Selostuksen laati: Jonas Alam Mittaukset tehty: 0.3.000 Selostus jätetty: 7.3.000 . Johdanto Tasavirtapiirissä sähkövirta ja jännite käyttäytyvät

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Mikro- ja nanotekniikan laitos Syksy 2016 1 / 21 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan

Lisätiedot

d) Jos edellä oleva pari vie 10 V:n signaalia 12 bitin siirtojärjestelmässä, niin aiheutuuko edellä olevissa tapauksissa virheitä?

d) Jos edellä oleva pari vie 10 V:n signaalia 12 bitin siirtojärjestelmässä, niin aiheutuuko edellä olevissa tapauksissa virheitä? -08.300 Elektroniikan häiriökysymykset Kevät 006 askari 3. Kierrettyyn pariin kytkeytyvä häiriöjännite uojaamaton yksivaihejohdin, virta I, kulkee yhdensuuntaisesti etäisyydellä r instrumentointikaapelin

Lisätiedot

&()'#*#+)##'% +'##$,),#%'

&()'#*#+)##'% +'##$,),#%' "$ %"&'$ &()'*+)'% +'$,),%' )-.*0&1.& " $$ % &$' ((" ")"$ (( "$" *(+)) &$'$ & -.010212 +""$" 3 $,$ +"4$ + +( ")"" (( ()""$05"$$"" ")"" ) 0 5$ ( ($ ")" $67($"""*67+$++67""* ") """ 0 5"$ + $* ($0 + " " +""

Lisätiedot

TTY FYS-1010 Fysiikan työt I AA 1.2 Sähkömittauksia Ilari Leinonen, TuTa, 1. vsk Markus Parviainen, TuTa, 1. vsk.

TTY FYS-1010 Fysiikan työt I AA 1.2 Sähkömittauksia Ilari Leinonen, TuTa, 1. vsk Markus Parviainen, TuTa, 1. vsk. TTY FYS-1010 Fysiikan työt I 14.3.2016 AA 1.2 Sähkömittauksia 253342 Ilari Leinonen, TuTa, 1. vsk. 246198 Markus Parviainen, TuTa, 1. vsk. Sisältö 1 Johdanto 1 2 Työn taustalla oleva teoria 1 2.1 Oikeajännite-

Lisätiedot

TEHTÄVIEN RATKAISUT. Tehtäväsarja A. 2. a) a + b = = 1 b) (a + b) = ( 1) = 1 c) a + ( b) = 13 + ( 12) = = 1.

TEHTÄVIEN RATKAISUT. Tehtäväsarja A. 2. a) a + b = = 1 b) (a + b) = ( 1) = 1 c) a + ( b) = 13 + ( 12) = = 1. TEHTÄVIEN RATKAISUT Tehtäväsarja A.. a) a b b) (a b) ( ) c) a ( b) ( ) ). a) 4 4 5 6 6 6 6 6 b) Pienin arvo: ) 4 4 4 6 6 6 6 6 6 6 Suurin arvo: ) 4) 4 8 7 7 4 6 6 6 6 4. @ tekijät ja Sanoma Pro Oy 06 5.

Lisätiedot

a) Oletetaan, että happi on ideaalikaasu. Säiliön seinämiin osuvien hiukkasten lukumäärä saadaan molekyylivuon lausekkeesta = kaava (1p) dta n =

a) Oletetaan, että happi on ideaalikaasu. Säiliön seinämiin osuvien hiukkasten lukumäärä saadaan molekyylivuon lausekkeesta = kaava (1p) dta n = S-, ysiikka III (S) välikoe 7000 Laske nopeuden itseisarvon keskiarvo v ja nopeuden neliöllinen keskiarvo v rs seuraaville 6 olekyylien nopeusjakauille: a) kaikkien vauhti 0 / s, b) kolen vauhti / s ja

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

Fysiikka 8. Aine ja säteily

Fysiikka 8. Aine ja säteily Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian

Lisätiedot

3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta.

3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta. 3 Ääni ja kuulo 1 Mekaanisista aalloista ääni on ihmisen kannalta tärkein. Ääni on pitkittäistä aaltoliikettä, eli ilman (tai muun väliaineen) hiukkaset värähtelevät suuntaan joka on sama kuin aallon etenemissuunta.

Lisätiedot

Mat Koesuunnittelu ja tilastolliset mallit

Mat Koesuunnittelu ja tilastolliset mallit Mat-.03 Koeuuittelu ja tilatolliet mallit Mat-.03 Koeuuittelu ja tilatolliet mallit / Ratkaiut Aiheet: Avaiaat: Tilatolliet tetit Tetit uhdeateikolliille muuttujille Tetit laatueroateikolliille muuttujille

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta

Lisätiedot

Aurinko-C20 asennus ja käyttöohje

Aurinko-C20 asennus ja käyttöohje Aurinko-C20 laitetelineen asennus ja käyttö Laitetelineen osat ja laitteet:. Kääntyvillä pyörillä varustettu laiteteline. Laitteet on kiinnitetty ja johdotettu telineeseen (toimitetaan akut irrallaan).

Lisätiedot

F Y S I I K K A KERTAUSTEHTÄVIÄ 1-20

F Y S I I K K A KERTAUSTEHTÄVIÄ 1-20 F Y S I I K K A KERTAUSTEHTÄVIÄ - 0 Oalla eieyiä kyyykiä vaauke ova huoaavai pidepiä kuin iä eierkiki kokeea vaaukela vaadiaan. Kokeea on oaava vain olennainen aia per ehävä. . Muua SI järjeelän ykiköihin

Lisätiedot

Valuma-aluetason kuormituksen hallintataulukon vaatimusmäärittely

Valuma-aluetason kuormituksen hallintataulukon vaatimusmäärittely Valuma-aluetaon kuormituken hallintataulukon vaatimumäärittely Verio 4.11.2011 1. Tavoitteet Veienhoidon äädöten toteutu edellyttää veitöihin kohdituvan kuormituken vähentämitä n, että veden laatu paranee

Lisätiedot