Signaalit ja järjestelmät aika- ja taajuusalueissa

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Signaalit ja järjestelmät aika- ja taajuusalueissa"

Transkriptio

1 Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit aika ja taajuusalueissa Muunnokset aika ja taajuusalueiden välillä Fourier sarja (jaksollinen signaali) Fourier muunnos (jaksoton signaali) Muunnosten ominaisuuksia Signaalien kuvaus aika- ja taajuusalueissa Järjestelmän analysointi aika- ja taajuusalueissa Petri Kärhä 27/02/2004 Luento 5: Signaalit ja järjestelmät aika ja taajuusalueissa 1

2 Signaalit aika ja taajuusalueissa Kaikilla signaaleilla on kuvaus molemmissa alueissa Mittaukset ja tulosten analysointi tai tulkinta voidaan tehdä kummassa alueessa tahansa Laskennallisesti voidaan siirtyä alueesta toiseen Petri Kärhä 27/02/2004 Luento 5: Signaalit ja järjestelmät aika ja taajuusalueissa 2

3 Signaalien esitystavoista taajuusalueessa Signaalit voidaan kuvata joko kompleksisten tai reaalisten sinifunktioiden summana Kompleksiesityksessä signaalista näkyy vaihe, reaaliesityksessä tämä on (tarvittaessa) otettava erikseen huomioon. Osoitinesityksessä ilmaistaan sinisignaali(e)n amplitudi(t) ja kulma(t) Petri Kärhä 27/02/2004 Luento 5: Signaalit ja järjestelmät aika ja taajuusalueissa 3

4 Fourier sarja Esittää jaksollisen signaalin sini ja kosinivärähtelyjen summana A0 xt () = + cos( ) + sin( ) 2 A B n n = = 2 T 2 T T T n= 1 missä Fourier kertoimet 2 T 2 2 T 2 [ An nω0t Bn nω0t ] xt ()cos( nω tdt ) xt ()sin( nω tdt ) 0 0 KertoimetA n ja B n kuvaavat signaalia taajuusalueessa. 2 2 Amplitudispektri C = A + B n n n Petri Kärhä 27/02/2004 Luento 5: Signaalit ja järjestelmät aika ja taajuusalueissa 4

5 Parillisten ja parittomien signaalien Fourier sarjat Pariton signaali sinien sarja Kertoimet A n = 0, kaikilla n:n arvoilla Parillinen signaali kosinien sarja Kertoimet B n = 0, kaikilla n:n arvoilla Petri Kärhä 27/02/2004 Luento 5: Signaalit ja järjestelmät aika ja taajuusalueissa 5

6 Fourier sarja kompleksisten sinifunktioiden avulla Eulerin kaavan avulla Fourier sarja voidaan saattaa kompleksiseen muotoon 2 () = n, missä n = () T ( inω0t ) ( inω0t ) xt C e C xt e dt n= T T 2 2 Yksi kerroinsarja C n, joka sisältää nyt myös vaiheen Summaus on nyt -äärettömästä äärettömään, koska mukana on myös negatiiviset taajuudet Petri Kärhä 27/02/2004 Luento 5: Signaalit ja järjestelmät aika ja taajuusalueissa 6

7 Fourier muunnos ja käänteismuusnnos Ei jaksollinen aikarajoitettu signaali muunnetaan taajuusavaruuteen käyttäen Fourier muunnosta Fourier muunnos saadaan Fourier sarjan kertoimista asettamalla jakson ajaksi T= ja vaihtamalla ω jatkuvaksi muuttujaksi Fourier käänteismuunnos { } i ft X( f) = xte () 2π dt= F xt () { } i2πft 1 x( t) = X( f ) e df = F X( f ) Petri Kärhä 27/02/2004 Luento 5: Signaalit ja järjestelmät aika ja taajuusalueissa 7

8 Fourier sarjan ja Fourier muunnoksen välinen yhteys Yksittäisen pulssin F-muunnos Jatkuvan pulssijonon F-sarja Fourier muunnos on vastaavan Fourier sarjan verhokäyrä Petri Kärhä 27/02/2004 Luento 5: Signaalit ja järjestelmät aika ja taajuusalueissa 8

9 Fourier muunnoksen tärkeimpiä ominaisuuksia X(-f)=X*(f) (kompleksikonjugaatti) Parilliselle funktiolle x(t) Fourier muunnos X(f) on reaalinen Parittomalle funktiolle x(t) Fourier muunnos X(f) on puhtaasti imaginaarinen Superpositio pätee sekä aika, että taajuusalueissa Signaalin kapeneminen toisessa alueessa vastaa leventymistä toisessa, ja päinvastoin Kertominen toisessa alueessa vastaa konvoluutiota toisessa Petri Kärhä 27/02/2004 Luento 5: Signaalit ja järjestelmät aika ja taajuusalueissa 9

10 Konvoluutio Konvoluutio määritellään seuraavasti gt ()* ht () = gu ( ) ht ( u) du Konvoloitu signaali on (useinmiten) olennaisesti sama kuin alkuperäinen signaali Signaalin kuhunkin pisteeseen summautuu myös signaalin muut pisteet konvoloivan funktion määräämän painon mukaisesti Fyysiset mittalaitteet konvoloivat aina mitattavan suureen omalla siirtofunktiollaan (esim. spektrianalysaattorin äärellinen kaistanleveys) Petri Kärhä 27/02/2004 Luento 5: Signaalit ja järjestelmät aika ja taajuusalueissa 10

11 Mittalaitteen aiheuttama konvoluutio Mitattava signaali (kanttiaalto) * Analysaattorin päästökaista = Konvoloitu mittaustulos Mitattaessa spektriä analysaattorilla, jonka päästökaista on kolmio, konvoloituvat kaikki taajuuskomponentit kolmiolla f Petri Kärhä 27/02/2004 Luento 5: Signaalit ja järjestelmät aika ja taajuusalueissa 11

12 Esimerkki konvoluutiosta: Signaalin katkaisu Aikataso Taajuustaso D(t) Katkaisulaatikko -T T X h(t)=cos(2πf 0 t) f Mitattava Signaali t H(t) -f 0 f 0 Mittaustulos t = -f 0 H(t) f 0 Petri Kärhä 27/02/2004 Luento 5: Signaalit ja järjestelmät aika ja taajuusalueissa 12

13 Fourier sarja vai Fourier muunnos? Fourier sarja on Fourier muunnoksen erikoistapaus jaksollisille signaaleille. Fourier muunnos antaa saman tuloksen Käytännön mittaustekniikassa Fourier sarja ei koskaan voi kuvata signaalia täydellisesti Aikatasossa signaali on katkaistava Taajuustasossa näkyy tällöin konvoluutio laatikkofunktion Fourier muunnoksen sinc-funktion kanssa Petri Kärhä 27/02/2004 Luento 5: Signaalit ja järjestelmät aika ja taajuusalueissa 13

14 Signaalin käsittelyä aika-alueessa: n. asteen keskiarvo x n 1 n () t = x () t dt 2T T T keskiarvoistus Jaksollisella signaalilla T on jakson aika, jaksottomalla signaalilla joku sopivaksi katsottu aika n = 1 -> aritmeettinen keskiarvo, n = 2 -> varianssi. Varianssista saadaan neliöllinen keskiarvo x 2 () t Jatkuvasti muuttuvaa signaalia voidaan suodattaa esim. liukuvalla keskiarvolla x n 1 = k n+ k i= n k x i Petri Kärhä 27/02/2004 Luento 5: Signaalit ja järjestelmät aika ja taajuusalueissa 14

15 Korrelaatio ( samankaltaisuus ) ψ xy ( τ) = xt () yt () = T 1 lim xt ( ) yt ( + τ ) dt T 2T T Korrelaatio kuvaa kahden signaalin x(t) ja y(t) samankaltaisuutta signaalien välisen vaihe-eron τ funktiona Autokorrelaatio ja ristikorrelaatio Petri Kärhä 27/02/2004 Luento 5: Signaalit ja järjestelmät aika ja taajuusalueissa 15

16 Ristikorrelaatio Kuvaa kahden eri signaalin samankaltaisuutta Ristikorrelaation avulla voidaan etsiä tietyn funktion piirteitä toisesta mitattavasta signaalista Voidaan käyttää esim. jonkin järjestelmän aiheuttaman vaiheeron mittaamiseksi Virtausnopeuden mittaaminen ristikorrelaattorilla Petri Kärhä 27/02/2004 Luento 5: Signaalit ja järjestelmät aika ja taajuusalueissa 16

17 Autokorrelaatio Signaalin korrelaatio itsensä kanssa viiveen τ funktiona Kohinaisesta signaalista voidaan etsiä jaksollisia signaaleja Kohina korreloi vain viiveenarvolla 0 Voidaan käyttää esim pulsarien lähettämien jaksollisten signaalien erottamiseen kohinasta Käytössä stealth-radioissa Jaksollisen signaalin ja valkoisen kohinan autokorrelaatiofunktio Petri Kärhä 27/02/2004 Luento 5: Signaalit ja järjestelmät aika ja taajuusalueissa 17

18 Signaalin analysointia taajuusalueessa: Amplitudi- ja tehotiheysspektri Amplitudispektri, joka ilmaisee signaalin jakautumisen eri taajuuksille saadaan Fourier muunnoksesta Satunnaisille signaaleille, kuten kohinalle, ei amplitudispektriä voida määrittää (=0). Signaalia kuvaa tällöin paremmin tehotiheysspektri. Saadaan esim Fourier muunnoksella asettamalla x(t) -> x 2 (t) Petri Kärhä 27/02/2004 Luento 5: Signaalit ja järjestelmät aika ja taajuusalueissa 18

19 Signaalin käsittelymahdollisuuksia taajuusalueessa Instrumenttifunktion, näytteistyksen ym. aiheuttaman konvoluution dekonvolointi (konvoluutio muuttuu kertolaskuksi -> dekonvoluutio jakamalla) Interpolointi nollia lisäämällä Matemaattinen suodatus Matemaattinen tasoitus Interferenssin poisto Taustan poisto (Näitä käsitellään enemmän kurssissa Fourier muunnokset mittaustekniikassa) Petri Kärhä 27/02/2004 Luento 5: Signaalit ja järjestelmät aika ja taajuusalueissa 19

20 Järjestelmien analysointi Järjestelmän toimintaa voidaan analysoida aika- tai taajuusalueissa laittamalla sisäänmenoon testisignaali ja tarkastelemalla ulostulon muutosta Tavallisimpia testisignaaleja yksikköaskel -> askelvaste Dirac n deltafunktio -> impulssivaste sinifunktio -> taajuusvaste Petri Kärhä 27/02/2004 Luento 5: Signaalit ja järjestelmät aika ja taajuusalueissa 20

21 Askelvasteen analysointi Määritettävät parametrit Kuollut aika t d Viive t l Nousuaika t n (10%->90%) Asettumisaika t t Ylitys x Aikavakio (0%->63%) Impulssivaste vastaavasti Antavat vasteen tietylle testisignaalille. Vaste muille testisignaaleille voidaan laskea superpositioperiaatteella Petri Kärhä 27/02/2004 Luento 5: Signaalit ja järjestelmät aika ja taajuusalueissa 21

22 Järjestelmien askelvasteita Petri Kärhä 27/02/2004 Luento 5: Signaalit ja järjestelmät aika ja taajuusalueissa 22

23 Järjestelmien pulssivasteita aika- ja taajuustasoissa Petri Kärhä 27/02/2004 Luento 5: Signaalit ja järjestelmät aika ja taajuusalueissa 23

Spektri- ja signaalianalysaattorit

Spektri- ja signaalianalysaattorit Spektri- ja signaalianalysaattorit Pyyhkäisevät spektrianalysaattorit Suora pyyhkäisevä Superheterodyne Reaaliaika-analysaattorit Suora analoginen analysaattori FFT-spektrianalysaattori DFT FFT Analysaattoreiden

Lisätiedot

SIGNAALITEORIAN KERTAUSTA OSA 1

SIGNAALITEORIAN KERTAUSTA OSA 1 1 SIGNAALITEORIAN KERTAUSTA OSA 1 Millainen on signaalin spektri ja miten se lasketaan? SIGNAALIEN JA SPEKTRIN PERUSKÄSITTEITÄ 2 Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka graafinen

Lisätiedot

SIGNAALITEORIAN KERTAUSTA 1

SIGNAALITEORIAN KERTAUSTA 1 SIGNAALITEORIAN KERTAUSTA 1 1 (26) Fourier-muunnos ja jatkuva spektri Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka esittäminen graafisesti edellyttää 3D-kuvaajan piirtämisen. Yleensä

Lisätiedot

Signaalien datamuunnokset

Signaalien datamuunnokset Signaalien datamuunnokset Datamuunnosten teoriaa Muunnosten taustaa Muunnosten teoriaa Muunnosten rajoituksia ja ongelmia Petri Kärhä 06/02/2004 Luento 4a: Signaalien datamuunnokset 1 Digitaalitekniikan

Lisätiedot

Jaksollisen signaalin spektri

Jaksollisen signaalin spektri Jaksollisen signaalin spektri LuK-tutkielma Topi Suviaro 2257699 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 215 Sisältö Johdanto 2 1 Jaksollisuudesta 2 2 Spektristä 3 2.1 Symmetrian vaikutuksesta

Lisätiedot

Signaalien datamuunnokset. Digitaalitekniikan edut

Signaalien datamuunnokset. Digitaalitekniikan edut Signaalien datamuunnokset Datamuunnosten teoriaa Muunnosten taustaa Muunnosten teoriaa Muunnosten rajoituksia ja ongelmia Petri Kärhä 09/02/2009 Signaalien datamuunnokset 1 Digitaalitekniikan edut Tarkoituksena

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 13 Ti 18.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 13 Ti 18.10.2011 p. 1/43 p. 1/43 Nopeat Fourier-muunnokset Fourier-sarja: Jaksollisen funktion esitys

Lisätiedot

Dynaamisten systeemien identifiointi 1/2

Dynaamisten systeemien identifiointi 1/2 Dynaamisten systeemien identifiointi 1/2 Mallin rakentaminen mittausten avulla Epäparametriset menetelmät: tuloksena malli, joka ei perustu parametreille impulssi-, askel- tai taajusvaste siirtofunktion

Lisätiedot

Luento 2. Jaksolliset signaalit

Luento 2. Jaksolliset signaalit Luento Jaksollisten signaalien Fourier-sarjat Viivaspektri S-.7. Signaalit ja järjestelmät 5 op KK ietoliikennelaboratorio Jaksollinen (periodinen) Jaksolliset signaalit Jaksonaika - / / Perusjakso Amplitudi

Lisätiedot

SIGNAALITEORIAN KERTAUSTA OSA 2

SIGNAALITEORIAN KERTAUSTA OSA 2 1 SIGNAALITEORIAN KERTAUSTA OSA 2 Miten spektri lasketaan moduloiduille ja näytteistetyille tietoliikennesignaaleille? KONVOLUUTIO JA KERTOLASKU 2 Kantataajuussignaali (baseband) = sanomasignaali ilman

Lisätiedot

Luento 8. Suodattimien käyttötarkoitus

Luento 8. Suodattimien käyttötarkoitus Luento 8 Lineaarinen suodatus Ideaaliset alipäästö, ylipäästö ja kaistanpäästösuodattimet Käytännölliset suodattimet 8..006 Suodattimien käyttötarkoitus Signaalikaistan ulkopuolisen kohinan ja häiriöiden

Lisätiedot

MS-C1420 Fourier-analyysi osa I

MS-C1420 Fourier-analyysi osa I MS-C142 Fourier-analyysi osa I G. Gripenberg Aalto-yliopisto 29. tammikuuta 214 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa I 29. tammikuuta 214 1 / 3 1 Johdanto 2 Fourier-integraali Fourier-muunnos

Lisätiedot

Kompleksiluvut signaalin taajuusjakauman arvioinnissa

Kompleksiluvut signaalin taajuusjakauman arvioinnissa Kompleksiluvut signaalin taajuusjakauman arvioinnissa Vierailuluento IMA-kurssilla Heikki Huttunen Lehtori, TkT Signaalinkäsittely, TTY heikki.huttunen@tut.fi Department of Signal Processing Fourier-muunnos

Lisätiedot

4. Fourier-analyysin sovelletuksia. Funktion (signaalin) f(t) näytteistäminen tapahtuu kertomalla funktio näytteenottosignaalilla

4. Fourier-analyysin sovelletuksia. Funktion (signaalin) f(t) näytteistäminen tapahtuu kertomalla funktio näytteenottosignaalilla 4.1 Näytteenottolause 4. Fourier-analyysin sovelletuksia Näyttenottosignaali (t) = k= δ(t kt). T on näytteenottoväli, ja ω T = 1 T on näyttenottotaajuus. Funktion (signaalin) f(t) näytteistäminen tapahtuu

Lisätiedot

MS-C1420 Fourier-analyysi osa I

MS-C1420 Fourier-analyysi osa I 1 Johdanto MS-C142 Fourier-analyysi osa I G Gripenberg 2 Fourier-integraali Fourier-muunnos ja derivaatta Konvoluutio Fourier-käänteismuunnos eliöintegroituvat funktiot Aalto-yliopisto 29 tammikuuta 214

Lisätiedot

spektri taajuus f c f c W f c f c + W

spektri taajuus f c f c W f c f c + W Kaistanpäästösignaalit Monet digitaaliset tiedonsiirtosignaalit ovat keskittyneet jonkin tietyn kantoaaltotaajuuden f c ympäristöön siten, että signaali omaa merkittäviä taajuuskomponetteja vain kaistalla

Lisätiedot

MS-C1420 Fourier-analyysi osa I

MS-C1420 Fourier-analyysi osa I MS-C1420 Fourier-analyysi osa I G. Gripenberg Aalto-yliopisto 29. tammikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-C1420 Fourier-analyysiosa I 29. tammikuuta 2014 1 / 29 Fourier-muunnoksia Jatkuva-aikaisen

Lisätiedot

Missä mennään. systeemi. identifiointi. mallikandidaatti. validointi. malli. (fysikaalinen) mallintaminen. mallin mallin käyttötarkoitus, reunaehdot

Missä mennään. systeemi. identifiointi. mallikandidaatti. validointi. malli. (fysikaalinen) mallintaminen. mallin mallin käyttötarkoitus, reunaehdot Missä mennään systeemi mallin mallin käyttötarkoitus, reunaehdot käyttö- (fysikaalinen) mallintaminen luonnonlait yms. yms. identifiointi kokeita kokeita + päättely päättely vertailu mallikandidaatti validointi

Lisätiedot

Luento 4 Fourier muunnos

Luento 4 Fourier muunnos Luento 4 Luento 4 Fourier muunnos 4. F muunnos F muunnos Oppenheim 4. 4. Energiaspektri (spektritiheys) Rayleigh'n energia teoreema, energiaspektri Kaistanleveys Boden diagrammi 4.3 F muunnoksen ominaisuudet,

Lisätiedot

Mat / Mat Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 42, loppuviikko, syksy 2008

Mat / Mat Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 42, loppuviikko, syksy 2008 Mat-.3 / Mat-.33 Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 4, loppuviikko, syksy 8 Ennen malliratkaisuja, muistin virkistämiseksi kaikkien rakastama osittaisintegroinnin kaava: b a u(tv (t

Lisätiedot

Fourier-sarjat ja -muunnos

Fourier-sarjat ja -muunnos 24. marraskuuta 2016 Jaksolliset funktiot, trigonometriset sarjat, parilliset ja p Jaksolliset funktiot Funktio f : R R on jaksollinen, jos on olemassa p > 0 siten, että f (x + p) = f (x) kaikilla x R

Lisätiedot

S-108.180 Elektroniset mittaukset ja elektroniikan häiriökysymykset. Vanhoja tenttitehtäviä

S-108.180 Elektroniset mittaukset ja elektroniikan häiriökysymykset. Vanhoja tenttitehtäviä S-18.18 Elektroniset mittaukset ja elektroniikan häiriökysymykset 1. Vastaa lyhyesti: a) Mitä on kohina (yleisesti)? b) Miten määritellään kohinaluku? c) Miten / missä syntyy raekohinaa? Vanhoja tenttitehtäviä

Lisätiedot

Digitaalinen Signaalinkäsittely T0125 Luento 4-7.04.2006

Digitaalinen Signaalinkäsittely T0125 Luento 4-7.04.2006 Digitaalinen Signaalinkäsittely T5 Luento 4-7.4.6 Jarkko.Vuori@evtek.fi Z-taso Z-taso on paljon käytetty graafinen esitystapa jonka avulla voidaan tarkastella signaalien taajuussisältöjä sekä järjestelmien

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 13. Kirsi Valjus. Jyväskylän yliopisto. Luento 13 () Numeeriset menetelmät / 42

Numeeriset menetelmät TIEA381. Luento 13. Kirsi Valjus. Jyväskylän yliopisto. Luento 13 () Numeeriset menetelmät / 42 Numeeriset menetelmät TIEA381 Luento 13 Kirsi Valjus Jyväskylän yliopisto Luento 13 () Numeeriset menetelmät 8.5.2013 1 / 42 Luennon 13 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Moniaskelmenetelmien

Lisätiedot

Osa VI. Fourier analyysi. A.Rasila, J.v.Pfaler () Mat Matematiikan peruskurssi KP3-i 12. lokakuuta / 246

Osa VI. Fourier analyysi. A.Rasila, J.v.Pfaler () Mat Matematiikan peruskurssi KP3-i 12. lokakuuta / 246 Osa VI Fourier analyysi A.Rasila, J.v.Pfaler () Mat-1.1331 Matematiikan peruskurssi KP3-i 12. lokakuuta 2007 127 / 246 1 Johdanto 2 Fourier-sarja 3 Diskreetti Fourier muunnos A.Rasila, J.v.Pfaler () Mat-1.1331

Lisätiedot

e ax, kun x > 0 f(x) = 0, kun x < 0, 0, kun x > 0 e ax, kun x < 0 e (a iω)x dx = a+iω = 1 a 2 +ω 2. e ax, x > 0 e ax, x < 0,

e ax, kun x > 0 f(x) = 0, kun x < 0, 0, kun x > 0 e ax, kun x < 0 e (a iω)x dx = a+iω = 1 a 2 +ω 2. e ax, x > 0 e ax, x < 0, Harjoitus 5 1. Olkoot a > 0. Laske vaimenevan pulssin e ax, kun x > 0 fx) = 0, kun x < 0, ja voimistuvan pulssin gx) = konvoluution g f Fourier-muunnos. 0, kun x > 0 e ax, kun x < 0 apa 1: Konvoluution

Lisätiedot

MS-C1420 Fourier-analyysi Esimerkkejä, perusteluja, osa I

MS-C1420 Fourier-analyysi Esimerkkejä, perusteluja, osa I MS-C140 Fourier-analyysi Esimerkkejä, perusteluja, osa I G. Gripenberg Aalto-yliopisto 3. tammikuuta 014 G. Gripenberg (Aalto-yliopisto MS-C140 Fourier-analyysiEsimerkkejä, perusteluja, osa3. I tammikuuta

Lisätiedot

MS-C1420 Fourier-analyysi Esimerkkejä, perusteluja, osa I

MS-C1420 Fourier-analyysi Esimerkkejä, perusteluja, osa I MS-C14 Fourier-analyysi Esimerkkejä, perusteluja, osa I G. Gripenberg Aalto-yliopisto 3. tammikuuta 14 G. Gripenberg (Aalto-yliopisto MS-C14 Fourier-analyysiEsimerkkejä, perusteluja, osa3. I tammikuuta

Lisätiedot

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin z muunnos ja sen soveltaminen LTI järjestelmien analysointiin muunnoksella (eng. transform) on vastaava asema diskreettiaikaisten signaalien ja LTI järjestelmien analyysissä kuin Laplace muunnoksella jatkuvaaikaisten

Lisätiedot

TRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT

TRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT 3.0.07 0 π TRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT π = π 3π π = π 5π 6π = 3π 7π TRIGONOMETRISET FUNKTIOT, MAA7 Tarkastellaan aluksi sini-funktiota ja lasketaan sin :n arvoja, kun saa arvoja 0:sta 0π :ään

Lisätiedot

ELEC-C7230 Tietoliikenteen siirtomenetelmät

ELEC-C7230 Tietoliikenteen siirtomenetelmät ELEC-C7230 Tietoliikenteen siirtomenetelmät Laskuharjoitus 8 - ratkaisut 1. Tehtävässä on taustalla ajatus kantoaaltomodulaatiosta, jossa on I- ja Q-haarat, ja joka voidaan kuvata kompleksiarvoisena kantataajuussignaalina.

Lisätiedot

Käytännön radiotekniikkaa: Epälineaarinen komponentti ja signaalien siirtely taajuusalueessa (+ laboratoriotyön 2 esittely)

Käytännön radiotekniikkaa: Epälineaarinen komponentti ja signaalien siirtely taajuusalueessa (+ laboratoriotyön 2 esittely) Käytännön radiotekniikkaa: Epälineaarinen komponentti ja signaalien siirtely taajuusalueessa (+ laboratoriotyön 2 esittely) ELEC-C5070 Elektroniikkapaja, 21.9.2015 Huom: Kurssissa on myöhemmin erikseen

Lisätiedot

Signaalimallit: sisältö

Signaalimallit: sisältö Signaalimallit: sisältö Motivaationa häiriöiden kuvaaminen ja rekonstruointi Signaalien kuvaaminen aikatasossa, determinisitinen vs. stokastinen Signaalien kuvaaminen taajuustasossa Fourier-muunnos Deterministisen

Lisätiedot

INTEGROINNIN SOVELLUKSIA TIEDONSIIRTOTEKNIIKASSA. Taustaa. Jukka Talvitie, Toni Levanen & Mikko Valkama TTY / Tietoliikennetekniikka

INTEGROINNIN SOVELLUKSIA TIEDONSIIRTOTEKNIIKASSA. Taustaa. Jukka Talvitie, Toni Levanen & Mikko Valkama TTY / Tietoliikennetekniikka IMA-3 Excursio: Integroinnin sovelluksia tiedonsiirtotekniikassa / 1 INTEGROINNIN SOVELLUKSIA TIEDONSIIRTOTEKNIIKASSA Taustaa IMA-3 Excursio: Integroinnin sovelluksia tiedonsiirtotekniikassa / 2 Jukka

Lisätiedot

Äärettömät raja-arvot

Äärettömät raja-arvot Äärettömät raja-arvot Määritelmä Funktion f oikeanpuoleinen raja-arvo pisteessä x 0 on + mikäli kaikilla R > 0 löytyy sellainen δ > 0 että f (x) > R aina kun x 0 < x < x 0 + δ. Funktion f oikeanpuoleinen

Lisätiedot

Luento 4 Jaksollisten signaalien Fourier-sarjaesitys 4.1 Fourier-sarja 4.2 Viivaspektri, tehospektri

Luento 4 Jaksollisten signaalien Fourier-sarjaesitys 4.1 Fourier-sarja 4.2 Viivaspektri, tehospektri Luento 4 Luento 4 Jaksollisten signaalien Fourier-sarjaesitys 9 Oppenheim 3.3, 3.4 4.1 Fourier-sarja Kompleksi F-sarja F-sinisarja Sinc-funktio 4. Viivaspektri, tehospektri Viivaspektri Parsevalin teoreema

Lisätiedot

Luento 5: Kantataajuusvastaanotin AWGNkanavassa I: Suodatus ja näytteistys a. Kuvaa diskreetin ajan signaaliavaruussymbolit jatkuvaan aikaan

Luento 5: Kantataajuusvastaanotin AWGNkanavassa I: Suodatus ja näytteistys a. Kuvaa diskreetin ajan signaaliavaruussymbolit jatkuvaan aikaan ELEC-C7230 Tietoliikenteen siirtomenetelmät Luento 5: Kantataajuusvastaanotin AWGNkanavassa I: Suodatus ja näytteistys a Olav Tirkkonen Aalto, Tietoliikenne- ja tietoverkkotekniikan laitos a [10.1-10.6.3]

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-1200 Signaalinkäsittelyn menetelmät, Tentti 24.4.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

LABORATORIOTYÖ 2 SPEKTRIANALYSAATTORI

LABORATORIOTYÖ 2 SPEKTRIANALYSAATTORI LABORATORIOTYÖ 2 SPEKTRIANALYSAATTORI Päivitetty: 25/02/2004 MV 2-1 2. SPEKTRIANALYSAATTORI Työn tarkoitus: Työn tarkoituksena on tutustua spektrianalysaattorin käyttöön, sekä oppia tuntemaan erilaisten

Lisätiedot

F {f(t)} ˆf(ω) = 1. F { f (n)} = (iω) n F {f}. (11) BM20A5700 - INTEGRAALIMUUNNOKSET Harjoitus 10, viikko 46/2015. Fourier-integraali:

F {f(t)} ˆf(ω) = 1. F { f (n)} = (iω) n F {f}. (11) BM20A5700 - INTEGRAALIMUUNNOKSET Harjoitus 10, viikko 46/2015. Fourier-integraali: BMA57 - INTEGRAALIMUUNNOKSET Harjoitus, viikko 46/5 Fourier-integraali: f(x) A() π B() π [A() cos x + B() sin x]d, () Fourier-muunnos ja käänteismuunnos: f(t) cos tdt, () f(t) sin tdt. (3) F {f(t)} ˆf()

Lisätiedot

Taajuus-, Fourier- ja spektraalianalyysi

Taajuus-, Fourier- ja spektraalianalyysi Taajuus-, Fourier- ja spektraalianalyysi Impulssi- ja askelvastetekniikat sekä korrelaatioanalyysi tähtäävät impulssivasteen mallintamiseen aikataso Taajuus- Fourier- ja spektraalianalyysi tähtäävät systeemin

Lisätiedot

Signaaliavaruuden kantoja äärellisessä ajassa a

Signaaliavaruuden kantoja äärellisessä ajassa a ELEC-C7230 Tietoliikenteen siirtomenetelmät Luento 3: Kompleksiarvoiset signaalit, taajuus, kantoaaltomodulaatio Olav Tirkkonen, Jari Lietzen Aalto, Tietoliikenne- ja tietoverkkotekniikan laitos Signaaliavaruuden

Lisätiedot

ELEC-A7200 Signaalit ja järjestelmät

ELEC-A7200 Signaalit ja järjestelmät ELEC-A700 Signaalit ja järjestelmät Professori Riku Jäntti ELEC-A700 Signaalit ja järjestelmät Mitä kurssilla käsitellään? signaalien ja järjestelmien peruskäsitteitä signaali- ja järjestelmäanalyysin

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe SGN-00 Signaalinkäsittelyn menetelmät Välikoe 9.3.009 Sivuilla - on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,

Lisätiedot

järjestelmät Luento 8

järjestelmät Luento 8 DEE-111 Lineaariset järjestelmät Luento 8 1 Lineaariset järjestelmät Risto Mikkonen 7.8.214 Luento 7 - Recap Z-muunnos ja sen ominaisuudet Lineaaristen dierenssiyhtälöiden käsittely Alku- ja loppuarvot

Lisätiedot

Diskreetti Fourier-muunnos ja sen hyödyntäminen signaalien spektrien muodostamisessa. Pentti Romppainen

Diskreetti Fourier-muunnos ja sen hyödyntäminen signaalien spektrien muodostamisessa. Pentti Romppainen Diskreetti Fourier-muunnos ja sen hyödyntäminen signaalien spektrien muodostamisessa Pentti Romppainen Kajaanin ammattikorkeakoulu Oy Kajaani University of Applied Sciences Diskreetti Fourier-muunnos ja

Lisätiedot

T L 9 0 8 Z S I G N A A L I T E O R I A O S A I V: E N E R G I A - J A T E H O T I H E Y S

T L 9 0 8 Z S I G N A A L I T E O R I A O S A I V: E N E R G I A - J A T E H O T I H E Y S L 9 8 Z S I G N L I E O R I O S I V: E N E R G I - J E H O I H E Y S 4 Spektrin eneria- ja tehotiheys 57 4. Spektrin eneriatiheys 57 4.. Parsevalin teoreema 57 4.. Spektrin eneriatiheyden ominaisuuksia

Lisätiedot

Luento 2. S Signaalit ja järjestelmät 5 op TKK Tietoliikenne Laboratorio 1. Jean Baptiste Joseph Fourier ( )

Luento 2. S Signaalit ja järjestelmät 5 op TKK Tietoliikenne Laboratorio 1. Jean Baptiste Joseph Fourier ( ) Luento Jasollisten signaalien Fourier-sarjat Viivaspetri S-.7. Signaalit ja järjestelmät 5 op KK ietoliienne Laboratorio Jean Baptiste Joseph Fourier (768-83) Ransalainen matemaatio ja fyysio. Esitti Fourier-sarjat

Lisätiedot

Luento 7. LTI-järjestelmät

Luento 7. LTI-järjestelmät Luento 7 Lineaaristen järjestelmien analyysi taajuustasossa Taajuusvaste Stabiilisuus..7 LTI-järjestelmät u(t) h(t) y(t) Tarkastellaan lineaarista aikainvarianttia järjestelmää n n m m d d d d yt () =

Lisätiedot

S Signaalit ja järjestelmät

S Signaalit ja järjestelmät dsfsdfs S-72.1110 Työ 2 Ryhmä 123: Tiina Teekkari EST 12345A Teemu Teekkari TLT 56789B Selostus laadittu 1.1.2007 Laboratoriotyön suoritusaika 31.12.2007 klo 08:15 11:00 Esiselostuksen laadintaohje Täytä

Lisätiedot

Spektrianalysaattori. Spektrianalysaattori

Spektrianalysaattori. Spektrianalysaattori Mittaustekniikan perusteet / luento 9 Spektrianalysaattori Spektrianalyysi Jean Baptiste Fourier (1768-1830): Signaali voidaan esittää taajuudeltaan ja amplitudiltaan (sekä vaiheeltaan) erilaisten sinien

Lisätiedot

Harjoitus Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia:

Harjoitus Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia: Differentiaaliyhtälöt, Kesä 216 Harjoitus 2 1. Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia: (a) y = (2 y) 3, (b) y = (y 1) 2, (c) y = 2y y 2. 2. Etsi seuraavien

Lisätiedot

TL5503 DSK, laboraatiot (1.5 op) Suodatus 2 (ver 1.0) Jyrki Laitinen

TL5503 DSK, laboraatiot (1.5 op) Suodatus 2 (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op) Suodatus 2 (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op), K2005 1 Suorita oheisten ohjeiden mukaiset tehtävät Matlab-ohjelmistoa käyttäen. Kokoa erilliseen

Lisätiedot

Spektrianalyysi, motivaatio

Spektrianalyysi, motivaatio Digitaalinen Signaalinkäsittely 5 Luento 7-3.5.6 Jarkko.Vuori@evtek.fi Spektrianalyysi, motivaatio Ihmiskeholla on luontaisesti hidas reagointikoneisto Musiikkia kuunnellessamme emme erota äänenpaineen

Lisätiedot

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 Mittalaitetekniikka NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella

Lisätiedot

A B = 100, A = B = 0. D = 1.2. Ce (1.2 D. C (t D) 0, t < 0. t D. )} = Ae πjf D F{Π( t D )} = ADe πjf D sinc(df)

A B = 100, A = B = 0. D = 1.2. Ce (1.2 D. C (t D) 0, t < 0. t D. )} = Ae πjf D F{Π( t D )} = ADe πjf D sinc(df) ELEC-A7 Signaalit ja järjestelmät Syksy 5 Tehtävä 3. a) Suoran tapauksessa ratkaistaan kaksi tuntematonta termiä, A ja B, joten tarvitaan kaksi pistettä, jotka ovat pisteet t = ja t =.. Saadaan yhtälöpari

Lisätiedot

1. Annettu siirtofunktio on siis G(s) ja vastaava systeemi on stabiili. Heräte (sisäänmeno) on u(t) = A sin(ωt), jonka Laplace-muunnos on

1. Annettu siirtofunktio on siis G(s) ja vastaava systeemi on stabiili. Heräte (sisäänmeno) on u(t) = A sin(ωt), jonka Laplace-muunnos on Aalto-yliopiston Perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Mat-419 Systeemien Identifiointi 8 harjoituksen ratkaisut 1 Annettu siirtofunktio on siis G(s) ja vastaava systeemi

Lisätiedot

2. Fourier-sarjoista. Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu

2. Fourier-sarjoista. Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu 2. Fourier-sarjoista Fourier-analyysi: Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu Matemaattisen analyysin täkein työväline "Jokainen funktio" voidaan esittää harmonisten värähtelyjen, so.

Lisätiedot

Kompleksianalyysi, viikko 7

Kompleksianalyysi, viikko 7 Kompleksianalyysi, viikko 7 Jukka Kemppainen Mathematics Division Fourier-muunnoksesta Laplace-muunnokseen Tarkastellaan seuraavassa kausaalisia signaaleja eli signaaleja x(t), joille x(t) 0 kaikilla t

Lisätiedot

Analogiatekniikka. Analogiatekniikka

Analogiatekniikka. Analogiatekniikka 1 Opintojakson osaamistavoitteet Opintojakson hyväksytysti suoritettuaan opiskelija: osaa soveltaa ja tulkita siirtofunktiota, askelvastetta, Bodediagrammia ja napa-nolla-kuvaajaa lineaarisen, dynaamisen

Lisätiedot

MS-C1420 Fourier-analyysi osa II

MS-C1420 Fourier-analyysi osa II MS-C142 Fourier-analyysi osa II G. Gripenberg Aalto-yliopisto 14. helmikuuta 214 1 Fourier-sarjat ja Fourier-integraalit Poissonin summakaava Whittaker-Shannonin interpolointikaava 2 Vaimennetunen distribuution

Lisätiedot

Luento 8. Suodattimien käyttötarkoitus

Luento 8. Suodattimien käyttötarkoitus Luento 8 Lineaarinen suodatus Ideaaliset alipäästö, ylipäästö ja kaistanpäästösuodattimet Käytännölliset suodattimet 8..007 Suodattimien käyttötarkoitus Signaalikaistan ulkopuolisen kohinan ja häiriöiden

Lisätiedot

Suodattimet. Suodatintyypit: Bessel Chebyshev Elliptinen Butterworth. Suodattimet samalla asteluvulla (amplitudivaste)

Suodattimet. Suodatintyypit: Bessel Chebyshev Elliptinen Butterworth. Suodattimet samalla asteluvulla (amplitudivaste) Suodattimet Suodatintyypit: Bessel Chebyshev Elliptinen Butterworth Suodattimet samalla asteluvulla (amplitudivaste) Kuvasta nähdään että elliptinen suodatin on terävin kaikista suodattimista, mutta sisältää

Lisätiedot

Kapeakaistainen signaali

Kapeakaistainen signaali Tiedonsiirrossa sellaiset signaalit ovat tyypillisiä, joilla informaatio jakautuu kapealle taajuusalueelle jonkun keskitaajuuden ympäristöön. Tällaisia signaaleja kutustaan kapeakaistaisiksi signaaleiksi

Lisätiedot

MS-C1420 Fourier-analyysi osa II

MS-C1420 Fourier-analyysi osa II MS-C142 Fourier-analyysi osa II G. Gripenberg Aalto-yliopisto 14. helmikuuta 214 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta 214 1 / 36 1 Fourier-sarjat ja Fourier-integraalit

Lisätiedot

A! Modulaatioiden luokittelu. Luento 4: Digitaaliset modulaatiokonstellaatiot, symbolijonolähetteet. ELEC-C7230 Tietoliikenteen siirtomenetelmät

A! Modulaatioiden luokittelu. Luento 4: Digitaaliset modulaatiokonstellaatiot, symbolijonolähetteet. ELEC-C7230 Tietoliikenteen siirtomenetelmät ELEC-C7230 Tietoliikenteen siirtomenetelmät Luento 4: Digitaaliset modulaatiokonstellaatiot, symbolijonolähetteet Olav Tirkkonen, Jari Lietzen Aalto, Tietoliikenne- ja tietoverkkotekniikan laitos A! Modulaatioiden

Lisätiedot

T SKJ - TERMEJÄ

T SKJ - TERMEJÄ T-61140 SKJ - termit Sivu 1 / 7 T-61140 SKJ - TERMEJÄ Nimi Opnro Email Signaalinkäsittelyyn liittyviä termejä ja selityksiä Kevät 2005 Täytä lomaketta kevään aikana ja kerää mahdollisesti puuttuvia termejä

Lisätiedot

TL5231, Signaaliteoria (S2004) Matlab-harjoituksia

TL5231, Signaaliteoria (S2004) Matlab-harjoituksia 1. a) Muodosta Matlab-ohjelmistossa kosinisignaali x(t) = Acos(2πft+θ), jonka amplitudi on 1V, taajuus hertseinä sama kuin ikäsi vuosina (esim. 2 v = 2 Hz) ja vaihekulma +π/2. Piirrä signaali ja tarkista

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-1200 Signaalinkäsittelyn menetelmät, Tentti 21.3.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-00 Signaalinkäsittelyn menetelmät, Tentti..005 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle ja sen

Lisätiedot

Tilastotieteessä aikasarja tarkoittaa yleensä sarjaa, jossa peräkkäisten havaintojen aikaväli on aina sama.

Tilastotieteessä aikasarja tarkoittaa yleensä sarjaa, jossa peräkkäisten havaintojen aikaväli on aina sama. Aikasarjat Tilastotieteessä aikasarja tarkoittaa yleensä sarjaa, jossa peräkkäisten havaintojen aikaväli on aina sama. Aikasarja on laajassa mielessä stationäärinen (wide sense stationary, WSS), jos odotusarvo

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe SGN-100 Signaalinkäsittelyn menetelmät Välikoe 6.4.010 Sivuilla 1- on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,

Lisätiedot

Säätötekniikan ja signaalinkäsittelyn työkurssi

Säätötekniikan ja signaalinkäsittelyn työkurssi Säätötekniikan ja signaalinkäsittelyn työkurssi Työ D102: Sinimuotoisen signaalin suodattaminen 0.4 op. Julius Luukko Lappeenrannan teknillinen yliopisto Sähkötekniikan osasto/säätötekniikan laboratorio

Lisätiedot

Signaalin energia- ja tehotiheys

Signaalin energia- ja tehotiheys Spektrin energiatiheys Signaalin energia- ja tehotiheys Reaaliarvoisen energiasignaalin g(t) kokonaisenergia E saadaan kaavalla E = g ( t) dt Olkoon signaalin g(t) Fourier-muunnos G(ω). Parsevalin teoreeman

Lisätiedot

Petri Kärhä 04/02/04. Luento 2: Kohina mittauksissa

Petri Kärhä 04/02/04. Luento 2: Kohina mittauksissa Kohinan ominaisuuksia Kohinamekanismit Terminen kohina Raekohina 1/f kohina (Kvantisointikohina) Kohinan käsittely Kohinakaistanleveys Kohinalähteiden yhteisvaikutus Signaali-kohina suhde Kohinaluku Kohinalämpötila

Lisätiedot

Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 5. joulukuuta Z-muunnos

Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 5. joulukuuta Z-muunnos Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt 5. joulukuuta 2016 Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt Lukujonot Lukujonot Z-muunnoksen ominaisuuksia

Lisätiedot

Luento 9. tietoverkkotekniikan laitos

Luento 9. tietoverkkotekniikan laitos Luento 9 Luento 9 Jaksolliset signaalit epälineaarisissa muistittomissa järjestelmissä 9.1 Muistittomat epälineaariset komponentit Pruju Taylor-sarjakehitelmä ja konvoluutio taajuustasossa Särö Keskinäismodulaatio

Lisätiedot

Luento 7. tietoverkkotekniikan laitos

Luento 7. tietoverkkotekniikan laitos Luento 7 Luento 7 LTI järjestelmien taajuusalueen analyysi II 7. LTI järjestelmän taajuusvaste Vaste kompleksiselle eksponenttiherätteelle Taajuusvaste, Boden diagrammi 7.2 Signaalin muuntuminen LTI järjestelmässä

Lisätiedot

= 2 L L. f (x)dx. coshx dx = 1 L. sinhx nπ. sin. sin L + 2 L. a n. L 2 + n 2 cos. tehdään approksimoinnissa virhe, jota voidaan arvioida integraalin

= 2 L L. f (x)dx. coshx dx = 1 L. sinhx nπ. sin. sin L + 2 L. a n. L 2 + n 2 cos. tehdään approksimoinnissa virhe, jota voidaan arvioida integraalin BMA7 - Integraalimuunnokset Harjoitus 9. Määritä -jaksollisen funktion f x = coshx, < x < Fourier-sarja. Funktion on parillinen, joten b n = kun n =,,3,... Parillisuudesta johtuen kertoimet a ja a n saadaan

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-1200 Signaalinkäsittelyn menetelmät, Tentti 30.1.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu

Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu Teemu Saarelainen, teemu.saarelainen@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Signal Processing: A Practical Approach H.Huttunen,

Lisätiedot

Hyvyyskriteerit. ELEC-C1230 Säätötekniikka. Luku 8: Säädetyn järjestelmän hyvyys aika- ja taajuustasossa, suunnittelu taajuustasossa, kompensaattorit

Hyvyyskriteerit. ELEC-C1230 Säätötekniikka. Luku 8: Säädetyn järjestelmän hyvyys aika- ja taajuustasossa, suunnittelu taajuustasossa, kompensaattorit Hyvyyskriteerit ELEC-C1230 Säätötekniikka Aikaisemmilla luennoilla on havainnollistettu, miten systeemien käyttäytymiseen voi vaikuttaa säätämällä niitä. Epästabiileista systeemeistä saadaan stabiileja,

Lisätiedot

Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 1. joulukuuta Z-muunnos

Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 1. joulukuuta Z-muunnos Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt 1. joulukuuta 2015 Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt Lukujono Lukujono on diskreetti funktio

Lisätiedot

Laskuharjoitus 2 ( ): Tehtävien vastauksia

Laskuharjoitus 2 ( ): Tehtävien vastauksia TT12S1E Tietoliikenteen perusteet Metropolia/A. Koivumäki Laskuharjoitus 2 (11.9.2013): Tehtävien vastauksia 1. Eräässä kuvitteellisessa radioverkossa yhdessä radiokanavassa voi olla menossa samanaikaisesti

Lisätiedot

5. Z-muunnos ja lineaariset diskreetit systeemit. z n = z

5. Z-muunnos ja lineaariset diskreetit systeemit. z n = z 5. Z-muunnos ja lineaariset diskreetit systeemit Jono: (x(n)) n=0 = (x(0), x(1), x(2),..., x(n),...) Z-muunnos: X(z) = n=0 x(n)z n, jos sarja suppenee jossain kompleksitason osassa. Esim. 4. Ykkösjonon

Lisätiedot

Luento 5. tietoverkkotekniikan laitos

Luento 5. tietoverkkotekniikan laitos Luento 5 Luento 5 Jaksolliset signaalit epälineaarisissa muistittomissa järjestelmissä 5.1 Muistittomat epälineaariset komponentit Pruju Taylor-sarjakehitelmä ja konvoluutio taajuustasossa Särö Keskinäismodulaatio

Lisätiedot

Taajuus-, Fourier- ja spektraalianalyysi

Taajuus-, Fourier- ja spektraalianalyysi Taajuus-, Fourier- ja spektraalianalyysi Transientti- ja korrelaatioanalyysi tähtäävät impulssivasteen (askelvasteen) mallintamiseen Kuvaus aikatasossa Taajuus- Fourier- ja spektraalianalyysi tähtäävät

Lisätiedot

Osa IX. Z muunnos. Johdanto Diskreetit funktiot

Osa IX. Z muunnos. Johdanto Diskreetit funktiot Osa IX Z muunnos A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 298 / 322 A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 299 / 322 Johdanto

Lisätiedot

Taajuus-, Fourier- ja spektraalianalyysi

Taajuus-, Fourier- ja spektraalianalyysi Taajuus-, Fourier- ja spektraalianalyysi Transientti- ja korrelaatioanalyysi tähtäävät impulssivasteen (askelvasteen) mallintamiseen Taajuus- Fourier- ja spektraalianalyysi tähtäävät systeemin taajuusominaisuuksien

Lisätiedot

Muuntavat analogisen signaalin digitaaliseksi Vertaa sisääntulevaa signaalia referenssijännitteeseen Sarja- tai rinnakkaismuotoinen Tyypilliset

Muuntavat analogisen signaalin digitaaliseksi Vertaa sisääntulevaa signaalia referenssijännitteeseen Sarja- tai rinnakkaismuotoinen Tyypilliset Muuntavat analogisen signaalin digitaaliseksi Vertaa sisääntulevaa signaalia referenssijännitteeseen Sarja- tai rinnakkaismuotoinen Tyypilliset valintakriteerit resoluutio ja nopeus Yleisimmät A/D-muunnintyypit:

Lisätiedot

Laplace-muunnos. 8. marraskuuta Laplace-muunnoksen määritelmä, olemassaolo ja perusominaisuudet Differentiaaliyhtälöt Integraaliyhtälöt

Laplace-muunnos. 8. marraskuuta Laplace-muunnoksen määritelmä, olemassaolo ja perusominaisuudet Differentiaaliyhtälöt Integraaliyhtälöt 8. marraskuuta 216 Laplace-muunnoksen määritelmä, olemassaolo ja perusom Integraalimuunnos Integraalimuunnos on yleisesti muotoa F(u) = K(t, u)f (t)dt missä K on integraalin ydin. Tässä K ja f ovat tunnettuja.

Lisätiedot

Kirjoitetaan FIR-suotimen differenssiyhtälö (= suodatuksen määrittelevä kaava):

Kirjoitetaan FIR-suotimen differenssiyhtälö (= suodatuksen määrittelevä kaava): TL536, DSK-algoritmit (S4) Harjoitus. Olkoo x(t) = cos(πt)+cos(8πt). a) Poimi sigaalista x äytepisteitä taajuudella f s = 8 Hz. Suodata äi saamasi äytejoo x[] FIR-suotimella, joka suodikertoimet ovat a

Lisätiedot

S Elektroniset mittaukset ja elektroniikan häiriökysymykset. 2 ov

S Elektroniset mittaukset ja elektroniikan häiriökysymykset. 2 ov TKK / Mittaustekniikan laboratorio HUT / Metrology Research Institute S-108.180 Elektroniset mittaukset ja elektroniikan häiriökysymykset 2 ov 7.2.2001 KL kohina.ppt 1 Elektroninen mittaussysteemi MITATTAVA

Lisätiedot

TL5503 DSK, laboraatiot (1.5 op) Suodatus 1 (ver 1.0) Jyrki Laitinen

TL5503 DSK, laboraatiot (1.5 op) Suodatus 1 (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op) Suodatus 1 (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op), K2005 1 Suorita oheisten ohjeiden mukaiset tehtävät Matlab-ohjelmistoa käyttäen. Kokoa erilliseen

Lisätiedot

Ajatellaan jotakin datajoukkoa joka on talletettu datamatriisiin X: n vectors. TKK, Informaatiotekniikan laboratorio 1

Ajatellaan jotakin datajoukkoa joka on talletettu datamatriisiin X: n vectors. TKK, Informaatiotekniikan laboratorio 1 3. DATA VEKTORINA 3.1. Vektorit, matriisit, etäisyysmitat Ajatellaan jotakin datajoukkoa joka on talletettu datamatriisiin X: n vectors {}}{ d vector elements X TKK, Informaatiotekniikan laboratorio 1

Lisätiedot

Luento 15: Ääniaallot, osa 2

Luento 15: Ääniaallot, osa 2 Luento 15: Ääniaallot, osa 2 Aaltojen interferenssi Doppler Laskettuja esimerkkejä Luennon sisältö Aaltojen interferenssi Doppler Laskettuja esimerkkejä Aaltojen interferenssi Samassa pisteessä vaikuttaa

Lisätiedot

ELEC-A7200 Signaalit ja järjestelmät

ELEC-A7200 Signaalit ja järjestelmät ELEC-A700 Signaalit ja järjestelmät Professori Riku Jäntti Luento 3. Lineaariset aikainvariantit (LTI) järjestelmät taajuusalueessa Signaalin suodattaminen Epälineaariset muistittomat järjestelmät Satunnaissignaalit

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 14. Kirsi Valjus. Jyväskylän yliopisto. Luento 14 () Numeeriset menetelmät / 55

Numeeriset menetelmät TIEA381. Luento 14. Kirsi Valjus. Jyväskylän yliopisto. Luento 14 () Numeeriset menetelmät / 55 Numeeriset menetelmät TIEA381 Luento 14 Kirsi Valjus Jyväskylän yliopisto Luento 14 () Numeeriset menetelmät 15.5.2013 1 / 55 Luennon 14 sisältö Nopeat Fourier-muunnokset (FFT) Yleinen algoritmi 2-kantainen

Lisätiedot

Perusmittalaitteet 2. Spektrianalyysi. Mittaustekniikan perusteet / luento 4. Spektrianalyysi. Logaritmiasteikko ja db (desibel) Spektrianalysaattori

Perusmittalaitteet 2. Spektrianalyysi. Mittaustekniikan perusteet / luento 4. Spektrianalyysi. Logaritmiasteikko ja db (desibel) Spektrianalysaattori Mittaustekniikan perusteet / luento 4 Perusmittalaitteet Spektrianalyysi Jean Baptiste Fourier (1768-1830): Signaali voidaan esittää taajuudeltaan ja amplitudiltaan (sekä vaiheeltaan) erilaisten sinien

Lisätiedot

T140103 Sähkömittaustekniikka

T140103 Sähkömittaustekniikka T140103 Sähkömittaustekniikka Pekka Rantala Kevät 2015 (9.3.2015) Vaadittavat suoritukset Välikokeiden tai tentin hyväksytty suorittaminen Harjoituksissa/labrassa läsnäolo (100 %) Harjoitusten/labrojen

Lisätiedot