Numeeriset menetelmät

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Numeeriset menetelmät"

Transkriptio

1 Numeeriset menetelmät Luento 5 Ti Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 1/40 p. 1/40

2 Choleskyn menetelmä Positiivisesti definiiteillä matriiseilla kolmiohajotelma A = LL T Kuten LU-hajotelma, missä yläkolmiomatriisia U vastaa yläkolmiomatriisi L T Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 2/40 p. 2/40

3 Yhtälöryhmän ratkaiseminen Ax = b LL T x = b L (L T x) }{{} =y = b { Ly = b L T x = y Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 3/40 p. 3/40

4 Etenevät sijoitukset Ly = b y i = b i = = n k=1 i 1 k=1 ( b i l ik y k l ik y k + l ii y i + i 1 k=1 n k=i+1 l ik }{{} =0 y k l ik y k )/l ii, i = 1, 2,..., n Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 4/40 p. 4/40

5 Takenevat sijoitukset L T x = y x i = y i = = ( y i n k=1 i 1 k=1 n k=i+1 l ki x k l ki }{{} =0 x k + l ii x i + n k=i+1 l ki x k l ki x k )/l ii, i = n, n 1,..., 1 Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 5/40 p. 5/40

6 Yhtälöryhmän ratkaiseminen Apuvektoria y ei tarvita: y:n alkiot x:n päälle Myöskään vektoria x ei välttämättä tarvita: x:n alkiot b:n päälle Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 6/40 p. 6/40

7 Nauhamatriisit Matriisi A on nauhamatriisi, jos a ij = 0 kun i j > m m on sivudiagonaalien lukumäärä 2m + 1 on matriisin nauhanleveys A = 0 0 Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 7/40 p. 7/40

8 Tridiagonaalimatriisit Erikoistapaus: m = 1 (nauhanleveys 3) Tridiagonaalinen matriisi b 1 c 1 a 2 b 2 c 2 A = a 3 b 3 c a n 1 b n 1 c n 1 a n b n Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 8/40 p. 8/40

9 Tridiagonaalinen yhtälöryhmä Oletetaan, että tridiagonaalisen matriisin A LU-hajotelma voidaan tehdä ilman tuentaa Arvataan, että matriisit L ja U ovat muotoa 1 ω 1 α 1 β 2 1 ω 2 α β n 1 1 ω n 1 α n 1 β n 1 ω n Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 9/40 p. 9/40

10 Tridiagonaalinen yhtälöryhmä LU = ω 1 α 1 β 2 ω 1 α 1 β 2 + ω 2 α β n ω n 1... α n 1 β n + ω n LU on tridiagonaalinen Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 10/40 p. 10/40

11 Tridiagonaalinen yhtälöryhmä Verrataan A:n ja LU:n vastinalkioita ω 1 = b 1 α 1 = c 1 β i = a i /ω i 1 ω i = b i α i 1 β i α i = c i β n = a n /ω n 1 ω n = b n α n 1 β n Vastaavasti voidaan johtaa Choleskyn hajotelma positiivisesti definiitille tridiagonaalimatriisille Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 11/40 p. 11/40

12 Nauhamaiset yhtälöryhmät A nauhamatriisi & LU-hajotelma ilman tuentaa L ja U nauhamatriiseja, sama nauhanleveys A nauhamatriisi & Choleskyn hajotelma L nauhamatriisi, sama nauhanleveys Nauhamatriiseista riittää tallentaa diagonaali ja sivudiagonaalit Tilaa säästyy Turha laskenta nollilla poistuu Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 12/40 p. 12/40

13 Virheet ja stabiilisuus Periaatteessa: Ax = b voidaan ratkaista tarkasti äärellisellä määrällä peruslaskutoimituksia Käytännössä: x on aina likiarvo Virhelähteitä: Matemaattisessa mallissa mittaus- ym. virheitä Tallennus liukulukuapproksimaatioina Liukulukulaskennan aritmeettiset operaatiot epätarkkoja Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 13/40 p. 13/40

14 Vektorinormit Yleisesti käytettyjä vektorinormeja: ( n ) 1/p, x p = x i p 1 p < i=1 x = max x i 1 i n n x 1 = x i x 2 = i=1 ( n i=1 x i 2 ) 1/2 (euklidinen normi) Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 14/40 p. 14/40

15 Matriisinormit Matriisin ns. operaattorinormi määritellään vektorinormiin liittyen A = sup x 0 Ax x Silloin Ax A x x R n Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 15/40 p. 15/40

16 Matriisinormit Yleisesti käytettyjä matriisinormeja: A 1 = max 1 j n n i=1 a ij (maksimi sarakkeiden summista) n A = max a ij 1 i n j=1 (maksimi rivien summista) Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 16/40 p. 16/40

17 Virhe- ja stabiilisuusanalyysiä Oletetaan, että A on kääntyvä Oletetaan, että aritmeettiset operaatiot ovat tarkkoja Tarkastellaan kahta tapausta: Häiriöitä on (1) vain vektorissa b (2) sekä vektorissa b että matriisissa A Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 17/40 p. 17/40

18 Häiriö oikean puolen vektorissa Alkuperäinen tehtävä: Ax = b Häiritty tehtävä: Aˆx = b + δb Virhe: e = ˆx x Ae = Aˆx Ax = b + δb b = δb Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 18/40 p. 18/40

19 Virhearvio δb = Ae e = A 1 δb δb A e e A 1 δb : A x : x δb A x e x A 1 δb x ( ) Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 19/40 p. 19/40

20 Virhearvio jatkuu x = A 1 b b = Ax x A 1 b ( ) 1 b A x 1 A 1 b 1 x 1 x A b : x b Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 20/40 p. 20/40

21 Virhearvio jatkuu δb A x e x A 1 δb x ( ) 1 A 1 b 1 x 1 x A b 1 A A 1 δb b e x A A 1 δb b Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 21/40 p. 21/40

22 Häiriöalttius Ratkaisun suhteellisen virheen arvio oikean puolen suhteellisen virheen avulla: e x κ(a) δb b missä κ(a) = A A 1 on matriisin A häiriöalttius Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 22/40 p. 22/40

23 Häiriöalttius Häiriöalttius: Kertoo, kuinka hyvää tarkkuutta ratkaisulta voidaan käytännössä odottaa Numeerinen arvo riippuu käytetystä matriisinormista Tarkan arvon laskeminen kalliimpi operaatio kuin itse yhtälöryhmän ratkaiseminen Suuruusluokkaa voidaan arvioida LU-hajotelman avulla Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 23/40 p. 23/40

24 Häiriö vektorissa ja matriisissa Alkuperäinen tehtävä: Ax = b Häiritty tehtävä: (A + δa)(x + e) = b + δb... e x κ(a) 1 κ(a) δa A ( δa A + δb ) b (Jos δa = 0, saadaan aikaisempi arvio) Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 24/40 p. 24/40

25 Determinantti ja häiriöalttius Jos det A = 0 A 1 ei ole olemassa A 1 ei määritelty määritellään κ(a) = Yleisesti: Determinantin arvon perusteella ei voi sanoa mitään matriisin häiriöalttiudesta Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 25/40 p. 25/40

26 Virhearviot: a priori, a posteriori A priori -virhearviot ( etukäteen ): Arvioidaan ratkaisun tarkkuutta lähtötietojen perusteella (ratkaisematta tehtävää) Esimerkiksi edellä esitetyt virhearviot A posteriori -virhearviot ( jälkikäteen ): Arvioidaan ratkaisun tarkkuutta sen jälkeen kun tehtävä on ratkaistu Esimerkiksi seuraavana esitettävä virhearvio Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 26/40 p. 26/40

27 Residuaali Alkuperäinen tehtävä: Ax = b Numeerinen ratkaisu: ˆx Residuaali: r = b Aˆx Tavoite: r = 0 Mutta yleensä: r 0 Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 27/40 p. 27/40

28 Residuaali Jos yhtälö skaalataan: αax = αb, α 0 Ratkaisu ei muutu ja residuaali skaalautuu samalla vakiolla Residuaali saadaan mielivaltaisen pieneksi tai suureksi Pelkkä residuaali on hyödytön mittari tarkkuudelle Mutta: Residuaalia voidaan käyttää a posteriori -virhearvioiden laskemisessa Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 28/40 p. 28/40

29 Virhearvio Ax = b x = A 1 b r = b Aˆx ˆx = A 1 (b r) e = x ˆx = A 1 r e A 1 r e x A 1 r x : x ( ) Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 29/40 p. 29/40

30 Virhearvio jatkuu e x A 1 r x ( ) b A x 1 x A b e x κ(a) r b missä κ(a) = A A 1 Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 30/40 p. 30/40

31 Yhtälöryhmien ratkaiseminen Suorat menetelmät: Ratkaisu saadaan äärellisellä määrällä peruslaskutoimituksia (jos käytetään tarkkaa aritmetiikka) Esimerkiksi LU ja Cholesky Sopivat hyvin pienille yhtälöryhmille Suurille yhtälöryhmille yleensä tehottomia Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 31/40 p. 31/40

32 Yhtälöryhmien ratkaiseminen Iteratiiviset menetelmät: Alkuarvaus x (0) x (1) x (2)... x (n) joka toteuttaa lopetuskriteerin Tehokkaampia suurille yhtälöryhmille Usein matriisia A ei tarvitse tallentaa kokonaan, vaan riittää että osataan laskea Aw annetulla w Ennen käyttöä on syytä varmistua konvergenssista Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 32/40 p. 32/40

33 Algoritmien valinnasta Lineaarisen yhtälöryhmän ratkaiseminen on yksi numeerisen matematiikan perustehtävistä Perusmenetelmien tehokkaita ja hyvin testattuja implementointeja on vapaasti saatavilla Pienet yhtälöryhmät (n 1000): Jokin yksinkertainen suora menetelmä riittää Suuret ja harvat yhtälöryhmät (n >> 10000, nollasta poikkeavia alkioita << 1 %): Tarvitaan tehokas iteratiivinen menetelmä Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 33/40 p. 33/40

34 Epälineaariset yhtälöryhmät Olkoon f : R n R n Tehtävä: Ratkaise yhtälöryhmä f(x) = 0 f 1 (x 1, x 2,..., x n ) = 0 f 2 (x 1, x 2,..., x n ) = 0. f n (x 1, x 2,..., x n ) = 0 Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 34/40 p. 34/40

35 Ratkaisumenetelmät Useimmat yhden yhtälön ratkaisumenetelmät yleistyvät yhtälöryhmille Esimerkiksi Newtonin menetelmä, sekanttimenetelmä, kiintopistemenetelmä (mutta ei puolitushaku) Yleinen periaate: Epälineaarinen yhtälöryhmä palautetaan jonoksi lineaarisia yhtälöryhmiä Ratkaistaan iteratiivisesti lineaarisia yhtälöryhmiä Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 35/40 p. 35/40

36 Jacobiaani Funktion f : R n R n ensimmäisen kertaluvun Taylorin kehitelmä pisteessä x: f(x + h) = f(x) + J(x)h + O( h 2 ) missä J(x) = f 1 (x) x 1 f 2 (x) x 1. f n (x) x 1 f 1 (x) x 2... f 2 (x) x f n (x) x 2... f 1 (x) x n f 2 (x) x n. f n (x) x n on funktion f jacobiaani pisteessä x Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 36/40 p. 36/40

37 Newtonin menetelmä Asetaan f:n linearisointi x (k) :ssa nollaksi: f(x (k) + h) = f(x (k) ) + J(x (k) )h = 0 J(x (k) )h = f(x (k) ) h = J(x (k) ) 1 f(x (k) ) Newtonin menetelmä x (k+1) = x (k) J(x (k) ) 1 f(x (k) ) (Vertaa: x (k+1) = x (k) f(x (k) )/f (x (k) ) ) Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 37/40 p. 37/40

38 Newtonin menetelmä Käytännössä jacobiaanin käänteismatriisia ei koskaan muodosteta Vaan: Ratkaistaan h lineaarisesta yhtälöryhmästä J(x (k) )h = f(x (k) ) minkä jälkeen asetetaan x (k+1) = x (k) + h Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 38/40 p. 38/40

39 Newtonin men. konvergenssi Olkoon x yhtälöryhmän ratkaisu Olkoon f:n kaikki toisen kertaluvun osittaisderivaatat jatkuvia ja det J(x ) 0 Jos alkuarvaus x (0) on riittävän lähellä ratkaisua lim k x (k) = x Konvergenssi on neliöllistä eli kvadraattista (kertaluku p = 2) Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 39/40 p. 39/40

40 Newtonin men. ominaisuuksia Alkuarvauksen oltava hyvä Jacobiaani voi olla singulaarinen (käänteismatriisia ei ole olemassa) Lineaarisen yhtälöryhmän ratkaiseminen kallista, kuin n on suuri Jacobiaania voidaan yrittää approksimoida yksinkertaisemmalla matriisilla Esimerkiksi J(x (k) ) LU, missä LU on J(x (0) ):n LU-hajotelma Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 40/40 p. 40/40

Numeeriset menetelmät TIEA381. Luento 4. Kirsi Valjus. Jyväskylän yliopisto. Luento 4 () Numeeriset menetelmät / 44

Numeeriset menetelmät TIEA381. Luento 4. Kirsi Valjus. Jyväskylän yliopisto. Luento 4 () Numeeriset menetelmät / 44 Numeeriset menetelmät TIEA381 Luento 4 Kirsi Valjus Jyväskylän yliopisto Luento 4 () Numeeriset menetelmät 21.3.2013 1 / 44 Luennon 4 sisältö Lineaarisen yhtälöryhmän ratkaisemisesta: Choleskyn menetelmä

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 4 To 15.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 4 To 15.9.2011 p. 1/38 p. 1/38 Lineaarinen yhtälöryhmä Lineaarinen yhtälöryhmä matriisimuodossa Ax = b

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 6 To 22.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 6 To 22.9.2011 p. 1/38 p. 1/38 Ominaisarvotehtävät Monet sovellukset johtavat ominaisarvotehtäviin Yksi

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 3 Ti 13.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 3 Ti 13.9.2011 p. 1/37 p. 1/37 Epälineaariset yhtälöt Newtonin menetelmä: x n+1 = x n f(x n) f (x n ) Sekanttimenetelmä:

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 2 To 8.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 2 To 8.9.2011 p. 1/33 p. 1/33 Lukujen tallennus Kiintoluvut (integer) tarkka esitys aritmeettiset operaatiot

Lisätiedot

(0 desimaalia, 2 merkitsevää numeroa).

(0 desimaalia, 2 merkitsevää numeroa). NUMEERISET MENETELMÄT DEMOVASTAUKSET SYKSY 20.. (a) Absoluuttinen virhe: ε x x ˆx /7 0.4 /7 4/00 /700 0.004286. Suhteellinen virhe: ρ x x ˆx x /700 /7 /00 0.00 0.%. (b) Kahden desimaalin tarkkuus x ˆx

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Matriisinormi Matriisinormi Matriiseille

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28 Numeeriset menetelmät TIEA381 Luento 5 Kirsi Valjus Jyväskylän yliopisto Luento 5 () Numeeriset menetelmät 3.4.2013 1 / 28 Luennon 5 sisältö Luku 4: Ominaisarvotehtävistä Potenssiinkorotusmenetelmä QR-menetelmä

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 14 R. Kangaslampi matriisiteoriaa Matriisinormi

Lisätiedot

Iteratiiviset ratkaisumenetelmät

Iteratiiviset ratkaisumenetelmät Iteratiiviset ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Yleinen iteraatio Lineaarisen yhtälöryhmän iteratiivinen ratkaisumenetelmä voidaan esittää muodossa: Anna alkuarvaus: x 0 R n

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 2

Inversio-ongelmien laskennallinen peruskurssi Luento 2 Inversio-ongelmien laskennallinen peruskurssi Luento 2 Kevät 2012 1 Lineaarinen inversio-ongelma Määritelmä 1.1. Yleinen (reaaliarvoinen) lineaarinen inversio-ongelma voidaan esittää muodossa m = Ax +

Lisätiedot

Matriisilaskenta Luento 8: LU-hajotelma

Matriisilaskenta Luento 8: LU-hajotelma Matriisilaskenta Luento 8: LU-hajotelma Antti Rasila 2016 Matriisihajotelmat 1/2 Usein matriisiyhtälön Ax = y ratkaiseminen on epäkäytännöllistä ja hidasta. Siksi numeerisessa matriisilaskennassa usein

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 3. Kirsi Valjus. Jyväskylän yliopisto. Luento 3 () Numeeriset menetelmät / 45

Numeeriset menetelmät TIEA381. Luento 3. Kirsi Valjus. Jyväskylän yliopisto. Luento 3 () Numeeriset menetelmät / 45 Numeeriset menetelmät TIEA381 Luento 3 Kirsi Valjus Jyväskylän yliopisto Luento 3 () Numeeriset menetelmät 20.3.2013 1 / 45 Luennon 3 sisältö Luku 2: Epälineaarisen yhtälön ratkaiseminen Polynomin reaaliset

Lisätiedot

Luento 5: Suurten lineaaristen yhtälöryhmien ratkaiseminen iteratiivisilla menetelmillä

Luento 5: Suurten lineaaristen yhtälöryhmien ratkaiseminen iteratiivisilla menetelmillä Luento 5: Suurten lineaaristen yhtälöryhmien ratkaiseminen iteratiivisilla menetelmillä Matriisit voivat olla kooltaan niin suuria, että LU-hajotelman laskeminen ei ole järkevä tapa ratkaista lineaarista

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 14 To 20.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 14 To 20.10.2011 p. 1/39 p. 1/39 Nopeat Fourier-muunnokset Diskreetti Fourier-muunnos ˆf k = 1 N 1 N

Lisätiedot

MATEMATIIKAN JAOS NUMEERISET MENETELMÄT

MATEMATIIKAN JAOS NUMEERISET MENETELMÄT MATEMATIIKAN JAOS NUMEERISET MENETELMÄT Harjoitustehtäviä, kevät 2012 1. Tarkastellaan summaa S = 1+0.4+0.3+0.2+0.04+0.03+0.02+0.01. a) Laske summa laskukoneella vasemmalta oikealle käyttäen liukulukuaritmetiikkaa,

Lisätiedot

1. Normi ja sisätulo

1. Normi ja sisätulo Kurssimateriaalia K3/P3-kursille syksyllä 3 83 Heikki Apiola Sisältää otteita Timo Eirolan L3-kurssin lineaarialgebramonisteesta, jonka lähdekoodin Timo on ystävällisesti antanut käyttööni Normi ja sisätulo

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 3

Inversio-ongelmien laskennallinen peruskurssi Luento 3 Inversio-ongelmien laskennallinen peruskurssi Luento 3 Kevät 2011 1 Singulaariarvohajotelma (Singular Value Decomposition, SVD) Olkoon A R m n matriisi 1. Tällöin A voidaan esittää muodossa A = UΣV T,

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 6 Kirsi Valjus Jyväskylän yliopisto Luento 6 () Numeeriset menetelmät 4.4.2013 1 / 33 Luennon 6 sisältö Interpolointi ja approksimointi Polynomi-interpolaatio: Vandermonden

Lisätiedot

Epälineaaristen yhtälöiden ratkaisumenetelmät

Epälineaaristen yhtälöiden ratkaisumenetelmät Epälineaaristen yhtälöiden ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Perusoletus Lause 3.1 Olkoon f : [a, b] R jatkuva funktio siten, että f(a)f(b) < 0. Tällöin funktiolla on ainakin

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 7 8

Inversio-ongelmien laskennallinen peruskurssi Luento 7 8 Inversio-ongelmien laskennallinen peruskurssi Luento 7 8 Kevät 2011 1 Iteratiivisista menetelmistä Tähän mennessä on tarkasteltu niin sanottuja suoria menetelmiä, joissa (likimääräinen) ratkaisu saadaan

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 2. Kirsi Valjus. Jyväskylän yliopisto. Luento 2 () Numeeriset menetelmät / 39

Numeeriset menetelmät TIEA381. Luento 2. Kirsi Valjus. Jyväskylän yliopisto. Luento 2 () Numeeriset menetelmät / 39 Numeeriset menetelmät TIEA381 Luento 2 Kirsi Valjus Jyväskylän yliopisto Luento 2 () Numeeriset menetelmät 14.3.2013 1 / 39 Luennon 2 sisältö Luvusta 1: Numeerinen stabiilisuus Liite A: Liukulukuaritmetiikasta

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Keijo Ruotsalainen Division of Mathematics Kurssitiedot Luennot alkavat ke 11.1.2012 Ke 12-14 L3 To 14-16 L6 Kurssin viimeinen luento To 22.3 2012 Kurssin suorittaminen välikokein:

Lisätiedot

Kohdeyleisö: toisen vuoden teekkari

Kohdeyleisö: toisen vuoden teekkari Julkinen opetusnäyte Yliopisto-opettajan tehtävä, matematiikka Klo 8:55-9:15 TkT Simo Ali-Löytty Aihe: Lineaarisen yhtälöryhmän pienimmän neliösumman ratkaisu Kohdeyleisö: toisen vuoden teekkari 1 y y

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35 Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 7 Ti 27.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 7 Ti 27.9.2011 p. 1/39 p. 1/39 Interpolointi Ei tunneta funktion f : R R lauseketta, mutta tiedetään funktion

Lisätiedot

Osittaistuenta Gaussin algoritmissa: Etsitään 1. sarakkeen itseisarvoltaan suurin alkio ja vaihdetaan tämä tukialkioiksi (eli ko. rivi 1. riviksi).

Osittaistuenta Gaussin algoritmissa: Etsitään 1. sarakkeen itseisarvoltaan suurin alkio ja vaihdetaan tämä tukialkioiksi (eli ko. rivi 1. riviksi). Liukuluvut Tietokonelaskuissa käytetään liukulukuja: mikä esittää lukua ± α α α M β k ± ( M α i β i )β k, i= β on järjestelmän kantaluku, α α M liukuluvun mantissa, α,, α M lukuja,,,, β, siten että α Esimerkki

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

Paikannuksen matematiikka MAT

Paikannuksen matematiikka MAT TA M P E R E U N I V E R S I T Y O F T E C H N O L O G Y M a t h e m a t i c s Paikannuksen matematiikka MAT-45800 4..008. p.1/4 Käytännön järjestelyt Kotisivu: http://math.tut.fi/courses/mat-45800/ Luennot:

Lisätiedot

Epälineaaristen yhtälöiden ratkaisumenetelmät

Epälineaaristen yhtälöiden ratkaisumenetelmät Epälineaaristen yhtälöiden ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Perusoletus Lause 3.1 Olkoon f : [a, b] R jatkuva funktio siten, että f(a)f(b) < 0. Tällöin funktiolla on ainakin

Lisätiedot

Matematiikka B2 - TUDI

Matematiikka B2 - TUDI Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori = (,..., ). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt ja pienimmän neliösumman menetelmä Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi QR ja PNS PNS-ongelma

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 4 / vko 47

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 4 / vko 47 MS-A3/A5 Matriisilaskenta Malliratkaisut 4 / vko 47 Tehtävä 1 (L): Oletetaan, että AB = AC, kun B ja C ovat m n-matriiseja. a) Näytä, että jos A on kääntyvä, niin B = C. b) Seuraako yhtälöstä AB = AC yhtälö

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

BM20A1501 Numeeriset menetelmät 1 - AIMO

BM20A1501 Numeeriset menetelmät 1 - AIMO 6. marraskuuta 2014 Opetusjärjestelyt Luennot + Harjoitukset pe 7.11.2014 10-14 2310, 14-17 7337 la 8.11.2014 9-12 2310, 12-16 7337 pe 14.11.2014 10-14 2310, 14-17 6216 la 15.11.2014 9-12 2310, 12-16 7337

Lisätiedot

Luento 9: Newtonin iteraation sovellus: optimointiongelma

Luento 9: Newtonin iteraation sovellus: optimointiongelma Luento 9: Newtonin iteraation sovellus: optimointiongelma ilman rajoitusehtoja Optimointiongelmassa tehtävänä on löytää annetun reaaliarvoisen jatkuvan funktion f(x 1,x,,x n ) maksimi tai minimi jossain

Lisätiedot

Käänteismatriisin ominaisuuksia

Käänteismatriisin ominaisuuksia Käänteismatriisin ominaisuuksia Lause 1.4. Jos A ja B ovat säännöllisiä ja luku λ 0, niin 1) (A 1 ) 1 = A 2) (λa) 1 = 1 λ A 1 3) (AB) 1 = B 1 A 1 4) (A T ) 1 = (A 1 ) T. Tod.... Ortogonaaliset matriisit

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt QR-hajotelma ja pienimmän neliösumman menetelmä Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto PNS-ongelma PNS-ongelma

Lisätiedot

i=1 Näistä on helppo näyttää ominaisuudet (1)-(4). Ellei toisin mainita, käytetään R n :ssä

i=1 Näistä on helppo näyttää ominaisuudet (1)-(4). Ellei toisin mainita, käytetään R n :ssä Kurssimateriaalia K3/P3-kursille syksyllä 003. 8.0.003 Heikki Apiola Sisältää otteita Timo Eirolan L3-kurssin lineaarialgebramonisteesta, jonka lähdekoodin Timo on ystävällisesti antanut käyttööni.. Normi

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

5 OMINAISARVOT JA OMINAISVEKTORIT

5 OMINAISARVOT JA OMINAISVEKTORIT 5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön

Lisätiedot

Ax, y = x, A y. A = A A hermiittinen. Jokainen reaalinen ja symmetrinen matriisi on määritelmän mukaan myös hermiittinen. A =, HARJOITUSTEHTÄVIÄ

Ax, y = x, A y. A = A A hermiittinen. Jokainen reaalinen ja symmetrinen matriisi on määritelmän mukaan myös hermiittinen. A =, HARJOITUSTEHTÄVIÄ X.. Matriisialgebra Esimerkki 4 Jos niin x =[i, +i, 2 i ] T C 3, y =[ 2i, 2i, i ] T C 3, x, x = x 2 =+(+)+(4+)=8, y, y =(+4)+4+(+)=, x, y = i( + 2i)+(+i)( 2i)+(2 i)( +i) = +3i. Matriisia A = ĀT sanotaan

Lisätiedot

Kevät Kirsi Valjus. Jyväskylän yliopisto Tietotekniikan laitos

Kevät Kirsi Valjus. Jyväskylän yliopisto Tietotekniikan laitos Numeeriset menetelmät TIEA381 Kevät 2013 Kirsi Valjus Jyväskylän yliopisto Tietotekniikan laitos Luento 1 () Numeeriset menetelmät 13.3.2013 1 / 34 Luennon 1 sisältö Käytännön asioita Numeerisen matematiikan

Lisätiedot

Matematiikka B2 - Avoin yliopisto

Matematiikka B2 - Avoin yliopisto 6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

f(x 1, x 2 ) = x x 1 k 1 k 2 k 1, k 2 x 2 1, 0 1 f(1, 1)h 1 = h = h 2 1, 1 12 f(1, 1)h 1 h 2

f(x 1, x 2 ) = x x 1 k 1 k 2 k 1, k 2 x 2 1, 0 1 f(1, 1)h 1 = h = h 2 1, 1 12 f(1, 1)h 1 h 2 HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 7 Harjoitus 6 Ratkaisuehdotukset 6.. Olkoon f : G R, G = {(x, x ) R x > }, f(x, x ) = x x. Etsi differentiaalit d k f(, ), k =,,. Ratkaisu:

Lisätiedot

Konjugaattigradienttimenetelmä

Konjugaattigradienttimenetelmä Konjugaattigradienttimenetelmä Keijo Ruotsalainen Division of Mathematics Konjugaattigradienttimenetelmä Oletukset Matriisi A on symmetrinen: A T = A Positiivisesti definiitti: x T Ax > 0 kaikille x 0

Lisätiedot

Numeerinen integrointi ja derivointi

Numeerinen integrointi ja derivointi Numeerinen integrointi ja derivointi Keijo Ruotsalainen Division of Mathematics Interpolaatiokaavat Approksimoitava integraali I = b a f(x)dx. Tasavälinen hila: x i = a+ (b a)i n, i = 0,...,n Funktion

Lisätiedot

Luento 11: Rajoitusehdot. Ulkopistemenetelmät

Luento 11: Rajoitusehdot. Ulkopistemenetelmät Luento 11: Rajoitusehdot. Ulkopistemenetelmät ja sisäpistemenetelmät Lagrangen välttämättömien ehtojen ratkaiseminen Newtonin menetelmällä Jos tehtävässä on vain yhtälörajoituksia, voidaan minimipistekandidaatteja

Lisätiedot

Teknillinen tiedekunta, matematiikan jaos Numeeriset menetelmät

Teknillinen tiedekunta, matematiikan jaos Numeeriset menetelmät Numeeriset menetelmät 1. välikoe, 14.2.2009 1. Määrää matriisin 1 1 a 1 3 a a 4 a a 2 1 LU-hajotelma kaikille a R. Ratkaise LU-hajotelmaa käyttäen yhtälöryhmä Ax = b, missä b = [ 1 3 2a 2 a + 3] T. 2.

Lisätiedot

Luento 10: Optimointitehtävien numeerinen ratkaiseminen; optimointi ilman rajoitusehtoja

Luento 10: Optimointitehtävien numeerinen ratkaiseminen; optimointi ilman rajoitusehtoja Luento 10: Optimointitehtävien numeerinen ratkaiseminen; optimointi ilman rajoitusehtoja Seuraavassa esitetään optimointitehtävien numeerisia ratkaisumenetelmiä, eli optimointialgoritmeja, keittokirjamaisesti.

Lisätiedot

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1 Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 14. Kirsi Valjus. Jyväskylän yliopisto. Luento 14 () Numeeriset menetelmät / 55

Numeeriset menetelmät TIEA381. Luento 14. Kirsi Valjus. Jyväskylän yliopisto. Luento 14 () Numeeriset menetelmät / 55 Numeeriset menetelmät TIEA381 Luento 14 Kirsi Valjus Jyväskylän yliopisto Luento 14 () Numeeriset menetelmät 15.5.2013 1 / 55 Luennon 14 sisältö Nopeat Fourier-muunnokset (FFT) Yleinen algoritmi 2-kantainen

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

Reuna-arvotehtävien ratkaisumenetelmät

Reuna-arvotehtävien ratkaisumenetelmät Reuna-arvotehtävien ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Malliprobleema Kahden pisteen reuna-arvotehtävä u (x) = f (x) (1) u() = u(1) = Jos u C ([,1]) ratkaisu, niin missä x u(x)

Lisätiedot

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio:

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio: Inversio-ongelmista Craig, Brown: Inverse problems in astronomy, Adam Hilger 1986. Havaitaan oppositiossa olevaa asteroidia. Pyörimisestä huolimatta sen kirkkaus ei muutu. Projisoitu pinta-ala pysyy ilmeisesti

Lisätiedot

b 1. b m ) + ( 2b Ax) + (b b)

b 1. b m ) + ( 2b Ax) + (b b) TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-9 Optimointioppi Kimmo Berg 5 harjoitus - ratkaisut min Ax b (vertaa PNS-tehtävät) a x + + a n x n a) Ax b = a m x + + a mn x n = x a a m }{{}

Lisätiedot

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio x = x 2 = 5/2 x 3 = 2 eli Ratkaisu on siis x = (x x 2 x 3 ) = ( 5/2 2) (Tarkista sijoittamalla!) 5/2 2 Tämä piste on alkuperäisten tasojen ainoa leikkauspiste Se on myös piste/vektori jonka matriisi A

Lisätiedot

1 Rajoittamaton optimointi

1 Rajoittamaton optimointi Taloustieteen matemaattiset menetelmät 7 materiaali 5 Rajoittamaton optimointi Yhden muuttujan tapaus f R! R Muistutetaan mieleen maksimin määritelmä. Funktiolla f on maksimi pisteessä x jos kaikille y

Lisätiedot

MS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2)

MS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2) MS-A4 Differentiaali- ja integraalilaskenta (ELEC2) MS-A6 Differentiaali- ja integraalilaskenta (ENG2) Harjoitukset 3L, syksy 27 Tehtävä. a) Määritä luvun π likiarvo käyttämällä Newtonin menetelmää yhtälölle

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Luentokalvot 5 1

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 1 Ti 6.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 1 Ti 6.9.2011 p. 1/28 p. 1/28 Numeriikan termejä Simulointi: Reaalimaailman ilmiöiden jäljitteleminen (yleensä)

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 4

Inversio-ongelmien laskennallinen peruskurssi Luento 4 Inversio-ongelmien laskennallinen peruskurssi Luento 4 Kevät 20 Regularisointi Eräs keino yrittää ratkaista (likimääräisesti) huonosti asetettuja ongelmia on regularisaatio. Regularisoinnissa ongelmaa

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14

Lisätiedot

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-.39 Optimointioppi Kimmo Berg 8. harjoitus - ratkaisut. a)huomataan ensinnäkin että kummankin jonon raja-arvo r on nolla. Oletetaan lisäksi että

Lisätiedot

R. Mäkinen NUMEERISET MENETELMÄT

R. Mäkinen NUMEERISET MENETELMÄT R. Mäkinen NUMEERISET MENETELMÄT 2011 2 Luku 1 Numeerisen matematiikan peruskäsitteitä The purpose of computing is insight, not numbers. R. W. Hamming Numeerinen analyysi tutkii algoritmeja luonnontieteissä,

Lisätiedot

Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät

Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät Matematiikan peruskurssi K3/P3, syksy 25 Kenrick Bingham 825 Toisen välikokeen alueen ydinasioita Alla on lueteltu joitakin koealueen ydinkäsitteitä, joiden on hyvä olla ensiksi selvillä kokeeseen valmistauduttaessa

Lisätiedot

2.5. Matriisin avaruudet ja tunnusluvut

2.5. Matriisin avaruudet ja tunnusluvut 2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja

Lisätiedot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Vesanen MS-A0205/6 Differentiaali- ja integraalilaskenta 2, kevät 2017 Laskuharjoitus 4A (Vastaukset) alkuviikolla

Lisätiedot

jakokulmassa x 4 x 8 x 3x

jakokulmassa x 4 x 8 x 3x Laudatur MAA ratkaisut kertausarjoituksiin. Polynomifunktion nollakodat 6 + 7. Suoritetaan jakolasku jakokulmassa 5 4 + + 4 8 6 6 5 4 + 0 + 0 + 0 + 0+ 6 5 ± 5 5 4 ± 4 4 ± 4 4 ± 4 8 8 ± 8 6 6 + ± 6 Vastaus:

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisihajotelmat: Schur ja Jordan Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi Matriisihajotelmat:

Lisätiedot

Dynaamisten systeemien teoriaa. Systeemianalyysilaboratorio II

Dynaamisten systeemien teoriaa. Systeemianalyysilaboratorio II Dynaamisten systeemien teoriaa Systeemianalyysilaboratorio II 15.11.2017 Vakiot, sisäänmenot, ulostulot ja häiriöt Mallin vakiot Systeemiparametrit annettuja vakioita, joita ei muuteta; esim. painovoiman

Lisätiedot

Numeeriset Menetelmät, P. Keijo Ruotsalainen Teknillinen tiedekunta matematiikan jaos

Numeeriset Menetelmät, P. Keijo Ruotsalainen Teknillinen tiedekunta matematiikan jaos Numeeriset Menetelmät, 031022P Keijo Ruotsalainen Teknillinen tiedekunta matematiikan jaos 11. helmikuuta 2010 2 Sisältö 1 Johdanto 7 1.1 Varoitus.............................. 7 1.2 Numeeriset menetelmät

Lisätiedot

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Talousmatematiikan perusteet: Luento 10 Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Lineaarikuvaus Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta, jossa käytetään

Lisätiedot

802118P Lineaarialgebra I (4 op)

802118P Lineaarialgebra I (4 op) 802118P Lineaarialgebra I (4 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Lineaarialgebra I Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M206 Kurssin kotisivu

Lisätiedot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 4A (Vastaukset) alkuviikolla

Lisätiedot

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on? Harjoitus 1, kevät 007 1. Olkoon [ ] cos α sin α A(α) =. sin α cos α Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?. Olkoon a x y A = 0 b z, 0 0 c missä a, b, c 0. Määrää käänteismatriisi

Lisätiedot

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16 MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 11 Ti 11.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 11 Ti 11.10.2011 p. 1/34 p. 1/34 Automaattiset integrointialgoritmit Numeerisen integroinnin tarkkuuteen

Lisätiedot

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear

Lisätiedot

Numeeriset Menetelmät, P. Keijo Ruotsalainen Teknillinen tiedekunta matematiikan jaos

Numeeriset Menetelmät, P. Keijo Ruotsalainen Teknillinen tiedekunta matematiikan jaos Numeeriset Menetelmät, 031022P Keijo Ruotsalainen Teknillinen tiedekunta matematiikan jaos 11. helmikuuta 2009 2 Sisältö 1 Johdanto 7 1.1 Varoitus.............................. 7 1.2 Numeeriset menetelmät

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 10 To 6.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 10 To 6.10.2011 p. 1/35 p. 1/35 Numeerinen integrointi Puolisuunnikassääntö b a f(x)dx = h 2 (f 0 + f

Lisätiedot

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij. Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla

Lisätiedot

Ratkaisuehdotukset LH 8 / vko 47

Ratkaisuehdotukset LH 8 / vko 47 Ratkaisuehdotukset LH 8 / vko 47 Tehtävä 1: Olkoot A R n n matriisi, jonka singulaariarvohajotelma on A [ ] [ ] Σ U 1 U r 0 [V1 ] T 2 V 0 0 2 Jossa Σ r on kääntyvä matriisi, [ U 1 U 2 ] ja [ V1 V 2 ] ovat

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 3.2.27 Tehtävä. Valmisohjelmistolla voidaan ratkaista tehtävä min c T x s. t. Ax b x, missä x, c ja b R n ja A R m n. Muunnetaan tehtävä max x + 2x 2 + 3x 3 + x s. t. x + 3x 2 + 2x

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 11. Kirsi Valjus. Jyväskylän yliopisto. Luento 11 () Numeeriset menetelmät / 37

Numeeriset menetelmät TIEA381. Luento 11. Kirsi Valjus. Jyväskylän yliopisto. Luento 11 () Numeeriset menetelmät / 37 Numeeriset menetelmät TIEA381 Luento 11 Kirsi Valjus Jyväskylän yliopisto Luento 11 () Numeeriset menetelmät 24.4.2013 1 / 37 Luennon 11 sisältö Numeerisesta integroinnista ja derivoinnista Adaptiiviset

Lisätiedot

6. Differentiaaliyhtälösysteemien laadullista teoriaa.

6. Differentiaaliyhtälösysteemien laadullista teoriaa. 1 MAT-13450 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 2010 6. Differentiaaliyhtälösysteemien laadullista teoriaa. Olemme keskittyneet tässä kurssissa ensimmäisen kertaluvun

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista

Lisätiedot

Likimääräisratkaisut ja regularisaatio

Likimääräisratkaisut ja regularisaatio Luku 3 Likimääräisratkaisut ja regularisaatio Käytännön inversio-ongelmissa annettu data y ei aina ole tarkkaa, vaan sisältää häiriöitä. Tuntemattomasta x on annettu häiriöinen data y F (x + }{{}}{{} ε.

Lisätiedot

Numeeriset menetelmät Pekka Vienonen

Numeeriset menetelmät Pekka Vienonen Numeeriset menetelmät Pekka Vienonen 1. Funktion nollakohta Newtonin menetelmällä 2. Määrätty integraali puolisuunnikassäännöllä 3. Määrätty integraali Simpsonin menetelmällä Newtonin menetelmä Newtonin

Lisätiedot

Ratkaisuehdotukset LH 7 / vko 47

Ratkaisuehdotukset LH 7 / vko 47 MS-C34 Lineaarialgebra, II/7 Ratkaisuehdotukset LH 7 / vko 47 Tehtävä : Olkoot M R symmetrinen ja positiividefiniitti matriisi (i) Näytä, että m > ja m > (ii) Etsi Eliminaatiomatriisi E R siten, että [

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila

Lisätiedot

1.1. Määritelmiä ja nimityksiä

1.1. Määritelmiä ja nimityksiä 1.1. Määritelmiä ja nimityksiä Luku joko reaali- tai kompleksiluku. R = {reaaliluvut}, C = {kompleksiluvut} R n = {(x 1, x 2,..., x n ) x 1, x 2,..., x n R} C n = {(x 1, x 2,..., x n ) x 1, x 2,..., x

Lisätiedot

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Talousmatematiikan perusteet: Luento 13 Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Viime luennolla Aloimme tarkastella yleisiä, usean muuttujan funktioita

Lisätiedot

Muutoksen arviointi differentiaalin avulla

Muutoksen arviointi differentiaalin avulla Muutoksen arviointi differentiaalin avulla y y = f (x) y = f (x + x) f (x) dy y dy = f (x) x x x x x + x Luento 7 1 of 15 Matematiikan ja tilastotieteen laitos Turun yliopisto Muutoksen arviointi differentiaalin

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot