1. Normi ja sisätulo
|
|
- Johanna Elli Jokinen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Kurssimateriaalia K3/P3-kursille syksyllä 3 83 Heikki Apiola Sisältää otteita Timo Eirolan L3-kurssin lineaarialgebramonisteesta, jonka lähdekoodin Timo on ystävällisesti antanut käyttööni Normi ja sisätulo Vektoriavaruuden määritelmässä riitti olettaa, että joukon alkioille on määritelty aksioomat toteuttavat yhteenlasku ja skalaarilla kertominen Kuitenkin monissa vektoriavaruuksissa voidaan tunnetusti tehdä muitakin laskutoimituksia Esim R :ssa tai R 3 :ssa voidaan laskea vektoreiden pituuksia, välisiä kulmia ja pistetuloja Jatkuvia funktioita voidaan kertoa keskenään, integroida, niiden maksimeja voi etsiä jne Normiavaruus on sellainen vektoriavaruus, jossa vektoreille on määritelty pituusfunktio, jota kutsutaan normiksi Sisätuloavaruus on puolestaan normiavaruus, jossa lisäksi kulmien mittaaminen on mahdollista ja erityisesti kohtisuoruus eli ortogonaalisuus on määritelty Seuraavassa tarkastellaan lähemmin, miten tällaisia pituus- ja kulmafunktioita voidaan määritellä Määritelmä Olkoon V toteuttaa K -kertoiminen vektoriavaruus Kuvaus : V R on normi, jos se () v v V () v v (3) u + v u + v u, v V (4) α v α v α K, v V Vektoriavaruutta, jossa on määritelty jokin normi kutsutaan normiavaruudeksi Esimerkki Vektoriavaruudessa R n tavallisin normi on nk euklidinen normi ( n ) x x i i Selvästi tämä toteuttaa ehdot (), () ja (4) Ominaisuuden (3) eli kolmioepäyhtälön näytämme hieman myöhemmin Muita usein käytettyjä normeja R n :ssä ovat n x x i ja x max x i i n i Näistä on helppo näyttää ominaisuudet ()-(4) Ellei toisin mainita, käytetään R n :ssä normia Avaruudessa C n käytetään myös aivan samalla tavalla määriteltyjä normeja Määritelmä Olkoon V K -kertoiminen vektoriavaruus Kuvaus, : V V K on sisätulo, jos se toteuttaa ehdot () v, v kaikilla v V () v, v v (3) u + v, w u, w + v, w kaikilla u, v, w V (4) αu, v α u, v kaikilla α K, u, v V (5) v, u u, v kaikilla u, v V Sisätulolla varustettua vektoriavaruutta sanotaan sisätuloavaruudeksi Normia kutsutaan taksikuskin normiksi Miksiköhän?
2 Reaalisessa tapauksessa (5) saa muodon v, u u, v eli reaalinen sisätulo on symmetrinen Ominaisuudet (3) ja (4) sanovat, että sisätulo on lineaarinen ensimmäisen argumentin suhteen Toisen argumentin suhteen saadaan: () u, α v + β w (5) α v + β w, u (3),(4) α v, u + β w, u α v, u + β w, u (5) α u, v + β u, w Täten sisätulo on konjugoidusti lineaarinen toisen argumentin suhteen: skalaarit saadaan ulos kompleksikonjugaatteina Reaalisessa tapauksessa sisätulo on siten lineaarinen myös toisen argumentin suhteen Vektoriavaruudesta R n tuttu vektoreiden välinen pistetulo : x, y x T y n i x i y i toteuttaa sisätulon ehdot Vastaavasti C n :n vektoreille määritellään x, y x T y n i x i y i Esimerkki Avaruudessa C[a, b voidaan määritellä f, g b f(x)g(x) dx a Ehdot ()-(5) seuraavat suoraan integraalin ominaisuuksista Esimerkiksi C[ π, π :ssä funktioiden f(x) sin x ja g(x) cos x väliset sisätulot ovat Samoin g, g π f, g π π sin x cos x dx π f, f π π sin x dx π π π sin x dx ( cos x) dx π Sisätulon tärkeä ominaisuus on, että se määrittelee heti myös normin: jos V on sisätuloavaruus, asetetaan () v v, v Sisätulon ehdoista saadaan normin ehdot (),() ja (4) helposti (3) eli kolmioepäyhtälö vaatii hieman laskemista Esitellään ensin Schwarzin epäyhtälö 3 : sisätulo ja sen avulla kaavalla () määritelty (jota vielä ei tiedetä normiksi) toteuttavat: (3) u, v u v Tod Viittaamme L3-prujuun [TE tai moninisiin oppikirjoihin Todistus on tyylipuhdas minimointitehtävä, jossa tarkastellaan toisen asteen polynomia, sopiva vaikka koulukurssiin Emme kuitenkaan tässä paneudu siihen Näytetään nyt, että kaavalla () määritelty toteuttaa normin ehdon (3) eli kolmioepäyhtälön u + v u + v Tod Käyttäen sisätulon ominaisuuksia ja Schwarzin epäyhtälöä saadaan u + v u + v, u + v u, u + u, v + v, u + v, v u + u, v + v u + u v + v ( u + v ), josta väite seuraa Lausekkeessa xt y vektorit on ajateltu n -matriiseiksi, jolloin x T on n -matriisi ja x T y on -matriisi eli skalaari 3 Täydellisemmin: Cauchy-Schwarz-Bunjakovskin epäyhtälö
3 Kysmys: Onko jokaisen normin taustalla aina sisätulo? Vastaus: Ei Esimerkiksi edellä esiintyneet (taksikuski) ja eivät ole peräisin mistään sisätulosta Ortogonaalisuus Vektorit u ja v ovat ortogonaaliset, kun u, v Ortogonaalisuus määritellään samoin kompleksikertoimisissa vektoriavaruuksissa Täten [ i ja [ i ovat ortogonaaliset C :ssa Sisätuloavaruuden vektorijoukkoa S {v,, v k } sanotaan ortogonaaliseksi, jos kaikki sen vektorit ovat keskenään ortogonaaliset: v i, v j, kun i j Ortogonaalinen vektorijoukko {v,, v n } on myös lineaarisesti riippumaton edellyttäen, että se ei sisällä nollavektoria Tämä nähdään seuraavasti Jos c v + + c n v n, otetaan tämän sisätulo v k :n kanssa, jolloin c v + + c n v n, v k c v, v k + + c k v k, v k + + c n v n, v k c k v k ja koska v k, saadaan c k Näin kaikki kertoimet saadaan yksitellen nolliksi, joten {v,, v n } on lineaarisesti riippumaton Jos ortogonaalisen joukon vektorit ovat lisäksi pituudeltaan ykkösiä kutsutaan joukkoa ortonormaaliksi Samoin, jos matriisin Q R m n sarakkeet ovat ortonormaalit (jolloin välttämättä m n ), saadaan Q T Q I Jos m > n, niin Q ei kuitenkaan ole invertoituva; sillä on vain vasemmanpuoleinen inverssi 3 Olkoon U reaalinen tai kompleksinen matriisi, jonka sarakkeet ovat ortonormaalit Tällöin 4 U U I ja Ux, Uy (Uy) Ux y U Ux y x x, y Erityisesti: unitaarisella (reaalisessa tapauksessa ortogonaalisella) matriisilla kerrottaessa vektoreiden pituudet ja niiden väliset sisätulot säilyvät Annetun vektorin koordinaatit ortonormaalin kannan suhteen on helppo laskea: Olkoon B {b,, b n } sisätuloavaruuden V ortonormaali kanta Jos v c b + + c n b n, otetaan tämän sisätulo b k :n kanssa, jolloin v, b k c k b k, b k c k Näin saadaan kaikki kertoimet Siis esitys ortonormaalissa kannassa saadaan: n v v, b k b k, kaikilla v V k Ortonormaaleja kantoja voidaan muodostaa nk GramSchmidtin prosessilla Olkoon (v, v, ) (äärellinen tai ääretön) jono lineaarisesti riippumattomia sisätuloavaruuden vektoreita Muodostetaan yhtä pitkä jono (q, q, ) ortonormaaleja vektoreita seuraavasti: (4) q v / v, w k v k k j q k w k / w k v k, q j q j, } k, 3, Tässä keskimmäisellä rivillä v k :sta poistetaan sen komponentit jo muodostetuilla suunnilla q,, q k Viimeisellä rivillä jäljelle jäävä osa normeerataan ykkösen pituiseksi Lause Edellä esitetylle Gram-Schmidtin prosessille pätee: 4 Kompleksiselle matriisille M M T ja reaaliselle M M T
4 4 a) (q, q, ) on ortonormaali b) sp(q,, q k ) sp(v,, v k ) kaikilla k Erityisesti, jos V on äärellisdimensioinen ja {v,, v n } on sen kanta, niin {q,, q n } on V :n ortonormaali kanta Tod Prosessi pyörii niin kauan, kun w k (tai v j -vektorit loppuvat) Näytetään aluksi, että b) on voimassa tähän asti Koska k v k w k q k + v k, q j q j, saadaan kaikilla k : v k sp(q,, q k ), josta sp(v,, v k ) sp(q,, q k ) Toisaalta, jokaiselle q k selvästi pätee q k sp(q,, q k, v k ) Täten induktiivisesti j q k sp(q,, q k, v k ) sp(q,, q k, v k, v k ) sp(v,, v k ) Näin kaikilla k, joten sp(q,, q k ) sp(v,, v k ) ja b) on voimassa Jos olisi w k jollakin k, tämä tarkoittaisi, että v k k j v k, q j q j sp(v,, v k ) (sillä b) on voimassa vielä edellisellä kierroksella) Mutta tämä on mahdotonta, koska v,, v k ovat lineaarisesti riippumattomat Siispä w k :t eivät koskaan tule nolliksi Todistetaan a) induktiolla: Selvästi {q } on ortonormaali Oletetaan, että {q,, q k } on ortonormaali Tällöin, kun i k, saadaan q k+, q i ( v k+ k j v k+, q j q j), q i w k+ w k+ ( v k+, q i k j v k+, q j q j, q i ) w k+ ( v k+, q i v k+, q i ) Näin q k+ on kohtisuorassa kaikkia q i, i k vastaan Selvästi q k+ Ja kun muutkin ovat keskenään ortonormaalit, {q,, q k+ } on ortonormaali Huomaa, että saatava ortonormaali joukko riippuu paitsi vektoreista v j myös niiden järjestyksestä Tehtävä Näytä, että äärellisdimensioisen sisätuloavaruuden mielivaltainen ortonormaali joukko voidaan täydentää ortonormaaliksi kannaksi Esimerkki 3 Lähdetään liikkeelle R 3 :n kannasta {v, v, v 3 } { [ [ [ },, Saadaan: q [ w [ q w 3 q 3 [ [ 3 [ [ [ [ [ [ + [
5 Näin saatiin ortonormaali kanta { [, [, [ } 5 Matriisinormi ja häiriöalttius Vektorin normi mittaa vektorin pituutta Matriiseille ja lineaarikuvauksille voidaan myös määritellä normeja Erityisen hyödyllisiksi osoittautuvat sellaiset normit, jotka on määritelty vektorinormien avulla Rajoitumme tässä tarkastelemaan vain matriisien normeja, normiavaruuksien välisten lineaarikuvausten normit määritellään samalla tavalla Olkoon jokin vektorinormi (esim tai ) Mitataan matriisin kokoa sillä, kuinka pitkiksi vektoreiksi matriisilla kerrottaessa yksikkövektorit saattavat kuvautua Niinpä matriisille A C m n asetetaan (5) A max x Ax Tässä siis oikealla puolella esiintyy vektoreiden x C n ja Ax C m normeja A A Näin määritelty A toteuttaa määritelmän neljä ehtoa: () (5):n oikealla puolella esiintyy vain ei-negatiivisia lukuja, joten A () Jos A, niin sillä on olemassa ei-nolla elementti a ij Valitaan x e j, jolloin Ax ja A Ax > (3) A + B max (A + B)x max ( Ax + Bx ) x x max Ax + max Bx A + B x x Tässä käytettiin aluksi vektorinormin kolmioepäyhtälöä (4) αa max x αax max x α Ax α A jälleen vektorinormin vastaavan ominaisuuden perusteella Matriisinormilla ja vastaavalla vektorinormilla on lisäksi ominaisuudet (harjoitustehtävä) (6) (7) (8) Ax A x, AB A B, A k A k, k,, [ aj a mj Kun halutaan korostaa, minkä vektorinormin avulla matriisinormi on määritelty käytetään vastaavaa merkkiä Esimerkiksi A max x Ax ja A max x Ax Riippuen valitusta vektorinormista matriisin normin laskeminen voi olla hankalaa tai helpompaa - ja -normit ovat laskuissa monesti käteviä:
6 6 Lause Olkoon A C m n Tällöin A max j n i a ij ja A max i m n a ij j Tod Jos x n k x k, niin n n Ax (Ax) i a ik x k a ik x k Siten A max j n niin i k i n x k a ik i joten A max j n m i a ij k n k x k max j n i k i m i a ij Toisaalta, jos l on siten, että i a i l max j n a ij, i [ Ae l a l a m l -normia koskeva väite jätetään harjoitustehtäväksi a ij max j n a i l, i a ij i Tehtävä Millaisia yleisesti päteviä epäyhtälöitä saat matriisin A C n n normien A, A ja A välille? Katso vastaavien vektorinormien välisiä epäyhtälöitä (tehtävä??) Seuraava tärkeä tulos tulee käyttöön vielä useasti Loppupuolella esitämme sille myös toisen todistuksen Lause 3 Olkoon A C n n siten, että A < Tällöin I A on invertoituva ja (I A) A Tod Jos I A ei ole invertoituva, niin on olemassa x C n siten, että x ja (I A)x Tällöin A Ax x, mikä on ristiriita Jos x ja v (I A) x, niin Siten v A (I A)v v Av v A v ( A ) v Häiriöalttius Kun käytännön tehtävissä päädytään lineaariseen malliin Ax b, niin usein yhtälöiden kertoimissa ja datassa eli matriisin A tai vektorin b alkioissa, on epävarmuutta Kertoimet on voitu saada esimerkiksi mittausten tuloksena Halutaan tietää, miten suuri virhe tästä voi aiheutua ratkaisuun x Tarkastellaan ensin, miten δb :n suuruinen häiriövektori oikean puolen vektorissa vaikuttaa ratkaisuun Merkitään δx :llä ratkaisuvektorin muutosta Vähentämällä yhtälöt Ax b ja A(x + δx) b + δb puolittain, saadaan δx A δb Siten absoluuttisen virheen normille saadaan yläraja (9) δx A δb Lineaarisen yhtälöryhmän ratkaisun voi kerroinmatriisia skaalaamalla saada pienemmäksi, jolloin myös absoluuttinen virhe pienenee Paremmin ratkaisun virhettä kuvaakin suhteellinen virhe δx / x Koska () b A x
7 7 niin epäyhtälöistä (9) ja () saadaan suhteelliselle virheelle yläraja-arvio Tämän perusteella asetetaan Määritelmä 3 Matriisin häiriöalttius on δx x A A δb b κ(a) A A Suuri häiriöalttius merkitsee siten, että pienikin suhteellinen virhe b :ssä voi aiheuttaa ratkaisuun x suuren epävarmuuden Aivan vastaavasti voidaan tarkastella matriisin A häiriön δa aiheuttamaa virhettä ratkaisuun, ja saadaan δx δa κ(a) x + δx A Häiriöalttius riippuu (hieman) siitä, missä matriisinormissa (ja vastaavassa vektorinormissa) asioita mitataan Koska I AA A A, saadaan κ(a) jokaiselle (invertoituvalle) matriisille normista riippumatta Huomaa, että (toisin kuin determinantti) häiriöalttius ei riipu matriisin skaalauksesta: κ(αa) αa (αa) α A α A A A κ(a) Unitaariselle matriisille U pätee Ux x, joten U ja samoin U U, joten κ (U) Siten unitaarisen matriisin häiriöalttius (-normissa mitattuna) on pienin mahdollinen Esimerkki 4 Lasketaan κ (A), kun A joten häiriöalttiudeksi saadaan lauseella (kun ε (, ) ) joka on suuri ε :n ollessa pieni [ ε Nyt A ε κ (A) A A ( + /ε) + /ε, [ /ε /ε
i=1 Näistä on helppo näyttää ominaisuudet (1)-(4). Ellei toisin mainita, käytetään R n :ssä
Kurssimateriaalia K3/P3-kursille syksyllä 003. 8.0.003 Heikki Apiola Sisältää otteita Timo Eirolan L3-kurssin lineaarialgebramonisteesta, jonka lähdekoodin Timo on ystävällisesti antanut käyttööni.. Normi
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 14 R. Kangaslampi matriisiteoriaa Matriisinormi
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Matriisinormi Matriisinormi Matriiseille
Lisätiedot1 Sisätulo- ja normiavaruudet
1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v
Lisätiedot802320A LINEAARIALGEBRA OSA II
802320A LINEAARIALGEBRA OSA II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 64 Sisätuloavaruus Määritelmä 1 Olkoon V reaalinen vektoriavaruus. Kuvaus on reaalinen
LisätiedotOsoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.
LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,
LisätiedotKertausta: avaruuden R n vektoreiden pistetulo
Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2014 164/246 Kertausta:
Lisätiedot1 Lineaariavaruus eli Vektoriavaruus
1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus
Lisätiedot5 Ominaisarvot ja ominaisvektorit
5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Idea Lineaarisen systeemin ratkaiseminen Olkoon
LisätiedotLineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.
Lineaariavaruudet aiheita 1 määritelmä Nelikko (L, R, +, ) on reaalinen (eli reaalinen vektoriavaruus), jos yhteenlasku L L L, ( u, v) a + b ja reaaliluvulla kertominen R L L, (λ, u) λ u toteuttavat seuraavat
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
Lisätiedotx = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );
LINEAARIALGEBRA Harjoituksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla
Lisätiedotx = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );
LINEAARIALGEBRA Ratkaisuluonnoksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla
LisätiedotSisätuloavaruudet. 4. lokakuuta 2006
Sisätuloavaruudet 4. lokakuuta 2006 Tässä esityksessä vektoriavaruudet V ja W ovat kompleksisia ja äärellisulotteisia. Käydään ensin lyhyesti läpi määritelmiä ja perustuloksia. Merkitään L(V, W ) :llä
LisätiedotLineaarialgebra ja matriisilaskenta II. LM2, Kesä /141
Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.
LisätiedotKertausta: avaruuden R n vektoreiden pistetulo
Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2012 227/310 Kertausta:
Lisätiedot802320A LINEAARIALGEBRA OSA I
802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä
Lisätiedot1 Ominaisarvot ja ominaisvektorit
1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin
LisätiedotOrtogonaalisen kannan etsiminen
Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotOminaisvektoreiden lineaarinen riippumattomuus
Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin
LisätiedotLuento 8: Epälineaarinen optimointi
Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori = (,..., ). Reaalisten m n-matriisien joukkoa merkitään
LisätiedotMatemaattinen Analyysi / kertaus
Matemaattinen Analyysi / kertaus Ensimmäinen välikoe o { 2x + 3y 4z = 2 5x 2y + 5z = 7 ( ) x 2 3 4 y = 5 2 5 z ) ( 3 + y 2 ( 2 x 5 ( 2 7 ) ) ( 4 + z 5 ) = ( 2 7 ) yhteys determinanttiin Yhtälöryhmän ratkaiseminen
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 17 R. Kangaslampi Vektoriavaruudet Vektoriavaruus
LisätiedotVektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on
13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu
Lisätiedot(1.1) Ae j = a k,j e k.
Lineaarikuvauksen determinantti ja jälki 1. Lineaarikuvauksen matriisi. Palautetaan mieleen, mikä lineaarikuvauksen matriisi annetun kannan suhteen on. Olkoot V äärellisulotteinen vektoriavaruus, n = dim
Lisätiedot802320A LINEAARIALGEBRA OSA II LINEAR ALGEBRA PART II
802320A LINEAARIALGEBRA OSA II LINEAR ALGEBRA PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO KEVT 2019 1 Contents 1 Sisätulo- ja normiavaruudet 3 1.1 Sisätuloavaruus/Inner product space..............
Lisätiedot802320A LINEAARIALGEBRA OSA II/PART II
802320A LINEAARIALGEBRA OSA II/PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO KEVÄT 2019 LINEAARIALGEBRA 1 / 69 Sisätuloavaruus/Inner product space Määritelmä 1 Olkoon V reaalinen vektoriavaruus.
Lisätiedot802320A LINEAARIALGEBRA OSA II LINEAR ALGEBRA PART II
802320A LINEAARIALGEBRA OSA II LINEAR ALGEBRA PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2017 Contents 1 Sisätulo- ja normiavaruudet 2 1.1 Sisätuloavaruus/Inner product space..............
Lisätiedot802320A LINEAARIALGEBRA OSA II/PART II
802320A LINEAARIALGEBRA OSA II/PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2017 LINEAARIALGEBRA 1 / 67 Sisätuloavaruus/Inner product space Määritelmä 1 Olkoon V reaalinen vektoriavaruus.
LisätiedotLineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
LisätiedotLuento 8: Epälineaarinen optimointi
Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään
LisätiedotMatriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo
Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo Antti Rasila 2016 Vektoriavaruuden kannan olemassaolo Jos {v 1, v 2,..., v k } on äärellisulotteisen vektoriavaruuden V lineaarisesti riippumaton
LisätiedotLineaarialgebra II P
Lineaarialgebra II 89P Sisältö Vektoriavaruus Sisätuloavaruus 8 3 Lineaarikuvaus 5 4 Ominaisarvo 5 Luku Vektoriavaruus Määritelmä.. Epätyhjä joukko V on vektoriavaruus, jos seuraavat ehdot ovat voimassa:.
LisätiedotHY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden
LisätiedotLineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44
Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.
LisätiedotOrtogonaaliprojektio äärellisulotteiselle aliavaruudelle
Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Olkoon X sisätuloavaruus ja Y X äärellisulotteinen aliavaruus. Tällöin on olemassa lineaarisesti riippumattomat vektorit y 1, y 2,..., yn, jotka
LisätiedotDeterminantti 1 / 30
1 / 30 on reaaliluku, joka on määritelty neliömatriiseille Determinantin avulla voidaan esimerkiksi selvittää, onko matriisi kääntyvä a voidaan käyttää käänteismatriisin määräämisessä ja siten lineaarisen
LisätiedotPistetulo eli skalaaritulo
Pistetulo eli skalaaritulo VEKTORIT, MAA4 Pistetulo on kahden vektorin välinen tulo. Tarkastellaan ensin kahden vektorin välistä kulmaa. Vektorien a ja, kun a 0, välinen kulma on (kuva) kovera kun a vektorit
Lisätiedotx = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );
LINEAARIALGEBRA Harjoituksia/Exercises 2017 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla
LisätiedotNumeeriset menetelmät
Numeeriset menetelmät Luento 5 Ti 20.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 5 Ti 20.9.2011 p. 1/40 p. 1/40 Choleskyn menetelmä Positiivisesti definiiteillä matriiseilla kolmiohajotelma
LisätiedotInversio-ongelmien laskennallinen peruskurssi Luento 2
Inversio-ongelmien laskennallinen peruskurssi Luento 2 Kevät 2012 1 Lineaarinen inversio-ongelma Määritelmä 1.1. Yleinen (reaaliarvoinen) lineaarinen inversio-ongelma voidaan esittää muodossa m = Ax +
LisätiedotHilbertin avaruudet, 5op Hilbert spaces, 5 cr
Hilbertin avaruudet, 5op Hilbert spaces, 5 cr Pekka Salmi 14.3.2015 Pekka Salmi Hilbertin avaruudet 14.3.2015 1 / 64 Yleistä Opettaja: Pekka Salmi, MA327 Kontaktiopetus ti 1012 (L), ke 810 (L), ma 1214
Lisätiedot6 MATRIISIN DIAGONALISOINTI
6 MATRIISIN DIAGONALISOINTI Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T Muistutus: vektorien a ja b pistetulo (skalaaritulo,
LisätiedotKannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:
8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt QR-hajotelma ja pienimmän neliösumman menetelmä Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto PNS-ongelma PNS-ongelma
LisätiedotMatriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?
Harjoitus 1, kevät 007 1. Olkoon [ ] cos α sin α A(α) =. sin α cos α Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?. Olkoon a x y A = 0 b z, 0 0 c missä a, b, c 0. Määrää käänteismatriisi
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt ja pienimmän neliösumman menetelmä Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi QR ja PNS PNS-ongelma
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotJAKSO 2 KANTA JA KOORDINAATIT
JAKSO 2 KANTA JA KOORDINAATIT Kanta ja dimensio Tehtävä Esittele vektoriavaruuden kannan määritelmä vapauden ja virittämisen käsitteiden avulla ja anna vektoriavaruuden dimension määritelmä Esittele Lause
LisätiedotNeliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja
7 NELIÖMATRIISIN DIAGONALISOINTI. Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T () Muistutus: Kokoa n olevien vektorien
LisätiedotLaskutoimitusten operaattorinormeista
Laskutoimitusten operaattorinormeista Rami Luisto 27. tammikuuta 2012 Tiivistelmä Tässä kirjoitelmassa määrittelemme vektoriavaruuksien väliselle lineaarikuvaukselle normin ja laskemme sen eksplisiittisesti
Lisätiedot(0 desimaalia, 2 merkitsevää numeroa).
NUMEERISET MENETELMÄT DEMOVASTAUKSET SYKSY 20.. (a) Absoluuttinen virhe: ε x x ˆx /7 0.4 /7 4/00 /700 0.004286. Suhteellinen virhe: ρ x x ˆx x /700 /7 /00 0.00 0.%. (b) Kahden desimaalin tarkkuus x ˆx
LisätiedotNumeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35
Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotJohdatus lineaarialgebraan
Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 28. lokakuuta 2014 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus....................................
LisätiedotVille Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007
Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotInsinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut
Insinöörimatematiikka D, 29.3.2016 4. laskuharjoituksien esimerkkiratkaisut 1. Olkoon u (4,0,4,2) ja v ( 1,1,3,5) vektoreita vektoriavaruudessa R 4. Annetun sisätulon (x,y) indusoima normi on x (x,x) ja
Lisätiedot9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista
29 9 Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista Tarkastelemme kertalukua n olevia lineaarisia differentiaaliyhtälöitä y ( x) + a ( x) y ( x) + + a ( x) y( x) + a ( x) y= b( x) ( n) ( n
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotAvaruuden R n aliavaruus
Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla
LisätiedotRatkaisuehdotukset LH 8 / vko 47
Ratkaisuehdotukset LH 8 / vko 47 Tehtävä 1: Olkoot A R n n matriisi, jonka singulaariarvohajotelma on A [ ] [ ] Σ U 1 U r 0 [V1 ] T 2 V 0 0 2 Jossa Σ r on kääntyvä matriisi, [ U 1 U 2 ] ja [ V1 V 2 ] ovat
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotMS-A0003/A Matriisilaskenta Laskuharjoitus 6
MS-A3/A - Matriisilaskenta Laskuharjoitus 6 Ratkaisuehdotelmia. Diagonalisointi on hajotelma A SΛS, jossa diagonaalimatriisi Λ sisältää matriisin A ominaisarvot ja matriisin S sarakkeet ovat näitä ominaisarvoja
LisätiedotRatkaisuehdotukset LH 7 / vko 47
MS-C34 Lineaarialgebra, II/7 Ratkaisuehdotukset LH 7 / vko 47 Tehtävä : Olkoot M R symmetrinen ja positiividefiniitti matriisi (i) Näytä, että m > ja m > (ii) Etsi Eliminaatiomatriisi E R siten, että [
LisätiedotOrtogonaalinen ja ortonormaali kanta
Ortogonaalinen ja ortonormaali kanta Määritelmä Kantaa ( w 1,..., w k ) kutsutaan ortogonaaliseksi, jos sen vektorit ovat kohtisuorassa toisiaan vastaan eli w i w j = 0 kaikilla i, j {1, 2,..., k}, missä
Lisätiedotpdfmark=/pages, Raw=/Rotate 90 1 Lineaariavaruus eli Vektoriavaruus Sisätuloavaruus Lineaarikuvaus Ominaisarvo 0-68
SISÄLTÖ Sisältö pdfmark=/pages, Raw=/Rotate 90 1 Lineaariavaruus eli Vektoriavaruus 0-1 2 Sisätuloavaruus 0-20 3 Lineaarikuvaus 0-41 4 Ominaisarvo 0-68 5 Esimerkkejä 0-88 1. Lineaariavaruus eli V 1 Lineaariavaruus
LisätiedotHILBERTIN AVARUUKSISTA
HILBERTIN AVARUUKSISTA Pro gradu -tutkielma Hannariikka Lehtiniemi Matematiikan ja tilastotieteen laitos Jyväskylän yliopisto syksy 2014 TIIVISTELMÄ Ääretönulotteiset avaruudet ovat monilta ominaisuuksiltaan
LisätiedotKuvaus. Määritelmä. LM2, Kesä /160
Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä
LisätiedotMääritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )
Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä
LisätiedotOminaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3.
Matematiikan ja tilastotieteen laitos Lineaarialgebra ja matriisilaskenta II Ylimääräinen harjoitus 6 Ratkaisut A:n karakteristinen funktio p A on λ p A (λ) det(a λi ) 0 λ ( λ) 0 5 λ λ 5 λ ( λ) (( λ) (
LisätiedotNumeeriset menetelmät TIEA381. Luento 4. Kirsi Valjus. Jyväskylän yliopisto. Luento 4 () Numeeriset menetelmät / 44
Numeeriset menetelmät TIEA381 Luento 4 Kirsi Valjus Jyväskylän yliopisto Luento 4 () Numeeriset menetelmät 21.3.2013 1 / 44 Luennon 4 sisältö Lineaarisen yhtälöryhmän ratkaisemisesta: Choleskyn menetelmä
Lisätiedot110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3
4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Luentokalvot 5 1
Lisätiedot2 / :03
file:///c:/users/joonas/desktop/linis II Syksy /Ratkaisuehdotukse / 8 76 3:3 Kysymys Pisteet,, Määritellään positiivisten reaalilukujen joukossa R + = {x R x > } yhteenlasku ja skalaarikertolasku seuraavasti:
LisätiedotTehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä todistuksia ja lineaarikuvauksen muodostamista. Sarjaan liittyvät Stack-tehtävät: 1 ja 2.
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2016 Harjoitus 3 Ratkaisut palautettava viimeistään maanantaina 29.8.2016 klo 13.15. Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 13.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/12 Käytännön asioita Kesäkuun tentti: ke 19.6. klo 17-20, päärakennuksen sali 1. Anna palautetta kurssisivulle ilmestyvällä
Lisätiedot7 Vapaus. 7.1 Vapauden määritelmä
7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan
LisätiedotLineaarikuvauksen R n R m matriisi
Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:
LisätiedotLineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi
Lineaarikuvaukset aiheita ten ten 1 Matematiikassa sana lineaarinen liitetään kahden lineaariavaruuden väliseen kuvaukseen. ten Määritelmä Olkoon (L, +, ) ja (M, ˆ+, ˆ ) reaalisia lineaariavaruuksia, ja
Lisätiedot1 Avaruuksien ja lineaarikuvausten suora summa
MAT-33500 Differentiaaliyhtälöt, kevät 2006 Luennot 27.-28.2.2006 Samuli Siltanen 1 Avaruuksien ja lineaarikuvausten suora summa Tämä asialöytyy myös Hirschin ja Smalen kirjasta, luku 3, pykälä 1F. Olkoon
LisätiedotLineaarialgebra II, MATH.1240 Matti laaksonen, Lassi Lilleberg
Vaasan yliopisto, syksy 218 Lineaarialgebra II, MATH124 Matti laaksonen, Lassi Lilleberg Tentti T1, 284218 Ratkaise 4 tehtävää Kokeessa saa käyttää laskinta (myös graafista ja CAS-laskinta), mutta ei taulukkokirjaa
LisätiedotKanta ja Kannan-vaihto
ja Kannan-vaihto 1 Olkoon L vektoriavaruus. Äärellinen joukko L:n vektoreita V = { v 1, v 2,..., v n } on kanta, jos (1) Jokainen L:n vektori voidaan lausua v-vektoreiden lineaarikombinaationa. (Ts. Span(V
Lisätiedot3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2014 Mika Hirvensalo mikhirve@utu.fi Luentokalvot 3 1 of 16 Kertausta Lineaarinen riippuvuus
LisätiedotInversio-ongelmien laskennallinen peruskurssi Luento 3
Inversio-ongelmien laskennallinen peruskurssi Luento 3 Kevät 2011 1 Singulaariarvohajotelma (Singular Value Decomposition, SVD) Olkoon A R m n matriisi 1. Tällöin A voidaan esittää muodossa A = UΣV T,
LisätiedotLINEAARIALGEBRA A 2016 TOMI ALASTE EDITED BY T.M. FROM THE NOTES OF
LINEAARIALGEBRA 83A 6 EDITED BY T.M. FROM THE NOTES OF TOMI ALASTE SISÄLTÖ Sisältö Lineaariavaruus eli Vektoriavaruus Sisätuloavaruus 3 Lineaarikuvaus 4 Ominaisarvo 34 5 Esimerkkejä 44 . Lineaariavaruus
LisätiedotMääritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus.
1 Lineaarikuvaus 1.1 Määritelmä Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V W on lineaarinen, jos (a) L(v + w) = L(v) + L(w); (b) L(λv) = λl(v) aina, kun v, w V ja λ K. Termejä:
LisätiedotPäättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1
Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon
Lisätiedot3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset
31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita
LisätiedotMatriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain
Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit
LisätiedotBM20A0700, Matematiikka KoTiB2
BM20A0700, Matematiikka KoTiB2 Luennot: Matti Alatalo, Harjoitukset: Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luku 7. 1 Kurssin sisältö Matriiseihin
Lisätiedot7. Tasaisen rajoituksen periaate
18 FUNKTIONAALIANALYYSIN PERUSKURSSI 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin
LisätiedotAnalyysi III. Jari Taskinen. 28. syyskuuta Luku 1
Analyysi III Jari Taskinen 28. syyskuuta 2002 Luku Sisältö Sarjat 2. Lukujonoista........................... 2.2 Rekursiivisesti määritellyt lukujonot.............. 8.3 Sarja ja sen suppenminen....................
Lisätiedot2.5. Matriisin avaruudet ja tunnusluvut
2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja
LisätiedotRistitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti
14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on
LisätiedotMS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon
Lisätiedot