Numeeriset menetelmät TIEA381. Luento 13. Kirsi Valjus. Jyväskylän yliopisto. Luento 13 () Numeeriset menetelmät / 42

Koko: px
Aloita esitys sivulta:

Download "Numeeriset menetelmät TIEA381. Luento 13. Kirsi Valjus. Jyväskylän yliopisto. Luento 13 () Numeeriset menetelmät / 42"

Transkriptio

1 Numeeriset menetelmät TIEA381 Luento 13 Kirsi Valjus Jyväskylän yliopisto Luento 13 () Numeeriset menetelmät / 42

2 Luennon 13 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Moniaskelmenetelmien johto interpolointikaavoja käyttäen Implisiittisten kaavojen käyttö iteroimalla Fourier-muunnokset Jatkuva ja diskreetti Fourier-muunnos Luento 13 () Numeeriset menetelmät / 42

3 Luku 7: Tavallisten diff.yhtälöiden numeriikasta Tavallisten diff.yhtälöiden numeriikasta Olemme siis ratkaisemassa tehtävää y (t) = f ( t, y(t) ), y(a) = ŷ 0. Alkuarvotehtävien numeerisessa ratkaisemisessa määrätään funktiolle y likiarvot pisteissä t j = a + jh (j = 0, 1, 2,... ), missä h on sopiva askelpituus. Jatkossa käytetään merkintöjä y j = y(t j ) ja f j = f (t j, y j ). Luento 13 () Numeeriset menetelmät / 42

4 Luku 7: Tavallisten diff.yhtälöiden numeriikasta 7.2 Lineaariset moniaskelmenetelmät 7.2 Lineaariset moniaskelmenetelmät Oletetaan, että tunnetaan funktion y arvot y n, y n+1,..., y n+k 1, missä k on menetelmän askelluku. Määrätään arvo y n+k ratkaisemalla se yhtälöstä k α j y n+j + h j=0 k β j f n+j = 0, (α k 0), (6) j=0 missä α j ja β j ovat tunnettuja kertoimia. (Jatkossa oletetaan yksinkertaisuuden vuoksi, että kerroin α k = 1.) Luento 13 () Numeeriset menetelmät / 42

5 Luku 7: Tavallisten diff.yhtälöiden numeriikasta 7.2 Lineaariset moniaskelmenetelmät Lineaariset moniaskelmenetelmät jatkuu Voidaan erotella kaksi eri tapausta: Jos β k = 0, sanotaan menetelmää eksplisiittiseksi. Tällöin y n+k voidaan laskea suoraan yhtälöstä (6): k 1 k 1 y n+k = α j y n+j + h β j f n+j. j=0 j=0 Jos taas β k 0, sanotaan menetelmää implisiittiseksi. Tällöin y n+k joudutaan ratkaisemaan epälineaarisesta yhtälöstä k 1 k 1 y n+k = α j y n+j + h β j f n+j + hβ k f (t n+k, y n+k ). j=0 j=0 Luento 13 () Numeeriset menetelmät / 42

6 Luku 7: Tavallisten diff.yhtälöiden numeriikasta 7.2 Lineaariset moniaskelmenetelmät Moniaskelmenetelmien johto interpolointikaavoja käyttäen Esimerkkinä tarkastellaan interpolointia Newtonin takenevien differenssien avulla: Tasavälisesti taulukoidun funktion u arvo välillä [a, b] = [x 0, x n ] voidaan interpoloida kaavalla n s(s + 1) (s + j 1) u(x) = u(x n + sh) = j u n, s 0, j! j=0 missä h = (b a)/n, ja takeneva differenssi j u n määritellään 0 u n = u n, j u n = j 1 u n j 1 u n 1, j > 0. Luento 13 () Numeeriset menetelmät / 42

7 Luku 7: Tavallisten diff.yhtälöiden numeriikasta 7.2 Lineaariset moniaskelmenetelmät Interpolointikaavoja käyttäen jatkuu Sovelletaan tätä välillä [t n, t n+k 1 ] funktioon y = f, jolloin saadaan y (t n+k 1 + sh) = k 1 j=0 s(s + 1) (s + j 1) j f n+k 1. (7) j! Käytetään tulosta b a y = y(b) y(a) ja tehdään muuttujanvaihto t = t n+k 1 + sh; saadaan tn+k 1 y n+k = y n+k l + y (t) dt = y n+k l + h y (t n+k 1 + sh) ds. t n+k l 1 l Käyttäen kaavaa (7) saadaan... Luento 13 () Numeeriset menetelmät / 42

8 Luku 7: Tavallisten diff.yhtälöiden numeriikasta 7.2 Lineaariset moniaskelmenetelmät Interpolointikaavoja käyttäen jatkuu 1 y n+k = y n+k l + h 1 l k 1 j=0 Näin saatiin joukko eksplisiittisiä menetelmiä: k 1 1 y n+k = y n+k l + h j! j f n+k 1 j=0 s(s + 1) (s + j 1) j f n+k 1 ds. j! 1 1 l s(s + 1) (s + j 1) ds. Antamalla indeksille l eri arvoja saadaan useita erilaisia kaavaryhmiä, esim. - arvolla l = 1 saadaan ns. Adamsin ja Bashforthin kaavat sekä - arvolla l = 2 ns. Nyströmin kaavat. Luento 13 () Numeeriset menetelmät / 42

9 Luku 7: Tavallisten diff.yhtälöiden numeriikasta 7.2 Lineaariset moniaskelmenetelmät Interpolointikaavoja käyttäen jatkuu Kun suoritetaan integrointi muuttujan s:n suhteen, saadaan Adamsin ja Bashforthin kaavat (ts. tapaus l = 1 ) muotoon y n+k = y n+k 1 ( + h f n+k f n+k f n+k ) 8 3 f n+k 1 +, josta saadaan mm. seuraavat kaavat: k = 1 : y n+1 = y n + hf n, k = 2 : y n+2 = y n+1 + h 2 (3f n+1 f n ), k = 3 : y n+3 = y n+2 + h 12 (23f n+2 16f n+1 + 5f n ). Näistä ylin tunnetaan Eulerin menetelmän nimellä. Luento 13 () Numeeriset menetelmät / 42

10 Luku 7: Tavallisten diff.yhtälöiden numeriikasta 7.2 Lineaariset moniaskelmenetelmät Interpolointikaavoja käyttäen jatkuu Soveltamalla samaa interpolointikaavaa välillä [t n+1, t n+k ] saadaan y (t n+k 1 + sh) = y (t n+k + (s 1)h) = k 1 j=0 josta saadaan joukko implisiittisiä menetelmiä: (s 1)s (s + j 2) j f n+k, j! k y n+k = y n+k l + h j! j f n+k (s 1)s (s + j 2) ds. 1 l j=0 Antamalla indeksille l eri arvoja saadaan taas erilaisia kaavaryhmiä. Luento 13 () Numeeriset menetelmät / 42

11 Luku 7: Tavallisten diff.yhtälöiden numeriikasta 7.2 Lineaariset moniaskelmenetelmät Interpolointikaavoja käyttäen jatkuu Indeksi l = 1 antaa ns. Adamsin ja Moultonin kaavat, jotka voidaan kirjoittaa muotoon y n+k = y n+k 1 + h ( f n+k 1 2 f n+k f n+k 1 ) 24 3 f n+k. Tästä saadaan mm. kaavat k = 1 : y n+1 = y n + hf n+1, k = 2 : y n+2 = y n+1 + h 2 (f n+2 + f n+1 ), k = 3 : y n+3 = y n+2 + h 12 (5f n+3 + 8f n+2 f n+1 ). Luento 13 () Numeeriset menetelmät / 42

12 Luku 7: Tavallisten diff.yhtälöiden numeriikasta 7.2 Lineaariset moniaskelmenetelmät Interpolointikaavoja käyttäen jatkuu Edellisen kalvon kaavoista Ensimmäistä kutsutaan implisiittiseksi Eulerin menetelmäksi, ja Toisesta käytetään nimityksiä Crankin ja Nicholsonin menetelmä, puolisuunnikassääntö tai trapetsikaava. (Huomaa, että tapauksissa k > 1 ovat kertoimet α 0 = β 0 = 0, joten menetelmien askelluku on itse asiassa k 1) Luento 13 () Numeeriset menetelmät / 42

13 Esimerkki Luku 7: Tavallisten diff.yhtälöiden numeriikasta 7.2 Lineaariset moniaskelmenetelmät Esimerkki Crankin ja Nicholsonin menetelmästä. { My (x) + Ay(x) = F (x) y(0) = y 0 (8) y(x) = (y 1 (x),..., y m (x)) R m, x R, A, M pos.def. m m matriiseja (eivät riipu x:stä). Nyt (8) on yhtäpitävä seuraavan kanssa: My (x) = F (x) Ay(x) y (x) = M 1 (F (x) Ay(x)) }{{} f (x,y) Luento 13 () Numeeriset menetelmät / 42

14 Luku 7: Tavallisten diff.yhtälöiden numeriikasta Esimerkki jatkuu 7.2 Lineaariset moniaskelmenetelmät Sovelletaan Crankin ja Nicholsonin menetelmää tehtävään y (x) = f (x, y), f (x, y) = M 1 (F (x) Ay(x)) y n+1 = y n + h 2 (f (xn, yn) + f (x n+1, y n+1 ) y n+1 = y n + h 2 M 1 (F (x n) Ay n) + M 1 (F (x n+1 ) Ay n+1 ) F (x n) Ay n + F (x n+1 ) Ay n+1 My n+1 = My n + h 2 My n+1 + h 2 Ay n+1 = My n h 2 Ayn + h F (x n) + F (x n+1 ) 2 M + h 2 A y n+1 = M h 2 A y n + h F (x n) + F (x n+1 ) 2 Luento 13 () Numeeriset menetelmät / 42

15 Luku 7: Tavallisten diff.yhtälöiden numeriikasta 7.2 Lineaariset moniaskelmenetelmät Esimerkki jatkuu Edellä saatiin lineaarinen yhtälöryhmä! (f lin. y:n suhteen) ) Jos h vakio, tehdään Choleskyn hajotelma (M + h 2 A :lle ja ratkaistaan y n+1, n = 0, 1, 2,... etenevillä ja takenevilla sijoituksilla. Luento 13 () Numeeriset menetelmät / 42

16 Luku 7: Tavallisten diff.yhtälöiden numeriikasta 7.2 Lineaariset moniaskelmenetelmät Implisiittisten kaavojen käyttö iteroimalla Implisiittisissä moniaskelmenetelmissä joudutaan siis ratkaisemaan epälineaarinen yhtälö, mistä johtuen niiden käyttö on hankalampaa kuin eksplisiittisten menetelmien. Yleensä kuitenkin implisiittiset menetelmät ovat käyttökelpoisempia, koska niillä on paremmat stabiliteettiominaisuudet. Luento 13 () Numeeriset menetelmät / 42

17 Luku 7: Tavallisten diff.yhtälöiden numeriikasta 7.2 Lineaariset moniaskelmenetelmät Impl. kaavojen käyttö iteroimalla jatkuu Implisiittiset moniaskelmenetelmät voidaan kirjoittaa muotoon y n+k = ψ n+k + hβ k f (t n+k, y n+k ) Silloin y n+k täytyy ratkaista epälineaarisesta yhtälö(ryhmä)stä F (y) = y + hβ k f (t n+k, y) + ψ n+k = 0. (9) Hyvä alkuarvaus yhtälön (9) ratkaisulle saadaan käyttämällä saman kertaluvun eksplisiittistä menetelmää. Luento 13 () Numeeriset menetelmät / 42

18 Luku 7: Tavallisten diff.yhtälöiden numeriikasta 7.2 Lineaariset moniaskelmenetelmät Impl. kaavojen käyttö iteroimalla jatkuu Yksinkertainen kiintopisteiteraatio yhtälölle (9) on silloin seuraavanlainen: Lähtien eksplisiittisen menetelmän antamasta alkuarvauksesta y [0] n+k lasketaan korjatut arvot kaavalla y [j+1] n+k = ψ n+k + hβ k f (t n+k, y [j] n+k ), j = 0, 1,.... (10) Mikäli kiintopisteiteraatiossa (10) tehdään vain ennalta määrätty lukumäärä iteraatioita (usein vain yksi), niin menetelmää kutsutaan ennustus-korjaus-menetelmäksi. Luento 13 () Numeeriset menetelmät / 42

19 Luku 7: Tavallisten diff.yhtälöiden numeriikasta 7.2 Lineaariset moniaskelmenetelmät Esimerkki 7.3 Adamsin ja Bashforthin sekä Adamsin ja Moultonin kaavoja (k = 3) käyttäen saadaan seuraava ennustus-korjaus-menetelmä: 1. Ennusta ȳ n+3 = y n+2 + h 12 (23f n+2 16f n+1 + 5f n ). 2. Laske f n+3 = f (t n+3, ȳ n+3 ). 3. Korjaa y n+3 = y n+2 + h 12 (5 f n+3 + 8f n+2 f n+1 ). Luento 13 () Numeeriset menetelmät / 42

20 Nopeat Fourier-muunnokset Nopeat Fourier-muunnokset Fourier-sarja: Jaksollisen funktion esitys trigonometristen funktioiden (sin ja cos) sarjakehitelmänä Fourier-muunnos: Integraalimuunnos, jonka avulla signaali voidaan jakaa sinimuotoisiin komponentteihinsa Diskreetti Fourier-muunnos: Jatkuvan Fourier-muunnoksen diskreetti versio Nopea Fourier-muunnos: Algoritmi, jolla diskreetti Fourier-muunnos lasketaan tehokkaasti Luento 13 () Numeeriset menetelmät / 42

21 Nopeat Fourier-muunnokset Nopeat Fourier-muunnokset Sovelluskohteita: Signaalinkäsittely Spektrianalyysi Magneettikuvaus Äänenpakkaus Yleisesti sovellukset, jotka perustuvat ilmiöiden jaksollisuuteen tai spektrin mittaamiseen Numeeriset ratkaisijat, erit. Fast Poisson Solver 2 u(x, y) = f (x, y) Luento 13 () Numeeriset menetelmät / 42

22 Nopeat Fourier-muunnokset Kompleksiluvut Kompleksiluku z C z = a + ib, missä a = Re z R reaaliosa b = Im z R imaginääriosa i = 1 imaginääriyksikkö Kompleksikonjugaatti z = a ib Luento 13 () Numeeriset menetelmät / 42

23 Nopeat Fourier-muunnokset Kompleksiluvut De Moivren kaava e ikt = cos kt + i sin kt e ikt = cos kt i sin kt = cos( kt) + i sin( kt) = e ikt Luento 13 () Numeeriset menetelmät / 42

24 1 Fourier-analyysin alkeita 1.1 Fourier-sarjat Fourier-sarjat Olkoon f : R C siten, että se on integroituva välillä ] π, π[ 2π-jaksollinen f (x + n2π) = f (x) Merkitään f L 1 (] π, π[). Määritellään kantafunktiot ϕ k : R C siten, että ϕ k (t) = 1 2π e ikt Luento 13 () Numeeriset menetelmät / 42

25 Fourier-sarjat 1 Fourier-analyysin alkeita 1.1 Fourier-sarjat π π ϕ k (t)ϕ j (t) dt = 1 π 2π π = 1 [ π = 2π { π 1, k = j 0, k j e ikt e ijt dt = 1 2π π cos(k j)t dt + i π π e i(k j)t dt ] sin(k j)t dt π Luento 13 () Numeeriset menetelmät / 42

26 Fourier-sarjat 1 Fourier-analyysin alkeita 1.1 Fourier-sarjat Kuvauksen f Fourier-kertoimet c k (f ) = π π Kuvauksen f Fourier-sarja F (f, x) = f (t)ϕ k (t) dt = 1 2π π k= c k (f )ϕ k (x) = 1 2π π f (t)e ikt dt k= c k (f )e ikx Luento 13 () Numeeriset menetelmät / 42

27 Fourier-sarjat 1 Fourier-analyysin alkeita 1.1 Fourier-sarjat Lause: Olkoon f L 1 (] π, π[) siten, että Fourier-sarja suppenee tasaisesti f on jatkuva kaikkialla ja F (f, x) = f (x). Lause: Olkoon f L 1 (] π, π[) paloittain jatkuvasti differentioituva Fourier-sarja suppenee kaikkialla ja f (x), ( ) jos f on jatkuva x:ssä, F (f, x) = 1 lim f ( x) + lim 2 f ( x), jos x on f :n epäjat.kohta x x+ x x Luento 13 () Numeeriset menetelmät / 42

28 Fourier-muunnos 1 Fourier-analyysin alkeita 1.2 Fourier-muunnos Olkoon f : R C integroituva koko R:ssä Merkitään f L 1 (R). Fourier-muunnos Fourier-käänteismuunnos Ff (y) = ˆf (y) = 1 2π F 1ˆf (x) = 1 2π f (t)e iyt dt ˆf (y)e ixy dy Huom. Skaalauskertoimet voidaan valita toisinkin. Luento 13 () Numeeriset menetelmät / 42

29 Fourier-muunnos 1 Fourier-analyysin alkeita 1.2 Fourier-muunnos Muodollisesti F 1 Ff = f. Mutta: F 1ˆf (x) ei ole välttämättä hyvin määritelty Jos f L 1 (R) ˆf on olemassa / ˆf L 1 (R). Lause: Olkoon f L 1 (R) siten, että ˆf L 1 (R). f on jatkuva kaikkialla ja F 1ˆf (x) = f (x). Luento 13 () Numeeriset menetelmät / 42

30 Fourier-muunnos 1 Fourier-analyysin alkeita 1.2 Fourier-muunnos Lause: Fourier-muunnos on lineaarinen (f + g)(y) = ˆf (y) + ĝ(y), (λf )(y) = λˆf (y) missä f, g L 1 (R) ja λ C. Lause: Fourier-muunnos muuttaa derivoinnin kertolaskuksi (f )(y) = iyˆf (y), missä f L 1 (R) siten, että f L 1 (R) ja b a f (t) dt = f (b) f (a) a, b R. Luento 13 () Numeeriset menetelmät / 42

31 Konvoluutiot 1 Fourier-analyysin alkeita 1.3 Konvoluutiot Olkoot f, g L 1 (R). Konvoluutio (f g)(x) = Konvoluutio on symmetrinen: f (x t)g(t) dt (f g)(x) = (g f )(x) kaikilla x, joilla se on määritelty. Luento 13 () Numeeriset menetelmät / 42

32 Konvoluutiot 1 Fourier-analyysin alkeita 1.3 Konvoluutiot Eräs Fourier-muunnosten sovellus on konvolutioiden laskeminen Lause: Olkoot f, g L 1 (R) f g L 1 (R) ja (f g)(y) = 2πˆf (y)ĝ(y) Luento 13 () Numeeriset menetelmät / 42

33 2 Diskreetti Fourier-muunnos 2.1 Johdanto Diskreetti Fourier-muunnos Fourier-muunnoksen diskreetti versio Sovelluskohde esimerkiksi: Signaalista otetaan näytteitä sopivin väliajoin Käsitellään saatua diskreettiä mittausaineistoa Diskreetti Fourier-muunnos siirtää signaalit aika-alueelta (time domain) taajuusalueelle (frequency domain) Luento 13 () Numeeriset menetelmät / 42

34 2 Diskreetti Fourier-muunnos 2.1 Johdanto Diskreetti Fourier-muunnos Aika t, mittausjakso [0, 2π] Mittausten lukumäärä N, oletetaan, että N = 2M jollain (positiivisella) kokonaisluvulla M Mittaushetket t j = j2π/n, j = 0, 1,..., N 1 Vastaavat mittausarvot f j C Laajennetaan N-jaksolliseksi pisteistöksi: f j+nn = f j, j = 0, 1,..., N 1 Luento 13 () Numeeriset menetelmät / 42

35 2 Diskreetti Fourier-muunnos 2.1 Johdanto Diskreetti Fourier-muunnos Merkintä w = e i2π/n Pisteistö w j = e ij2π/n on N-jaksollinen Lause: Jos 0 k, j N 1 N 1 w kl w lj = l=0 { N, k = j 0, k j Luento 13 () Numeeriset menetelmät / 42

36 2 Diskreetti Fourier-muunnos 2.2 Diskreetit muunnokset Diskreetti Fourier-muunnos Määritellään pisteistö ϕ kj siten, että ϕ kj = 1 N w kj, k, j = 0, 1,..., N 1 Edellinen lause N 1 ϕ kl ϕ lj = l=0 { 1, k = j 0, k j eli ϕ kj :t muodostavat ortonormaalin kannan Luento 13 () Numeeriset menetelmät / 42

37 2 Diskreetti Fourier-muunnos 2.2 Diskreetit muunnokset Diskreetti Fourier-muunnos Diskreetti Fourier-muunnos N 1 ˆf k = f j ϕ kj = 1 N 1 f j w kj, k = 0, 1,..., N 1. N j=0 j=0 Diskreetti Fourier-käänteismuunnos N 1 f j = ˆf k ϕ jk = 1 N 1 ˆf k w jk, j = 0, 1,..., N 1, N k=0 k=0 Myös pisteistöt ˆf k ja f j ovat N-jaksollisia Luento 13 () Numeeriset menetelmät / 42

38 2 Diskreetti Fourier-muunnos 2.2 Diskreetit muunnokset Diskreetti Fourier-muunnos Käänteismuunnos: N 1 N 1 f l = ˆf k ϕ lk = k=0 ( N 1 N 1 = j=0 = f l. k=0 ) ϕ lk ϕ kj k=0 }{{} 8 >< 1, l = j >: 0, l j ( N 1 ) f j ϕ kj ϕ lk j=0 f j Luento 13 () Numeeriset menetelmät / 42

39 2 Diskreetti Fourier-muunnos 2.2 Diskreetit muunnokset Diskreetti Fourier-muunnos Lause: Diskreetti Fourier-muunnos on lineaarinen (f + g) k = ˆf k + ĝ k, (λf )k = λˆf k, missä f j, g j ovat N-jaksollisia ja λ C. Lause: Diskreetti Fourier-muunnos säilyttää normin N 1 N 1 ˆf k 2 = f j 2 missä f j on N-jaksollinen. k=0 j=0 Luento 13 () Numeeriset menetelmät / 42

40 2 Diskreetti Fourier-muunnos 2.2 Diskreetit muunnokset Diskreetti Fourier-muunnos ˆf k = 1 N 1 f j w kj N j=0 N + 1 kertolaskua, N 1 yhteenlaskua (seka w kj :n laskemiset) Pisteitä N kappaletta N 2 + N kertolaskua, N 2 N yhteenlaskua Diskreetin Fourier-muunnoksen laskennallinen vaativuus määritelmästä laskettuna on O(N 2 ) Luento 13 () Numeeriset menetelmät / 42

41 2 Diskreetti Fourier-muunnos 2.4 Diskreetit konvoluutiot Diskreetit konvoluutiot Olkoot f j ja g j kaksi N-jaksollista pisteistöä Diskreetti konvoluutio N 1 (f g) j = f j l g l, j = 0, 1,..., N 1 l=0 Symmetrinen: (f g) j = (g f ) j N kertolaskua, N 1 yhteenlaskua Pisteitä N kappaletta N 2 kertolaskua, N 2 N yhteenlaskua Luento 13 () Numeeriset menetelmät / 42

42 2 Diskreetti Fourier-muunnos 2.4 Diskreetit konvoluutiot Diskreetit konvoluutiot Lause: Olkoot f j ja g j N-jaksollisia (f g) k = Nˆf k ĝ k Kaksi N:n pisteen muunnosta, yksi N:n pisteen käänteismuunnos, N + 1 kertolaskua Jos Fourier-muunnosten laskeminen O(N 2 ) Myös konvoluution laskeminen O(N 2 ) Ei parempi kuin suoraan määritelmästä Lause hyödyllinen, jos Fourier-muunnos pystytään laskemaan nopeammin kuin O(N 2 ) Luento 13 () Numeeriset menetelmät / 42

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 13 Ti 18.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 13 Ti 18.10.2011 p. 1/43 p. 1/43 Nopeat Fourier-muunnokset Fourier-sarja: Jaksollisen funktion esitys

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 14 To 20.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 14 To 20.10.2011 p. 1/39 p. 1/39 Nopeat Fourier-muunnokset Diskreetti Fourier-muunnos ˆf k = 1 N 1 N

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 14. Kirsi Valjus. Jyväskylän yliopisto. Luento 14 () Numeeriset menetelmät / 55

Numeeriset menetelmät TIEA381. Luento 14. Kirsi Valjus. Jyväskylän yliopisto. Luento 14 () Numeeriset menetelmät / 55 Numeeriset menetelmät TIEA381 Luento 14 Kirsi Valjus Jyväskylän yliopisto Luento 14 () Numeeriset menetelmät 15.5.2013 1 / 55 Luennon 14 sisältö Nopeat Fourier-muunnokset (FFT) Yleinen algoritmi 2-kantainen

Lisätiedot

Nopeat Fourier-muunnokset

Nopeat Fourier-muunnokset opeat Fourier-muunnokset Timo ännikkö 1 Fourier-analyysin alkeita 1.1 Fourier-sarjat Olkoon f koko R:ssä määritelty kuvaus siten, että se on integroituva välillä ] π, π[ ja lisäksi -jaksollinen, ts. fx

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 6 Kirsi Valjus Jyväskylän yliopisto Luento 6 () Numeeriset menetelmät 4.4.2013 1 / 33 Luennon 6 sisältö Interpolointi ja approksimointi Polynomi-interpolaatio: Vandermonden

Lisätiedot

(0 desimaalia, 2 merkitsevää numeroa).

(0 desimaalia, 2 merkitsevää numeroa). NUMEERISET MENETELMÄT DEMOVASTAUKSET SYKSY 20.. (a) Absoluuttinen virhe: ε x x ˆx /7 0.4 /7 4/00 /700 0.004286. Suhteellinen virhe: ρ x x ˆx x /700 /7 /00 0.00 0.%. (b) Kahden desimaalin tarkkuus x ˆx

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35 Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 7 Ti 27.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 7 Ti 27.9.2011 p. 1/39 p. 1/39 Interpolointi Ei tunneta funktion f : R R lauseketta, mutta tiedetään funktion

Lisätiedot

MS-C1420 Fourier-analyysi osa I

MS-C1420 Fourier-analyysi osa I MS-C142 Fourier-analyysi osa I G. Gripenberg Aalto-yliopisto 29. tammikuuta 214 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa I 29. tammikuuta 214 1 / 3 1 Johdanto 2 Fourier-integraali Fourier-muunnos

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista

Lisätiedot

1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2

1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2 Sisältö 1 Kompleksiluvut 1 1.1 Määritelmä............................ 1 1. Kertolasku suorakulmaisissa koordinaateissa.......... 4 1.3 Käänteisluku ja jakolasku..................... 9 1.4 Esimerkkejä.............................

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 6 To 22.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 6 To 22.9.2011 p. 1/38 p. 1/38 Ominaisarvotehtävät Monet sovellukset johtavat ominaisarvotehtäviin Yksi

Lisätiedot

1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7

1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7 Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7 1 Kompleksiluvut Lukualueiden laajennuksia voi lähestyä polynomiyhtälöiden ratkaisemisen kautta. Yhtälön x+1 = 0 ratkaisemiseksi tarvitaan negatiivisia lukuja.

Lisätiedot

Harjoitus Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia:

Harjoitus Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia: Differentiaaliyhtälöt, Kesä 216 Harjoitus 2 1. Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia: (a) y = (2 y) 3, (b) y = (y 1) 2, (c) y = 2y y 2. 2. Etsi seuraavien

Lisätiedot

MS-C1420 Fourier-analyysi osa I

MS-C1420 Fourier-analyysi osa I 1 Johdanto MS-C142 Fourier-analyysi osa I G Gripenberg 2 Fourier-integraali Fourier-muunnos ja derivaatta Konvoluutio Fourier-käänteismuunnos eliöintegroituvat funktiot Aalto-yliopisto 29 tammikuuta 214

Lisätiedot

MS-C1420 Fourier-analyysi osa I

MS-C1420 Fourier-analyysi osa I MS-C1420 Fourier-analyysi osa I G. Gripenberg Aalto-yliopisto 29. tammikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-C1420 Fourier-analyysiosa I 29. tammikuuta 2014 1 / 29 Fourier-muunnoksia Jatkuva-aikaisen

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 11. Kirsi Valjus. Jyväskylän yliopisto. Luento 11 () Numeeriset menetelmät / 37

Numeeriset menetelmät TIEA381. Luento 11. Kirsi Valjus. Jyväskylän yliopisto. Luento 11 () Numeeriset menetelmät / 37 Numeeriset menetelmät TIEA381 Luento 11 Kirsi Valjus Jyväskylän yliopisto Luento 11 () Numeeriset menetelmät 24.4.2013 1 / 37 Luennon 11 sisältö Numeerisesta integroinnista ja derivoinnista Adaptiiviset

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28 Numeeriset menetelmät TIEA381 Luento 5 Kirsi Valjus Jyväskylän yliopisto Luento 5 () Numeeriset menetelmät 3.4.2013 1 / 28 Luennon 5 sisältö Luku 4: Ominaisarvotehtävistä Potenssiinkorotusmenetelmä QR-menetelmä

Lisätiedot

Kompleksiluvut., 15. kesäkuuta /57

Kompleksiluvut., 15. kesäkuuta /57 Kompleksiluvut, 15. kesäkuuta 2017 1/57 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen

Lisätiedot

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x BM0A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 4, Kevät 017 Päivityksiä: 1. Ratkaise differentiaaliyhtälöt 3y + 4y = 0 ja 3y + 4y = e x.. Ratkaise DY (a) 3y 9y + 6y = e 10x (b) Mikä on edellisen

Lisätiedot

Luento 9: Yhtälörajoitukset optimoinnissa

Luento 9: Yhtälörajoitukset optimoinnissa Luento 9: Yhtälörajoitukset optimoinnissa Lagrangen kerroin Oletetaan aluksi, että f, g : R R. Merkitään (x 1, x ) := (x, y) ja johdetaan Lagrangen kerroin λ tehtävälle min f(x, y) s.t. g(x, y) = 0 Olkoon

Lisätiedot

a) z 1 + z 2, b) z 1 z 2, c) z 1 z 2, d) z 1 z 2 = 4+10i 4 = 10i 5 = 2i. 4 ( 1)

a) z 1 + z 2, b) z 1 z 2, c) z 1 z 2, d) z 1 z 2 = 4+10i 4 = 10i 5 = 2i. 4 ( 1) Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Osoita, että kompleksilukujen yhteenlasku määriteltynä tasopisteiden kautta koordinaateittain on liitännäinen, so. z + (z + z ) = (z + z )

Lisätiedot

Osa VI. Fourier analyysi. A.Rasila, J.v.Pfaler () Mat Matematiikan peruskurssi KP3-i 12. lokakuuta / 246

Osa VI. Fourier analyysi. A.Rasila, J.v.Pfaler () Mat Matematiikan peruskurssi KP3-i 12. lokakuuta / 246 Osa VI Fourier analyysi A.Rasila, J.v.Pfaler () Mat-1.1331 Matematiikan peruskurssi KP3-i 12. lokakuuta 2007 127 / 246 1 Johdanto 2 Fourier-sarja 3 Diskreetti Fourier muunnos A.Rasila, J.v.Pfaler () Mat-1.1331

Lisätiedot

MS-C1420 Fourier-analyysi Esimerkkejä, perusteluja, osa I

MS-C1420 Fourier-analyysi Esimerkkejä, perusteluja, osa I MS-C140 Fourier-analyysi Esimerkkejä, perusteluja, osa I G. Gripenberg Aalto-yliopisto 3. tammikuuta 014 G. Gripenberg (Aalto-yliopisto MS-C140 Fourier-analyysiEsimerkkejä, perusteluja, osa3. I tammikuuta

Lisätiedot

2. Fourier-sarjoista. Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu

2. Fourier-sarjoista. Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu 2. Fourier-sarjoista Fourier-analyysi: Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu Matemaattisen analyysin täkein työväline "Jokainen funktio" voidaan esittää harmonisten värähtelyjen, so.

Lisätiedot

Osa IX. Z muunnos. Johdanto Diskreetit funktiot

Osa IX. Z muunnos. Johdanto Diskreetit funktiot Osa IX Z muunnos A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 298 / 322 A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 299 / 322 Johdanto

Lisätiedot

Satunnaismuuttujien muunnokset ja niiden jakaumat

Satunnaismuuttujien muunnokset ja niiden jakaumat Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja

Lisätiedot

y z = (x, y) Kuva 1: Euklidinen taso R 2

y z = (x, y) Kuva 1: Euklidinen taso R 2 Kompleksiluvut. Määritelmä Tarkastellaan euklidista tasoa R = {(, y), y R}. y y z = (, y) R Kuva : Euklidinen taso R Suorakulmaisessa koordinaatistossa on -akseli ja y-akseli. Luvut ja y ovat pisteen z

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016

Lisätiedot

Pienimmän neliösumman menetelmä

Pienimmän neliösumman menetelmä Pienimmän neliösumman menetelmä Keijo Ruotsalainen Division of Mathematics Funktion sovitus Datapisteet (x 1,...,x n ) Annettu data y i = f(x i )+η i, missä f(x) on tuntematon funktio ja η i mittaukseen

Lisätiedot

Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1

Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1 Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2004) 1 Satunnaismuuttujien muunnokset ja niiden jakaumat Satunnaismuuttujien muunnosten jakaumat

Lisätiedot

1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n.

1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0004/A0006 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 8.9.015 Reaalinen

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 3 Ti 13.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 3 Ti 13.9.2011 p. 1/37 p. 1/37 Epälineaariset yhtälöt Newtonin menetelmä: x n+1 = x n f(x n) f (x n ) Sekanttimenetelmä:

Lisätiedot

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos

Lisätiedot

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita

Lisätiedot

Fourier-sarjat ja -muunnos

Fourier-sarjat ja -muunnos 24. marraskuuta 2016 Jaksolliset funktiot, trigonometriset sarjat, parilliset ja p Jaksolliset funktiot Funktio f : R R on jaksollinen, jos on olemassa p > 0 siten, että f (x + p) = f (x) kaikilla x R

Lisätiedot

Epälineaaristen yhtälöiden ratkaisumenetelmät

Epälineaaristen yhtälöiden ratkaisumenetelmät Epälineaaristen yhtälöiden ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Perusoletus Lause 3.1 Olkoon f : [a, b] R jatkuva funktio siten, että f(a)f(b) < 0. Tällöin funktiolla on ainakin

Lisätiedot

Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 5. joulukuuta Z-muunnos

Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 5. joulukuuta Z-muunnos Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt 5. joulukuuta 2016 Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt Lukujonot Lukujonot Z-muunnoksen ominaisuuksia

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 4. Kirsi Valjus. Jyväskylän yliopisto. Luento 4 () Numeeriset menetelmät / 44

Numeeriset menetelmät TIEA381. Luento 4. Kirsi Valjus. Jyväskylän yliopisto. Luento 4 () Numeeriset menetelmät / 44 Numeeriset menetelmät TIEA381 Luento 4 Kirsi Valjus Jyväskylän yliopisto Luento 4 () Numeeriset menetelmät 21.3.2013 1 / 44 Luennon 4 sisältö Lineaarisen yhtälöryhmän ratkaisemisesta: Choleskyn menetelmä

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 6 Mikko Salo 6.9.2017 Sisältö 1. Kompleksitaso 2. Joukko-oppia Kompleksiluvut Edellisellä luennolla huomattiin, että toisen asteen yhtälö ratkeaa aina, jos ratkaisujen annetaan

Lisätiedot

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu 2 Interpolointi Olkoon annettuna n+1 eri pistettä x 0, x 1, x n R ja n+1 lukua y 0, y 1,, y n Interpoloinnissa etsitään funktiota P, joka annetuissa pisteissä x 0,, x n saa annetut arvot y 0,, y n, (21)

Lisätiedot

Mat / Mat Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 42, loppuviikko, syksy 2008

Mat / Mat Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 42, loppuviikko, syksy 2008 Mat-.3 / Mat-.33 Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 4, loppuviikko, syksy 8 Ennen malliratkaisuja, muistin virkistämiseksi kaikkien rakastama osittaisintegroinnin kaava: b a u(tv (t

Lisätiedot

5 Ominaisarvot ja ominaisvektorit

5 Ominaisarvot ja ominaisvektorit 5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A

Lisätiedot

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-.39 Optimointioppi Kimmo Berg 8. harjoitus - ratkaisut. a)huomataan ensinnäkin että kummankin jonon raja-arvo r on nolla. Oletetaan lisäksi että

Lisätiedot

5 Differentiaaliyhtälöryhmät

5 Differentiaaliyhtälöryhmät 5 Differentiaaliyhtälöryhmät 5.1 Taustaa ja teoriaa Differentiaaliyhtälöryhmiä tarvitaan useissa sovelluksissa. Toinen motivaatio yhtälöryhmien käytölle: Korkeamman asteen differentiaaliyhtälöt y (n) =

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

Funktioiden approksimointi ja interpolointi

Funktioiden approksimointi ja interpolointi Funktioiden approksimointi ja interpolointi Keijo Ruotsalainen Division of Mathematics interpolaatio-ongelma 8 Eksponenttifunktion exp(x) interpolointi 3.5 Funktion e^{0.25x} \sin(x) interpolointi 7 3

Lisätiedot

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1 1. Tarkastellaan funktiota missä σ C ja y (y 1,..., y n ) R n. u : R n R C, u(x, t) e i(y x σt), (a) Miksi funktiota u(x, t) voidaan kutsua tasoaalloksi, jonka aaltorintama on kohtisuorassa vektorin y

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle / MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,

Lisätiedot

Kompleksianalyysi, viikko 6

Kompleksianalyysi, viikko 6 Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että

Lisätiedot

Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 1. joulukuuta Z-muunnos

Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 1. joulukuuta Z-muunnos Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt 1. joulukuuta 2015 Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt Lukujono Lukujono on diskreetti funktio

Lisätiedot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Vesanen MS-A0205/6 Differentiaali- ja integraalilaskenta 2, kevät 2017 Laskuharjoitus 4A (Vastaukset) alkuviikolla

Lisätiedot

SARJAT JA DIFFERENTIAALIYHTÄLÖT

SARJAT JA DIFFERENTIAALIYHTÄLÖT SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 43 0.5 0.4 0.3 0.2 0.1 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1 Kuva 12. Esimerkin 4.26(c kuvauksen

Lisätiedot

Matematiikka B3 - Avoin yliopisto

Matematiikka B3 - Avoin yliopisto 2. heinäkuuta 2009 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Lisäharjoitustehtävä Kurssin sisältö (1/2) 1. asteen Differentiaali yhtälöt (1.DY) Separoituva Ratkaisukaava Bernoyulli

Lisätiedot

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Olkoon X sisätuloavaruus ja Y X äärellisulotteinen aliavaruus. Tällöin on olemassa lineaarisesti riippumattomat vektorit y 1, y 2,..., yn, jotka

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento : Moniulotteiset integraalit Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 26 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori = (,..., ). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

Kompleksiluvut Kompleksitaso

Kompleksiluvut Kompleksitaso . Kompleksiluvut.. Kompleksitaso 8. Todista kompleksilukujen yhteen- ja kertolaskun (lukuparien avulla annettuihin) määritelmiin perustuen osittelulaki: z (z + z ) = z z + z z. 8. Todista kompleksilukujen

Lisätiedot

Kompleksiluvut signaalin taajuusjakauman arvioinnissa

Kompleksiluvut signaalin taajuusjakauman arvioinnissa Kompleksiluvut signaalin taajuusjakauman arvioinnissa Vierailuluento IMA-kurssilla Heikki Huttunen Lehtori, TkT Signaalinkäsittely, TTY heikki.huttunen@tut.fi Department of Signal Processing Fourier-muunnos

Lisätiedot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 4A (Vastaukset) alkuviikolla

Lisätiedot

1 Ominaisarvot ja ominaisvektorit

1 Ominaisarvot ja ominaisvektorit 1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin

Lisätiedot

3.4 Käänteiskuvauslause ja implisiittifunktiolause

3.4 Käänteiskuvauslause ja implisiittifunktiolause 3.4 Käänteiskuvauslause ja implisiittifunktiolause Tässä luvussa käsitellään kahta keskeistä vektorianalyysin lausetta. Esitellään aluksi kyseiset lauseet ja tutustutaan niiden käyttötapoihin. Lause 3.4.1

Lisätiedot

[4A] DIFFERENTIAALIYHTÄLÖT 1. Alkuarvotehtävät

[4A] DIFFERENTIAALIYHTÄLÖT 1. Alkuarvotehtävät [4A] DIFFERENTIAALIYHTÄLÖT 1. Alkuarvotehtävät Numeerisen integroinnin yhteydessä ratkoimme jo tavallisia ensimmäisen kertaluvun alkuarvotehtäviä integroimalla eli t y (t) =f(t, y(t)) y(t) =y(t a )+ f(t,

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 2 To 8.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 2 To 8.9.2011 p. 1/33 p. 1/33 Lukujen tallennus Kiintoluvut (integer) tarkka esitys aritmeettiset operaatiot

Lisätiedot

6. Toisen ja korkeamman kertaluvun lineaariset

6. Toisen ja korkeamman kertaluvun lineaariset SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 51 6. Toisen ja korkeamman kertaluvun lineaariset differentiaaliyhtälöt Määritelmä 6.1. Olkoon I R avoin väli. Olkoot p i : I R, i = 0, 1, 2,..., n, ja q : I R jatkuvia

Lisätiedot

13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y )

13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y ) MATEMATIIKAN JA TILASTOTIETEEN LAITOS Differentiaaliyhtälöt, kesä 00 Tehtävät 3-8 / Ratkaisuehdotuksia (RT).6.00 3. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: y = + y + y = + y + ( y ) (y

Lisätiedot

3.3 Funktion raja-arvo

3.3 Funktion raja-arvo 3.3 Funktion raja-arvo Olkoot A ja B kompleksitason joukkoja ja f : A B kuvaus. Kuvauksella f on pisteessä z 0 A raja-arvo c, jos jokaista ε > 0 vastaa δ > 0 siten, että 0 < z z 0 < δ ja z A f(z) c < ε.

Lisätiedot

Luento 2. Jaksolliset signaalit

Luento 2. Jaksolliset signaalit Luento Jaksollisten signaalien Fourier-sarjat Viivaspektri S-.7. Signaalit ja järjestelmät 5 op KK ietoliikennelaboratorio Jaksollinen (periodinen) Jaksolliset signaalit Jaksonaika - / / Perusjakso Amplitudi

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 3. Kirsi Valjus. Jyväskylän yliopisto. Luento 3 () Numeeriset menetelmät / 45

Numeeriset menetelmät TIEA381. Luento 3. Kirsi Valjus. Jyväskylän yliopisto. Luento 3 () Numeeriset menetelmät / 45 Numeeriset menetelmät TIEA381 Luento 3 Kirsi Valjus Jyväskylän yliopisto Luento 3 () Numeeriset menetelmät 20.3.2013 1 / 45 Luennon 3 sisältö Luku 2: Epälineaarisen yhtälön ratkaiseminen Polynomin reaaliset

Lisätiedot

Matemaattinen Analyysi

Matemaattinen Analyysi Vaasan yliopisto, syksy 2016 / ORMS1010 Matemaattinen Analyysi 8. harjoitus, viikko 49 R1 to 12 14 F453 (8.12.) R2 to 14 16 F345 (8.12.) R3 ke 8 10 F345 (7.11.) 1. Määritä funktion f (x) = 1 Taylorin sarja

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 4 To 15.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 4 To 15.9.2011 p. 1/38 p. 1/38 Lineaarinen yhtälöryhmä Lineaarinen yhtälöryhmä matriisimuodossa Ax = b

Lisätiedot

Signaalit ja järjestelmät aika- ja taajuusalueissa

Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit aika ja taajuusalueissa Muunnokset aika ja taajuusalueiden välillä Fourier sarja (jaksollinen signaali) Fourier muunnos (jaksoton signaali)

Lisätiedot

Matriisilaskenta Luento 10: Polaarimuoto ja kompleksilukujen geometriaa

Matriisilaskenta Luento 10: Polaarimuoto ja kompleksilukujen geometriaa Matriisilaskenta Luento 10: Polaarimuoto ja kompleksilukujen geometriaa Antti Rasila 2016 Polaarimuoto Kuvasta nähdään: { x = r cos θ, y = r sin θ. Siis z = x + iy = r cos θ + ir sin θ. Saadaan kompleksiluvun

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1 Tehtävä : Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: a) a) x b) e x + Integraali voisi ratketa muuttujanvaihdolla. Integroitava on muotoa (a x ) n joten sopiva muuttujanvaihto voisi olla

Lisätiedot

1 Di erentiaaliyhtälöt

1 Di erentiaaliyhtälöt Taloustieteen mat.menetelmät syksy 2017 materiaali II-5 1 Di erentiaaliyhtälöt 1.1 Skalaariyhtälöt Määritelmä: ensimmäisen kertaluvun di erentiaaliyhtälö on muotoa _y = F (y; t) oleva yhtälö, missä _y

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö Johdatus diskreettiin matematiikkaan Harjoitus 5, 14.10.2015 1. Ratkaise rekursioyhtälö x n+4 2x n+2 + x n 16( 1) n, n N, alkuarvoilla x 1 2, x 2 14, x 3 18 ja x 4 42. Ratkaisu. Vastaavan homogeenisen

Lisätiedot

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6 Alkeisfunktiot Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6. Funktion määrittely Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon

Lisätiedot

7. Tasaisen rajoituksen periaate

7. Tasaisen rajoituksen periaate 18 FUNKTIONAALIANALYYSIN PERUSKURSSI 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin

Lisätiedot

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit

Lisätiedot

MS-A0202 Di erentiaali- ja integraalilaskenta 2 (SCI) Luento 8: Taso- ja avaruusintegraalit

MS-A0202 Di erentiaali- ja integraalilaskenta 2 (SCI) Luento 8: Taso- ja avaruusintegraalit MS-A22 i erentiaali- ja integraalilaskenta 2 (SCI) Luento 8: Taso- ja avaruusintegraalit Antti Rasila Aalto-yliopisto Syksy 25 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 25 / 8 Tasointegraali Olkoon R

Lisätiedot

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on? Harjoitus 1, kevät 007 1. Olkoon [ ] cos α sin α A(α) =. sin α cos α Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?. Olkoon a x y A = 0 b z, 0 0 c missä a, b, c 0. Määrää käänteismatriisi

Lisätiedot

1 Peruskäsitteet. Dierentiaaliyhtälöt

1 Peruskäsitteet. Dierentiaaliyhtälöt Teknillinen korkeakoulu Matematiikka Dierentiaaliyhtälöt Alestalo Tässä monisteessa käydään läpi tavallisiin dierentiaaliyhtälöihin liittyviä peruskäsitteitä ja ratkaisuperiaatteita. Esimerkkejä luennoilla

Lisätiedot

Mat Matematiikan peruskurssi K2

Mat Matematiikan peruskurssi K2 Mat-.3 Matematiikan peruskurssi K Heikkinen/Tikanmäki Kolmas välikoe 6.5. Kokeessa saa käyttää ylioppilaskirjoituksiin hyväksyttyä laskinta. Sivun kääntöpuolelta löytyy integrointikaavoja.. Olkoon F(x,

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa MS-A24 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 216 Antti Rasila

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt

Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt Yhtälöryhmät 1/6 Sisältö Yhtälöryhmä Yhtälöryhmässä on useita yhtälöitä ja yleensä myös useita tuntemattomia. Tavoitteena on löytää tuntemattomille sellaiset arvot, että kaikki yhtälöt toteutuvat samanaikaisesti.

Lisätiedot

Kompleksiluvun logaritmi: Jos nyt z = re iθ = re iθ e in2π, missä n Z, niin saadaan. ja siihen vaikuttava

Kompleksiluvun logaritmi: Jos nyt z = re iθ = re iθ e in2π, missä n Z, niin saadaan. ja siihen vaikuttava Kompleksiluvun logaritmi: ln z = w z = e w Jos nyt z = re iθ = re iθ e inπ, missä n Z, niin saadaan w = ln z = ln r + iθ + inπ, n Z Logaritmi on siis äärettömän moniarvoinen funktio. Helposti nähdään että

Lisätiedot

5. Z-muunnos ja lineaariset diskreetit systeemit. z n = z

5. Z-muunnos ja lineaariset diskreetit systeemit. z n = z 5. Z-muunnos ja lineaariset diskreetit systeemit Jono: (x(n)) n=0 = (x(0), x(1), x(2),..., x(n),...) Z-muunnos: X(z) = n=0 x(n)z n, jos sarja suppenee jossain kompleksitason osassa. Esim. 4. Ykkösjonon

Lisätiedot

BM20A1501 Numeeriset menetelmät 1 - AIMO

BM20A1501 Numeeriset menetelmät 1 - AIMO 6. marraskuuta 2014 Opetusjärjestelyt Luennot + Harjoitukset pe 7.11.2014 10-14 2310, 14-17 7337 la 8.11.2014 9-12 2310, 12-16 7337 pe 14.11.2014 10-14 2310, 14-17 6216 la 15.11.2014 9-12 2310, 12-16 7337

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 26.9.2016 Pekka Alestalo,

Lisätiedot

Harjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio,

Harjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio, Differentiaaliyhtälöt, Kesä 06 Harjoitus 3 Kaikissa tehtävissä, joissa pitää tarkastella kriittisten pisteiden stabiliteettia, jos kyseessä on satulapiste, ilmoita myös satulauraratkaisun (tai kriittisessä

Lisätiedot

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin

Lisätiedot

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle 13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien

Lisätiedot