VÄRÄHTELYMEKANIIKKA SESSIO 14: Yhden vapausasteen vaimeneva pakkovärähtely, harmoninen kuormitusheräte

Koko: px
Aloita esitys sivulta:

Download "VÄRÄHTELYMEKANIIKKA SESSIO 14: Yhden vapausasteen vaimeneva pakkovärähtely, harmoninen kuormitusheräte"

Transkriptio

1 4/ VÄRÄHTELYMEKANIIKKA SESSIO 4: Yhden vaausaseen vaieneva akkvärähely, harninen kuriusheräe LIIKEYHTÄLÖN JOHTO JA RATKAISU Kuvassa n esiey visksisi vaienneun yhden vaausaseen harnisen akkvärähelijän erusalli. Siihen kuuluu jusi k, assa, vaiennin c sekä assaan vaikuava harninen akkvia F() = sin. Kuvasa (c) saadaan liikeyhälö k ( + ) g + c & F() = & () (a) g jusen leiuus k c k (b) k( (c) + ) c& saainen asaain F() g & & & g F() Yhälösä () seuraa edelleen & + c & + k = sin () Oaalla huin inaiskulaaajuuden ω ja vaiennussuheen ζ äärielä saadaan yhälö () kirjieua sandardiun F & 0 + ζ ω& + ω = sin (3) Yhälön (3) yleinen rakaisu n ua Kuva. Visksisi vaienneu värähelijä. = h +, issä h n hgeenisen yhälön & + ζ ω& + ω = 0 yleinen rakaisu ja äydellisen yhälön (3) jkin yksiyisrakaisu. Osa h n sessin VMS09 kaavan (7) ukaan alikriiisen vaiennuksen aauksessa h = Ce ζ ω sin( ω d + ψ ) (4) Osa h n inaisvärähelyä, jka häviää vaiennuksen ansisa neasi. Yksiyisrakaisu n akkvärähelyä ja se vidaan löyää yriefunkiilla

2 4/ = B sin + B cs ai = Xsin( φ ) (5) issä B ja B sekä X ja φ va vakiia. Yrieisä jälkiäinen n hiean käeväi, jen käyeään siä. Vaki X ja φ saadaan selville sijiaalla yrie liikeyhälöön (3). Neudelle ja kiihyvyydelle ulee derivialla lausekkee & = Xcs( φ ) & = Xsin( φ ) (6) jen sijius liikeyhälöön (3) anaa aluksi ( ω ) Xsin( φ ) + ζ ω Xcs( φ ) = sin (7) Käyäällä kaavassa (7) sinin ja csinin vähennyslaskukaavja saadaan edelleen ( ω ) X( sin csφ cs sinφ ) + + ζ ω X(cs cs φ + sin sinφ ) = sin (8) cs ker- Merkiseällä edellä levan yhälön eri ulilla esiinyvien erien ie uliain saiksi saadaan yhälöari sin ja ( ω ) Xcsφ + ζ ω Xsinφ = ( ω ) Xsinφ ζ ω Xcsφ = 0 (9) jisa saadaan rakaisua yksiyisrakaisussa leva vakiille X ja φ lausekkee ζ / k X = φ = arcan ω (0) + ζ ω ω ω Vaki X ja φ va akkvärähelyn = Xsin( φ) aliudi ja vaihekula. Liikeyhälön (3) yleinen rakaisu n alikriiisen vaiennuksen aauksessa näin llen () = C e ζ ω sin ( ω d + ψ ) + X sin( φ ) ()

3 4/3 jhn vaki X ja φ saadaan kaavasa (). Vaki C ja ψ ääräyyvä värähelijän alkuehdisa, ua eivä le sessin VMS09 kaavan (8) ukaise, sillä yksiyisrakaisu vaikuaa yös niiden arvihin. Rakaisuksi ulee ässä aauksessa C = & + ζω + ω ζ ω ζ ψ = arcan & + ζ ω () jssa = + Xsinφ ja & = & 0 Xcsφ. 0 VAHVISTUSKERROIN JA SIIRTYVYYS Kun erkiään d = / k ja r = / ω, va vahvisuskerrin M ja vaihekula φ X ζ r M = = φ = arcan (3) d ( r ) + ( ζ r) r Kuvassa n kaavan (3) vahvisuskerien M ja vaihekulan φ kuvaajia aajuussuheen r funkina uuailla vaiennussuheen ζ arvilla. Vahvisuskerien M käyräsösä nähdään, eä kaikki käyrä va nllavaiennusa vasaavan käyrän alaulella. Vaiennus ienenää akkvärähelyn aliudia ja eriyisesi resnanssin läheisyydessä ää ieneneinen n viakasa. Nähdään yös, eä käyrien aksii eivä le khdassa = ω. Ne eivä le yöskään khdassa = ωd = ω ζ, vaan hiean ään vasealla ulella khdassa = ωr = ω ζ, kuen kaavasa (3) vidaan dea esiällä vahvisuskerien M derivaaan nllakha. Arva ω r sanaan resnanssikulaaajuudeksi. Vaienevalla värähelyllä va siis inaiskulaaajuus ω, vaienneu inaiskulaaajuus ω d ja resnanssikulaaajuus ω r Kuva. Vahvisuskerrin.

4 4/4 erisuuria. Js vaiennussuhde ζ n ieni, va ne kuienkin hyvin lähellä isiaan ja rajaaauksessa ζ = 0 ne va saa. Maksiialiudiksi khdassa = ωr ulee X a / k = (4) ζ ζ ikä n lähes saa kuin inaiskulaaajuua ω vasaava aliudi X ω / k = ζ (5) Kuva 3. Vaihekula. Tisinaan yös inaiskulaaajuua ω sanaan resnanssiaajuudeksi, kska er va käyännössä hyvin ieniä. Vaihekulan φ käyräsösä nähdään, eä vaieneaassa aauksessa ζ = 0 vaihekula φ = 0 resnanssin alaulella ja φ = 80 resnanssin yläulella, jllin siis viaheräe ja siiryävase va vasaavasi saassa ai vasakkaisessa vaiheessa. Kun = ω, n φ = 90 riiuaa vaiennussuheen ζ arvsa. Tarkasellaan seuraavaksi viaa, jka kuvan allissa siiryy alusaan akkvian vaikuuksesa. Tään vian lauseke n kuvan (c) ja kaavjen (5) ja (6) eruseella F () = k + c & = k Xsin( φ) + c Xcs( φ) (6) a Vidaan helsi siaa, eä vian F a () suurin arv n F ( k X) + ( c X) = k X + ( ζ ω) = (7) A / jssa aliudi X saadaan kaavasa (0). Siiryvyydeksi T = FA / ulee lauseke T 0 ( ζ r) ( r ) + ( ζ r) FA + = = (8) F

5 4/5 Kuva 4. Vaienevan akkvärähelyn siiryvyys. Siiryvyys T n esiey kuvassa 4 aajuussuheen r funkina uuaalla vaiennussuheen ζ arvilla. Kaavasa 8 nähdään, eä T > alueella r < kaikilla vaiennussuheen ζ arvilla, jllin jusen käyö suurenaa siiryvää viaa. Alueessa r > n T <, ja jusen käyö ienenää siiryvää viaa. Huaaan yös, eä alueessa r > vaiennuksen lisääinen suurenaa siiryvää viaa, sillä käyrä enevä khdassa r = risiin. ESIMERKKI VMS4E A L d G θ M 0 sin I 0 c θ Kuvan väänövärähelysyseeissä yörän hiauseni n I0 = 0kg ja yöriisliikeä vasusavan vaienien vaiennusvaki c θ = 300N s. Akseli n eräsä ja sen iuus n L = ja halkaisija d 0 = 40. Teräksen liukuduuli n G = 80GPa. Pyörään vaikuaa harnisesi vaiheleva kuriuseni M 0 sin, jnka aliudi M 0 = kn. Pyörän akkvärähelyn kula-aliudin havaiaan ällöin levan. Määriä kuriusenin kula- aajuus ja suurin ukeen A siiryvä eni. Rakaisu: Akselin väänöneliöeniksi saadaan Iv = π d0 / 3 5,33 0 ja väänöjusivakiksi k = GIv /L 0,06kN. Oinaiskulaaajuudeksi ulee näin llen θ c θ ω = k θ /I0 44,840rad/ s. Vaiennussuheeksi saadaan ζ = 0, 335. I ω Pakkvian aliudia vasaava saainen kulanuus n d = M0 / k θ 0,04974rad ja vahvisuskerrin M = Θ / d 0, Kaavasa (3) seuraa yhälö ( r ) + ( ζ r) = M r, 433 = r ω 64,6rad/ s Siiryvyydeksi ulee kaavasa (8) T 0, 973 ja siiryvän enin aksiiarv n M T M M A 97,34N A = 0

6 4/6 HARJOITUS VMS4H Kuvan ukaisen syseein araeri va = 0kg, c = 0Ns / ja k = 4kN/. Pakkvian aliudi n F 0 = 00N ja kulaaajuus = 0rad/ s. Syseein alkuehd va 0 = 0,04 ja & 0 = 0,5 / s. Esiä kaavan () ukainen liikeyhälön yleinen rakaisu ja iirrä sen kuvaaja. Tarkisa ulkse liieenä levalla Mahcad-dkuenilla, jka iirää lisäksi syseein neuden ja kiihyvyyden kuvaaja. Vas. C 0,0578 ψ 33, X 0,0333 φ 3,8 Vihjee: HARJOITUS VMS4H Sähköri n asenneu erisinkaaleen äälle kuvan ukaisesi. Mrin assa n = 68kg ja erisinkaaleen assa M = 00kg. Syseein inaisaajuus n f =,67Hz ja vaiennussuhde n ζ = 0, 0. Rrin eäasaainsa synyy akkvia F () = (00N)sin(3,4 / s). Määriä syseein akkvärähelyn aliudi ja alusaan siiryvä via. Vas. X 0, F 4, N Vihjee: HARJOITUS VMS4H3 Jusi-assa-vaiennin syseeiin khdisuu akkviaheräe F() = sin. Syseein aliudiksi resnanssissa ω = ωr iaaan 5,8. Heräeen aajuuden llessa 80 % resnanssiaajuudesa ω r aliudiksi iaaan 4,6. Määriä syseein vaiennussuhde ζ. Vas. ζ 0, 7 Vihjee: Liieieds: Dkueni laskee ja iirää kaavan () siiryän () kuvaajan. Lisäksi iirreään kuvaaja neudesa v() ja kiihyvyydesä a().

Maahanmuuttajan työpolkuhanke Väliraportti 31.8.2003-31.12.2004

Maahanmuuttajan työpolkuhanke Väliraportti 31.8.2003-31.12.2004 Maahanmuuajan yöplkuhanke Välirapri 31.8.2003-31.12.2004 Prjekin aviee hankepääöksessä Määrällise aviee Prjekin avieena n edesauaa maahanmuuajien yöllisymisä. Tämä apahuu maahanmuuajien ammaillisen valmiuksien

Lisätiedot

SytytysjarjestelmaDIIAPCLH2.4, LH2.4 ETS

SytytysjarjestelmaDIIAPCLH2.4, LH2.4 ETS 6 SyyysjarjesemaD/APCLH 24 LH 24 ETS SyyysjarjesemaDAPCLH24 LH24 ETS 75 cy 100 122A YE 2 +30 230 1063 RO 0 1019 101A RO 25 RO 40 101C RD 25 J73 123 123A CNWH 1S CN/WH 1 13122A J 342A 22 20 YE 10 1 1CY

Lisätiedot

4 YHDEN VAPAUSASTEEN HARMONINEN PAKKOVÄ- RÄHTELY

4 YHDEN VAPAUSASTEEN HARMONINEN PAKKOVÄ- RÄHTELY Väähelyekaiikka 4. 4 YHDEN VAPAUSASTEEN HARMONINEN PAKKOVÄ- RÄHTELY 4. Johdao Mekaaise syseei ulkoisisa kuoiuksisa aiheuuvaa väähelyä saoaa akkoväähelyksi. Jos syseeissä o vaieusa, o kyseessä vaieeva akkoväähely,

Lisätiedot

LH9-1 Eräässä prosessissa kaasu laajenee tilavuudesta V1 = 3,00 m 3 tilavuuteen V2 = 4,00 m3. Sen paine riippuu tilavuudesta yhtälön.

LH9-1 Eräässä prosessissa kaasu laajenee tilavuudesta V1 = 3,00 m 3 tilavuuteen V2 = 4,00 m3. Sen paine riippuu tilavuudesta yhtälön. LH9- Eräässä rsessissa kaasu laajenee tilavuudesta = 3, m 3 tilavuuteen = 4, m3. Sen aine riiuu tilavuudesta yhtälön 0 0e mukaan. akiilla n arvt = 6, 0 Pa, α = 0, m -3 ja v =, m 3. Laske kaasun tekemä

Lisätiedot

3 Lämpölaajaneminen ja tilanyhtälöt

3 Lämpölaajaneminen ja tilanyhtälöt Läölaajaneinen ja tilanyhtälöt Läölaajeneinen POHDI J ETSI - a) Kaksisetalliläöittarissa n liitetty yhteen kaksi eri ateriaalista valistettua etalliliuskaa, jtka läölaajenevat eri tavalla Kska tinen laajenee

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 07: Yhden vapausasteen vaimenematon ominaisvärähtely

VÄRÄHTELYMEKANIIKKA SESSIO 07: Yhden vapausasteen vaimenematon ominaisvärähtely 7/ VÄRÄHTELYMEKNKK SESS 7: Yhden vapausasteen vaieneaton oinaisvärähtely JHDNT inaisvärähtely tarkoittaa ekaanisen systeein liikettä, jossa se liikkuu ilan ulkoisten herätevoiien vaikutusta. inaisvärähtely

Lisätiedot

LVM/LMA/jp 2013-03-27. Valtioneuvoston asetus. ajoneuvojen käytöstä tiellä annetun asetuksen muuttamisesta. Annettu Helsingissä päivänä kuuta 20

LVM/LMA/jp 2013-03-27. Valtioneuvoston asetus. ajoneuvojen käytöstä tiellä annetun asetuksen muuttamisesta. Annettu Helsingissä päivänä kuuta 20 LVM/LMA/jp 2013-03-27 Valioneuvoson aseus ajoneuvojen käyösä iellä anneun aseuksen uuaisesa Anneu Helsingissä päivänä kuua 20 Valioneuvoson pääöksen ukaisesi uueaan ajoneuvojen käyösä iellä anneun aseuksen

Lisätiedot

LVM/LMA/jp 2012-12-17. Valtioneuvoston asetus. ajoneuvojen käytöstä tiellä annetun asetuksen muuttamisesta. Annettu Helsingissä päivänä kuuta 20

LVM/LMA/jp 2012-12-17. Valtioneuvoston asetus. ajoneuvojen käytöstä tiellä annetun asetuksen muuttamisesta. Annettu Helsingissä päivänä kuuta 20 LVM/LMA/jp 2012-12-17 Valioneuvoson aseus ajoneuvojen käyösä iellä anneun aseuksen uuaisesa Anneu Helsingissä päivänä kuua 20 Valioneuvoson pääöksen ukaisesi, joka on ehy liikenne- ja viesinäiniseriön

Lisätiedot

VIRTAPIIRILASKUT II Tarkastellaan sinimuotoista vaihtojännitettä ja vaihtovirtaa;

VIRTAPIIRILASKUT II Tarkastellaan sinimuotoista vaihtojännitettä ja vaihtovirtaa; VITAPIIIASKUT II Tarkastellaan sinimutista vaihtjännitettä ja vaihtvirtaa; u sin π ft ja i sin π ft sekä vaihtvirtapiiriä, jssa n sarjaan kytkettyinä vastus, käämi ja kndensaattri (-piiri) ulkisen vastuksen

Lisätiedot

Tietoliikennesignaalit

Tietoliikennesignaalit ieoliikennesignaali 1 ieoliikenne inormaaion siiroa sähköisiä signaaleja käyäen. Signaali vaiheleva jännie ms., jonka vaiheluun on sisällyey inormaaioa. Signaalin ominaisuuksia voi ukia a aikaasossa ime

Lisätiedot

8 YHDEN VAPAUSASTEEN VÄRÄHTELY

8 YHDEN VAPAUSASTEEN VÄRÄHTELY Dynaiikka 8. 8 YHDEN VAPAUSASTEEN VÄRÄHTELY 8. Yleisä Koneen- ja rakenneosa voiaan ioiaa avanoaisilla saiikan ja lujuusopin eneelillä kuoriusen ollessa ajasa riippuaoia eli saaisia. Käyännössä esiinyy

Lisätiedot

W dt dt t J.

W dt dt t J. DEE-11 Piirianalyysi Harjoius 1 / viikko 3.1 RC-auon akku (8.4 V, 17 mah) on ladau äyeen. Kuinka suuri osa akun energiasa kuluu ensimmäisen 5 min aikana, kun oleeaan mooorin kuluavan vakiovirran 5 A? Oleeaan

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 15: Yhden vapausasteen vaimeneva pakkovärähtely, roottorin epätasapaino ja alustan liike

VÄRÄHTELYMEKANIIKKA SESSIO 15: Yhden vapausasteen vaimeneva pakkovärähtely, roottorin epätasapaino ja alustan liike 15/1 VÄRÄHTELYMEKANIIKKA SESSIO 15: Yhde vapausastee vaieeva pakkovärähtely, roottori epätasapaio ja alusta liike ROOTTORIN EPÄTASAPAINO Kute sessiossa VMS13 tuli esille, aiheuttaa pyörivie koeeosie epätasapaio

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2007

MAOL-Pisteitysohjeet Fysiikka kevät 2007 MAOL-Pisteityshjeet Fysiikka kevät 007 Tyypillisten virheiden aiheuttaia pisteenetyksiä (6 pisteen skaalassa): - pieni laskuvirhe -/3 p - laskuvirhe, epäielekäs tuls, vähintään - - vastauksessa yksi erkitsevä

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 16: Yhden vapausasteen vaimeneva pakkovärähtely, yleinen jaksollinen kuormitus

VÄRÄHTELYMEKANIIKKA SESSIO 16: Yhden vapausasteen vaimeneva pakkovärähtely, yleinen jaksollinen kuormitus 6/ VÄRÄHTELYMEKANIIKKA SESSIO 6: Yhde vpussee vimeev poväähely, yleie jsollie uomius YLEINEN JAKSOLLINEN KUORMITUS Hmois heäeä vsv pysyvä poväähely lusee löyyy helposi oeilemll. Hmoise heäee eoi void hyödyää

Lisätiedot

Sopimuksenteon dynamiikka: johdanto ja haitallinen valikoituminen

Sopimuksenteon dynamiikka: johdanto ja haitallinen valikoituminen Soimukseneon dynamiikka: johdano ja haiallinen valikoiuminen Ma-2.442 Oimoinioin seminaari Elise Kolola 8.4.2008 S yseemianalyysin Laboraorio Esielmä 4 Elise Kolola Oimoinioin seminaari - Kevä 2008 Esiyksen

Lisätiedot

DNA OY:N LAUSUNTO KUSTANNUSSUUNTAUTUNEEN HINNAN MÄÄRITTELYYN SOVELLETTAVASTA MENETELMÄSTÄ SUOMEN TELEVISIOLÄHETYSPALVELUIDEN MARKKINALLA

DNA OY:N LAUSUNTO KUSTANNUSSUUNTAUTUNEEN HINNAN MÄÄRITTELYYN SOVELLETTAVASTA MENETELMÄSTÄ SUOMEN TELEVISIOLÄHETYSPALVELUIDEN MARKKINALLA 1 (6) Vivi 1110/230/2013 DNA OY:N LAUSUNTO KUSTANNUSSUUNTAUTUNEEN HINNAN MÄÄRITTELYYN SOVELLETTAVASTA MENETELMÄSTÄ SUOMEN TELEVISIOLÄHETYSPALVELUIDEN MARKKINALLA [Liikesalaisuudet merkitty hakasulkein]

Lisätiedot

REKISTERINPITÄJÄN MUUTOKSET: Toimintamalli muutostilanteessa

REKISTERINPITÄJÄN MUUTOKSET: Toimintamalli muutostilanteessa Rekisterinpitäjän muutkset 1(7) REKISTERINPITÄJÄN MUUTOKSET: Timintamalli muutstilanteessa Ptilasasiakirjan rekisterinpitäjä: alkutilanne Tiet ptilaan hidssa syntyvien asiakirjjen rekisterinpitäjästä tallennetaan

Lisätiedot

pienempää, joten vektoreiden välinen kulma voidaan aina rajoittaa välille o. Erikoisesti on

pienempää, joten vektoreiden välinen kulma voidaan aina rajoittaa välille o. Erikoisesti on 5 Pistetul ja sen svellutuksia Kun kahdella vektrilla, a ja b n hteinen alkupiste, niiden määräämät pulisurat jakavat tasn kahteen saan, kahteen kulmaan, jtka vat tistensa eksplementtikulmia, siis kulmia,

Lisätiedot

Fy06 Koe 20.5.2014 Kuopion Lyseon lukio (KK) 1/6

Fy06 Koe 20.5.2014 Kuopion Lyseon lukio (KK) 1/6 Fy06 Ke 0.5.04 Kupin Lysen luki (KK) /6 6p/tehtävä.. Kaksi varattua palla rikkuu lankjen varassa lähellä tisiaan. Pallt vetävät tisiaan puleensa 0,66 N vimalla. Pienemmän palln varaus n kaksinkertainen

Lisätiedot

5. Trigonometria. 5.1 Asteet ja radiaanit. Radiaanit saadaan lausekkeesta. Kun kulma on v radiaania ja n astetta, tästä seuraa, että 180

5. Trigonometria. 5.1 Asteet ja radiaanit. Radiaanit saadaan lausekkeesta. Kun kulma on v radiaania ja n astetta, tästä seuraa, että 180 5. Trignmetria 5.1 Asteet ja radiaanit Radiaanit saadaan lasekkeesta v b r. Kn klma n v radiaania ja n astetta, tästä seraa, että v n 180. Basic Frmat -tilaksi vimme valita Radian, Degree tai Grad. Käsittelemme

Lisätiedot

SMG-1100 Piirianalyysi I, kesäkurssi, harjoitus 2(3) Tehtävien ratkaisuehdotukset

SMG-1100 Piirianalyysi I, kesäkurssi, harjoitus 2(3) Tehtävien ratkaisuehdotukset SMG- Piirianalyysi, kesäkurssi, harjitus (3) Tehtävien ratkaisuehdtukset 6 Tarkitus n laskea V ja eveninin ekvivalentin avulla Tämä tarkittaa sitä, että mudstetaan kytkennälle eveninin ekvivalentti vastuksen

Lisätiedot

KULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN

KULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN KULMMODULOITUJEN SIGNLIEN SPEKTRIN LSKEMINEN 1 (3) (3) Spekri laskeie siisaoalle Kulaoduloidu sigaali spekri johaie o yöläsä epälieaarisuudesa johue (epälieaarise aalyysi ova yleesä hakalia). Se voidaa

Lisätiedot

Mittaustekniikan perusteet, piirianalyysin kertausta

Mittaustekniikan perusteet, piirianalyysin kertausta Miausekniikan perusee, piirianalyysin kerausa. Ohmin laki: =, ai = Z ( = ännie, = resisanssi, Z = impedanssi, = vira). Kompleksiluvu Kompleksilukua arviaan elekroniikassa analysoiaessa piireä, oka sisälävä

Lisätiedot

Luento 9. Epälineaarisuus

Luento 9. Epälineaarisuus Lueno 9 Epälineaarisuus 9..7 Epälineaarisuus Tarkasellaan passiivisa epälineaarisa komponenia u() y() f( ) Taylor-sarjakehielmä 3 y f( x) + f '( x) ( x x) + f ''( x) ( x x) + f ''( x) ( x x) +...! 3! 4!

Lisätiedot

Harjoitus 5 (viikko 40)

Harjoitus 5 (viikko 40) Mikäli tehtävissä n jtain epäselvää, laita sähköpstia vastuupettajalle (jrma.laurikkala@uta.fi). Muista nudattaa hyvää hjelminti tapaa muun muassa kdia kmmentimalla ja sisentämällä. Kats lisää hjeita luentmateriaalin

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 4, ratkaisuehdotukset

DEE Lineaariset järjestelmät Harjoitus 4, ratkaisuehdotukset D-00 ineaarise järjeselmä Harjoius 4, rakaisuehdoukse nnen kuin mennään ämän harjoiuksen aihepiireihin, käydään läpi yksi huomionarvoinen juu. Piirianalyysin juuri suorianee opiskelija saaava ihmeellä,

Lisätiedot

SPL TAMPEREEN PIIRI: SEURATUTOROINTI

SPL TAMPEREEN PIIRI: SEURATUTOROINTI SPL TAMPEREEN PIIRI: SEURATUTOROINTI Tampellan esplanadi 6, 33100 Tampere, puh. 010 841 1880, fax 010 841 1888, www.pallliitt.fi/tampere Jaettu vastuu auttaa yhteisöä kehittymään Ihmisyhteisöt rakentuvat

Lisätiedot

Harjoitus 1. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa [a), b)] ja laske c) kohdan tehtävä.

Harjoitus 1. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa [a), b)] ja laske c) kohdan tehtävä. Kotitehtävät palautetaan viimeistään keskiviikkona 2.3. ennen luentojen alkua eli klo 14:00 mennessä puiseen kyyhkyslakkaan, jonka numero on 9. Arvostellut kotitehtäväpaperit palautetaan laskutuvassa.

Lisätiedot

Kuopion kaupunki Pöytäkirja 1/2016 1 (1) Kaupunkirakennelautakunta 7 27.01.2016. 7 Asianro 201/10.00.02.01/2016

Kuopion kaupunki Pöytäkirja 1/2016 1 (1) Kaupunkirakennelautakunta 7 27.01.2016. 7 Asianro 201/10.00.02.01/2016 Kupin kaupunki Pöytäkirja 1/2016 1 (1) 7 Asianr 201/10.00.02.01/2016 Puijnlaaksn etelärinteen tnttien luvutusehdt Kiinteistöjhtaja Jari Kyllönen Maamaisuuden hallintapalvelujen tukipalvelut Tekninen lautakunta

Lisätiedot

MÄNTTÄ-VILPPULAN KAUPUNKI. Mustalahden asemakaava Liikenneselvitys. Työ: E23641. Tampere 18.5.2010

MÄNTTÄ-VILPPULAN KAUPUNKI. Mustalahden asemakaava Liikenneselvitys. Työ: E23641. Tampere 18.5.2010 MÄNÄ-VLPPULAN KAUPUNK Musalahden asemakaava Liikenneselviys yö: E ampere 8..00 ARX Ympärisö Oy PL 0 ampere Puhelin 00 000 elefax 00 00 www.airix.fi oimiso: urku, ampere, Espoo ja Oulu Mänä-Vilppulan kaupunki,

Lisätiedot

Huomaa, että aika tulee ilmoittaa SI-yksikössä, eli sekunteina (1 h = 3600 s).

Huomaa, että aika tulee ilmoittaa SI-yksikössä, eli sekunteina (1 h = 3600 s). DEE- Piirianalyysi Ykkösharkan ehävien rakaisuehdoukse. askeaan ensin, kuinka paljon äyeen ladaussa akussa on energiaa. Tämä saadaan laskeua ehäväpaperissa anneujen akun ieojen 8.4 V ja 7 mah avulla. 8.4

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi

VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi 02/1 VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi VAPAUSASTEET Valittaessa systeeille lasentaallia tulee yös sen vapausasteiden luuäärä äärätysi. Tää taroittaa seuraavaa: Lasentaallin

Lisätiedot

CAVERION OYJ:N HALLITUKSEN TYÖJÄRJESTYS. 1. Hallituksen tehtävien ja toiminnan perusta. 2. Hallituksen kokoonpano ja valintamenettely

CAVERION OYJ:N HALLITUKSEN TYÖJÄRJESTYS. 1. Hallituksen tehtävien ja toiminnan perusta. 2. Hallituksen kokoonpano ja valintamenettely CAVERION OYJ:N HALLITUKSEN TYÖJÄRJESTYS 1. Hallituksen tehtävien ja timinnan perusta Hallituksen tehtävät ja timintaperiaatteet perustuvat Sumen lainsäädäntöön, erityisesti sakeyhtiölakiin ja arvpaperimarkkinalakiin

Lisätiedot

Automaatiojärjestelmät 18.3.2010 Timo Heikkinen

Automaatiojärjestelmät 18.3.2010 Timo Heikkinen Autmaatijärjestelmät 18.3.2010 Tim Heikkinen AUT8SN Malliratkaisu 1 Kerr muutamalla lauseella termin tarkittamasta asiasta! (2 p / khta, yhteensä 6 p) 1.1 Hajautus (mitä tarkittaa, edut, haitat) Hajautuksella

Lisätiedot

KUULEMINEN KURINPITOMENETTELYSSÄ

KUULEMINEN KURINPITOMENETTELYSSÄ www.ylikraka.fi KUULEMINEN KURINPITOMENETTELYSSÄ Urheilujuridiikan päivä 5.11.2015 asianajaja Antti Linna Esityksen aiheet Vastapulen kuulemisen periaate Sääntely Oikea ja riittävä kuuleminen Case H vs.

Lisätiedot

Ongelma 1: Mistä joihinkin tehtäviin liittyvä epädeterminismi syntyy?

Ongelma 1: Mistä joihinkin tehtäviin liittyvä epädeterminismi syntyy? Ongelma : Mistä jihinkin tehtäviin liittyvä epädeterminismi syntyy? 0-0 Lasse Lensu Ongelma : Miten vidaan pelata algritmisesti? 0-0 Lasse Lensu Ongelma : Onk mahdllista pelata ptimaalisesti? 0-0 Lasse

Lisätiedot

Rakennusosien rakennusfysikaalinen toiminta Ralf Lindberg Professori, Tampereen teknillinen yliopisto ralf.lindberg@tut.fi

Rakennusosien rakennusfysikaalinen toiminta Ralf Lindberg Professori, Tampereen teknillinen yliopisto ralf.lindberg@tut.fi Rakennusosien rakennusfysikaalinen oimina Ralf Lindber Professori, Tampereen eknillinen yliopiso ralf.lindber@u.fi Rakenneosien rakennusfysikaalisen oiminnan ymmärämiseksi on välämäönä piirää kolme eri

Lisätiedot

EPÄLINEAARISET KULMAMODULAATIOT VAIHEMODULAATIO (PM) JA TAAJUUSMODULAATIO (FM)

EPÄLINEAARISET KULMAMODULAATIOT VAIHEMODULAATIO (PM) JA TAAJUUSMODULAATIO (FM) 1 EPÄLINERISET KULMMODULTIOT VIHEMODULTIO PM J TJUUSMODULTIO FM Mien PM a FM eroava oisisaan? Millainen on kapeakaisainen kulmamodulaaori? 521357 Tieoliikenneekniikka I Osa 14 Kari Kärkkäinen Kevä 2015

Lisätiedot

V a a liv o itto. H a a s ta tte lu Suomen S o sia lid e m o k ra a tissa 18/

V a a liv o itto. H a a s ta tte lu Suomen S o sia lid e m o k ra a tissa 18/ V a a liv o itto. H a a s ta tte lu Suomen S o sia lid e m o k ra a tissa 18/7 1933. PUOLUE Et'. MI VAALIVOITTO YLITTI ROHKEE i MATKIN ODOTUKSET. Jos v a a lit o l i s i to im ite ttu vuosi s i t t e n,

Lisätiedot

t P1 `UT. Kaupparek. nro Y-tunnus Hämeenlinnan. hallinto- oikeudelle. Muutoksenhakijat. 1( UiH S<

t P1 `UT. Kaupparek. nro Y-tunnus Hämeenlinnan. hallinto- oikeudelle. Muutoksenhakijat. 1( UiH S< 1(0 1 4 1 1 4 UiH 0 0 0 1 S< A S I A N A J O T O I M I S T O O S S I G U S T A F S S O N P L 2 9, Ra u h a n k a t u 2 0, 1 5 1 1 1 L a h t i P u h e l i n 0 3 / 7 8 1 8 9 6 0, G S M 0 5 0 0 / 8 4 0 5

Lisätiedot

1.1.2015. Toimituskohteen paikka määritellään mittauslaitteiston sijainnin mukaan.

1.1.2015. Toimituskohteen paikka määritellään mittauslaitteiston sijainnin mukaan. 1 (5 ) Gasum Energiapalvelut Oy TEHOTEMPO ALKAEN (svelletaan yli 1,2 MW:n laitksiin) 1. KAASULIITTYMÄ 1.1 Timituskhde ja timitusraja Timituskhteen paikka määritellään mittauslaitteistn sijainnin mukaan.

Lisätiedot

KARTIOHAMMASPYÖRÄT. Tekniset tiedot OIKEA ASENNUSMITTA LIIAN PIENI ASENNUSMITTA LIIAN SUURI ASENNUSMITTA 1:26

KARTIOHAMMASPYÖRÄT. Tekniset tiedot OIKEA ASENNUSMITTA LIIAN PIENI ASENNUSMITTA LIIAN SUURI ASENNUSMITTA 1:26 KRTIOMMSPYÖRÄT Tekniset tieot Kartiohammasvaihe on vaihe, jossa on pituussuuntaiset ristiakselit. Tämä eellyttää useimmissa tapauksissa vapaasti kantavaa laakerointia. isäksi on käytettävä melko järeitä

Lisätiedot

b) Esitä kilpaileva myötöviivamekanismi a-kohdassa esittämällesi mekanismille ja vertaile näillä mekanismeilla määritettyjä kuormitettavuuksia (2p)

b) Esitä kilpaileva myötöviivamekanismi a-kohdassa esittämällesi mekanismille ja vertaile näillä mekanismeilla määritettyjä kuormitettavuuksia (2p) LUT / Teräsrakenee/Timo Björk BK80A30: Teräsrakenee II:.5.016 Oheismaeriaalin käyö EI salliua, laskimen käyö on salliua, lausekkeia ehäväosion lopussa Vasaukse laadiaan ehäväpaperille, joka palaueava,

Lisätiedot

Ongelma 1: Mistä joihinkin tehtäviin liittyvä epädeterminismi syntyy?

Ongelma 1: Mistä joihinkin tehtäviin liittyvä epädeterminismi syntyy? Ongelma : Mistä jihinkin tehtäviin liittyvä epädeterminismi syntyy? 0-0 Lasse Lensu Ongelma : Miten vidaan pelata algritmisesti? 0-0 Lasse Lensu Ongelma : Onk mahdllista pelata ptimaalisesti? 0-0 Lasse

Lisätiedot

5. Vakiokertoiminen lineaarinen normaaliryhmä

5. Vakiokertoiminen lineaarinen normaaliryhmä 1 MAT-145 LAAJA MATEMATIIKKA 5 Tampereen eknillinen yliopiso Riso Silvennoinen Kevä 21 5. Vakiokeroiminen lineaarinen normaaliryhmä Todeaan ensin ilman odisuksia (ulos on syvällinen) rakaisujen olemassaoloa

Lisätiedot

derivaatta pisteessä (YOS11) a) Näytä, että a n+1 > a n, kun n = 1, 2, 3,.

derivaatta pisteessä (YOS11) a) Näytä, että a n+1 > a n, kun n = 1, 2, 3,. Matematiikka, MAA9. a) Ratkaise yhtälö tan (YOS) Kulma on välillä [, 6]. Ratkaise asteen tarkkuudella seuraavat yhtälöt: b) sin c) cos (YOs). Kulmalle [9,6 ] on voimassa sin = 8 7. Määritä cos ja tan..

Lisätiedot

YRITYSKOHTAISEN TEHOSTAMISTAVOITTEEN MÄÄRITTELY 1 YRITYSKOHTAISEN TEHOSTAMISPOTENTIAALIN MITTAAMINEN

YRITYSKOHTAISEN TEHOSTAMISTAVOITTEEN MÄÄRITTELY 1 YRITYSKOHTAISEN TEHOSTAMISPOTENTIAALIN MITTAAMINEN ENERGIAMARKKINAVIRASTO 1 Le 2 Säkön jakeluverkkoomnnan yryskoasen eosamsavoeen määrely YRITYSKOHTAISEN TEHOSTAMISTAVOITTEEN MÄÄRITTELY Asanosanen: Vaasan Säköverkko Oy Lyy pääökseen dnro 491/424/2007 Energamarkknavraso

Lisätiedot

Derivoimalla ensimmäinen komponentti, sijoittamalla jälkimmäisen derivaatta siihen ja eliminoimalla x. saadaan

Derivoimalla ensimmäinen komponentti, sijoittamalla jälkimmäisen derivaatta siihen ja eliminoimalla x. saadaan 87 5. Eliminoinimeneely Tarkaellaan -kokoia vakiokeroimia yeemiä + x a a x a x + a x b() x = = = +. a a x a x a x b () (3) b() x + Derivoimalla enimmäinen komponeni, ijoiamalla jälkimmäien derivaaa iihen

Lisätiedot

Jäykän kappaleen tasokinetiikka harjoitustehtäviä

Jäykän kappaleen tasokinetiikka harjoitustehtäviä ynmiikk 1 Liite lukuun 6. Jäykän kppleen tskinetiikk - hrjitustehtäviä 6.1 vlvpkettiutn mss n 1500 kg. ut lähtee levst liikkeelle 10 % ylämäkeen j svutt vkikiihtyvyydellä npeuden 50 km / h 1 10 60 m mtkll.

Lisätiedot

1 Excel-sovelluksen ohje

1 Excel-sovelluksen ohje 1 (11) 1 Excel-sovelluksen ohje Seuraavassa kuvaaan jakeluverkonhalijan kohuullisen konrolloiavien operaiivisen kusannusen (SKOPEX 1 ) arvioimiseen arkoieun Excel-sovelluksen oimina, mukaan lukien sovelluksen

Lisätiedot

Y56 Mikroteorian jatkokurssin I välikoe Mallivastaus

Y56 Mikroteorian jatkokurssin I välikoe Mallivastaus Y56 Mikrterian jatkkurssin I välike 4..00 Mallivastaus I OSA Mnivalintakysymykset (ma. 0p). Rastita ikea vaihteht. Oikeita vastauksia n vain yksi. BOLDATTU väite n ikea vastaus. Budjettirajite: Js vidaan

Lisätiedot

Taustaa KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT. Jukka Talvitie, Toni Levanen & Mikko Valkama TTY / Tietoliikennetekniikka

Taustaa KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT. Jukka Talvitie, Toni Levanen & Mikko Valkama TTY / Tietoliikennetekniikka IMA- Exurso: Kompleksluvu ja radosgnaal / KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT Tausaa IMA- Exurso: Kompleksluvu ja radosgnaal / Kakk langaon vesnä ja radoeolkenne (makapuhelme, WLAN, ylesrado

Lisätiedot

Liite III. Muutoksia valmisteyhteenvedon ja pakkausselosteen tiettyihin kohtiin

Liite III. Muutoksia valmisteyhteenvedon ja pakkausselosteen tiettyihin kohtiin Hum! Liite III Muutksia valmisteyhteenvedn ja pakkausselsteen tiettyihin khtiin Kyseessä levat valmisteyhteenvedn ja pakkausselsteen khdat vat lausuntpyyntömenettelyn tulksia. Jäsenvaltin timivaltaiset

Lisätiedot

Maahantuojat: omavalvontasuunnitelman ja sen toteutumisen tarkastuslomakkeen käyttöohje

Maahantuojat: omavalvontasuunnitelman ja sen toteutumisen tarkastuslomakkeen käyttöohje Esittelijä Nurttila Annika Sivu/sivut 1 / 6 Maahantujat: mavalvntasuunnitelman ja sen tteutumisen tarkastuslmakkeen käyttöhje Tarkastuksen tavitteena n selvittää, nk maahantujalla mavalvntasuunnitelmassaan

Lisätiedot

Kenguru 2011 Student (lukion 2. ja 3. vuosi)

Kenguru 2011 Student (lukion 2. ja 3. vuosi) sivu 1 / 8 NIMI LUOKKA/RYHMÄ Pisteet: Kengurulikan pituus: Irrta tämä vastauslmake tehtävämnisteesta. Merkitse tehtävän numern alle valitsemasi vastausvaihteht. Jätä ruutu tyhjäksi, js et halua vastata

Lisätiedot

8 USEAN VAPAUSASTEEN SYSTEEMIN VAIMENEMATON PAKKOVÄRÄHTELY

8 USEAN VAPAUSASTEEN SYSTEEMIN VAIMENEMATON PAKKOVÄRÄHTELY Värähelymeaa 8. 8 USEAN VAPAUSASEEN SYSEEMIN VAIMENEMAON PAKKOVÄRÄHELY 8. Normaalmuoomeeelmä Usea vapausasee syseem leyhälöde (7.) raaseme vaa aava (7.7) a (7.8) homogeese yhälö ylese raasu { } lsäs paovomaveora

Lisätiedot

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2, MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +

Lisätiedot

Mallivastaukset KA5-kurssin laskareihin, kevät 2009

Mallivastaukset KA5-kurssin laskareihin, kevät 2009 Mallivasaukse KA5-kurssin laskareihin, kevä 2009 Harjoiukse 8 (viikko 14) Tehävä 1 LAD-käyrä siiryy ylöspäin. Ulkomaisen hinojen nousessa oman maan reaalinen vaihokurssi heikkenee 1 vaihoase vahvisuu IS-käyrä

Lisätiedot

Vanhoja koetehtäviä. Analyyttinen geometria 2016

Vanhoja koetehtäviä. Analyyttinen geometria 2016 Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.

Lisätiedot

S205 Lineaarinen hammashihnaservokäyttö (0,9 op)

S205 Lineaarinen hammashihnaservokäyttö (0,9 op) LTY / Säkötekniikan osasto Säätö- ja digitaaitekniikan aboratorio BL40A0600 Säätötekniikan ja signaainkäsitteyn työkurssi S05 Lineaarinen aasinaservokäyttö (09 op) Työoje OHDANTO Työssä käsiteään etusivun

Lisätiedot

Testaustyövälineen kilpailutus tietopyyntö

Testaustyövälineen kilpailutus tietopyyntö T 1 (6) Tietpyyntö Tietpyyntö Testaustyövälineen kilpailutus tietpyyntö Valtin tiet- ja viestintätekniikkakeskus Valtri www.valtri.fi T 2 (6) Tietpyyntö Sisällysluettel 1 Tausta... 3 2 Hankinta, jhn tietpyyntö

Lisätiedot

RIL 256-2010 Suomen Rakennusinsinöörien Liitto RIL ry

RIL 256-2010 Suomen Rakennusinsinöörien Liitto RIL ry Suomen Rakennusinsinöörien Liio RIL ry Julkisen hankinojen kehiämismalli Tuoavuuden paranaminen TUKEFIN-meneelmällä 2 RIL 256-2010 RILin julkaisuilla on oma koisivu, joka löyyy osoieesa www.ril.fi Kirjakauppa

Lisätiedot

Jäykän kappaleen tasokinematiikka harjoitustehtäviä

Jäykän kappaleen tasokinematiikka harjoitustehtäviä namiikka 1 Liite lukuun 5. Jäkän kappaleen taskinematiikka - hajitustehtäviä 5.1 Vauhtipöä pöii vapaasti pöimisnpeudella 1800 / min mötäpäivään, kun siihen alkaa vaikuttaa hetkellä t = 0 vastapäiväinen

Lisätiedot

KELAN MÄÄRÄÄMÄT TYÖKYVYN ARVIOINTITUTKIMUKSET (SVL 15 L 13 JA KEL 61 ) VUOSINA 2015 2016

KELAN MÄÄRÄÄMÄT TYÖKYVYN ARVIOINTITUTKIMUKSET (SVL 15 L 13 JA KEL 61 ) VUOSINA 2015 2016 TEOS TUMA Palvelukuvaus Liite 1 KELAN MÄÄRÄÄMÄT TYÖKYVYN ARVIOINTITUTKIMUKSET (SVL 15 L 13 JA KEL 61 ) VUOSINA 2015 2016 Palvelukuvaus Liite 1 Kela KANSANELÄKELAITOS FOLKPENSIONSANSTALTEN 0 (31) PL 450,

Lisätiedot

KITI - kilpailu anomuksesta ajoon. Ohjeistus kilpailujen anomisesta ja muokkaamisesta KITIssä.

KITI - kilpailu anomuksesta ajoon. Ohjeistus kilpailujen anomisesta ja muokkaamisesta KITIssä. KITI - kilpailu anmuksesta ajn Ohjeistus kilpailujen anmisesta ja mukkaamisesta KITIssä. Kilpailun anminen kalenteriin KITIssä Kilpailun vi ana kalenteriin KITIssä henkilö, jlla n jäsenrekisterin ylläpitäjän

Lisätiedot

RATKAISUT: 3. Voimakuvio ja liikeyhtälö

RATKAISUT: 3. Voimakuvio ja liikeyhtälö Phyica 9. paino (8) 3. Voiakuvio ja liikeyhtälö : 3. Voiakuvio ja liikeyhtälö 3. a) Newtonin I laki on nieltään jatkavuuden laki. Kappale jatkaa liikettään uoraviivaieti uuttuattoalla nopeudella tai pyyy

Lisätiedot

Biologian yhteisvalinta 2014 / Mallivastaus Kysymys 1

Biologian yhteisvalinta 2014 / Mallivastaus Kysymys 1 Bilgian yhteisvalinta 2014 / Mallivastaus Kysymys 1 Mitkä tekijät vaikuttavat kasviplanktnin määrään Sumen järvissä? A) Aiheen käsittelyn vaatimat määritelmät: 6 p Kasviplanktnin määritelmä: levät ja sinibakteerit,

Lisätiedot

järjestelmät Luento 4

järjestelmät Luento 4 DEE- Lineaarise järjeselmä Lueno 4 Lineaarise järjeselmä Riso Mionen 3.7.4 Lueno 3 - Recap Lineaarisen differenssiyhälöiden raaiseminen Impulssivaseen äsie Impulssivase ja onvoluuiosumma Lineaarise järjeselmä

Lisätiedot

Kuva 1: Kojeen rakenne

Kuva 1: Kojeen rakenne 1-10 V -kiertptentimetri Tilausnr. : 2891 10 1-10 V -painikekiertptentimetri, 1s ksketin Tilausnr. : 2896 10 1-10 V -kiertptentimetri peitelevyllä Tilausnr. : 9 2891.. Käyttö- ja asennushje 1 Turvallisuushjeet

Lisätiedot

Kaupunginhallitus 12 12.01.2015 Kaupunginhallitus 281 30.11.2015 Kaupunginhallitus 296 07.12.2015

Kaupunginhallitus 12 12.01.2015 Kaupunginhallitus 281 30.11.2015 Kaupunginhallitus 296 07.12.2015 Kaupunginhallitus 12 12.01.2015 Kaupunginhallitus 281 30.11.2015 Kaupunginhallitus 296 07.12.2015 Lausunto Oinaskylän tuulivoimaosayleiskaavaehdotuksesta 774/613/2014 Kaupunginhallitus 12.01.2015 12 Vesannon

Lisätiedot

Finanssipolitiikan tehokkuudesta Yleisen tasapainon tarkasteluja Aino-mallilla

Finanssipolitiikan tehokkuudesta Yleisen tasapainon tarkasteluja Aino-mallilla BoF Online 3 29 Finanssipoliiikan ehokkuudesa Yleisen asapainon arkaseluja Aino-mallilla Juha Kilponen Tässä julkaisussa esiey mielipiee ova kirjoiajan omia eiväkä välämää edusa Suomen Pankin kanaa. Suomen

Lisätiedot

ANALOGISEN VÄRITELEVISION RAKENNE JA TOIMINTA

ANALOGISEN VÄRITELEVISION RAKENNE JA TOIMINTA ANALOGISEN VÄRITELEVISION RAKENNE JA TOIMINTA Tieoliikenneekniikka I 521359A Kari Kärkkäinen Osa 8 1 23 Videosignaalin VSB-odulaaio analogisessa TV-järj. Värielevision videosignaalin siirrossa käyeään

Lisätiedot

Hävitä kaikki käyttämättömät säiliöt, joita tämä markkinoilta poistaminen koskee.

Hävitä kaikki käyttämättömät säiliöt, joita tämä markkinoilta poistaminen koskee. 5.7.2013 Medtrnic-viite: FA586 Hyvä Paradigm-insuliinipumpun käyttäjä Tällä kirjeellä ilmitamme, että Medtrnic MiniMed pistaa vapaaehtisesti markkinilta Paradigminsuliinipumpuissamme käytettävien MMT-326A-mallin

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 13 Black-Scholes malli optioiden hinnoille

Rahoitusriskit ja johdannaiset Matti Estola. luento 13 Black-Scholes malli optioiden hinnoille Rahoiusriski ja johannaise Mai Esola lueno 3 Black-choles malli opioien hinnoille . Ion lemma Japanilainen maemaaikko Kiyoshi Iō oisi seuraavana esieävän lemman vuonna 95 arikkelissaan: On sochasic ifferenial

Lisätiedot

Läsnä Seppänen Hannes puheenjohtaja Matero Riina-Maria talouspäällikkö, sihteeri. Juntunen Johanna varajäsen Kinnunen Pirjo-Riitta jäsen Köngäs Martti

Läsnä Seppänen Hannes puheenjohtaja Matero Riina-Maria talouspäällikkö, sihteeri. Juntunen Johanna varajäsen Kinnunen Pirjo-Riitta jäsen Köngäs Martti 1(5) Aika Keskiviikkna 30.3.2016 kl 17 Paikka Seurakuntasali, Pulanka Läsnä Seppänen Hannes puheenjhtaja Mater Riina-Maria taluspäällikkö, sihteeri Milanen Erkki varapuheenjhtaja Herukka Terttu Juntunen

Lisätiedot

44 Toimiala ympäristölautakunta. Kohta D ympäristölautakunta lisätään. 46 Ympäristölautakunnan ratkaisuvalta

44 Toimiala ympäristölautakunta. Kohta D ympäristölautakunta lisätään. 46 Ympäristölautakunnan ratkaisuvalta Ympäristölautakunta 222 14.06.2016 Kaupunginhallitus 6 20.06.2016 Johtosääntömuutokset / ympäristölautakunta 361/00.01.01/2016 Ympla 14.06.2016 222 Valmistelija: Rakennustarkastaja Jorma Hankaniemi Maankäyttö-

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE Matematiikan ke 5.6.014 Nimi: Henkilötunnus: VASTAUSOHJEET: 1. Keaika n tuntia (kl 1:00 14:00). Kkeesta saa pistua aikaisintaan kl 1:30..

Lisätiedot

TEHTÄVÄKORI Monisteita matikkaan. Riikka Mononen

TEHTÄVÄKORI Monisteita matikkaan. Riikka Mononen ---------------------------------------- TEHTÄVÄKORI Monisteita matikkaan Riikka Mononen ---------------------------------------- Tehtäväkori 2016 TEHTÄVÄKORI Monisteita matikkaan -materiaali on kokoelma

Lisätiedot

Funktion määrittely (1/2)

Funktion määrittely (1/2) Funktion määrittely (1/2) Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon a täsmälleen yhden B:n alkion b. Merkitään b = f (a). Tässä A = M f on f :n määrittelyjoukko, B on f :n maalijoukko.

Lisätiedot

MENETTELYTAPAOHJE RAKENNUTTAMINEN HSY JA HELSINGIN KAUPUNKI 17.6.2015 Liite 3

MENETTELYTAPAOHJE RAKENNUTTAMINEN HSY JA HELSINGIN KAUPUNKI 17.6.2015 Liite 3 Sisällysluettel 1 Menettelytapahje ja sen käyttö... 2 2 Hankinta... 2 2.1 Urakan valmistelu ja kilpailutus... 2 2.2 Tarjus... 3 2.3 Tilaus... 3 2.4 Lisä- ja muutstyöt... 3 3 Valvnta... 4 4 Vastaantt...

Lisätiedot

ARKISTOLUETTELO SOSIAALI- JA TERVEYDENHUOLTO LASTENVALVOJA

ARKISTOLUETTELO SOSIAALI- JA TERVEYDENHUOLTO LASTENVALVOJA Sivu 1(16) Aa Saapuneiden kirjeiden diaarit 1968 1977 1 Saapuneiden kirjeiden diaarit 1968-1971 21.3.1968-31.12.1971 2 Saapuneiden kirjeiden diaarit 1972-1977 1.1.1972-9.3.1977 Sivu 2(16) Ab Lähetettyjen

Lisätiedot

Aktia-konsernin palkka- ja palkkioselvitys

Aktia-konsernin palkka- ja palkkioselvitys Aktia-knsernin palkka- ja palkkiselvitys Tämä selvitys nudattaa hallinnintikdin (1.10.2010) susitusta 47, jnka mukaan Aktian tulee selvittää Aktia Pankki Oyj:n (Aktia) timitusjhtajalle, muulle knserninjhdlle,

Lisätiedot

Monisilmukkainen vaihtovirtapiiri

Monisilmukkainen vaihtovirtapiiri Monisilmukkainen vaihovirapiiri Oeaan arkaselun koheeksi RLC-vaihovirapiiri jossa on käämejä, vasuksia ja kondensaaoreia. Kykenä Tarkasellaan virapiiriä, jossa yksinkeraiseen RLC-piiriin on kodensaaorin

Lisätiedot

Työsuojeluvaltuutettujen ajankäyttö ja vapautus työtehtävistä vuosina / Ajankäytön järjestäminen ,

Työsuojeluvaltuutettujen ajankäyttö ja vapautus työtehtävistä vuosina / Ajankäytön järjestäminen , Kaupunginhallitus 5 09.06.2014 Kaupunginhallitus 10 23.02.2015 Kaupunginhallitus 7 04.04.2016 Työsuojeluvaltuutettujen ajankäyttö ja vapautus työtehtävistä vuosina 2014-2017 / Ajankäytön järjestäminen

Lisätiedot

VIHI-Forssan seudun yritysten vihreän kilpailukyvyn ja innovaatioiden kehittäminen (2012-2013) Poistotekstiilit 2012, Workshop -ryhmät 1-4

VIHI-Forssan seudun yritysten vihreän kilpailukyvyn ja innovaatioiden kehittäminen (2012-2013) Poistotekstiilit 2012, Workshop -ryhmät 1-4 VIHI-Frssan seudun yritysten vihreän kilpailukyvyn ja innvaatiiden kehittäminen (2012-2013) Pisttekstiilit 2012, Wrkshp -ryhmät 1-4 HAMK Frssa 24.5.2012 1. Suljetun tekstiilimateriaalin kierrn kehittäminen

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.4 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vasausen piireiden, sisälöjen ja piseiysen luonnehdina ei sido ylioppilasukinolauakunnan arvoselua. Lopullisessa arvoselussa

Lisätiedot

Diskreetillä puolella impulssi oli yksinkertainen lukujono:

Diskreetillä puolella impulssi oli yksinkertainen lukujono: DEE-00 ineaarise järjeselmä Harjoius 5, rakaisuehdoukse [johdano impulssivaseeseen] Jakuva-aikaisen järjeselmän impulssivase on vasaavanlainen järjeselmäyökalu kuin diskreeillä puolellakin: impulssivase

Lisätiedot

Tämä ruutu näkyy ainoastaan esikatselutilassa.

Tämä ruutu näkyy ainoastaan esikatselutilassa. FINLAND_Decisin_Making_March_3_4cuntry_study(1) Tämä kysely n sa neljän maan vertailututkimusta, jssa tutkitaan päätöksenteka lastensujelussa Nrjassa, Sumessa, Englannissa ja Yhdysvallissa. Samat kysymykset

Lisätiedot

EEN-E1030, Thermodynamics in Energy Technology, Fall 2016 Calculation problems 6

EEN-E1030, Thermodynamics in Energy Technology, Fall 2016 Calculation problems 6 EENE00, Therdynaics in Energy Technlgy, Fall 06 Calculatin rbles 6 TETÄVÄ ON TÄTITETÄVÄ PROBLEM IS TE STAR PROBLEM Tehtävä ei le kurssin keskeistä sisältöä. Prble is nt the essential curse cntent. TETÄVÄ.

Lisätiedot

KUSTANNUSTOIMITTAJIEN TYÖEHTOSOPIMUSTA KOSKEVA NEUVOTTELU

KUSTANNUSTOIMITTAJIEN TYÖEHTOSOPIMUSTA KOSKEVA NEUVOTTELU PÖYTÄKIRJA VIESTINNÄN KESKUSLIITTO SUOMEN JOURNALISTILIITTO KUSTANNUSTOIMITTAJIEN TYÖEHTOSOPIMUSTA KOSKEVA NEUVOTTELU Aika 3.6.2016 Paikka Eteläranta 10, Helsinki Läsnä Elina Nissi edustaen VKL:a Ltta

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto)

Lisätiedot

Autettu vuotiaita myöhään maahanmuuttaneita nuoria löytämään heille soveltuva opiskelu tai työ(harjoittelu/kokeilu)paikka

Autettu vuotiaita myöhään maahanmuuttaneita nuoria löytämään heille soveltuva opiskelu tai työ(harjoittelu/kokeilu)paikka Maahanmuuajanuoren ohjaushanke MANO 2010 2013 Aueu 16 25 vuoiaia myöhään maahanmuuaneia nuoria löyämään heille soveluva opiskelu ai yö(harjoielu/kokeilu)paikka Kehiey oppivelvollisuusiän yliäneille maahanmuuajille

Lisätiedot

1 Pöytäkirja Avaa haku

1 Pöytäkirja Avaa haku D yn as t y t i et o pa l ve l u Sivu 1 / 9 Poistuminen ( Toimielimet 1 Jätelautakunta 1 Pöytäkirja 17.12.2013 Avaa haku 1 Jätelautakunta Pöytäkirja 17.12.2013 Pykälä 15 Edellinen asia 1Seuraava asia M

Lisätiedot

Asennus ja asetukset -ohje. Tikon 6.5.0

Asennus ja asetukset -ohje. Tikon 6.5.0 Tukkuu 2015 1 (6) Aditr Tikn Wrker palvelu (service) Sisällysluettel 1. Yleistä... 1 2. Rinnakkaisen instanssin asentaminen... 2 3. Rinnakkaisen instanssin pist... 4 4. Aditr Tikn Wrker palvelun Windws

Lisätiedot

MENETTELYTAPAOHJE RAKENNUTTAMINEN HSY JA KAUNIAISTEN KAUPUNKI 17.6.2015 Liite 3

MENETTELYTAPAOHJE RAKENNUTTAMINEN HSY JA KAUNIAISTEN KAUPUNKI 17.6.2015 Liite 3 VESIHUOLLON RAKENNUTTAMISEN ERITYISPIIRTEET Sisällysluettel 1 Menettelytapahje ja sen käyttö... 2 2 Hankinta... 2 2.1 Urakan valmistelu ja kilpailutus... 2 2.2 Tarjus... 3 2.3 Tilaus... 3 2.4 Lisä- ja

Lisätiedot

POHJOIS-KARJALAN SAIRAANHOITO- JA SOSIAALIPALVELUJEN KUNTAYHTYMÄN SELVITYS

POHJOIS-KARJALAN SAIRAANHOITO- JA SOSIAALIPALVELUJEN KUNTAYHTYMÄN SELVITYS PHJIS - KAR JALA SAIRAAHIT - 1 (2) JA SSIAALIPALVLUJ KUTAYHTYM Ä Jhtajaylilääkäri Itä-Sumen aluehallintvirast Kirjaam PL 5 511 MIKKLI Viite: AVI: n lausunt - ja selv ityspyyntö 15.9.214 Dnr ISAVI/443/5.7.5/213

Lisätiedot

-jter.* toi*t* p,rolirt"u rutf-i'ä"]*'* bil* * i*',,s* t *st*t*.,*g& detaanvälitaajuuoasteen rajoittirl,exrssy nqgpti{v*ediä:ifltid*,f sl&.

-jter.* toi*t* p,rolirtu rutf-i'ä]*'* bil* * i*',,s* t *st*t*.,*g& detaanvälitaajuuoasteen rajoittirl,exrssy nqgpti{v*ediä:ifltid*,f sl&. LJ ffi*sfi ril,fln U1*-vir-iinsn *nenni- i* $,gkpie eq r mk*eänii{lerl,rraa;ri,ee}1a'iry* kokernuxa iq. nioa" *e xiiå ei L*ihi* h*rm**.j& oe, Sen rplxe&si oak'åf u*ei -jer.* grpsisl&vn ähän yrr{yl*een

Lisätiedot

Taulukkolaskenta ja analytiikka (A30A01000) Excel-harjoitus 9 1/8 Avoin yliopisto Huhtikuu 2016

Taulukkolaskenta ja analytiikka (A30A01000) Excel-harjoitus 9 1/8 Avoin yliopisto Huhtikuu 2016 Taulukklaskenta ja analytiikka (A30A01000) Excel-harjitus 9 1/8 Avin ylipist Huhtikuu 2016 Oppimistavitteet: - Krk- ja kannattavuuslaskelmia Excelillä, NPV- ja IRR-funktit - Datan siistiminen pistamalla

Lisätiedot