Funktioiden approksimointi ja interpolointi

Koko: px
Aloita esitys sivulta:

Download "Funktioiden approksimointi ja interpolointi"

Transkriptio

1 Funktioiden approksimointi ja interpolointi Keijo Ruotsalainen Division of Mathematics

2 interpolaatio-ongelma 8 Eksponenttifunktion exp(x) interpolointi 3.5 Funktion e^{0.25x} \sin(x) interpolointi 7 3 Funktion kuvaaja punaisella Interpolaation kuvaaja vihreã llã Keijo Ruotsalainen Matematiikan jaos 2 / 22

3 Interpolaatio Funktion approksimointi, kun funktion arvot tunnetaan äärellisessä pistejoukossa Olkoon (x i,y i ), i = 1,...,n, annetut n+1 pisteparia. Tehtävä: Määrää funktio Φ(x) siten, että Φ(x i ) = y i, i = 0,...,n Sanotaan, että Φ interpoloi arvoja y i pisteissä x i. Polynomi-interpolaatio, jos Φ(x) on algebrallinen polynomi Trigonometrinen interpolaatio, jos Φ(x) on trigonometrinen polynomi, so. sini- ja kosinifunktioiden summa Paloittain polynomi-interpolaatio, jos Φ(x) on paloittain polynomi Keijo Ruotsalainen Matematiikan jaos 3 / 22

4 Polynomi-interpolaatio Interpolaatiopisteet (x 0,x 1,...,x n ) ja f(x) annettu funktio. Määrää n-asteinen polynomi P siten, että P(x i ) = f i, i = 0,...,n. Lause 4.1 Interpolaatio-ongelmalla on yksikäsitteisesti määrätty ratkaisu P n (x) = n f i L i (x), L i (x) = i=0 n j = 0 i j x x j x i x j. missä L i (x) on Lagrange n kantapolynomi: Keijo Ruotsalainen Matematiikan jaos 4 / 22

5 Newtonin esitys Interpolaatiopolynomia haetaan muodossa P n (x) = a 0 + a 1 (x x 0 )+a 2 (x x 0 )(x x 1 ) + +a n (x x 0 ) (x x n 1 ). Polynomin kertoimet ratkaistaan interpolaatioehdosta P n (x j ) = f j. Keijo Ruotsalainen Matematiikan jaos 5 / 22

6 Yhtälöryhmä Yhtälöryhmä on alakolmiomuotoa f 0 = a 0 f 1 = a 0 +(x 1 x 0 )a 1 f 2 = a 0 + a 1 (x 2 x 0 )+a 2 (x 2 x 0 )(x 2 x 1 ). =. f n = a 0 + +a n (x n x 0 ) (x n x n 1 ), jolla ilmeisesti on yksikäsitteinen ratkaisu. Keijo Ruotsalainen Matematiikan jaos 6 / 22

7 Jaetut erotukset Jaetut erotukset Olkoon x = (x 1,...,x n ) ja f = (f 1,...,f n ) kaksi vektoria. Jaettu erotus f[x i,...,x i+k ] määritellään rekursiivisesti, kun j = i + 1,...,i + k: f[x i ] = f i f[x i,...,x j ] = f[x i+1,...,x j ] f[x i,...,x j 1 ] x j x i Keijo Ruotsalainen Matematiikan jaos 7 / 22

8 Newtonin erotustaulukko x 0 x 1 x 2 x 3 x 4. f 0 f 1 f 2 f 3 f 4. f[x 0,x 1 ] f[x 1,x 2 ] f[x 2,x 3 ] f[x 3,x 4 ]. f[x 0,x 1,x 2 ] f[x 1,x 2,x 3 ] f[x 2,x 3,x 4 ]. f[x 0,x 1,x 2,x 3 ] f[x 1,x 2,x 3,x 4 ]. f[x 0,x 1,x 2,x 3,x 4 ]. Lause 4.2 Newtonin interpolaatiopolynomin kertoimet ovat a j = f[x 0,x 1,,x j ], j = 0,1,2,,n. Keijo Ruotsalainen Matematiikan jaos 8 / 22

9 Newtonin esityksen kertoimien laskeminen Algoritmi Alustus: a[i] = f(i), i = 0,...,n. for (j = 1; j <= n; j ++) for (i = n; i >= j; i ) a[i] = (a[i] a[i 1])/(x[i] x[i j]) Kertoimien laskemiseen tarvitaan n 2 kertolaskua 1 2 n2 yhteenlaskua. Keijo Ruotsalainen Matematiikan jaos 9 / 22

10 Newtonin interpolaatiopolynomin laskeminen Newtonin polynomin kertoimet a i, i = 0,...,n Teleskooppitulo: P(t) = (( ((a n (t x n 1 ) +a n 1 )(t x n 2 )+a n 2 ) )(t x 1 )+a 1 (t x 0 )+a 0. pseudoalgoritmi p for = c[n]; (i = n 1; i >= 0; i ) p = p (t x[i])+c[i]; Algoritmissa suoritetaan 2n yhteenlaskua ja n kertolaskua. Keijo Ruotsalainen Matematiikan jaos 10 / 22

11 Matlab-koodi interpolaatiolle function [f] = interpol(x,y,z) %interpol.m laskee interpolaatiopolynomin Newtonin esityksen % x on interpolaatiopisteistö, y on funktion arvot % z pisteet, joissa interpolaatiopolynomi evaluoidaan [m n]=size(y); for j=1:m a(:,1)=y(j,:) ; for i=2:n a(i:n,i)=(a(i:n,i-1)-a(i-1,i-1))./(x(i:n)-x(i-1)) ; end f(j,:)=a(n,n).*(z-x(n-1))+a(n-1,n-1); for i=2:n-1 f(j,:)=f(j,:).*(z-x(n-i))+a(n-i,n-i); end end return Keijo Ruotsalainen Matematiikan jaos 11 / 22

12 Interpolaatiovirhe Lause 4.3 Olkoon [a, b] väli sisältäen interpolaatiopisteet {x 0,...,x n }, ja funktio f(x) tällä välillä (n+1)-kertaa jatkuvasti differentioituva funktio. Silloin jokaisella x [a, b] on olemassa ξ x [a, b] siten, että f(x) P n (x) = (x x 0 ) (x x n ) f (n+1) (ξ x ) (n+1)! Keijo Ruotsalainen Matematiikan jaos 12 / 22

13 Todistus Funktion g λ (x) = f(x) P n (x)+λ(x x 0 ) (x x n ), λ R. nollakohdat x 0,...,x n. Olkoon α [a, b]\{x 0,...,x n } mielivaltainen. Valitaan λ α = f(α) Pn(α) n i=0 (α x i). Funktiolla g λα (x) on välillä [a, b] n+2 nollakohtaa. x 0 < x 1 <... < x n < α = x n+1. Rolle n lause derivaatalla g (j) (x) on n+2 j λ(α) nollakohtaa x (j) i, i = 0,1,...,n+1 j välillä [a,b] x (j 1) i < x (j) i < x (j 1) i. Keijo Ruotsalainen Matematiikan jaos 13 / 22

14 Todistus jatkuu Siten funktiolla g (n+1) λ(α) (x) on nollakohta ξ α [a, b]: 0 = g λ(α (n+1) ) (ξ α) = f (n+1) (ξ α ) P n (n+1) (ξ α )+λ α (n+1)!. Koska n-asteisen polynomin n+ 1-kertainen derivaatta häviää identtisesti, niin välttämättä λ α = f (n+1) (ξ α ) (n+1)!. Pisteessä α [a,b]\{x 0,..., x n }: 0 = g α (α) = f(α) P n (α)+λ α (α x 0 ) (α x n ). Sijoittamalla tähän identiteettiin λ α saadaan väittämä. Väite on triviaalisti tosi pisteissä x 0,...,x n. Keijo Ruotsalainen Matematiikan jaos 14 / 22

15 Huomiota konvergenssista Interpolaatiopisteitä ei kannata valita aina tasavälisesti eikä ainakaan kannata lisätä niiden lukumäärää määrättömästi kuten seuraava Runge n esittämä esimerkki osoittaa. Tarkastellaan funktiota f(t) = 1 1+t 2 välillä [ 5, 5]. Interpoloidaan sitä tasavälisellä hilalla n-asteisella polynomilla. Jos interpolaatiopisteiden lukumäärä n kasvaa rajatta, niin voidaan ( ei kovin ) helposti osoittaa, että myös interpolaation maksimivirhe kasvaa rajatta. Nimittäin n-asteisen interpolaatiopolynomin virheelle on voimassa lim max P n(x) f(x) =. n x [ 5,5] Keijo Ruotsalainen Matematiikan jaos 15 / 22

16 Rungen esimerkki 2 Interpolaatiopolynomi vihreã llã 1.5 Funktion 1/(1+x 2 ) kuvaaja punaisella Keijo Ruotsalainen Matematiikan jaos 16 / 22

17 Chebyshevin pisteet Chebyshevin pisteet valitaan siten, että virhepolynomi ω(t) = (t x 0 )(t x 1 ) (t x n ), on tasaisesti mahdollisimman pieni Oletus: max t [ 1,1] f (n+1) (t) M. Tällöin M f(t) P(t) max (n+1)! ω(x). x [ 1,1] Virhepolynomin johtavan termin kerroin on yksi, ts. ω(x) = x n+1 + q n (x), missä q n (x) on n-asteinen polynomi Tavoite: Etsi n+1-asteinen polynomi, jonka maksimi välillä [ 1,1] on pienin mahdollinen. Tällöin tämän polynomin nollakohdat ovat siten optimaalisia interpolaatiopisteitä. Keijo Ruotsalainen Matematiikan jaos 17 / 22

18 Chebyshevin polynomit Chebyshevin polynomi T n (x) = T n (cos(φ)) = cos(nφ), x = cos(φ) [ 1,1]. Trigonometrinen identiteetti cos((n+1)φ)+cos((n 1)φ) = 2cos(φ)cos(nφ) rekursiokaava T n+1 (x) = 2xT n (x) T n 1 (x). Kaksi ensimmäistä polynomia: T 0 (x) = 1, T 1 (x) = x. Induktiolla voidaan päätellä, että funktio T n (x) on n-asteinen polynomi. Chebyshevin polynomien maksimiarvot: max x [ 1,1] T n (x) = 1, Derivaatan nollakohdissa: x k = cos( kπ n ), k = 0,1,2,...,n. Keijo Ruotsalainen Matematiikan jaos 18 / 22

19 Chebyshevin lause Rekursio T n+1 (x) = 2xT n (x) T n 1 (x). T-polynomin johtavan termin ( siis x n :n ) kerroin on 2 n 1. Lause 4.4 Kaikille x [ 1,1]: Lause n+1 T n (x) 1 2 n 1 Jos polynomi P n (x) on n-asteinen ja jonka johtavan termin kerroin on yksi, niin max P n(x) 1 x [ 1,1] 2 n 1 max T n(x) = 1 x [ 1,1] 2 n 1. Keijo Ruotsalainen Matematiikan jaos 19 / 22

20 Todistus Oletetaan, että on olemassa polynomi P n (x), jonka asteluku on n ja P n (x) < 1 2n 1, x [ 1,1]. Polynomin T n (x) ääriarvokohdissa x k, k = 0,...,n: 1 P n (x 0 ) < 2 n 1 P n (x 1 ) > 1 2 n 1. Jatkuvuuden nojalla polynomilla Q(x) = P n (x) 1 2 n 1 T n (x) on T-polynomin ääriarvokohtien välissä ainakin n eri nollakohtaa. Keijo Ruotsalainen Matematiikan jaos 20 / 22

21 Tod. jatkuu P n (x) = x n +..., 1 2n 1 T n(x) = x n + deg(q(x)) = n 1 Algebran päälause Q(x) 0, vastoin oletusta. Näin ollen oletus, että olisi olemassa polynomi P n (x), joka on kaikille x [ 1, 1] itseisarvoltaan pienempi kuin 1 2 n 1 ja jonka johtavan termin kerroin olisi yksi, on väärä. Keijo Ruotsalainen Matematiikan jaos 21 / 22

22 Chebyshevin pisteet Chebyshevin pisteet ovat polynomin ω(x) = 2 n T n+1 (x) nollakohdat π x k = cos( 2(n+1) + πk ), 0 k n. n+1 Chebyshevin pisteet optimaalinen valinta interpolaatiopisteille välillä [ 1, 1]. Chebyshevin pisteet välillä [a, b]: x k = a+ b a 2 ( x k + 1). Keijo Ruotsalainen Matematiikan jaos 22 / 22

23 Runge ja Chebyshev Keijo Ruotsalainen Matematiikan jaos 23 / 22

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 7 Ti 27.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 7 Ti 27.9.2011 p. 1/39 p. 1/39 Interpolointi Ei tunneta funktion f : R R lauseketta, mutta tiedetään funktion

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 6 Kirsi Valjus Jyväskylän yliopisto Luento 6 () Numeeriset menetelmät 4.4.2013 1 / 33 Luennon 6 sisältö Interpolointi ja approksimointi Polynomi-interpolaatio: Vandermonden

Lisätiedot

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu 2 Interpolointi Olkoon annettuna n+1 eri pistettä x 0, x 1, x n R ja n+1 lukua y 0, y 1,, y n Interpoloinnissa etsitään funktiota P, joka annetuissa pisteissä x 0,, x n saa annetut arvot y 0,, y n, (21)

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 6 To 22.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 6 To 22.9.2011 p. 1/38 p. 1/38 Ominaisarvotehtävät Monet sovellukset johtavat ominaisarvotehtäviin Yksi

Lisätiedot

Numeerinen analyysi Harjoitus 3 / Kevät 2017

Numeerinen analyysi Harjoitus 3 / Kevät 2017 Numeerinen analyysi Harjoitus 3 / Kevät 2017 Palautus viimeistään perjantaina 17.3. Tehtävä 1: Tarkastellaan funktion f(x) = x evaluoimista välillä x [2.0, 2.3]. Muodosta interpoloiva polynomi p 3 (x),

Lisätiedot

Epälineaaristen yhtälöiden ratkaisumenetelmät

Epälineaaristen yhtälöiden ratkaisumenetelmät Epälineaaristen yhtälöiden ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Perusoletus Lause 3.1 Olkoon f : [a, b] R jatkuva funktio siten, että f(a)f(b) < 0. Tällöin funktiolla on ainakin

Lisätiedot

Pienimmän neliösumman menetelmä

Pienimmän neliösumman menetelmä Pienimmän neliösumman menetelmä Keijo Ruotsalainen Division of Mathematics Funktion sovitus Datapisteet (x 1,...,x n ) Annettu data y i = f(x i )+η i, missä f(x) on tuntematon funktio ja η i mittaukseen

Lisätiedot

Numeerinen integrointi ja derivointi

Numeerinen integrointi ja derivointi Numeerinen integrointi ja derivointi Keijo Ruotsalainen Division of Mathematics Interpolaatiokaavat Approksimoitava integraali I = b a f(x)dx. Tasavälinen hila: x i = a+ (b a)i n, i = 0,...,n Funktion

Lisätiedot

Epälineaaristen yhtälöiden ratkaisumenetelmät

Epälineaaristen yhtälöiden ratkaisumenetelmät Epälineaaristen yhtälöiden ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Perusoletus Lause 3.1 Olkoon f : [a, b] R jatkuva funktio siten, että f(a)f(b) < 0. Tällöin funktiolla on ainakin

Lisätiedot

Iteratiiviset ratkaisumenetelmät

Iteratiiviset ratkaisumenetelmät Iteratiiviset ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Yleinen iteraatio Lineaarisen yhtälöryhmän iteratiivinen ratkaisumenetelmä voidaan esittää muodossa: Anna alkuarvaus: x 0 R n

Lisätiedot

k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu

k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu LIS AYKSI A kirjaan Reaalimuuttujan analyysi 1.6. Numeerinen integrointi: Gaussin kaavat Edella kasitellyt numeerisen integroinnin kaavat eli kvadratuurikaavat Riemannin summa, puolisuunnikassaanto ja

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 3 Ti 13.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 3 Ti 13.9.2011 p. 1/37 p. 1/37 Epälineaariset yhtälöt Newtonin menetelmä: x n+1 = x n f(x n) f (x n ) Sekanttimenetelmä:

Lisätiedot

Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1.

Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1. Analyysi 1 Harjoituksia lukuihin 4 7 / Syksy 014 1. Tutki funktion x + x jatkuvuutta pisteissä x = 0 ja x = 1.. Määritä vakiot a ja b siten, että funktio a x cos x + b x + b sin x, kun x 0, x 4, kun x

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35 Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen

Lisätiedot

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta Maksimit ja minimit 1/5 Sisältö Funktion kasvavuus ja vähenevyys; paikalliset ääriarvot Jos derivoituvan reaalifunktion f derivaatta tietyssä pisteessä on positiivinen, f (x 0 ) > 0, niin funktion tangentti

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat

Lisätiedot

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle 13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien

Lisätiedot

Luku 4. Derivoituvien funktioiden ominaisuuksia.

Luku 4. Derivoituvien funktioiden ominaisuuksia. 1 MAT-1343 Laaja matematiikka 3 TTY 1 Risto Silvennoinen Luku 4 Derivoituvien funktioiden ominaisuuksia Derivaatan olemassaolosta seuraa funktioille eräitä säännöllisyyksiä Näistä on jo edellisessä luvussa

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö Johdatus diskreettiin matematiikkaan Harjoitus 5, 14.10.2015 1. Ratkaise rekursioyhtälö x n+4 2x n+2 + x n 16( 1) n, n N, alkuarvoilla x 1 2, x 2 14, x 3 18 ja x 4 42. Ratkaisu. Vastaavan homogeenisen

Lisätiedot

Konjugaattigradienttimenetelmä

Konjugaattigradienttimenetelmä Konjugaattigradienttimenetelmä Keijo Ruotsalainen Division of Mathematics Konjugaattigradienttimenetelmä Oletukset Matriisi A on symmetrinen: A T = A Positiivisesti definiitti: x T Ax > 0 kaikille x 0

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 ari.vesanen (at) oulu.fi 5. Rekursio ja induktio Rekursio tarkoittaa jonkin asian määrittelyä itseensä viittaamalla Tietojenkäsittelyssä algoritmin määrittely niin,

Lisätiedot

PERUSASIOITA ALGEBRASTA

PERUSASIOITA ALGEBRASTA PERUSASIOITA ALGEBRASTA Matti Lehtinen Tässä luetellut lauseet ja käsitteet kattavat suunnilleen sen mitä algebrallisissa kilpatehtävissä edellytetään. Ns. algebrallisia struktuureja jotka ovat nykyaikaisen

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

5 Differentiaalilaskentaa

5 Differentiaalilaskentaa 5 Differentiaalilaskentaa 5.1 Raja-arvo Esimerkki 5.1. Rationaalifunktiota g(x) = x2 + x 2 x 1 ei ole määritelty nimittäjän nollakohdassa eli, kun x = 1. Funktio on kuitenkin määritelty kohdan x = 1 läheisyydessä.

Lisätiedot

Tehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja.

Tehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja. Tehtävä 1 Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja. 1 Jos 1 < y < 3, niin kaikilla x pätee x y x 1. 2 Jos x 1 < 2 ja y 1 < 3, niin x y

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot

Muotoinosa tulkitaan vasta suoritushtkellä.

Muotoinosa tulkitaan vasta suoritushtkellä. Syöttö ja tulostus write (*,*) x write (6,*) x write (*,00) x 00 format( x=,f8.3) write(*, ("x=",f8.3) ) x write(*,"( x=,f8.3)") x write(*, ( x=,f8.3) ) x character (len=80) :: form character (len=2) ::

Lisätiedot

2. Fourier-sarjoista. Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu

2. Fourier-sarjoista. Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu 2. Fourier-sarjoista Fourier-analyysi: Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu Matemaattisen analyysin täkein työväline "Jokainen funktio" voidaan esittää harmonisten värähtelyjen, so.

Lisätiedot

x 0 x 1 x 2... x n y 0 y 1 y 2... y n Taulukko 1:

x 0 x 1 x 2... x n y 0 y 1 y 2... y n Taulukko 1: [?, Luku 10], interpolaatio.tex 6.7.04 1 Interpolaatio Olkoon annettu taulukko x 0 x 1 x 2... x n y 0 y 1 y 2... y n Taulukko 1: Voidaan ajatella, että kyse on annetun funktion taulukoiduista arvoista

Lisätiedot

Tenttiin valmentavia harjoituksia

Tenttiin valmentavia harjoituksia Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.

Lisätiedot

Kompleksiluvut., 15. kesäkuuta /57

Kompleksiluvut., 15. kesäkuuta /57 Kompleksiluvut, 15. kesäkuuta 2017 1/57 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen

Lisätiedot

Reaalilukuvälit, leikkaus ja unioni (1/2)

Reaalilukuvälit, leikkaus ja unioni (1/2) Luvut Luonnolliset luvut N = {0, 1, 2, 3,... } Kokonaisluvut Z = {..., 2, 1, 0, 1, 2,... } Rationaaliluvut (jaksolliset desimaaliluvut) Q = {m/n m, n Z, n 0} Irrationaaliluvut eli jaksottomat desimaaliluvut

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a.

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a. Polynomit Tarkastelemme polynomirenkaiden teoriaa ja polynomiyhtälöiden ratkaisemista. Algebrassa on tapana pitää erillään polynomin ja polynomifunktion käsitteet. Polynomit Tarkastelemme polynomirenkaiden

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

6. OMINAISARVOT JA DIAGONALISOINTI

6. OMINAISARVOT JA DIAGONALISOINTI 0 6 OMINAISARVOT JA DIAGONALISOINTI 6 Ominaisarvot ja ominaisvektorit Olkoon V äärellisulotteinen vektoriavaruus, dim(v ) = n ja L : V V lineaarikuvaus Määritelmä 6 Skalaari λ R on L:n ominaisarvo, jos

Lisätiedot

MAA2.3 Koontitehtävät 2/2, ratkaisut

MAA2.3 Koontitehtävät 2/2, ratkaisut MAA.3 Koontitehtävät /, ratkaisut. (a) 3x 5x 4 = 0 x = ( 5) ± ( 5) 4 3 ( 4) 6 (b) (x 4) = (x 4)(x + 4) (x 4)(x 4) = (x 4)(x + 4) x 8x + 6 = x 6 x 6 8x = 3 : 8 x = 4 = 5 ± 73 6 (c) 4 x + x + = 0 4 x + 4x

Lisätiedot

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32 1 / 32 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki 4B.2 Esimerkki 4B.3 Esimerkki 4C.1 Esimerkki 4C.2 Esimerkki 4C.3 2 / 32 Esimerkki 4A.1 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki

Lisätiedot

3.1 Väliarvolause. Funktion kasvaminen ja väheneminen

3.1 Väliarvolause. Funktion kasvaminen ja väheneminen Väliarvolause Funktion kasvaminen ja väheneminen LAUSE VÄLIARVOLAUSE Oletus: Funktio f on jatkuva suljetulla välillä I: a < x < b f on derivoituva välillä a < x < b Väite: On olemassa ainakin yksi välille

Lisätiedot

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä Pitkä matematiikka 8.9.0, ratkaisut:. a) ( x + x ) = ( + x + x ) 6x + 6x = + 6x + 6x x = x =. b) Jos x > 0, on x = + x x = + x. Tällä ei ole ratkaisua. Jos x 0, on x = + x x = + x x =. c) x = x ( x) =

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-.39 Optimointioppi Kimmo Berg 8. harjoitus - ratkaisut. a)huomataan ensinnäkin että kummankin jonon raja-arvo r on nolla. Oletetaan lisäksi että

Lisätiedot

Este- ja sakkofunktiomenetelmät

Este- ja sakkofunktiomenetelmät Este- ja sakkofunktiomenetelmät Keijo Ruotsalainen Mathematics Division Luennon kulku Este- ja sisäpistemenetelmät LP-ongelmat ja logaritminen estefunktio Polun seuranta Newtonin menetelmällä Sakkofunktiomenetelmistä

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 2 Lisää osamurtoja Tutkitaan jälleen rationaalifunktion P(x)/Q(x) integrointia. Aiemmin käsittelimme tapauksen, jossa nimittäjä voidaan esittää muodossa Q(x) = a(x x

Lisätiedot

1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n.

1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0004/A0006 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 8.9.015 Reaalinen

Lisätiedot

(0 desimaalia, 2 merkitsevää numeroa).

(0 desimaalia, 2 merkitsevää numeroa). NUMEERISET MENETELMÄT DEMOVASTAUKSET SYKSY 20.. (a) Absoluuttinen virhe: ε x x ˆx /7 0.4 /7 4/00 /700 0.004286. Suhteellinen virhe: ρ x x ˆx x /700 /7 /00 0.00 0.%. (b) Kahden desimaalin tarkkuus x ˆx

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori = (,..., ). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

Numeerinen analyysi Harjoitus 1 / Kevät 2017

Numeerinen analyysi Harjoitus 1 / Kevät 2017 Numeerinen analyysi Harjoitus 1 / Kevät 2017 Palautus viimeistään perjantaina 3.3. Tehtävä 1: Oheinen MATLAB-funktio toteuttaa eksponenttifunktion evaluoinnin. 1 function y = seriesexp ( x ) 2 oldsum =

Lisätiedot

Koodausteoria, Kesä 2014

Koodausteoria, Kesä 2014 Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 4.7 Syklisen koodin jälkiesitys Olkoon F = F q ja K = F q m kunnan F laajennuskunta. Määritelmä 4.7.1. Kuntalaajennuksen K/F jälkifunktioksi

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 13 Ti 18.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 13 Ti 18.10.2011 p. 1/43 p. 1/43 Nopeat Fourier-muunnokset Fourier-sarja: Jaksollisen funktion esitys

Lisätiedot

Harjoitus 7 -- Ratkaisut

Harjoitus 7 -- Ratkaisut Harjoitus 7 -- Ratkaisut 1 Solve osaa ratkaista polynomiyhtälöitä, ainakin astelukuun 4 asti. Erikoistapauksissa korkeammankin asteen yhtälöt ratkeavat. Clear a, b, c, d, e, x ; Solve a x 3 b x 2 c 0,

Lisätiedot

JATKUVUUS. Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista.

JATKUVUUS. Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista. JATKUVAT FUNKTIOT JATKUVUUS Jatkuva funktio Epäjatkuva funktio Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista., suomennos Matti Pauna JATKUVUUS Jatkuva funktio Epäjatkuva

Lisätiedot

Rollen lause polynomeille

Rollen lause polynomeille Rollen lause polynomeille LuK-tutkielma Anna-Helena Hietamäki 7193766 Matemaattisten tieteiden tutkinto-ohjelma Oulun yliopisto Kevät 015 Sisältö 1 Johdanto 1.1 Rollen lause analyysissä.......................

Lisätiedot

Numeerinen integrointi

Numeerinen integrointi Numeerinen integrointi Analyyttisesti derivointi triviaalia, integrointi vaikeaa. Numeerisesti laskettaessa tilanne on päinvastainen. Integrointi on yhteenlaskua, joka on tasoittava operaatio: lähtötietojen

Lisätiedot

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa 8 Potenssisarjoista 8. Määritelmä Olkoot a 0, a, a 2,... reaalisia vakioita ja c R. Määritelmä 8.. Muotoa a 0 + a (x c) + a 2 (x c) 2 + olevaa sarjaa sanotaan c-keskiseksi potenssisarjaksi. Selvästi jokainen

Lisätiedot

mlnonlinequ, Epälineaariset yhtälöt

mlnonlinequ, Epälineaariset yhtälöt Aalto-yliopisto, Matematiikan ja Systeemianalyysin laitos -e mlnonlinequ, Epälineaariset yhtälöt 1. Historiallisesti mielenkiintoinen yhtälö on x 3 2x 5 = 0, jota Wallis-niminen matemaatikko käsitteli,

Lisätiedot

Trooppisen algebran peruslause

Trooppisen algebran peruslause TAMPEREEN YLIOPISTO Pro gradu -tutkielma Jari Ahonen Trooppisen algebran peruslause Informaatiotieteiden yksikkö Matematiikka Helmikuu 2013 Tiivistelmä Tutkielmassa käsitellään yhden muuttujan trooppisia

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

4 Yleinen potenssifunktio ja polynomifunktio

4 Yleinen potenssifunktio ja polynomifunktio 4 Yleinen potenssifunktio ja polynomifunktio ENNAKKOTEHTÄVÄT 1. a) Tutkitaan yhtälöiden ratkaisuja piirtämällä funktioiden f(x) = x, f(x) = x 3, f(x) = x 4 ja f(x) = x 5 kuvaajat. Näin nähdään, monessako

Lisätiedot

MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio

MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio Olkoon a 1 = a 2 = 5 ja a n+1 = a n + 6a n 1 kun n 2. Todista induktiolla, että a n = 3 n ( 2) n, kun n on positiivinen

Lisätiedot

Nopea kertolasku, Karatsuban algoritmi

Nopea kertolasku, Karatsuban algoritmi Nopea kertolasku, Karatsuban algoritmi Mikko Männikkö 16.8.2004 Lähde: ((Gathen and Gerhard 1999) luku II.8) Esityksen kulku Algoritmien analysointia (1), (2), (3), (4) Klassinen kertolasku Parempi tapa

Lisätiedot

Polynomit, interpolaatio ja funktion approksimointi

Polynomit, interpolaatio ja funktion approksimointi Solmu 3/24 Polynomit, interpolaatio ja funktion approksimointi Heikki Apiola Lehtori Matematiikan laitos, Teknillinen korkeakoulu Johdanto, taustaa Kirjoitus liittyy aihepiiriin numeerinen analyysi, tieteellinen

Lisätiedot

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus: . Koska F( ) on jokin funktion f ( ) integraalifunktio, niin a+ a f() t dt F( a+ t) F( a) ( a+ ) b( a b) Vastaus: Kertausharjoituksia. Lukujonot 87. + n + lim lim n n n n Vastaus: suppenee raja-arvona

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

[E : F ]=[E : K][K : F ].

[E : F ]=[E : K][K : F ]. ALGEBRA II 35 Lause 4.4 (Astelukulause). Olkoot E/K/Fäärellisiä kuntalaajennuksia. Silloin [E : F ]=[E : K][K : F ]. Todistus. Olkoon {α 1,...,α n } kanta laajennukselle E/K ja {β 1,...,β m } kanta laajennukselle

Lisätiedot

läheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä?

läheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä? BM20A5840 - Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2017 1. Tunnemme vektorit a = [ 1 2 3 ] ja b = [ 2 1 2 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien

Lisätiedot

3. Laadi f unktioille f (x) = 2x + 6 ja g(x) = x 2 + 7x 10 merkkikaaviot. Millä muuttujan x arvolla f unktioiden arvot ovat positiivisia?

3. Laadi f unktioille f (x) = 2x + 6 ja g(x) = x 2 + 7x 10 merkkikaaviot. Millä muuttujan x arvolla f unktioiden arvot ovat positiivisia? Kertaustesti Nimi:. Onko väite tosi (T) vai epätosi (E)? a) Polynomin 4 3 + + asteluku on. b) F unktio f () = 8 saa positiivisia arvoja, kun > 4. c) F unktion f () = 3 4 kuvaaja on alaspäin aukeava paraabeli.

Lisätiedot

Luento 9: Yhtälörajoitukset optimoinnissa

Luento 9: Yhtälörajoitukset optimoinnissa Luento 9: Yhtälörajoitukset optimoinnissa Lagrangen kerroin Oletetaan aluksi, että f, g : R R. Merkitään (x 1, x ) := (x, y) ja johdetaan Lagrangen kerroin λ tehtävälle min f(x, y) s.t. g(x, y) = 0 Olkoon

Lisätiedot

Matematiikka B1 - TUDI

Matematiikka B1 - TUDI Osittaisderivointi Osittaisderivaatan sovellukset Matematiikka B1 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Osittaisderivointi Osittaisderivaatan sovellukset Kurssin

Lisätiedot

6. Toisen ja korkeamman kertaluvun lineaariset

6. Toisen ja korkeamman kertaluvun lineaariset SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 51 6. Toisen ja korkeamman kertaluvun lineaariset differentiaaliyhtälöt Määritelmä 6.1. Olkoon I R avoin väli. Olkoot p i : I R, i = 0, 1, 2,..., n, ja q : I R jatkuvia

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kertausluento 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat:. Potenssisarjojen suppenemissäde, suppenemisväli ja suppenemisjoukko. 2. Derivaatan

Lisätiedot

1 Rajoittamaton optimointi

1 Rajoittamaton optimointi Taloustieteen matemaattiset menetelmät 7 materiaali 5 Rajoittamaton optimointi Yhden muuttujan tapaus f R! R Muistutetaan mieleen maksimin määritelmä. Funktiolla f on maksimi pisteessä x jos kaikille y

Lisätiedot

MATP153 Approbatur 1B Harjoitus 6 Maanantai

MATP153 Approbatur 1B Harjoitus 6 Maanantai . (Teht. s. 93.) Määrää raja-arvo MATP53 Approbatur B Harjoitus 6 Maanantai 7..5 cos x x. Ratkaisu. Suora sijoitus antaa epämääräisen muodon (ei auta). Laventamalla päädytään muotoon ja päästään käyttämään

Lisätiedot

Mikäli funktio on koko ajan kasvava/vähenevä jollain välillä, on se tällä välillä monotoninen.

Mikäli funktio on koko ajan kasvava/vähenevä jollain välillä, on se tällä välillä monotoninen. 4.1 Polynomifunktion kulun tutkiminen s. 100 digijohdanto Funktio f on kasvava jollain välillä, jos ehdosta a < b seuraa ehto f(a) < f(b). Funktio f on vähenevä jollain välillä, jos ehdosta a < b seuraa

Lisätiedot

1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2

1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2 Sisältö 1 Kompleksiluvut 1 1.1 Määritelmä............................ 1 1. Kertolasku suorakulmaisissa koordinaateissa.......... 4 1.3 Käänteisluku ja jakolasku..................... 9 1.4 Esimerkkejä.............................

Lisätiedot

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],

Lisätiedot

7. Tasaisen rajoituksen periaate

7. Tasaisen rajoituksen periaate 18 FUNKTIONAALIANALYYSIN PERUSKURSSI 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin

Lisätiedot

Osi*aisintegroin2. Osi*aisintegroin2: esimerkkejä. Osi*aisintegroin2tapauksia 1/29/13. f'(x)g(x)dx=f(x)g(x) f(x)g'(x)dx. f'(x)g(x)dx=f(x)g(x)

Osi*aisintegroin2. Osi*aisintegroin2: esimerkkejä. Osi*aisintegroin2tapauksia 1/29/13. f'(x)g(x)dx=f(x)g(x) f(x)g'(x)dx. f'(x)g(x)dx=f(x)g(x) /9/ Osi*aisintegroin Palautetaan mieleen tulon derivoimissääntö: d df(x) dg(x) (f(x) g(x)) g(x) + f(x) Integroidaan yhtälön molemmat puolet x:n suhteen: d (f(x) g(x)) df(x) g(x) + f(x) dg(x) f(x) g(x)

Lisätiedot

Shorin algoritmin matematiikkaa Edvard Fagerholm

Shorin algoritmin matematiikkaa Edvard Fagerholm Edvard Fagerholm 1 Määritelmiä Määritelmä 1 Ryhmä G on syklinen, jos a G s.e. G = a. Määritelmä 2 Olkoon G ryhmä. Tällöin alkion a G kertaluku ord(a) on pienin luku n N \ {0}, jolla a n = 1. Jos lukua

Lisätiedot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 5A Vastaukset alkuviikolla

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 26.9.2016 Pekka Alestalo,

Lisätiedot

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio.

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio. Sinin jatkuvuus Lemma Kaikilla x, y R, sin x sin y x y. Seuraus Sini on jatkuva funktio. Seuraus Kosini, tangentti ja kotangentti ovat jatkuvia funktioita. Pekka Salmi FUNK 19. syyskuuta 2016 22 / 53 Yhdistetyn

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Matriisinormi Matriisinormi Matriiseille

Lisätiedot

MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M)

MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M) MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus 7. 2. 2009 alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M) Luennoilla on nyt menossa vaihe, missä Hurri-Syrjäsen monistetta käyttäen tutustutaan

Lisätiedot

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6 Alkeisfunktiot Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6. Funktion määrittely Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon

Lisätiedot

koska 2 toteuttaa rationaalikertoimisen yhtälön x 2 2 = 0. Laajennuskunnan

koska 2 toteuttaa rationaalikertoimisen yhtälön x 2 2 = 0. Laajennuskunnan 4. Äärellisten kuntien yleisiä ominaisuuksia 4.1. Laajenuskunnat. Tarkastellaan aluksi yleistä kuntaparia F ja K, missä F on kunnan K alikunta. Tällöin sanotaan, että kunta K on kunnan F laajennuskunta

Lisätiedot

VI. TAYLORIN KAAVA JA SARJAT. VI.1. Taylorin polynomi ja Taylorin kaava

VI. TAYLORIN KAAVA JA SARJAT. VI.1. Taylorin polynomi ja Taylorin kaava VI. TAYLORIN KAAVA JA SARJAT VI.. Taylorin polynomi ja Taylorin kaava Olkoon n N ja x, c, c, c 2,..., c n R. Tehtävä: Etsittävä sellainen R-kertoiminen polynomi P, että sen aste deg P n ja P (x ) = c,

Lisätiedot

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi 7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi Z p [x]/(m), missä m on polynomirenkaan Z p [x] jaoton polynomi (ks. määritelmä 3.19).

Lisätiedot

Osi$aisintegroin, Palautetaan mieleen tulon derivoimissääntö: d

Osi$aisintegroin, Palautetaan mieleen tulon derivoimissääntö: d Osi$aisintegroin, Palautetaan mieleen tulon derivoimissääntö: d df(x) dg(x) (f(x) g(x)) = g(x) + f(x) dx dx dx Integroidaan yhtälön molemmat puolet x:n suhteen: d (f(x) g(x))dx dx = df(x) dx g(x)dx + f(x)

Lisätiedot

Luento 9: Newtonin iteraation sovellus: optimointiongelma

Luento 9: Newtonin iteraation sovellus: optimointiongelma Luento 9: Newtonin iteraation sovellus: optimointiongelma ilman rajoitusehtoja Optimointiongelmassa tehtävänä on löytää annetun reaaliarvoisen jatkuvan funktion f(x 1,x,,x n ) maksimi tai minimi jossain

Lisätiedot

Muista tutkia ihan aluksi määrittelyjoukot, kun törmäät seuraaviin funktioihin:

Muista tutkia ihan aluksi määrittelyjoukot, kun törmäät seuraaviin funktioihin: Määrittelyjoukot Muista tutkia ihan aluksi määrittelyjoukot, kun törmäät seuraaviin funktioihin:, 0 ; log, > 0 ;, 0 (parilliset juuret) ; tan, π + nπ Potenssisäännöt Ole tarkkana kantaluvun kanssa 3 3

Lisätiedot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot 3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,

Lisätiedot

d Todista: dx xn = nx n 1 kaikilla x R, n N Derivaatta Derivaatta ja differentiaali

d Todista: dx xn = nx n 1 kaikilla x R, n N Derivaatta Derivaatta ja differentiaali 6. Derivaatta 6.. Derivaatta ja differentiaali 72. Olkoon f () = 4. Etsi derivaatan määritelmän avulla f ( 3). f ( 3) = 08. 73. Muodosta funktion f () = derivaatta suoraan määritelmän mukaan, so. tarkastelemalla

Lisätiedot

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ 1 YLIOPPILASTUTKINTO- LAUTAKUNTA 25.9.2017 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 9 Ti 4.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 9 Ti 4.10.2011 p. 1/44 p. 1/44 Funktion approksimointi Etsitään p siten, että p f, mutta ei vaadita, että

Lisätiedot

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77 Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty.5.07 Kertaus K. a) sin 0 = 0,77 b) cos ( 0 ) = cos 0 = 0,6 c) sin 50 = sin (80 50 ) = sin 0 = 0,77 d) tan 0 = tan (0 80 ) = tan 0 =,9 e)

Lisätiedot

Seuraava topologisluonteinen lause on nk. Bairen lause tai Bairen kategorialause, n=1

Seuraava topologisluonteinen lause on nk. Bairen lause tai Bairen kategorialause, n=1 FUNKTIONAALIANALYYSIN PERUSKURSSI 115 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin

Lisätiedot

Ratkaisuehdotus 2. kurssikoe

Ratkaisuehdotus 2. kurssikoe Ratkaisuehdotus 2. kurssikoe 4.2.202 Huomioitavaa: - Tässä ratkaisuehdotuksessa olen pyrkinyt mainitsemaan lauseen, johon kulloinenkin päätelmä vetoaa. Näin opiskelijan on helpompi jäljittää teoreettinen

Lisätiedot