VÄRÄHTELYMEKANIIKKA SESSIO 14: Yhden vapausasteen vaimeneva pakkovärähtely, harmoninen kuormitusheräte

Koko: px
Aloita esitys sivulta:

Download "VÄRÄHTELYMEKANIIKKA SESSIO 14: Yhden vapausasteen vaimeneva pakkovärähtely, harmoninen kuormitusheräte"

Transkriptio

1 4/ VÄRÄHTELYMEKANIIKKA SESSIO 4: Yhden vaausaseen vaieneva akkvärähely, harninen kuriusheräe LIIKEYHTÄLÖN JOHTO JA RATKAISU Kuvassa n esiey visksisi vaienneun yhden vaausaseen harnisen akkvärähelijän erusalli. Siihen kuuluu jusi k, assa, vaiennin c sekä assaan vaikuava harninen akkvia F() = sin. Kuvasa (c) saadaan liikeyhälö k ( + ) g + c & F() = & () (a) g jusen leiuus k c k (b) k( (c) + ) c& saainen asaain F() g & & & g F() Yhälösä () seuraa edelleen & + c & + k = sin () Oaalla huin inaiskulaaajuuden ω ja vaiennussuheen ζ äärielä saadaan yhälö () kirjieua sandardiun F & 0 + ζ ω& + ω = sin (3) Yhälön (3) yleinen rakaisu n ua Kuva. Visksisi vaienneu värähelijä. = h +, issä h n hgeenisen yhälön & + ζ ω& + ω = 0 yleinen rakaisu ja äydellisen yhälön (3) jkin yksiyisrakaisu. Osa h n sessin VMS09 kaavan (7) ukaan alikriiisen vaiennuksen aauksessa h = Ce ζ ω sin( ω d + ψ ) (4) Osa h n inaisvärähelyä, jka häviää vaiennuksen ansisa neasi. Yksiyisrakaisu n akkvärähelyä ja se vidaan löyää yriefunkiilla

2 4/ = B sin + B cs ai = Xsin( φ ) (5) issä B ja B sekä X ja φ va vakiia. Yrieisä jälkiäinen n hiean käeväi, jen käyeään siä. Vaki X ja φ saadaan selville sijiaalla yrie liikeyhälöön (3). Neudelle ja kiihyvyydelle ulee derivialla lausekkee & = Xcs( φ ) & = Xsin( φ ) (6) jen sijius liikeyhälöön (3) anaa aluksi ( ω ) Xsin( φ ) + ζ ω Xcs( φ ) = sin (7) Käyäällä kaavassa (7) sinin ja csinin vähennyslaskukaavja saadaan edelleen ( ω ) X( sin csφ cs sinφ ) + + ζ ω X(cs cs φ + sin sinφ ) = sin (8) cs ker- Merkiseällä edellä levan yhälön eri ulilla esiinyvien erien ie uliain saiksi saadaan yhälöari sin ja ( ω ) Xcsφ + ζ ω Xsinφ = ( ω ) Xsinφ ζ ω Xcsφ = 0 (9) jisa saadaan rakaisua yksiyisrakaisussa leva vakiille X ja φ lausekkee ζ / k X = φ = arcan ω (0) + ζ ω ω ω Vaki X ja φ va akkvärähelyn = Xsin( φ) aliudi ja vaihekula. Liikeyhälön (3) yleinen rakaisu n alikriiisen vaiennuksen aauksessa näin llen () = C e ζ ω sin ( ω d + ψ ) + X sin( φ ) ()

3 4/3 jhn vaki X ja φ saadaan kaavasa (). Vaki C ja ψ ääräyyvä värähelijän alkuehdisa, ua eivä le sessin VMS09 kaavan (8) ukaise, sillä yksiyisrakaisu vaikuaa yös niiden arvihin. Rakaisuksi ulee ässä aauksessa C = & + ζω + ω ζ ω ζ ψ = arcan & + ζ ω () jssa = + Xsinφ ja & = & 0 Xcsφ. 0 VAHVISTUSKERROIN JA SIIRTYVYYS Kun erkiään d = / k ja r = / ω, va vahvisuskerrin M ja vaihekula φ X ζ r M = = φ = arcan (3) d ( r ) + ( ζ r) r Kuvassa n kaavan (3) vahvisuskerien M ja vaihekulan φ kuvaajia aajuussuheen r funkina uuailla vaiennussuheen ζ arvilla. Vahvisuskerien M käyräsösä nähdään, eä kaikki käyrä va nllavaiennusa vasaavan käyrän alaulella. Vaiennus ienenää akkvärähelyn aliudia ja eriyisesi resnanssin läheisyydessä ää ieneneinen n viakasa. Nähdään yös, eä käyrien aksii eivä le khdassa = ω. Ne eivä le yöskään khdassa = ωd = ω ζ, vaan hiean ään vasealla ulella khdassa = ωr = ω ζ, kuen kaavasa (3) vidaan dea esiällä vahvisuskerien M derivaaan nllakha. Arva ω r sanaan resnanssikulaaajuudeksi. Vaienevalla värähelyllä va siis inaiskulaaajuus ω, vaienneu inaiskulaaajuus ω d ja resnanssikulaaajuus ω r Kuva. Vahvisuskerrin.

4 4/4 erisuuria. Js vaiennussuhde ζ n ieni, va ne kuienkin hyvin lähellä isiaan ja rajaaauksessa ζ = 0 ne va saa. Maksiialiudiksi khdassa = ωr ulee X a / k = (4) ζ ζ ikä n lähes saa kuin inaiskulaaajuua ω vasaava aliudi X ω / k = ζ (5) Kuva 3. Vaihekula. Tisinaan yös inaiskulaaajuua ω sanaan resnanssiaajuudeksi, kska er va käyännössä hyvin ieniä. Vaihekulan φ käyräsösä nähdään, eä vaieneaassa aauksessa ζ = 0 vaihekula φ = 0 resnanssin alaulella ja φ = 80 resnanssin yläulella, jllin siis viaheräe ja siiryävase va vasaavasi saassa ai vasakkaisessa vaiheessa. Kun = ω, n φ = 90 riiuaa vaiennussuheen ζ arvsa. Tarkasellaan seuraavaksi viaa, jka kuvan allissa siiryy alusaan akkvian vaikuuksesa. Tään vian lauseke n kuvan (c) ja kaavjen (5) ja (6) eruseella F () = k + c & = k Xsin( φ) + c Xcs( φ) (6) a Vidaan helsi siaa, eä vian F a () suurin arv n F ( k X) + ( c X) = k X + ( ζ ω) = (7) A / jssa aliudi X saadaan kaavasa (0). Siiryvyydeksi T = FA / ulee lauseke T 0 ( ζ r) ( r ) + ( ζ r) FA + = = (8) F

5 4/5 Kuva 4. Vaienevan akkvärähelyn siiryvyys. Siiryvyys T n esiey kuvassa 4 aajuussuheen r funkina uuaalla vaiennussuheen ζ arvilla. Kaavasa 8 nähdään, eä T > alueella r < kaikilla vaiennussuheen ζ arvilla, jllin jusen käyö suurenaa siiryvää viaa. Alueessa r > n T <, ja jusen käyö ienenää siiryvää viaa. Huaaan yös, eä alueessa r > vaiennuksen lisääinen suurenaa siiryvää viaa, sillä käyrä enevä khdassa r = risiin. ESIMERKKI VMS4E A L d G θ M 0 sin I 0 c θ Kuvan väänövärähelysyseeissä yörän hiauseni n I0 = 0kg ja yöriisliikeä vasusavan vaienien vaiennusvaki c θ = 300N s. Akseli n eräsä ja sen iuus n L = ja halkaisija d 0 = 40. Teräksen liukuduuli n G = 80GPa. Pyörään vaikuaa harnisesi vaiheleva kuriuseni M 0 sin, jnka aliudi M 0 = kn. Pyörän akkvärähelyn kula-aliudin havaiaan ällöin levan. Määriä kuriusenin kula- aajuus ja suurin ukeen A siiryvä eni. Rakaisu: Akselin väänöneliöeniksi saadaan Iv = π d0 / 3 5,33 0 ja väänöjusivakiksi k = GIv /L 0,06kN. Oinaiskulaaajuudeksi ulee näin llen θ c θ ω = k θ /I0 44,840rad/ s. Vaiennussuheeksi saadaan ζ = 0, 335. I ω Pakkvian aliudia vasaava saainen kulanuus n d = M0 / k θ 0,04974rad ja vahvisuskerrin M = Θ / d 0, Kaavasa (3) seuraa yhälö ( r ) + ( ζ r) = M r, 433 = r ω 64,6rad/ s Siiryvyydeksi ulee kaavasa (8) T 0, 973 ja siiryvän enin aksiiarv n M T M M A 97,34N A = 0

6 4/6 HARJOITUS VMS4H Kuvan ukaisen syseein araeri va = 0kg, c = 0Ns / ja k = 4kN/. Pakkvian aliudi n F 0 = 00N ja kulaaajuus = 0rad/ s. Syseein alkuehd va 0 = 0,04 ja & 0 = 0,5 / s. Esiä kaavan () ukainen liikeyhälön yleinen rakaisu ja iirrä sen kuvaaja. Tarkisa ulkse liieenä levalla Mahcad-dkuenilla, jka iirää lisäksi syseein neuden ja kiihyvyyden kuvaaja. Vas. C 0,0578 ψ 33, X 0,0333 φ 3,8 Vihjee: HARJOITUS VMS4H Sähköri n asenneu erisinkaaleen äälle kuvan ukaisesi. Mrin assa n = 68kg ja erisinkaaleen assa M = 00kg. Syseein inaisaajuus n f =,67Hz ja vaiennussuhde n ζ = 0, 0. Rrin eäasaainsa synyy akkvia F () = (00N)sin(3,4 / s). Määriä syseein akkvärähelyn aliudi ja alusaan siiryvä via. Vas. X 0, F 4, N Vihjee: HARJOITUS VMS4H3 Jusi-assa-vaiennin syseeiin khdisuu akkviaheräe F() = sin. Syseein aliudiksi resnanssissa ω = ωr iaaan 5,8. Heräeen aajuuden llessa 80 % resnanssiaajuudesa ω r aliudiksi iaaan 4,6. Määriä syseein vaiennussuhde ζ. Vas. ζ 0, 7 Vihjee: Liieieds: Dkueni laskee ja iirää kaavan () siiryän () kuvaajan. Lisäksi iirreään kuvaaja neudesa v() ja kiihyvyydesä a().

4 YHDEN VAPAUSASTEEN HARMONINEN PAKKOVÄ- RÄHTELY

4 YHDEN VAPAUSASTEEN HARMONINEN PAKKOVÄ- RÄHTELY Väähelyekaiikka 4. 4 YHDEN VAPAUSASTEEN HARMONINEN PAKKOVÄ- RÄHTELY 4. Johdao Mekaaise syseei ulkoisisa kuoiuksisa aiheuuvaa väähelyä saoaa akkoväähelyksi. Jos syseeissä o vaieusa, o kyseessä vaieeva akkoväähely,

Lisätiedot

Maahanmuuttajan työpolkuhanke Väliraportti 31.8.2003-31.12.2004

Maahanmuuttajan työpolkuhanke Väliraportti 31.8.2003-31.12.2004 Maahanmuuajan yöplkuhanke Välirapri 31.8.2003-31.12.2004 Prjekin aviee hankepääöksessä Määrällise aviee Prjekin avieena n edesauaa maahanmuuajien yöllisymisä. Tämä apahuu maahanmuuajien ammaillisen valmiuksien

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia 8/ VÄRÄHTELYMEKANIIKKA SESSIO 8: Yhen vapausaseen paovärähely, ransieniuormiusia JOHDANTO c m x () Kuva. Syseemi. Transieniuormiusella aroieaan uormiusheräeä, joa aiheuaa syseemiin lyhyaiaisen liieilan.

Lisätiedot

SytytysjarjestelmaDIIAPCLH2.4, LH2.4 ETS

SytytysjarjestelmaDIIAPCLH2.4, LH2.4 ETS 6 SyyysjarjesemaD/APCLH 24 LH 24 ETS SyyysjarjesemaDAPCLH24 LH24 ETS 75 cy 100 122A YE 2 +30 230 1063 RO 0 1019 101A RO 25 RO 40 101C RD 25 J73 123 123A CNWH 1S CN/WH 1 13122A J 342A 22 20 YE 10 1 1CY

Lisätiedot

3 Lämpölaajaneminen ja tilanyhtälöt

3 Lämpölaajaneminen ja tilanyhtälöt Läölaajaneinen ja tilanyhtälöt Läölaajeneinen POHDI J ETSI - a) Kaksisetalliläöittarissa n liitetty yhteen kaksi eri ateriaalista valistettua etalliliuskaa, jtka läölaajenevat eri tavalla Kska tinen laajenee

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 17: Yhden vapausasteen pakkovärähtely, impulssikuormitus ja Duhamelin integraali

VÄRÄHTELYMEKANIIKKA SESSIO 17: Yhden vapausasteen pakkovärähtely, impulssikuormitus ja Duhamelin integraali 7/ VÄRÄHTELYMEKANIIKKA SESSIO 7: Yhn vapausasn paovärähly, impulssiuormius ja Duhamlin ingraali IMPULSSIKUORMITUS Maanisn sysmiin ohisuva jasoon hrä on usin ajasa riippuva lyhyaiainn uormius. Ysinraisin

Lisätiedot

12. ARKISIA SOVELLUKSIA

12. ARKISIA SOVELLUKSIA MAA. Arkiia ovellukia. ARKISIA SOVELLUKSIA Oleeaan, eä kappale liikkuu ykiuloeia raaa, eimerkiki -akelia pikin. Kappaleen nopeuden vekoriluonne riiää oaa vauhdin eumerkin avulla huomioon, ja on ehkä arkoiukenmukaiina

Lisätiedot

LVM/LMA/jp 2013-03-27. Valtioneuvoston asetus. ajoneuvojen käytöstä tiellä annetun asetuksen muuttamisesta. Annettu Helsingissä päivänä kuuta 20

LVM/LMA/jp 2013-03-27. Valtioneuvoston asetus. ajoneuvojen käytöstä tiellä annetun asetuksen muuttamisesta. Annettu Helsingissä päivänä kuuta 20 LVM/LMA/jp 2013-03-27 Valioneuvoson aseus ajoneuvojen käyösä iellä anneun aseuksen uuaisesa Anneu Helsingissä päivänä kuua 20 Valioneuvoson pääöksen ukaisesi uueaan ajoneuvojen käyösä iellä anneun aseuksen

Lisätiedot

LVM/LMA/jp 2012-12-17. Valtioneuvoston asetus. ajoneuvojen käytöstä tiellä annetun asetuksen muuttamisesta. Annettu Helsingissä päivänä kuuta 20

LVM/LMA/jp 2012-12-17. Valtioneuvoston asetus. ajoneuvojen käytöstä tiellä annetun asetuksen muuttamisesta. Annettu Helsingissä päivänä kuuta 20 LVM/LMA/jp 2012-12-17 Valioneuvoson aseus ajoneuvojen käyösä iellä anneun aseuksen uuaisesa Anneu Helsingissä päivänä kuua 20 Valioneuvoson pääöksen ukaisesi, joka on ehy liikenne- ja viesinäiniseriön

Lisätiedot

Tietoliikennesignaalit

Tietoliikennesignaalit ieoliikennesignaali 1 ieoliikenne inormaaion siiroa sähköisiä signaaleja käyäen. Signaali vaiheleva jännie ms., jonka vaiheluun on sisällyey inormaaioa. Signaalin ominaisuuksia voi ukia a aikaasossa ime

Lisätiedot

VIRTAPIIRILASKUT II Tarkastellaan sinimuotoista vaihtojännitettä ja vaihtovirtaa;

VIRTAPIIRILASKUT II Tarkastellaan sinimuotoista vaihtojännitettä ja vaihtovirtaa; VITAPIIIASKUT II Tarkastellaan sinimutista vaihtjännitettä ja vaihtvirtaa; u sin π ft ja i sin π ft sekä vaihtvirtapiiriä, jssa n sarjaan kytkettyinä vastus, käämi ja kndensaattri (-piiri) ulkisen vastuksen

Lisätiedot

2. Suoraviivainen liike

2. Suoraviivainen liike . Suoraviivainen liike . Siirymä, keskinopeus ja keskivauhi Aika: unnus, yksikkö: sekuni s Suoraviivaisessa liikkeessä kappaleen asema (paikka) ilmoieaan suoralla olevan piseen paikkakoordinaain (unnus

Lisätiedot

Luento 4. Fourier-muunnos

Luento 4. Fourier-muunnos Lueno 4 Erikoissignaalien Fourier-muunnokse Näyeenoo 4..6 Fourier-muunnos Fourier-muunnos Kääneismuunnos Diricle n edo Fourier muunuvalle energiasignaalille I: Signaali on iseisesi inegroiuva v ( d< II:

Lisätiedot

2. Taloudessa käytettyjä yksinkertaisia ennustemalleja. ja tarkasteltavaa muuttujan arvoa hetkellä t kirjaimella y t

2. Taloudessa käytettyjä yksinkertaisia ennustemalleja. ja tarkasteltavaa muuttujan arvoa hetkellä t kirjaimella y t Tilasollinen ennusaminen Seppo Pynnönen Tilasoieeen professori, Meneelmäieeiden laios, Vaasan yliopiso. Tausaa Tulevaisuuden ennusaminen on ehkä yksi luoneenomaisimpia piireiä ihmiselle. On ilmeisesi aina

Lisätiedot

Mittaus- ja säätölaitteet IRIS, IRIS-S ja IRIS-M

Mittaus- ja säätölaitteet IRIS, IRIS-S ja IRIS-M Miaus- ja sääölaiee IRIS, IRIS-S ja IRIS-M KANSIO 4 VÄLI ESITE Lapinleimu Miaus- ja sääölaiee IRIS, IRIS-S ja IRIS-M IRIS, IRIS-S Rakenne IRIS muodosuu runko-osasa, sääösäleisä, sääömuerisa ai sääökahvasa

Lisätiedot

DNA OY:N LAUSUNTO KUSTANNUSSUUNTAUTUNEEN HINNAN MÄÄRITTELYYN SOVELLETTAVASTA MENETELMÄSTÄ SUOMEN TELEVISIOLÄHETYSPALVELUIDEN MARKKINALLA

DNA OY:N LAUSUNTO KUSTANNUSSUUNTAUTUNEEN HINNAN MÄÄRITTELYYN SOVELLETTAVASTA MENETELMÄSTÄ SUOMEN TELEVISIOLÄHETYSPALVELUIDEN MARKKINALLA 1 (6) Vivi 1110/230/2013 DNA OY:N LAUSUNTO KUSTANNUSSUUNTAUTUNEEN HINNAN MÄÄRITTELYYN SOVELLETTAVASTA MENETELMÄSTÄ SUOMEN TELEVISIOLÄHETYSPALVELUIDEN MARKKINALLA [Liikesalaisuudet merkitty hakasulkein]

Lisätiedot

1. Matemaattinen heiluri, harmoninen värähtelijä Fysiikka IIZF2020

1. Matemaattinen heiluri, harmoninen värähtelijä Fysiikka IIZF2020 1. Maeaainen heiluri, haroninen värähelijä Fysiikka IIZF Juha Jokinen (Selosuksesa vasaava) Janne Kiviäki Ani Lahi Miauspäivä:..9 Laboraorioyön selosus 9..9 Pendulu is a ass hanging fro a pivo poin which

Lisätiedot

REKISTERINPITÄJÄN MUUTOKSET: Toimintamalli muutostilanteessa

REKISTERINPITÄJÄN MUUTOKSET: Toimintamalli muutostilanteessa Rekisterinpitäjän muutkset 1(7) REKISTERINPITÄJÄN MUUTOKSET: Timintamalli muutstilanteessa Ptilasasiakirjan rekisterinpitäjä: alkutilanne Tiet ptilaan hidssa syntyvien asiakirjjen rekisterinpitäjästä tallennetaan

Lisätiedot

OSINKOJEN JA PÄÄOMAVOITTOJEN VEROTUKSEN VAIKUTUKSET OSAKKEEN ARVOON

OSINKOJEN JA PÄÄOMAVOITTOJEN VEROTUKSEN VAIKUTUKSET OSAKKEEN ARVOON AMPN YLIOPISO Kauppaieeien laios OSINKOJN JA PÄÄOMAVOIOJN VOUKSN VAIKUUKS OSAKKN AVOON Laskenaoimi Seminaariukielma Helmikuu 2004 Ohjaaja: Ismo Vuorinen apani Höök 3 SISÄLLYS JOHDANO... 4. ukielman ausaa...4.2

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2007

MAOL-Pisteitysohjeet Fysiikka kevät 2007 MAOL-Pisteityshjeet Fysiikka kevät 007 Tyypillisten virheiden aiheuttaia pisteenetyksiä (6 pisteen skaalassa): - pieni laskuvirhe -/3 p - laskuvirhe, epäielekäs tuls, vähintään - - vastauksessa yksi erkitsevä

Lisätiedot

KTJkii-aineistoluovutuksen tietosisältö

KTJkii-aineistoluovutuksen tietosisältö KTJkii-aineistluvutuksen tietsisältö 2008-02-12 Versi 1.05 2009-02-10 Versi 1.06 2010-02-16 Versi 1.07 2011-02-14 Versi 1.08 2012-02-13 Versi 1.09 2013-02-25 Versi 1.10 2014-02-10 Versi 1.11 Yleistä Ominaisuustietjen

Lisätiedot

Fy06 Koe 20.5.2014 Kuopion Lyseon lukio (KK) 1/6

Fy06 Koe 20.5.2014 Kuopion Lyseon lukio (KK) 1/6 Fy06 Ke 0.5.04 Kupin Lysen luki (KK) /6 6p/tehtävä.. Kaksi varattua palla rikkuu lankjen varassa lähellä tisiaan. Pallt vetävät tisiaan puleensa 0,66 N vimalla. Pienemmän palln varaus n kaksinkertainen

Lisätiedot

pienempää, joten vektoreiden välinen kulma voidaan aina rajoittaa välille o. Erikoisesti on

pienempää, joten vektoreiden välinen kulma voidaan aina rajoittaa välille o. Erikoisesti on 5 Pistetul ja sen svellutuksia Kun kahdella vektrilla, a ja b n hteinen alkupiste, niiden määräämät pulisurat jakavat tasn kahteen saan, kahteen kulmaan, jtka vat tistensa eksplementtikulmia, siis kulmia,

Lisätiedot

Rakennusosien rakennusfysikaalinen toiminta Ralf Lindberg Professori, Tampereen teknillinen yliopisto ralf.lindberg@tut.fi

Rakennusosien rakennusfysikaalinen toiminta Ralf Lindberg Professori, Tampereen teknillinen yliopisto ralf.lindberg@tut.fi Rakennusosien rakennusfysikaalinen oimina Ralf Lindber Professori, Tampereen eknillinen yliopiso ralf.lindber@u.fi Rakenneosien rakennusfysikaalisen oiminnan ymmärämiseksi on välämäönä piirää kolme eri

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 06: Ekvivalentti systeemi

VÄRÄHTELYMEKANIIKKA SESSIO 06: Ekvivalentti systeemi 6/ VÄRÄHTEYMEKANKKA SESS 6: Evvle sysee JHDANT Use äyä pplee uodos sysee vod orv yhde vpussee evvlell llll os se pplede se/ul-se vod lusu s oord vull. Tällö sysee geoers vod uodos yheyde se e pplede leloe

Lisätiedot

Laskelmia verotuksen painopisteen muuttamisen vaikutuksista dynaamisessa yleisen tasapainon mallissa

Laskelmia verotuksen painopisteen muuttamisen vaikutuksista dynaamisessa yleisen tasapainon mallissa Laskelmia verouksen painopiseen muuamisen vaikuuksisa dynaamisessa yleisen asapainon mallissa Juha Kilponen ja Jouko Vilmunen TTässä arikkelissa esieään laskelmia siiä, mien verouksen painopiseen siiräminen

Lisätiedot

Luento 9. Epälineaarisuus

Luento 9. Epälineaarisuus Lueno 9 Epälineaarisuus 9..7 Epälineaarisuus Tarkasellaan passiivisa epälineaarisa komponenia u() y() f( ) Taylor-sarjakehielmä 3 y f( x) + f '( x) ( x x) + f ''( x) ( x x) + f ''( x) ( x x) +...! 3! 4!

Lisätiedot

Flash ActionScript osa 2

Flash ActionScript osa 2 Liiketalus syksy 2012 Flash ActinScript sa 2 Scripti-kieli Skriptikieli n tarkitettu skriptien eli kmentsarjjen tekemiseen. lyhyitä hjeita, siitä kuinka svelluksen tulisi timia Skripteillä autmatisidaan

Lisätiedot

HENKKARIKLUBI. Mepco HRM uudet ominaisuudet vinkkejä eri osa-alueisiin 1 (16) 28.5.2015. Lomakkeen kansiorakenne

HENKKARIKLUBI. Mepco HRM uudet ominaisuudet vinkkejä eri osa-alueisiin 1 (16) 28.5.2015. Lomakkeen kansiorakenne 1 (16) Mepc HRM uudet minaisuudet vinkkejä eri sa-alueisiin Khta: Kuvaus: Lmakkeen kansirakenne Lmakkeen kansirakenne Lmakkeet vidaan kategrisida tiettyyn lmakekategriaan. Tämä helpttaa käyttäjiä hakemaan

Lisätiedot

SÄHKÖN HINTA POHJOISMAISILLA SÄHKÖMARKKINOILLA

SÄHKÖN HINTA POHJOISMAISILLA SÄHKÖMARKKINOILLA TAMPEREEN YLIOPISTO Talousieeiden laios SÄHKÖN HINTA POHJOISMAISILLA SÄHKÖMARKKINOILLA Kansanalousiede Pro gradu -ukielma Tammikuu 2009 Ohjaaja: Hannu Laurila Tero Särkijärvi TIIVISTELMÄ Tampereen yliopiso

Lisätiedot

Öljyn hinnan ja Yhdysvaltojen dollarin riippuvuussuhde

Öljyn hinnan ja Yhdysvaltojen dollarin riippuvuussuhde Öljyn hinnan ja Yhdysvalojen dollarin riippuvuussuhde Kansanalousiede Pro gradu -ukielma Talousieeiden laios Tampereen yliopiso Toukokuu 2010 Jari Hännikäinen TIIVISTLMÄ Tampereen yliopiso Talousieeiden

Lisätiedot

LÄMPÖOPPIA Aineen lämpötila t aineen saaman lämpömäärän Q funktiona; t = t(q)

LÄMPÖOPPIA Aineen lämpötila t aineen saaman lämpömäärän Q funktiona; t = t(q) LÄMÖOIA Aineen lämpöila aineen saaman lämpömäärän Q funkina; (Q) C Q 5 F D Q 4 Q 3 B Q C Q Q A N R G I A A S I T O U T U U N R G I A A V A A U T U U AB: Kiineä aine lämpenee (BA: jäähyy) Q cm BC: Kiineä

Lisätiedot

3. Kolmiulotteisten kohteiden esitys ja mallintaminen: jatkoa

3. Kolmiulotteisten kohteiden esitys ja mallintaminen: jatkoa . Klmiultteisten khteiden esitys ja mallintaminen: jatka Mnikulmiverkkn nähden ilmeisiä etuja vat: eksakti analyyttinen esitysmut klmiultteinen mudn mukkaaminen mahdllista vähemmän muistitilaa vaativa

Lisätiedot

Excel 2013:n käyttö kirjallisen raportin, esim. työselostuksen tekemisessä

Excel 2013:n käyttö kirjallisen raportin, esim. työselostuksen tekemisessä Excel 2013:n käyttö kirjallisen raprtin, esim. työselstuksen tekemisessä Sisällysluettel EXCEL-TAULUKKOLASKENTAOHJELMAN PERUSTEET... 2 1. PERUSASIOITA... 2 2. TEKSTIN KIRJOITTAMINEN TAULUKKOON... 3 3.

Lisätiedot

Katsastustoimipaikan laitevaatimukset

Katsastustoimipaikan laitevaatimukset Ohje 1 (5) TRAFI/ Antpäivä: 28.12.2011 Vimaantulpäivä: 2.1.2012 Vimassa: tistaiseksi Säädösperusta: LiikMp ajneuvjen katsastusluvista (1099/1998) 2 Muutstiedt: Kumaa hjeen 237/121/2001 Sveltamisala: Katsastustimipaikat

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi

VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi 02/1 VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi VAPAUSASTEET Valittaessa systeeille lasentaallia tulee yös sen vapausasteiden luuäärä äärätysi. Tää taroittaa seuraavaa: Lasentaallin

Lisätiedot

Automaatiojärjestelmät 18.3.2010 Timo Heikkinen

Automaatiojärjestelmät 18.3.2010 Timo Heikkinen Autmaatijärjestelmät 18.3.2010 Tim Heikkinen AUT8SN Malliratkaisu 1 Kerr muutamalla lauseella termin tarkittamasta asiasta! (2 p / khta, yhteensä 6 p) 1.1 Hajautus (mitä tarkittaa, edut, haitat) Hajautuksella

Lisätiedot

Kuopion kaupunki Pöytäkirja 1/2016 1 (1) Kaupunkirakennelautakunta 7 27.01.2016. 7 Asianro 201/10.00.02.01/2016

Kuopion kaupunki Pöytäkirja 1/2016 1 (1) Kaupunkirakennelautakunta 7 27.01.2016. 7 Asianro 201/10.00.02.01/2016 Kupin kaupunki Pöytäkirja 1/2016 1 (1) 7 Asianr 201/10.00.02.01/2016 Puijnlaaksn etelärinteen tnttien luvutusehdt Kiinteistöjhtaja Jari Kyllönen Maamaisuuden hallintapalvelujen tukipalvelut Tekninen lautakunta

Lisätiedot

DVC. VARIZON Piennopeuslaite säädettävällä hajotuskuviolla. Pikavalintataulukko

DVC. VARIZON Piennopeuslaite säädettävällä hajotuskuviolla. Pikavalintataulukko VARIZON Piennoeuslaie säädeävällä hajouskuviolla Lyhyesi Säädeävä hajouskuvio ja lähivyöhyke Soii kaikenyyisiin iloihin Miausyhde Helosi uhdiseava Peiey ruuviliiännä Eri värivaihoehoja Pikavalinaaulukko

Lisätiedot

CAVERION OYJ:N HALLITUKSEN TYÖJÄRJESTYS. 1. Hallituksen tehtävien ja toiminnan perusta. 2. Hallituksen kokoonpano ja valintamenettely

CAVERION OYJ:N HALLITUKSEN TYÖJÄRJESTYS. 1. Hallituksen tehtävien ja toiminnan perusta. 2. Hallituksen kokoonpano ja valintamenettely CAVERION OYJ:N HALLITUKSEN TYÖJÄRJESTYS 1. Hallituksen tehtävien ja timinnan perusta Hallituksen tehtävät ja timintaperiaatteet perustuvat Sumen lainsäädäntöön, erityisesti sakeyhtiölakiin ja arvpaperimarkkinalakiin

Lisätiedot

KUULEMINEN KURINPITOMENETTELYSSÄ

KUULEMINEN KURINPITOMENETTELYSSÄ www.ylikraka.fi KUULEMINEN KURINPITOMENETTELYSSÄ Urheilujuridiikan päivä 5.11.2015 asianajaja Antti Linna Esityksen aiheet Vastapulen kuulemisen periaate Sääntely Oikea ja riittävä kuuleminen Case H vs.

Lisätiedot

Kuukausi- ja kuunvaihdeanomalia Suomen osakemarkkinoilla vuosina 2005-2013

Kuukausi- ja kuunvaihdeanomalia Suomen osakemarkkinoilla vuosina 2005-2013 Kauppaieeellinen iedekuna Talousjohaminen Kandidaainukielma Kuukausi- ja kuunvaihdeanomalia Suomen osakemarkkinoilla vuosina 2005-2013 Monhly and Turn-of-he-Monh anomaly in he Finnish sock marke during

Lisätiedot

POHJOINEN SOTE JA TUOTTAMISEN RAKENTEET Muistio 2/15

POHJOINEN SOTE JA TUOTTAMISEN RAKENTEET Muistio 2/15 POHJOINEN SOTE JA TUOTTAMISEN RAKENTEET Muisio 2/15 20.8.15 IKÄIHMISTEN PALVELUJEN RYHMÄ Aika 20.8.2015 klo 9-11.30 Paikka Läsnä Kokkolan kaupunginalo, kokoushuone Minerva Maija Juola, pj, Kokkola Vuokko

Lisätiedot

Sanomalehtien kysyntä Suomessa Sanomalehtien kysynnän kehittymistä selittävä ekonometrinen malli

Sanomalehtien kysyntä Suomessa Sanomalehtien kysynnän kehittymistä selittävä ekonometrinen malli Sanomalehien kysynä Suomessa Sanomalehien kysynnän kehiymisä seliävä ekonomerinen malli Heikki Nikali, Iella BI Research series - Tukimussarja 7/2014 12.3.2014 FOR INTERNAL USE ONLY VAIN SISÄISEEN KÄYTTÖÖN

Lisätiedot

1 Excel-sovelluksen ohje

1 Excel-sovelluksen ohje 1 (11) 1 Excel-sovelluksen ohje Seuraavassa kuvaaan jakeluverkonhalijan kohuullisen konrolloiavien operaiivisen kusannusen (SKOPEX 1 ) arvioimiseen arkoieun Excel-sovelluksen oimina, mukaan lukien sovelluksen

Lisätiedot

Palvelujen tuottaja ja toinen sopijaosapuoli on Eteva kuntayhtymä

Palvelujen tuottaja ja toinen sopijaosapuoli on Eteva kuntayhtymä Palveluspimus 1 (4) 1 Spijasapulet 1.1 Tilaaja Palvelujen tilaajana timii Frssan kaupunki 1.2 Tuttaja Palvelujen tuttaja ja tinen spijasapuli n 2 Spimuksen rajaus 2.1 Spimus perustuu Tämä palveluspimus

Lisätiedot

Ominaisuus- ja toimintokuvaus Idea/Kehityspankki - sovelluksesta

Ominaisuus- ja toimintokuvaus Idea/Kehityspankki - sovelluksesta www.penspace.fi inf@penspace.fi 15.6.2015 1 Ominaisuus- ja timintkuvaus Idea/Kehityspankki - svelluksesta 1. Yleistä Kun jäljempänä puhutaan prjektista, tarkitetaan sillä mitä tahansa kehittämishjelmaa

Lisätiedot

BETONI-TERÄS LIITTORAKENTEIDEN SUUNNITTELU EUROKOODIEN MUKAAN (TTY 2009) Betonipäivät 2010

BETONI-TERÄS LIITTORAKENTEIDEN SUUNNITTELU EUROKOODIEN MUKAAN (TTY 2009) Betonipäivät 2010 DIPLOMITYÖ: BETONI-TERÄS LIITTORAKENTEIDEN SUUNNITTELU EUROKOODIEN MUKAAN (TTY 29) Beonipäivä 21 DIPLOMITYÖ prosessina Aie: yön eeäjän aloieesa Selviykse beonin, eräksen ja puun osala oli jo ey/käynnissä

Lisätiedot

MÄNTTÄ-VILPPULAN KAUPUNKI. Mustalahden asemakaava Liikenneselvitys. Työ: E23641. Tampere 18.5.2010

MÄNTTÄ-VILPPULAN KAUPUNKI. Mustalahden asemakaava Liikenneselvitys. Työ: E23641. Tampere 18.5.2010 MÄNÄ-VLPPULAN KAUPUNK Musalahden asemakaava Liikenneselviys yö: E ampere 8..00 ARX Ympärisö Oy PL 0 ampere Puhelin 00 000 elefax 00 00 www.airix.fi oimiso: urku, ampere, Espoo ja Oulu Mänä-Vilppulan kaupunki,

Lisätiedot

Ongelma 1: Mistä joihinkin tehtäviin liittyvä epädeterminismi syntyy?

Ongelma 1: Mistä joihinkin tehtäviin liittyvä epädeterminismi syntyy? Ongelma : Mistä jihinkin tehtäviin liittyvä epädeterminismi syntyy? 0-0 Lasse Lensu Ongelma : Miten vidaan pelata algritmisesti? 0-0 Lasse Lensu Ongelma : Onk mahdllista pelata ptimaalisesti? 0-0 Lasse

Lisätiedot

Varsinais-Suomen palvelupisteaineisto

Varsinais-Suomen palvelupisteaineisto 1 Varsinais-Sumen palvelupisteaineist - hjeet käyttöön (versi 16.12.2013) Varsinais-Sumen palvelupisteaineist Ohjeet käyttöön Lyhyesti: Varsinais-Sumesta kerätään ja pidetään ajan tasalla palveluihin liittyvää

Lisätiedot

Jäykän kappaleen tasokinetiikka harjoitustehtäviä

Jäykän kappaleen tasokinetiikka harjoitustehtäviä ynmiikk 1 Liite lukuun 6. Jäykän kppleen tskinetiikk - hrjitustehtäviä 6.1 vlvpkettiutn mss n 1500 kg. ut lähtee levst liikkeelle 10 % ylämäkeen j svutt vkikiihtyvyydellä npeuden 50 km / h 1 10 60 m mtkll.

Lisätiedot

Lasin karkaisun laatuongelmat

Lasin karkaisun laatuongelmat Rakeneiden Mekaniikka Vol. 44, Nro, 11, s. 14-155 Lasin karkaisun laauongelma Ani Aronen Tiiviselmä. Karkaisula lasila vaadiaan hyvää lujuua sekä visuaalisa laaua. Näihin voidaan vaikuaa lasin karkaisuprosessin

Lisätiedot

Asuntojen huomiointi varallisuusportfolion valinnassa ja hinnoittelussa

Asuntojen huomiointi varallisuusportfolion valinnassa ja hinnoittelussa TAMPEREEN YLIOPISTO Johamiskorkeakoulu Asunojen huomioini varallisuusporfolion valinnassa ja hinnoielussa Kansanalousiede Pro gradu -ukielma Elokuu 2012 Ohjaaja: Hannu Laurila Tuomo Sola TIIVISTELMÄ Tampereen

Lisätiedot

MAT-02450 Fourier n menetelmät. Merja Laaksonen, TTY 2014

MAT-02450 Fourier n menetelmät. Merja Laaksonen, TTY 2014 MAT-45 Fourier n meneelmä Merja Laaksonen, TTY 4..4 Sisälö Johano 3. Peruskäsieiä................................... 4.. Parillinen ja parion funkio....................... 7.. Heavisien funkio............................

Lisätiedot

YRITYSKOHTAISEN TEHOSTAMISTAVOITTEEN MÄÄRITTELY 1 YRITYSKOHTAISEN TEHOSTAMISPOTENTIAALIN MITTAAMINEN

YRITYSKOHTAISEN TEHOSTAMISTAVOITTEEN MÄÄRITTELY 1 YRITYSKOHTAISEN TEHOSTAMISPOTENTIAALIN MITTAAMINEN ENERGIAMARKKINAVIRASTO 1 Le 2 Säkön jakeluverkkoomnnan yryskoasen eosamsavoeen määrely YRITYSKOHTAISEN TEHOSTAMISTAVOITTEEN MÄÄRITTELY Asanosanen: Vaasan Säköverkko Oy Lyy pääökseen dnro 491/424/2007 Energamarkknavraso

Lisätiedot

Ongelma 1: Mistä joihinkin tehtäviin liittyvä epädeterminismi syntyy?

Ongelma 1: Mistä joihinkin tehtäviin liittyvä epädeterminismi syntyy? Ongelma : Mistä jihinkin tehtäviin liittyvä epädeterminismi syntyy? 0-0 Lasse Lensu Ongelma : Miten vidaan pelata algritmisesti? 0-0 Lasse Lensu Ongelma : Onk mahdllista pelata ptimaalisesti? 0-0 Lasse

Lisätiedot

Tulityöt tilapäisellä tulityöpaikalla

Tulityöt tilapäisellä tulityöpaikalla 2012 Tulityöt tilapäisellä tulityöpaikalla Tulitöitä vat kaikki työt, jssa n syttymän aiheuttaja (esim. kipinöinti, hitsaus, avtuli, kuuma ilma) sekä ympäristössä leva palvaara Tulityökrtti ei le lakisääteinen,

Lisätiedot

Kuntaeläkkeiden rahoitus ja kunnalliset palvelut

Kuntaeläkkeiden rahoitus ja kunnalliset palvelut Kunaeläkkeiden rahoius ja kunnallise palvelu I LA Rapori LA Repors 30.1.2013 No 4 Kunaeläkkeiden rahoius ja kunnallise palvelu Jukka Lassila * Niku Määänen ** armo Valkonen *** * LA linkeinoelämän ukimuslaios,

Lisätiedot

Finanssipolitiikan tehokkuudesta Yleisen tasapainon tarkasteluja Aino-mallilla

Finanssipolitiikan tehokkuudesta Yleisen tasapainon tarkasteluja Aino-mallilla BoF Online 3 29 Finanssipoliiikan ehokkuudesa Yleisen asapainon arkaseluja Aino-mallilla Juha Kilponen Tässä julkaisussa esiey mielipiee ova kirjoiajan omia eiväkä välämää edusa Suomen Pankin kanaa. Suomen

Lisätiedot

Liite III. Muutoksia valmisteyhteenvedon ja pakkausselosteen tiettyihin kohtiin

Liite III. Muutoksia valmisteyhteenvedon ja pakkausselosteen tiettyihin kohtiin Hum! Liite III Muutksia valmisteyhteenvedn ja pakkausselsteen tiettyihin khtiin Kyseessä levat valmisteyhteenvedn ja pakkausselsteen khdat vat lausuntpyyntömenettelyn tulksia. Jäsenvaltin timivaltaiset

Lisätiedot

SPL TAMPEREEN PIIRI: SEURATUTOROINTI

SPL TAMPEREEN PIIRI: SEURATUTOROINTI SPL TAMPEREEN PIIRI: SEURATUTOROINTI Tampellan esplanadi 6, 33100 Tampere, puh. 010 841 1880, fax 010 841 1888, www.pallliitt.fi/tampere Jaettu vastuu auttaa yhteisöä kehittymään Ihmisyhteisöt rakentuvat

Lisätiedot

1.1.2015. Toimituskohteen paikka määritellään mittauslaitteiston sijainnin mukaan.

1.1.2015. Toimituskohteen paikka määritellään mittauslaitteiston sijainnin mukaan. 1 (5 ) Gasum Energiapalvelut Oy TEHOTEMPO ALKAEN (svelletaan yli 1,2 MW:n laitksiin) 1. KAASULIITTYMÄ 1.1 Timituskhde ja timitusraja Timituskhteen paikka määritellään mittauslaitteistn sijainnin mukaan.

Lisätiedot

ETERAN TyEL:n MUKAISEN VAKUUTUKSEN ERITYISPERUSTEET

ETERAN TyEL:n MUKAISEN VAKUUTUKSEN ERITYISPERUSTEET TRAN TyL:n MUKASN AKUUTUKSN RTYSPRUSTT Tässä peruseessa kaikki suuree koskea eraa, ellei oisin ole määriely. Tässä peruseessa käyey lyhenee: LL Lyhyaikaisissa yösuheissa oleien yönekijäin eläkelaki TaL

Lisätiedot

Tehokasta talvipitoa MICHELIN-renkailla

Tehokasta talvipitoa MICHELIN-renkailla Tehokasa alvipioa MICHELIN-renkailla y y 2014 www.michelinranspor.com 1 Lainsäädänö koskien kuorma- ja linja-auonrenkaiden käyöä alvella Lainsäädänö koskien kuormaja linja-auonrenkaiden käyöä alvella Seuraavassa

Lisätiedot

Muuttuvan kokonaissensitiivisyyden mallinnus valvontaohjelman riskinarvioinnissa esimerkkinä munintaparvet

Muuttuvan kokonaissensitiivisyyden mallinnus valvontaohjelman riskinarvioinnissa esimerkkinä munintaparvet Muuuvan kokonaissnsiiivisyyn mallinnus valvonaohjlman riskinarvioinnissa simrkkinä muninaarv Tausa: Aimma salmonllarojki FooBUG rojki ja uusi malli muninaarvill 8. EFSA WG: salmonlla muninaarvissa. Samaa

Lisätiedot

Taustaa KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT. Jukka Talvitie, Toni Levanen & Mikko Valkama TTY / Tietoliikennetekniikka

Taustaa KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT. Jukka Talvitie, Toni Levanen & Mikko Valkama TTY / Tietoliikennetekniikka IMA- Exurso: Kompleksluvu ja radosgnaal / KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT Tausaa IMA- Exurso: Kompleksluvu ja radosgnaal / Kakk langaon vesnä ja radoeolkenne (makapuhelme, WLAN, ylesrado

Lisätiedot

YMPJåoSTÖ 2?.5.14 J Ub,

YMPJåoSTÖ 2?.5.14 J Ub, YMPJåoSTÖ 2?.5.14 J Ub, ),II1 1 SATAMA ILMOITTAMIE YMPÄRISTÖ- SUOJELU TIETOJÄRJESTELMÄÄ JA SATAMA JÄTEHUOLTOSUUITELMA ranomaisen yheysiedo Merkiy ympärisönsuojelun ieojärjeselmään A. SATAMA TOIMITAA VALVOVA

Lisätiedot

Elintarvikealan pk yritysten markkinointiosaamisen kasvattaminen: kohti tutkijoiden, kehittäjien ja pk yrittäjien yhteistyömallia

Elintarvikealan pk yritysten markkinointiosaamisen kasvattaminen: kohti tutkijoiden, kehittäjien ja pk yrittäjien yhteistyömallia Tukimusprofessori Hrri Luoml Elinrvikeln pk yriysen mrkkinoiniosmisen ksvminen: kohi ukijoiden, kehiäjien j pk yriäjien yheisyömlli Esiys Ruok Suomi seminriss 20.11.2008, Arkikum, Rovniemi Hnkkeen lähökohd

Lisätiedot

BINÄÄRINEN SYNKRONINEN TIEDONSIIRTO KAISTARAJOITTAMATTOMILLA MIELIVALTAISILLA PULSSIMUODOILLA SOVITETTU SUODATIN JA SEN SUORITUSKYKY AWGN-KANAVASSA

BINÄÄRINEN SYNKRONINEN TIEDONSIIRTO KAISTARAJOITTAMATTOMILLA MIELIVALTAISILLA PULSSIMUODOILLA SOVITETTU SUODATIN JA SEN SUORITUSKYKY AWGN-KANAVASSA BINÄÄRINN SYNKRONINN IDONSIIRO KAISARAJOIAMAOMILLA MILIVALAISILLA PULSSIMUODOILLA SOVIU SUODAIN JA SN SUORIUSKYKY AWGN-KANAVASSA Millaiia aalomuooja perupuleja yypilliei käyeään? 536A ieoliikenneekniikka

Lisätiedot

KELAN MÄÄRÄÄMÄT TYÖKYVYN ARVIOINTITUTKIMUKSET (SVL 15 L 13 JA KEL 61 ) VUOSINA 2015 2016

KELAN MÄÄRÄÄMÄT TYÖKYVYN ARVIOINTITUTKIMUKSET (SVL 15 L 13 JA KEL 61 ) VUOSINA 2015 2016 TEOS TUMA Palvelukuvaus Liite 1 KELAN MÄÄRÄÄMÄT TYÖKYVYN ARVIOINTITUTKIMUKSET (SVL 15 L 13 JA KEL 61 ) VUOSINA 2015 2016 Palvelukuvaus Liite 1 Kela KANSANELÄKELAITOS FOLKPENSIONSANSTALTEN 0 (31) PL 450,

Lisätiedot

Termiinikurssi tulevan spot-kurssin ennusteena

Termiinikurssi tulevan spot-kurssin ennusteena TAMPEREEN YLIOPISTO Talousieeiden laios Termiinikurssi ulevan spo-kurssin ennuseena Kansanalousiede Pro gradu-ukielma Talousieeiden laios Tampereen yliopiso 28.2.2006 Ville Kivelä 1 TIIVISTELMÄ Tampereen

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2002

MAOL-Pisteitysohjeet Fysiikka kevät 2002 MAOL-Piteityhjeet Fyiikka kevät 00 Tyypilliten virheiden aiheuttaia piteenetykiä (6 piteen kaalaa): - pieni lakuvirhe -/3 p - lakuvirhe, epäielekä tul, vähintään - - vataukea yki erkitevä nuer liikaa -0

Lisätiedot

Maahantuojat: omavalvontasuunnitelman ja sen toteutumisen tarkastuslomakkeen käyttöohje

Maahantuojat: omavalvontasuunnitelman ja sen toteutumisen tarkastuslomakkeen käyttöohje Esittelijä Nurttila Annika Sivu/sivut 1 / 6 Maahantujat: mavalvntasuunnitelman ja sen tteutumisen tarkastuslmakkeen käyttöhje Tarkastuksen tavitteena n selvittää, nk maahantujalla mavalvntasuunnitelmassaan

Lisätiedot

HAJOAMISLAKI, AKTIIVISUUS JA RADIOHIILIMENETELMÄ

HAJOAMISLAKI, AKTIIVISUUS JA RADIOHIILIMENETELMÄ HJOMISLKI, KTIIVISUUS J RDIOHIILIMENETELMÄ Radiakiivisuus arkiaa amiyimien hajamisa Radiakiivise alkuainee hajava ajan kuluessa isiksi alkuaineiksi Hajaminen vi apahua useiden välivaiheiden kaua, jihin

Lisätiedot

Öljyshokkien talousvaikutusten heikkeneminen ja ilmiön syyt

Öljyshokkien talousvaikutusten heikkeneminen ja ilmiön syyt Öljyhokkien alouvaikuuen heikkeneinen ja iliön yy Kananalouiede Pro gradu -ukiela Talouieeiden laio Taereen ylioio Ohjaaja: Jukka Pirilä Lokakuu 20 Terhi Lohander TIIVISTELMÄ Taereen ylioio Talouieeiden

Lisätiedot

Biologian yhteisvalinta 2014 / Mallivastaus Kysymys 1

Biologian yhteisvalinta 2014 / Mallivastaus Kysymys 1 Bilgian yhteisvalinta 2014 / Mallivastaus Kysymys 1 Mitkä tekijät vaikuttavat kasviplanktnin määrään Sumen järvissä? A) Aiheen käsittelyn vaatimat määritelmät: 6 p Kasviplanktnin määritelmä: levät ja sinibakteerit,

Lisätiedot

Tulityöt: järjestäminen ja suunnittelu

Tulityöt: järjestäminen ja suunnittelu Tulityöt: järjestäminen ja suunnittelu 2012 Tulitöitä vat kaikki työt, jssa n syttymän aiheuttaja (esim. kipinöinti, hitsaus, avtuli, kuuma ilma) sekä ympäristössä leva palvaara Tulityökrtti ei le lakisääteinen,

Lisätiedot

ANALOGISEN VÄRITELEVISION RAKENNE JA TOIMINTA

ANALOGISEN VÄRITELEVISION RAKENNE JA TOIMINTA ANALOGISEN VÄRITELEVISION RAKENNE JA TOIMINTA Tieoliikenneekniikka I 521359A Kari Kärkkäinen Osa 8 1 23 Videosignaalin VSB-odulaaio analogisessa TV-järj. Värielevision videosignaalin siirrossa käyeään

Lisätiedot

RIL 256-2010 Suomen Rakennusinsinöörien Liitto RIL ry

RIL 256-2010 Suomen Rakennusinsinöörien Liitto RIL ry Suomen Rakennusinsinöörien Liio RIL ry Julkisen hankinojen kehiämismalli Tuoavuuden paranaminen TUKEFIN-meneelmällä 2 RIL 256-2010 RILin julkaisuilla on oma koisivu, joka löyyy osoieesa www.ril.fi Kirjakauppa

Lisätiedot

Toistoleuanvedon kilpailusäännöt

Toistoleuanvedon kilpailusäännöt 1.0 Yleisä Toisoleuanvedossa kilpailija suoriaa häjaksoisesi mahdollisimman mona leuanveoa omalla kehonpainollaan. Kilpailijalla on käössään ksi kilpailusuorius sekä asauloksen sauessa mahdollise uusinakierrokse

Lisätiedot

Painevalukappaleen valettavuus

Painevalukappaleen valettavuus Painevalukappaleen valeavuus Miskolc Universiy Sefan Fredriksson Swecas AB Muokau ja lisäy käännös: Tuula Höök, Pekka Savolainen Tampereen eknillinen yliopiso Painevalukappale äyyy suunniella sien, eä

Lisätiedot

TALOUSTIETEIDEN TIEDEKUNTA. Lauri Tenhunen KAIKKIALLA LÄSNÄ OLEVAN TIETOTEKNIIKAN TALOUSTIETEELLISTÄ ANALYYSIÄ

TALOUSTIETEIDEN TIEDEKUNTA. Lauri Tenhunen KAIKKIALLA LÄSNÄ OLEVAN TIETOTEKNIIKAN TALOUSTIETEELLISTÄ ANALYYSIÄ TLOUSTIETEIDEN TIEDEKUNT Lauri Tenhunen KIKKILL LÄSNÄ OLEVN TIETOTEKNIIKN TLOUSTIETEELLISTÄ NLYYSIÄ Pro gradu ukielma Yleinen alousiede Tammikuu 03 SISÄLLYS Sisällys Kuvio ja auluko JOHDNTO... 5 VERKOSTOTLOUSTIETEEN

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 13: Yhden vapausasteen vaimenematon pakkovärähtely, herätteenä roottorin epätasapaino tai alustan liike

VÄRÄHTELYMEKANIIKKA SESSIO 13: Yhden vapausasteen vaimenematon pakkovärähtely, herätteenä roottorin epätasapaino tai alustan liike / VÄRÄHELYMEKANIIKKA SESSIO : Yhde vapausasee vaieeao paoväähely, heäeeä oooi epäasapaio ai alusa liie ROOORIN EPÄASAPAINO Haoisesi vaiheleva paovoia voi esiiyä pyöivie oeeosie yheydessä. aasellaa esieiä

Lisätiedot

Aineen häviämättömyyden periaate Jos lähtöaineissa on tietty määrä joitakin atomeja, reaktiotuotteissa täytyy olla sama määrä näitä atomeja.

Aineen häviämättömyyden periaate Jos lähtöaineissa on tietty määrä joitakin atomeja, reaktiotuotteissa täytyy olla sama määrä näitä atomeja. KE3 Pähkinänkuressa Olmudt reaktiyhtälössä 1) Ilmassa esiintyvät alkuaineet ja yhdisteet kaasuja (g). 2) Metallit, lukuun ttamatta elhpeaa, vat huneen lämmössä kiinteitä (s). 3) Iniyhdisteet vat huneen

Lisätiedot

Tuikki.fi ohjeistus Sisältö

Tuikki.fi ohjeistus Sisältö Tuikki.fi hjeistus Sisältö Yleistä Rekisteröinti Sisäänkirjautuminen Unhditk salasanan timint Saalispalaute rekisteröityneelle käyttäjälle Saalispalaute ilman sisäänkirjautumista Prfiili Päiväkirjani Valkuvat

Lisätiedot

ESKOLANPELTO VIHERALUEIDEN HOITOSUUNNITELMA. Tyrnävän kunta, Ympäristö- ja tekninen osasto Anne-Mari Kemppainen 2010

ESKOLANPELTO VIHERALUEIDEN HOITOSUUNNITELMA. Tyrnävän kunta, Ympäristö- ja tekninen osasto Anne-Mari Kemppainen 2010 ESKOLANPELTO VIHERALUEIDEN HOITOSUUNNITELMA Tyrnävän kuna, Ympärisö- ja ekninen osaso Anne-Mari Kemainen 00 SISÄLTÖ VIHERALUEIDEN HOITOLUOKAT ESKOLANPELOON ALUEELLA s.. Hoioluokkien välise ero s. 4. A

Lisätiedot

S205 Lineaarinen hammashihnaservokäyttö (0,9 op)

S205 Lineaarinen hammashihnaservokäyttö (0,9 op) LTY / Säkötekniikan osasto Säätö- ja digitaaitekniikan aboratorio BL40A0600 Säätötekniikan ja signaainkäsitteyn työkurssi S05 Lineaarinen aasinaservokäyttö (09 op) Työoje OHDANTO Työssä käsiteään etusivun

Lisätiedot

MAA 9. HARJOITUSTEHTÄVIÄ

MAA 9. HARJOITUSTEHTÄVIÄ MAA 9. HARJOITUSTEHTÄVIÄ 1. Surakulmaisessa klmissa n 7. kulma ja tämän vastainen kateetti n 5 mm. Laske hyptenuusa ja viereinen kateetti.. Surakulmaisessa klmissa n 74 kulma ja tämän viereinen kateetti

Lisätiedot

3. Riittääkö Tilaajavastuusta saatava raportti sieltä saatavien tietojen osalta ja katsooko tilaaja sen sieltä suoraan tässäkin vaiheessa?

3. Riittääkö Tilaajavastuusta saatava raportti sieltä saatavien tietojen osalta ja katsooko tilaaja sen sieltä suoraan tässäkin vaiheessa? Tarjuspyynnöstä esitetyt kysymykset ja vastaukset niihin 1. Vik avkuntutuksessa rakentaa palvelun niin, että siinä n sekä ktiin annettavaa kuntutusta että erillisessä tilissa tteutettavaa ryhmämutista

Lisätiedot

Aktia-konsernin palkka- ja palkkioselvitys

Aktia-konsernin palkka- ja palkkioselvitys Aktia-knsernin palkka- ja palkkiselvitys Tämä selvitys nudattaa hallinnintikdin (1.10.2010) susitusta 47, jnka mukaan Aktian tulee selvittää Aktia Pankki Oyj:n (Aktia) timitusjhtajalle, muulle knserninjhdlle,

Lisätiedot

ÅLANDSBANKEN DEBENTUURILAINA 2/2010 LOPULLISET EHDOT

ÅLANDSBANKEN DEBENTUURILAINA 2/2010 LOPULLISET EHDOT ÅLANDSBANKEN DEBENTUURILAINA 2/200 LOPULLISET EHDOT Ålandsbanken Debenuurilaina 2/200 (ISIN: FI400003875) lopullise ehdo on 9. heinäkuua 200 vahviseu seuraavasi: - Lainan pääoma 9 980 000 euroa Maarianhamina

Lisätiedot

6.4 Variaatiolaskennan oletusten rajoitukset. 6.5 Eulerin yhtälön ratkaisuiden erikoistapauksia

6.4 Variaatiolaskennan oletusten rajoitukset. 6.5 Eulerin yhtälön ratkaisuiden erikoistapauksia 6.4 Variaaiolaskennan oleusen rajoiukse Sivu ss. 27 31 läheien Kirk, ss. 13 143] ja KS, Ch. 5] pohjala Lähökoha oli: jos J:llä on eksremaali (), niin J:n variaaio δj( (), δ()) ():ä pikin on nolla. 1. Välämäön

Lisätiedot

Ohje viranomaisille 8/2012 1 (6)

Ohje viranomaisille 8/2012 1 (6) Ohje viranmaisille 8/2012 1 (6) Dnr 7845/06.10.06.00/2012 Jakelussa mainituille Tupakkalaki ulkalueilla järjestettävissä yleisötilaisuuksissa Taustaa Tämä hje n päivitys Ssiaali- ja terveysalan lupa- ja

Lisätiedot

Lentosääoppia harrasteilmailijoille lisämateriaalia. Lentosääpalvelut Suomessa- opas ja säähaitari

Lentosääoppia harrasteilmailijoille lisämateriaalia. Lentosääpalvelut Suomessa- opas ja säähaitari Lentsääppia harrasteilmailijille lisämateriaalia Lentsääpalvelut Sumessa- pas ja säähaitari Lentsääpalvelut Sumessa- pas Ilmatieteen laits laati ja julkaisi ensimmäisen Lentsääpalveluppaan vunna 2013 Oppaan

Lisätiedot

F E . 1. a!? # % b &., @ $ c + ± = e < > [ \ ] ^ g λ Ø ø φ " 1 / 2 h Á á É. j À à È è Ì ì Ò k ò ù Ä ä Ë ë Ï. o à ã Ñ ñ Õ õ F` = 6mm = 9/12mm = 19mm

F E . 1. a!? # % b &., @ $ c + ± = e < > [ \ ] ^ g λ Ø ø φ  1 / 2 h Á á É. j À à È è Ì ì Ò k ò ù Ä ä Ë ë Ï. o à ã Ñ ñ Õ õ F` = 6mm = 9/12mm = 19mm : A ➎ C ➎ B D = 6mm = 9/12mm = a!? # % b &., @ $ c + ± = d * / : ; ( ) e < > [ \ ] ^ f { } ~ µ ß Ω g λ Ø ø φ " 1 / 2 h Á á É i é Í í Ó ó Ú ú j À à È è Ì ì Ò k ò ù Ä ä Ë ë Ï l ï Ö ö Ü ü ÿ  m â Ê ê î ô

Lisätiedot

RATKAISUT: 3. Voimakuvio ja liikeyhtälö

RATKAISUT: 3. Voimakuvio ja liikeyhtälö Phyica 9. paino (8) 3. Voiakuvio ja liikeyhtälö : 3. Voiakuvio ja liikeyhtälö 3. a) Newtonin I laki on nieltään jatkavuuden laki. Kappale jatkaa liikettään uoraviivaieti uuttuattoalla nopeudella tai pyyy

Lisätiedot