Numeeriset menetelmät
|
|
- Pirkko Sariola
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Numeeriset menetelmät Luento 5 Ti Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 1/40 p. 1/40
2 Choleskyn menetelmä Positiivisesti definiiteillä matriiseilla kolmiohajotelma A = LL T Kuten LU-hajotelma, missä yläkolmiomatriisia U vastaa yläkolmiomatriisi L T Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 2/40 p. 2/40
3 Yhtälöryhmän ratkaiseminen Ax = b LL T x = b L (L T x) }{{} =y = b { Ly = b L T x = y Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 3/40 p. 3/40
4 Etenevät sijoitukset Ly = b y i = b i = = n k=1 i 1 k=1 ( b i l ik y k l ik y k + l ii y i + i 1 k=1 n k=i+1 l ik }{{} =0 y k l ik y k )/l ii, i = 1, 2,..., n Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 4/40 p. 4/40
5 Takenevat sijoitukset L T x = y x i = y i = = ( y i n k=1 i 1 k=1 n k=i+1 l ki x k l ki }{{} =0 x k + l ii x i + n k=i+1 l ki x k l ki x k )/l ii, i = n, n 1,..., 1 Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 5/40 p. 5/40
6 Yhtälöryhmän ratkaiseminen Apuvektoria y ei tarvita: y:n alkiot x:n päälle Myöskään vektoria x ei välttämättä tarvita: x:n alkiot b:n päälle Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 6/40 p. 6/40
7 Nauhamatriisit Matriisi A on nauhamatriisi, jos a ij = 0 kun i j > m m on sivudiagonaalien lukumäärä 2m + 1 on matriisin nauhanleveys A = 0 0 Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 7/40 p. 7/40
8 Tridiagonaalimatriisit Erikoistapaus: m = 1 (nauhanleveys 3) Tridiagonaalinen matriisi b 1 c 1 a 2 b 2 c 2 A = a 3 b 3 c a n 1 b n 1 c n 1 a n b n Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 8/40 p. 8/40
9 Tridiagonaalinen yhtälöryhmä Oletetaan, että tridiagonaalisen matriisin A LU-hajotelma voidaan tehdä ilman tuentaa Arvataan, että matriisit L ja U ovat muotoa 1 ω 1 α 1 β 2 1 ω 2 α β n 1 1 ω n 1 α n 1 β n 1 ω n Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 9/40 p. 9/40
10 Tridiagonaalinen yhtälöryhmä LU = ω 1 α 1 β 2 ω 1 α 1 β 2 + ω 2 α β n ω n 1... α n 1 β n + ω n LU on tridiagonaalinen Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 10/40 p. 10/40
11 Tridiagonaalinen yhtälöryhmä Verrataan A:n ja LU:n vastinalkioita ω 1 = b 1 α 1 = c 1 β i = a i /ω i 1 ω i = b i α i 1 β i α i = c i β n = a n /ω n 1 ω n = b n α n 1 β n Vastaavasti voidaan johtaa Choleskyn hajotelma positiivisesti definiitille tridiagonaalimatriisille Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 11/40 p. 11/40
12 Nauhamaiset yhtälöryhmät A nauhamatriisi & LU-hajotelma ilman tuentaa L ja U nauhamatriiseja, sama nauhanleveys A nauhamatriisi & Choleskyn hajotelma L nauhamatriisi, sama nauhanleveys Nauhamatriiseista riittää tallentaa diagonaali ja sivudiagonaalit Tilaa säästyy Turha laskenta nollilla poistuu Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 12/40 p. 12/40
13 Virheet ja stabiilisuus Periaatteessa: Ax = b voidaan ratkaista tarkasti äärellisellä määrällä peruslaskutoimituksia Käytännössä: x on aina likiarvo Virhelähteitä: Matemaattisessa mallissa mittaus- ym. virheitä Tallennus liukulukuapproksimaatioina Liukulukulaskennan aritmeettiset operaatiot epätarkkoja Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 13/40 p. 13/40
14 Vektorinormit Yleisesti käytettyjä vektorinormeja: ( n ) 1/p, x p = x i p 1 p < i=1 x = max x i 1 i n n x 1 = x i x 2 = i=1 ( n i=1 x i 2 ) 1/2 (euklidinen normi) Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 14/40 p. 14/40
15 Matriisinormit Matriisin ns. operaattorinormi määritellään vektorinormiin liittyen A = sup x 0 Ax x Silloin Ax A x x R n Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 15/40 p. 15/40
16 Matriisinormit Yleisesti käytettyjä matriisinormeja: A 1 = max 1 j n n i=1 a ij (maksimi sarakkeiden summista) n A = max a ij 1 i n j=1 (maksimi rivien summista) Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 16/40 p. 16/40
17 Virhe- ja stabiilisuusanalyysiä Oletetaan, että A on kääntyvä Oletetaan, että aritmeettiset operaatiot ovat tarkkoja Tarkastellaan kahta tapausta: Häiriöitä on (1) vain vektorissa b (2) sekä vektorissa b että matriisissa A Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 17/40 p. 17/40
18 Häiriö oikean puolen vektorissa Alkuperäinen tehtävä: Ax = b Häiritty tehtävä: Aˆx = b + δb Virhe: e = ˆx x Ae = Aˆx Ax = b + δb b = δb Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 18/40 p. 18/40
19 Virhearvio δb = Ae e = A 1 δb δb A e e A 1 δb : A x : x δb A x e x A 1 δb x ( ) Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 19/40 p. 19/40
20 Virhearvio jatkuu x = A 1 b b = Ax x A 1 b ( ) 1 b A x 1 A 1 b 1 x 1 x A b : x b Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 20/40 p. 20/40
21 Virhearvio jatkuu δb A x e x A 1 δb x ( ) 1 A 1 b 1 x 1 x A b 1 A A 1 δb b e x A A 1 δb b Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 21/40 p. 21/40
22 Häiriöalttius Ratkaisun suhteellisen virheen arvio oikean puolen suhteellisen virheen avulla: e x κ(a) δb b missä κ(a) = A A 1 on matriisin A häiriöalttius Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 22/40 p. 22/40
23 Häiriöalttius Häiriöalttius: Kertoo, kuinka hyvää tarkkuutta ratkaisulta voidaan käytännössä odottaa Numeerinen arvo riippuu käytetystä matriisinormista Tarkan arvon laskeminen kalliimpi operaatio kuin itse yhtälöryhmän ratkaiseminen Suuruusluokkaa voidaan arvioida LU-hajotelman avulla Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 23/40 p. 23/40
24 Häiriö vektorissa ja matriisissa Alkuperäinen tehtävä: Ax = b Häiritty tehtävä: (A + δa)(x + e) = b + δb... e x κ(a) 1 κ(a) δa A ( δa A + δb ) b (Jos δa = 0, saadaan aikaisempi arvio) Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 24/40 p. 24/40
25 Determinantti ja häiriöalttius Jos det A = 0 A 1 ei ole olemassa A 1 ei määritelty määritellään κ(a) = Yleisesti: Determinantin arvon perusteella ei voi sanoa mitään matriisin häiriöalttiudesta Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 25/40 p. 25/40
26 Virhearviot: a priori, a posteriori A priori -virhearviot ( etukäteen ): Arvioidaan ratkaisun tarkkuutta lähtötietojen perusteella (ratkaisematta tehtävää) Esimerkiksi edellä esitetyt virhearviot A posteriori -virhearviot ( jälkikäteen ): Arvioidaan ratkaisun tarkkuutta sen jälkeen kun tehtävä on ratkaistu Esimerkiksi seuraavana esitettävä virhearvio Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 26/40 p. 26/40
27 Residuaali Alkuperäinen tehtävä: Ax = b Numeerinen ratkaisu: ˆx Residuaali: r = b Aˆx Tavoite: r = 0 Mutta yleensä: r 0 Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 27/40 p. 27/40
28 Residuaali Jos yhtälö skaalataan: αax = αb, α 0 Ratkaisu ei muutu ja residuaali skaalautuu samalla vakiolla Residuaali saadaan mielivaltaisen pieneksi tai suureksi Pelkkä residuaali on hyödytön mittari tarkkuudelle Mutta: Residuaalia voidaan käyttää a posteriori -virhearvioiden laskemisessa Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 28/40 p. 28/40
29 Virhearvio Ax = b x = A 1 b r = b Aˆx ˆx = A 1 (b r) e = x ˆx = A 1 r e A 1 r e x A 1 r x : x ( ) Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 29/40 p. 29/40
30 Virhearvio jatkuu e x A 1 r x ( ) b A x 1 x A b e x κ(a) r b missä κ(a) = A A 1 Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 30/40 p. 30/40
31 Yhtälöryhmien ratkaiseminen Suorat menetelmät: Ratkaisu saadaan äärellisellä määrällä peruslaskutoimituksia (jos käytetään tarkkaa aritmetiikka) Esimerkiksi LU ja Cholesky Sopivat hyvin pienille yhtälöryhmille Suurille yhtälöryhmille yleensä tehottomia Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 31/40 p. 31/40
32 Yhtälöryhmien ratkaiseminen Iteratiiviset menetelmät: Alkuarvaus x (0) x (1) x (2)... x (n) joka toteuttaa lopetuskriteerin Tehokkaampia suurille yhtälöryhmille Usein matriisia A ei tarvitse tallentaa kokonaan, vaan riittää että osataan laskea Aw annetulla w Ennen käyttöä on syytä varmistua konvergenssista Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 32/40 p. 32/40
33 Algoritmien valinnasta Lineaarisen yhtälöryhmän ratkaiseminen on yksi numeerisen matematiikan perustehtävistä Perusmenetelmien tehokkaita ja hyvin testattuja implementointeja on vapaasti saatavilla Pienet yhtälöryhmät (n 1000): Jokin yksinkertainen suora menetelmä riittää Suuret ja harvat yhtälöryhmät (n >> 10000, nollasta poikkeavia alkioita << 1 %): Tarvitaan tehokas iteratiivinen menetelmä Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 33/40 p. 33/40
34 Epälineaariset yhtälöryhmät Olkoon f : R n R n Tehtävä: Ratkaise yhtälöryhmä f(x) = 0 f 1 (x 1, x 2,..., x n ) = 0 f 2 (x 1, x 2,..., x n ) = 0. f n (x 1, x 2,..., x n ) = 0 Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 34/40 p. 34/40
35 Ratkaisumenetelmät Useimmat yhden yhtälön ratkaisumenetelmät yleistyvät yhtälöryhmille Esimerkiksi Newtonin menetelmä, sekanttimenetelmä, kiintopistemenetelmä (mutta ei puolitushaku) Yleinen periaate: Epälineaarinen yhtälöryhmä palautetaan jonoksi lineaarisia yhtälöryhmiä Ratkaistaan iteratiivisesti lineaarisia yhtälöryhmiä Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 35/40 p. 35/40
36 Jacobiaani Funktion f : R n R n ensimmäisen kertaluvun Taylorin kehitelmä pisteessä x: f(x + h) = f(x) + J(x)h + O( h 2 ) missä J(x) = f 1 (x) x 1 f 2 (x) x 1. f n (x) x 1 f 1 (x) x 2... f 2 (x) x f n (x) x 2... f 1 (x) x n f 2 (x) x n. f n (x) x n on funktion f jacobiaani pisteessä x Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 36/40 p. 36/40
37 Newtonin menetelmä Asetaan f:n linearisointi x (k) :ssa nollaksi: f(x (k) + h) = f(x (k) ) + J(x (k) )h = 0 J(x (k) )h = f(x (k) ) h = J(x (k) ) 1 f(x (k) ) Newtonin menetelmä x (k+1) = x (k) J(x (k) ) 1 f(x (k) ) (Vertaa: x (k+1) = x (k) f(x (k) )/f (x (k) ) ) Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 37/40 p. 37/40
38 Newtonin menetelmä Käytännössä jacobiaanin käänteismatriisia ei koskaan muodosteta Vaan: Ratkaistaan h lineaarisesta yhtälöryhmästä J(x (k) )h = f(x (k) ) minkä jälkeen asetetaan x (k+1) = x (k) + h Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 38/40 p. 38/40
39 Newtonin men. konvergenssi Olkoon x yhtälöryhmän ratkaisu Olkoon f:n kaikki toisen kertaluvun osittaisderivaatat jatkuvia ja det J(x ) 0 Jos alkuarvaus x (0) on riittävän lähellä ratkaisua lim k x (k) = x Konvergenssi on neliöllistä eli kvadraattista (kertaluku p = 2) Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 39/40 p. 39/40
40 Newtonin men. ominaisuuksia Alkuarvauksen oltava hyvä Jacobiaani voi olla singulaarinen (käänteismatriisia ei ole olemassa) Lineaarisen yhtälöryhmän ratkaiseminen kallista, kuin n on suuri Jacobiaania voidaan yrittää approksimoida yksinkertaisemmalla matriisilla Esimerkiksi J(x (k) ) LU, missä LU on J(x (0) ):n LU-hajotelma Numeeriset menetelmät Syksy 2011 Luento 5 Ti p. 40/40 p. 40/40
Numeeriset menetelmät TIEA381. Luento 4. Kirsi Valjus. Jyväskylän yliopisto. Luento 4 () Numeeriset menetelmät / 44
Numeeriset menetelmät TIEA381 Luento 4 Kirsi Valjus Jyväskylän yliopisto Luento 4 () Numeeriset menetelmät 21.3.2013 1 / 44 Luennon 4 sisältö Lineaarisen yhtälöryhmän ratkaisemisesta: Choleskyn menetelmä
LisätiedotNumeeriset menetelmät
Numeeriset menetelmät Luento 4 To 15.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 4 To 15.9.2011 p. 1/38 p. 1/38 Lineaarinen yhtälöryhmä Lineaarinen yhtälöryhmä matriisimuodossa Ax = b
LisätiedotNumeeriset menetelmät
Numeeriset menetelmät Luento 6 To 22.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 6 To 22.9.2011 p. 1/38 p. 1/38 Ominaisarvotehtävät Monet sovellukset johtavat ominaisarvotehtäviin Yksi
LisätiedotNumeeriset menetelmät
Numeeriset menetelmät Luento 3 Ti 13.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 3 Ti 13.9.2011 p. 1/37 p. 1/37 Epälineaariset yhtälöt Newtonin menetelmä: x n+1 = x n f(x n) f (x n ) Sekanttimenetelmä:
LisätiedotNumeeriset menetelmät
Numeeriset menetelmät Luento 2 To 8.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 2 To 8.9.2011 p. 1/33 p. 1/33 Lukujen tallennus Kiintoluvut (integer) tarkka esitys aritmeettiset operaatiot
Lisätiedot(0 desimaalia, 2 merkitsevää numeroa).
NUMEERISET MENETELMÄT DEMOVASTAUKSET SYKSY 20.. (a) Absoluuttinen virhe: ε x x ˆx /7 0.4 /7 4/00 /700 0.004286. Suhteellinen virhe: ρ x x ˆx x /700 /7 /00 0.00 0.%. (b) Kahden desimaalin tarkkuus x ˆx
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Matriisinormi Matriisinormi Matriiseille
LisätiedotNumeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28
Numeeriset menetelmät TIEA381 Luento 5 Kirsi Valjus Jyväskylän yliopisto Luento 5 () Numeeriset menetelmät 3.4.2013 1 / 28 Luennon 5 sisältö Luku 4: Ominaisarvotehtävistä Potenssiinkorotusmenetelmä QR-menetelmä
LisätiedotIteratiiviset ratkaisumenetelmät
Iteratiiviset ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Yleinen iteraatio Lineaarisen yhtälöryhmän iteratiivinen ratkaisumenetelmä voidaan esittää muodossa: Anna alkuarvaus: x 0 R n
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 14 R. Kangaslampi matriisiteoriaa Matriisinormi
LisätiedotJohdatus tekoälyn taustalla olevaan matematiikkaan
Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 5. luento.2.27 Lineaarialgebraa - Miksi? Neuroverkon parametreihin liittyvät kaavat annetaan monesti
LisätiedotInversio-ongelmien laskennallinen peruskurssi Luento 2
Inversio-ongelmien laskennallinen peruskurssi Luento 2 Kevät 2012 1 Lineaarinen inversio-ongelma Määritelmä 1.1. Yleinen (reaaliarvoinen) lineaarinen inversio-ongelma voidaan esittää muodossa m = Ax +
LisätiedotMatriisilaskenta Luento 8: LU-hajotelma
Matriisilaskenta Luento 8: LU-hajotelma Antti Rasila 2016 Matriisihajotelmat 1/2 Usein matriisiyhtälön Ax = y ratkaiseminen on epäkäytännöllistä ja hidasta. Siksi numeerisessa matriisilaskennassa usein
LisätiedotNumeeriset menetelmät TIEA381. Luento 3. Kirsi Valjus. Jyväskylän yliopisto. Luento 3 () Numeeriset menetelmät / 45
Numeeriset menetelmät TIEA381 Luento 3 Kirsi Valjus Jyväskylän yliopisto Luento 3 () Numeeriset menetelmät 20.3.2013 1 / 45 Luennon 3 sisältö Luku 2: Epälineaarisen yhtälön ratkaiseminen Polynomin reaaliset
LisätiedotLuento 5: Suurten lineaaristen yhtälöryhmien ratkaiseminen iteratiivisilla menetelmillä
Luento 5: Suurten lineaaristen yhtälöryhmien ratkaiseminen iteratiivisilla menetelmillä Matriisit voivat olla kooltaan niin suuria, että LU-hajotelman laskeminen ei ole järkevä tapa ratkaista lineaarista
LisätiedotNumeeriset menetelmät
Numeeriset menetelmät Luento 14 To 20.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 14 To 20.10.2011 p. 1/39 p. 1/39 Nopeat Fourier-muunnokset Diskreetti Fourier-muunnos ˆf k = 1 N 1 N
LisätiedotMATEMATIIKAN JAOS NUMEERISET MENETELMÄT
MATEMATIIKAN JAOS NUMEERISET MENETELMÄT Harjoitustehtäviä, kevät 2012 1. Tarkastellaan summaa S = 1+0.4+0.3+0.2+0.04+0.03+0.02+0.01. a) Laske summa laskukoneella vasemmalta oikealle käyttäen liukulukuaritmetiikkaa,
LisätiedotLU-hajotelma. Esimerkki 1 Matriisi on yläkolmiomatriisi ja matriisi. on alakolmiomatriisi. 3 / 24
LU-hajotelma 1 / 24 LU-hajotelma Seuravassa tarkastellaan kuinka neliömatriisi voidaan esittää kahden kolmiomatriisin tulona. Käytämme alkeismatriiseja tälläisen esityksen löytämiseen. Edellä mainittua
Lisätiedot1. Normi ja sisätulo
Kurssimateriaalia K3/P3-kursille syksyllä 3 83 Heikki Apiola Sisältää otteita Timo Eirolan L3-kurssin lineaarialgebramonisteesta, jonka lähdekoodin Timo on ystävällisesti antanut käyttööni Normi ja sisätulo
LisätiedotInversio-ongelmien laskennallinen peruskurssi Luento 3
Inversio-ongelmien laskennallinen peruskurssi Luento 3 Kevät 2011 1 Singulaariarvohajotelma (Singular Value Decomposition, SVD) Olkoon A R m n matriisi 1. Tällöin A voidaan esittää muodossa A = UΣV T,
LisätiedotNumeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33
Numeeriset menetelmät TIEA381 Luento 6 Kirsi Valjus Jyväskylän yliopisto Luento 6 () Numeeriset menetelmät 4.4.2013 1 / 33 Luennon 6 sisältö Interpolointi ja approksimointi Polynomi-interpolaatio: Vandermonden
LisätiedotEpälineaaristen yhtälöiden ratkaisumenetelmät
Epälineaaristen yhtälöiden ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Perusoletus Lause 3.1 Olkoon f : [a, b] R jatkuva funktio siten, että f(a)f(b) < 0. Tällöin funktiolla on ainakin
LisätiedotNumeeriset menetelmät TIEA381. Luento 2. Kirsi Valjus. Jyväskylän yliopisto. Luento 2 () Numeeriset menetelmät / 39
Numeeriset menetelmät TIEA381 Luento 2 Kirsi Valjus Jyväskylän yliopisto Luento 2 () Numeeriset menetelmät 14.3.2013 1 / 39 Luennon 2 sisältö Luvusta 1: Numeerinen stabiilisuus Liite A: Liukulukuaritmetiikasta
LisätiedotInversio-ongelmien laskennallinen peruskurssi Luento 7 8
Inversio-ongelmien laskennallinen peruskurssi Luento 7 8 Kevät 2011 1 Iteratiivisista menetelmistä Tähän mennessä on tarkasteltu niin sanottuja suoria menetelmiä, joissa (likimääräinen) ratkaisu saadaan
LisätiedotNumeeriset menetelmät
Numeeriset menetelmät Luento 12 To 13.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 12 To 13.10.2011 p. 1/38 p. 1/38 Tavalliset differentiaaliyhtälöt Yhtälöissä tuntematon funktio Tavalliset
LisätiedotNumeeriset menetelmät
Numeeriset menetelmät Keijo Ruotsalainen Division of Mathematics Kurssitiedot Luennot alkavat ke 11.1.2012 Ke 12-14 L3 To 14-16 L6 Kurssin viimeinen luento To 22.3 2012 Kurssin suorittaminen välikokein:
LisätiedotKohdeyleisö: toisen vuoden teekkari
Julkinen opetusnäyte Yliopisto-opettajan tehtävä, matematiikka Klo 8:55-9:15 TkT Simo Ali-Löytty Aihe: Lineaarisen yhtälöryhmän pienimmän neliösumman ratkaisu Kohdeyleisö: toisen vuoden teekkari 1 y y
LisätiedotNumeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35
Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen
LisätiedotNumeeriset menetelmät
Numeeriset menetelmät Luento 7 Ti 27.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 7 Ti 27.9.2011 p. 1/39 p. 1/39 Interpolointi Ei tunneta funktion f : R R lauseketta, mutta tiedetään funktion
LisätiedotEpälineaaristen yhtälöiden ratkaisumenetelmät
Epälineaaristen yhtälöiden ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Perusoletus Lause 3.1 Olkoon f : [a, b] R jatkuva funktio siten, että f(a)f(b) < 0. Tällöin funktiolla on ainakin
LisätiedotOsittaistuenta Gaussin algoritmissa: Etsitään 1. sarakkeen itseisarvoltaan suurin alkio ja vaihdetaan tämä tukialkioiksi (eli ko. rivi 1. riviksi).
Liukuluvut Tietokonelaskuissa käytetään liukulukuja: mikä esittää lukua ± α α α M β k ± ( M α i β i )β k, i= β on järjestelmän kantaluku, α α M liukuluvun mantissa, α,, α M lukuja,,,, β, siten että α Esimerkki
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Idea Lineaarisen systeemin ratkaiseminen Olkoon
LisätiedotLuento 8: Epälineaarinen optimointi
Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään
LisätiedotPaikannuksen matematiikka MAT
TA M P E R E U N I V E R S I T Y O F T E C H N O L O G Y M a t h e m a t i c s Paikannuksen matematiikka MAT-45800 4..008. p.1/4 Käytännön järjestelyt Kotisivu: http://math.tut.fi/courses/mat-45800/ Luennot:
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta
LisätiedotMatematiikka B2 - TUDI
Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus
LisätiedotBM20A1501 Numeeriset menetelmät 1 - AIMO
6. marraskuuta 2014 Opetusjärjestelyt Luennot + Harjoitukset pe 7.11.2014 10-14 2310, 14-17 7337 la 8.11.2014 9-12 2310, 12-16 7337 pe 14.11.2014 10-14 2310, 14-17 6216 la 15.11.2014 9-12 2310, 12-16 7337
LisätiedotMS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016
LisätiedotLuento 8: Epälineaarinen optimointi
Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori = (,..., ). Reaalisten m n-matriisien joukkoa merkitään
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt ja pienimmän neliösumman menetelmä Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi QR ja PNS PNS-ongelma
Lisätiedot3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a
LisätiedotMS-A0003/A0005 Matriisilaskenta Malliratkaisut 4 / vko 47
MS-A3/A5 Matriisilaskenta Malliratkaisut 4 / vko 47 Tehtävä 1 (L): Oletetaan, että AB = AC, kun B ja C ovat m n-matriiseja. a) Näytä, että jos A on kääntyvä, niin B = C. b) Seuraako yhtälöstä AB = AC yhtälö
Lisätiedot3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21
LisätiedotKäänteismatriisin ominaisuuksia
Käänteismatriisin ominaisuuksia Lause 1.4. Jos A ja B ovat säännöllisiä ja luku λ 0, niin 1) (A 1 ) 1 = A 2) (λa) 1 = 1 λ A 1 3) (AB) 1 = B 1 A 1 4) (A T ) 1 = (A 1 ) T. Tod.... Ortogonaaliset matriisit
LisätiedotLuento 9: Newtonin iteraation sovellus: optimointiongelma
Luento 9: Newtonin iteraation sovellus: optimointiongelma ilman rajoitusehtoja Optimointiongelmassa tehtävänä on löytää annetun reaaliarvoisen jatkuvan funktion f(x 1,x,,x n ) maksimi tai minimi jossain
LisätiedotTalousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi
Talousmatematiikan perusteet: Luento 11 Lineaarikuvaus Matriisin aste Käänteismatriisi Viime luennolla Käsittelimme matriisien peruskäsitteitä ja laskutoimituksia Vakiolla kertominen, yhteenlasku ja vähennyslasku
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt QR-hajotelma ja pienimmän neliösumman menetelmä Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto PNS-ongelma PNS-ongelma
LisätiedotYhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2
LisätiedotKäänteismatriisi 1 / 14
1 / 14 Jokaisella nollasta eroavalla reaaliluvulla on käänteisluku, jolla kerrottaessa tuloksena on 1. Seuraavaksi tarkastellaan vastaavaa ominaisuutta matriiseille ja määritellään käänteismatriisi. Jokaisella
Lisätiedoti=1 Näistä on helppo näyttää ominaisuudet (1)-(4). Ellei toisin mainita, käytetään R n :ssä
Kurssimateriaalia K3/P3-kursille syksyllä 003. 8.0.003 Heikki Apiola Sisältää otteita Timo Eirolan L3-kurssin lineaarialgebramonisteesta, jonka lähdekoodin Timo on ystävällisesti antanut käyttööni.. Normi
Lisätiedot5 OMINAISARVOT JA OMINAISVEKTORIT
5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön
LisätiedotYhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =
LisätiedotAx, y = x, A y. A = A A hermiittinen. Jokainen reaalinen ja symmetrinen matriisi on määritelmän mukaan myös hermiittinen. A =, HARJOITUSTEHTÄVIÄ
X.. Matriisialgebra Esimerkki 4 Jos niin x =[i, +i, 2 i ] T C 3, y =[ 2i, 2i, i ] T C 3, x, x = x 2 =+(+)+(4+)=8, y, y =(+4)+4+(+)=, x, y = i( + 2i)+(+i)( 2i)+(2 i)( +i) = +3i. Matriisia A = ĀT sanotaan
LisätiedotMatematiikka B2 - Avoin yliopisto
6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus
LisätiedotKevät Kirsi Valjus. Jyväskylän yliopisto Tietotekniikan laitos
Numeeriset menetelmät TIEA381 Kevät 2013 Kirsi Valjus Jyväskylän yliopisto Tietotekniikan laitos Luento 1 () Numeeriset menetelmät 13.3.2013 1 / 34 Luennon 1 sisältö Käytännön asioita Numeerisen matematiikan
Lisätiedotf(x 1, x 2 ) = x x 1 k 1 k 2 k 1, k 2 x 2 1, 0 1 f(1, 1)h 1 = h = h 2 1, 1 12 f(1, 1)h 1 h 2
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 7 Harjoitus 6 Ratkaisuehdotukset 6.. Olkoon f : G R, G = {(x, x ) R x > }, f(x, x ) = x x. Etsi differentiaalit d k f(, ), k =,,. Ratkaisu:
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotKonjugaattigradienttimenetelmä
Konjugaattigradienttimenetelmä Keijo Ruotsalainen Division of Mathematics Konjugaattigradienttimenetelmä Oletukset Matriisi A on symmetrinen: A T = A Positiivisesti definiitti: x T Ax > 0 kaikille x 0
LisätiedotLuento 11: Rajoitusehdot. Ulkopistemenetelmät
Luento 11: Rajoitusehdot. Ulkopistemenetelmät ja sisäpistemenetelmät Lagrangen välttämättömien ehtojen ratkaiseminen Newtonin menetelmällä Jos tehtävässä on vain yhtälörajoituksia, voidaan minimipistekandidaatteja
LisätiedotMatriisilaskenta Laskuharjoitus 5 - Ratkaisut / vko 41
MS-A0004/MS-A0006 Matriisilaskenta, I/06 Matriisilaskenta Laskuharjoitus 5 - Ratkaisut / vko 4 Tehtävä 5 (L): a) Oletetaan, että λ 0 on kääntyvän matriisin A ominaisarvo. Osoita, että /λ on matriisin A
Lisätiedot3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset
32 Idea: Lineaarikuvausten laskutoimitusten avulla määritellään vastaavat matriisien laskutoimitukset Vakiolla kertominen ja summa Olkoon t R ja A, B R n m Silloin ta, A + B R n m ja määritellään ta ta
LisätiedotTeknillinen tiedekunta, matematiikan jaos Numeeriset menetelmät
Numeeriset menetelmät 1. välikoe, 14.2.2009 1. Määrää matriisin 1 1 a 1 3 a a 4 a a 2 1 LU-hajotelma kaikille a R. Ratkaise LU-hajotelmaa käyttäen yhtälöryhmä Ax = b, missä b = [ 1 3 2a 2 a + 3] T. 2.
LisätiedotReuna-arvotehtävien ratkaisumenetelmät
Reuna-arvotehtävien ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Malliprobleema Kahden pisteen reuna-arvotehtävä u (x) = f (x) (1) u() = u(1) = Jos u C ([,1]) ratkaisu, niin missä x u(x)
LisätiedotLuento 10: Optimointitehtävien numeerinen ratkaiseminen; optimointi ilman rajoitusehtoja
Luento 10: Optimointitehtävien numeerinen ratkaiseminen; optimointi ilman rajoitusehtoja Seuraavassa esitetään optimointitehtävien numeerisia ratkaisumenetelmiä, eli optimointialgoritmeja, keittokirjamaisesti.
LisätiedotPäättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1
Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon
LisätiedotNumeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33
Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen
LisätiedotNumeerinen integrointi ja derivointi
Numeerinen integrointi ja derivointi Keijo Ruotsalainen Division of Mathematics Interpolaatiokaavat Approksimoitava integraali I = b a f(x)dx. Tasavälinen hila: x i = a+ (b a)i n, i = 0,...,n Funktion
LisätiedotNeliömatriisin adjungaatti, L24
Neliömatriisin adjungaatti, L24 1 2 1 3 Matriisi = A = 7 4 6 5 2 0 ( ) 7 6 Alimatriisi = A 12 = 5 0 Minori = det(a 12 ) = 7 6 5 0 = 30 Kofaktori = ( 1) 1+2 det(a 12 ) = 30 2 Määritelmä n n neliö-matriisin
LisätiedotNumeeriset menetelmät TIEA381. Luento 14. Kirsi Valjus. Jyväskylän yliopisto. Luento 14 () Numeeriset menetelmät / 55
Numeeriset menetelmät TIEA381 Luento 14 Kirsi Valjus Jyväskylän yliopisto Luento 14 () Numeeriset menetelmät 15.5.2013 1 / 55 Luennon 14 sisältö Nopeat Fourier-muunnokset (FFT) Yleinen algoritmi 2-kantainen
LisätiedotMS-A0004/A0006 Matriisilaskenta
4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin
LisätiedotEi välttämättä, se voi olla esimerkiksi Reuleaux n kolmio:
Inversio-ongelmista Craig, Brown: Inverse problems in astronomy, Adam Hilger 1986. Havaitaan oppositiossa olevaa asteroidia. Pyörimisestä huolimatta sen kirkkaus ei muutu. Projisoitu pinta-ala pysyy ilmeisesti
Lisätiedotb 1. b m ) + ( 2b Ax) + (b b)
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-9 Optimointioppi Kimmo Berg 5 harjoitus - ratkaisut min Ax b (vertaa PNS-tehtävät) a x + + a n x n a) Ax b = a m x + + a mn x n = x a a m }{{}
Lisätiedot2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio
x = x 2 = 5/2 x 3 = 2 eli Ratkaisu on siis x = (x x 2 x 3 ) = ( 5/2 2) (Tarkista sijoittamalla!) 5/2 2 Tämä piste on alkuperäisten tasojen ainoa leikkauspiste Se on myös piste/vektori jonka matriisi A
LisätiedotDeterminantti 1 / 30
1 / 30 on reaaliluku, joka on määritelty neliömatriiseille Determinantin avulla voidaan esimerkiksi selvittää, onko matriisi kääntyvä a voidaan käyttää käänteismatriisin määräämisessä ja siten lineaarisen
LisätiedotMS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2)
MS-A4 Differentiaali- ja integraalilaskenta (ELEC2) MS-A6 Differentiaali- ja integraalilaskenta (ENG2) Harjoitukset 3L, syksy 27 Tehtävä. a) Määritä luvun π likiarvo käyttämällä Newtonin menetelmää yhtälölle
LisätiedotR. Mäkinen NUMEERISET MENETELMÄT
R. Mäkinen NUMEERISET MENETELMÄT 2011 2 Luku 1 Numeerisen matematiikan peruskäsitteitä The purpose of computing is insight, not numbers. R. W. Hamming Numeerinen analyysi tutkii algoritmeja luonnontieteissä,
Lisätiedot1 Rajoittamaton optimointi
Taloustieteen matemaattiset menetelmät 7 materiaali 5 Rajoittamaton optimointi Yhden muuttujan tapaus f R! R Muistutetaan mieleen maksimin määritelmä. Funktiolla f on maksimi pisteessä x jos kaikille y
LisätiedotNumeeriset Menetelmät, P. Keijo Ruotsalainen Teknillinen tiedekunta matematiikan jaos
Numeeriset Menetelmät, 031022P Keijo Ruotsalainen Teknillinen tiedekunta matematiikan jaos 11. helmikuuta 2010 2 Sisältö 1 Johdanto 7 1.1 Varoitus.............................. 7 1.2 Numeeriset menetelmät
LisätiedotMatriisilaskenta (TFM) MS-A0001 Hakula/Vuojamo Ratkaisut, Viikko 47, 2017
Matriisilaskenta (TFM) MS-A1 Hakula/Vuojamo Ratkaisut, Viikko 47, 17 R Alkuviikko TEHTÄVÄ J1 Mitkä matriisit E 1 ja E 31 nollaavat sijainnit (, 1) ja (3, 1) matriiseissa E 1 A ja E 31 A kun 1 A = 1. 8
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Luentokalvot 5 1
LisätiedotNumeeriset menetelmät
Numeeriset menetelmät Luento 1 Ti 6.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 1 Ti 6.9.2011 p. 1/28 p. 1/28 Numeriikan termejä Simulointi: Reaalimaailman ilmiöiden jäljitteleminen (yleensä)
LisätiedotInversio-ongelmien laskennallinen peruskurssi Luento 4
Inversio-ongelmien laskennallinen peruskurssi Luento 4 Kevät 20 Regularisointi Eräs keino yrittää ratkaista (likimääräisesti) huonosti asetettuja ongelmia on regularisaatio. Regularisoinnissa ongelmaa
LisätiedotGaussin ja Jordanin eliminointimenetelmä
1 / 25 : Se on menetelmä lineaarisen yhtälöryhmän ratkaisemiseksi. Sitä käytetään myöhemmin myös käänteismatriisin määräämisessä. Ideana on tiettyjä rivioperaatioita käyttäen muokata yhtälöryhmää niin,
Lisätiedot. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-.39 Optimointioppi Kimmo Berg 8. harjoitus - ratkaisut. a)huomataan ensinnäkin että kummankin jonon raja-arvo r on nolla. Oletetaan lisäksi että
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14
LisätiedotMatriisi-vektori-kertolasku, lineaariset yhtälöryhmät
Matematiikan peruskurssi K3/P3, syksy 25 Kenrick Bingham 825 Toisen välikokeen alueen ydinasioita Alla on lueteltu joitakin koealueen ydinkäsitteitä, joiden on hyvä olla ensiksi selvillä kokeeseen valmistauduttaessa
Lisätiedot2.5. Matriisin avaruudet ja tunnusluvut
2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja
LisätiedotNumeeriset Menetelmät, P. Keijo Ruotsalainen Teknillinen tiedekunta matematiikan jaos
Numeeriset Menetelmät, 031022P Keijo Ruotsalainen Teknillinen tiedekunta matematiikan jaos 11. helmikuuta 2009 2 Sisältö 1 Johdanto 7 1.1 Varoitus.............................. 7 1.2 Numeeriset menetelmät
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisihajotelmat: Schur ja Jordan Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi Matriisihajotelmat:
LisätiedotAalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Vesanen MS-A0205/6 Differentiaali- ja integraalilaskenta 2, kevät 2017 Laskuharjoitus 4A (Vastaukset) alkuviikolla
LisätiedotTalousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi
Talousmatematiikan perusteet: Luento 10 Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Lineaarikuvaus Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta, jossa käytetään
LisätiedotLineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
Lisätiedotjakokulmassa x 4 x 8 x 3x
Laudatur MAA ratkaisut kertausarjoituksiin. Polynomifunktion nollakodat 6 + 7. Suoritetaan jakolasku jakokulmassa 5 4 + + 4 8 6 6 5 4 + 0 + 0 + 0 + 0+ 6 5 ± 5 5 4 ± 4 4 ± 4 4 ± 4 8 8 ± 8 6 6 + ± 6 Vastaus:
LisätiedotDynaamisten systeemien teoriaa. Systeemianalyysilaboratorio II
Dynaamisten systeemien teoriaa Systeemianalyysilaboratorio II 15.11.2017 Vakiot, sisäänmenot, ulostulot ja häiriöt Mallin vakiot Systeemiparametrit annettuja vakioita, joita ei muuteta; esim. painovoiman
LisätiedotAntti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos
Lisätiedot802118P Lineaarialgebra I (4 op)
802118P Lineaarialgebra I (4 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Lineaarialgebra I Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M206 Kurssin kotisivu
LisätiedotAalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 4A (Vastaukset) alkuviikolla
LisätiedotMatriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?
Harjoitus 1, kevät 007 1. Olkoon [ ] cos α sin α A(α) =. sin α cos α Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?. Olkoon a x y A = 0 b z, 0 0 c missä a, b, c 0. Määrää käänteismatriisi
LisätiedotDerivaatta: funktion approksimaatio lineaarikuvauksella.
Viikko 5 Tällä viikolla yleistetään R 2 :n ja R 3 :n vektorialgebran peruskäsitteet n-ulotteiseen avaruuteen R n, ja määritellään lineaarikuvaus. Tarkastellaan funktioita, joiden määrittelyjoukko on n-ulotteisen
LisätiedotVille Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007
Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear
Lisätiedot