Epälineaaristen yhtälöiden ratkaisumenetelmät

Koko: px
Aloita esitys sivulta:

Download "Epälineaaristen yhtälöiden ratkaisumenetelmät"

Transkriptio

1 Epälineaaristen yhtälöiden ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics

2 Perusoletus Lause 3.1 Olkoon f : [a, b] R jatkuva funktio siten, että f(a)f(b) < 0. Tällöin funktiolla on ainakin yksi nolla kohta välillä [a, b], ts. on olemassa α [a, b] siten, että f(α) = 0. Keijo Ruotsalainen Matematiikan jaos 2 / 27

3 Puolitusmenetelmä Algoritmi Laske x mid = a+b Jos f(x mid )f(a) < 0, niin muutoin a = a b = x mid, a = x mid b = b. 3. Jos b a < ǫ, niin STOP; muutoin palaa kohtaan (1). Keijo Ruotsalainen Matematiikan jaos 3 / 27

4 Konvergenssinopeus Puolitusmenetelmässä k:n iteraation jälkeen nollakohta on välillä, jonka pituus on b a 2 k. Approksimaatio k:n iteraation jälkeen on : Virhe: x (k) b a mid α 0 2 k+1 Puolitusmenetelmä on siten globaalisti konvergoiva Kuinka monta askelta tarvitaan tarkkuuteen x (k) mid α ǫ? Vastaus: k log 2 ( b a ǫ ) 1 = log(b a ǫ ) 1. log(2) Keijo Ruotsalainen Matematiikan jaos 4 / 27

5 Kiintopisteiteraatio Määritelmä Luku α on funktion Φ(x) kiintopiste, jos α = Φ(α). Olkoon g(x) 0 kaikilla x [a, b]. Tällöin x [a, b] on funktion f( ) nollakohta täsmälleen silloin, kun se on funktion kiintopiste. Algoritmi 3.2 (Kiintopisteiteraatio) Φ(x) = x g(x)f(x) Määritellään lukujono (x n ) seuraavasti: 1. x (0) [a, b] 2. Kun x (k) on annettu, niin x (k+1) = Φ(x (k) ) 3. STOP, jos x (k+1) x (k) < ǫ. Keijo Ruotsalainen Matematiikan jaos 5 / 27

6 Kiintopisteiteraation geometria Esim. 1 Tutki kiintopisteiteraation suppenemista funktiolle φ(x) = 2.8x x x = Keijo Ruotsalainen Matematiikan jaos 6 / 27

7 Kiintopistelause Lause 3.2 Olkoon funktio Φ(x) jatkuva ja oletetaan, että Φ toteuttaa Lipschitz-ehdon: Φ(x) Φ(y) L x y, 0 < L < 1, suljetussa ja rajoitetussa joukossa [a, b]. Lisäksi oletetaan, että Φ([a, b]) [a, b]. Tällöin on olemassa yksikäsitteisesti määrätty kiintopiste x [a, b], ja kiintopisteiteraatiot suppenevat kohti kiintopistettä jokaisella alkuarvauksella x 0 [a, b]. Keijo Ruotsalainen Matematiikan jaos 7 / 27

8 Huomioita Reaalilukujono {x n n = 0,1,2,3,...} on Cauchy-jono, jos lim x m x k = 0. m,k Lause 3.3 Jokaisella reaalilukujen Cauchy-jonolla {x n n = 0,1,2,3,...} on raja-arvo, ts on x siten, että lim x n = x. n Keijo Ruotsalainen Matematiikan jaos 8 / 27

9 Kiintopistelauseen todistus Olkoon {x n n = 0,1,2,3,...} : x n+1 = φ(x n ). (1) Oletuksen (2) nojalla x n+j+1 x n+j = φ(x n+j ) φ(x n+j 1 ) L x n+j x n+j 1 (2) Kolmioepäyhtälö m 1 x n+m x n = L 2 x n+j 1 x n+j 2 L n+j x 1 x 0 j=0 [x n+j+1 x n+j ] 1. askel ja geometrisen sarjan summa m 1 lim m,n j=0 m 1 j=0 m 1 x n+j+1 x n+j lim m,n j=0 x n+j+1 x n+j. L n+j x 1 x 0 m 1 = lim L n+j 1 x 1 x 0 = lim m,n m,n LnLm L 1 x 1 x 0 = 0. j=0 Keijo Ruotsalainen Matematiikan jaos 9 / 27

10 Tod. jatkuu (3) Siten kiintopisteiteraatiojono on Cauchy-jono, ja siksi jonolla on raja-arvo α. Jatkuvuuden ja kiintopisteiteraation nojalla α = lim n x n+1 = lim n φ(x n) = φ( lim n x n) = φ(α). (4) Olkoon α 1 ja α 2 kaksi kiintopistettä. Tällöin α 1 α 2 = φ(α 1 ) φ(α 2 ) L α 1 α 2. Induktiivisesti jatkamalla saadaan, että kaikille n α 1 α 2 L n x y 0, kun n. Keijo Ruotsalainen Matematiikan jaos 10 / 27

11 Virhe-arviot Lause 3.4 Olkoon (x n ) suppeneva kiintopisteiteraatiojono. Tällöin jonon alkioille on voimassa seuraavat virhe-arviot: A priori-arvio A posteriori-arvio Lipschitz-ehto on voimassa, jos x (k) x Lk 1 L x(1) x (0) x (k) x L 1 L x(k) x (k 1) Φ (x) L < 1, x [a, b]. Keijo Ruotsalainen Matematiikan jaos 11 / 27

12 Konvergenssiaste Määritellään aluksi kiintopisteiteraation konvergenssiaste: Määr. 3.2 Iteraatiojonon (x n ) konvergenssiaste on vähintäin p, jos missä lim sup k x n+1 x x n x p = K, 0 < K <, p > 1 K < 1, p = 1. Keijo Ruotsalainen Matematiikan jaos 12 / 27

13 Konvergenssiaste Lause 3.5 Kiintopisteiteraation konvergenssiaste on vähintäin k, jos kiintopisteessä on voimassa φ (j) (α) = 0, j = 1,...,k 1, φ (k) (α) 0. Merkitään e n = x n α x n+1 = α+e n+1 = φ(x n ) = φ(α+e n ). Taylorin kehitelmä α+e n+1 = φ(α)+φ (α)e n k! φ(k) (ζ)e k n. Virheen asymptoottinen kehitelmä e n+1 = 1 k! φ(k) (ζ)e k n. 1 (k 1)! φ(k 1) (α)en k 1 Keijo Ruotsalainen Matematiikan jaos 13 / 27

14 Newtonin menetelmä Oletukset f(x) on ainakin kaksi kertaa jatkuvasti differentioituva. Nollakohdan likiarvot x k, k = 0,1,...,n laskettu; Taylorin kehitelmä pisteen x n ympäristössä: f(x) = f(x n )+f (x n )(x x n )+ 1 2 f (ζ)(x x n ) 2 ; Jos x x n 2 << 1, niin funktion approksimaation nollakohta f(x n+1 ) = f(x n )+f (x n )(x n+1 x n ) = 0 on uusi "tarkempi"likiarvo. x n+1 = x n f(x n) f (x n ). Keijo Ruotsalainen Matematiikan jaos 14 / 27

15 Newtonin menetelmä Algoritmi Alkuarvaus x 0 [a, b]; 2. n = 0,1,2, : x n+1 = x n f(xn) f (x n) ; 3. x n x n+1 < ǫ Lopeta; Newtonin menetelmä on kiintopisteiteraatio, jonka iteraatiofunktio F(ξ) = ξ f(ξ) f (ξ). Keijo Ruotsalainen Matematiikan jaos 15 / 27

16 Newton-Ostrowskin lause Lause 3.6 Olkoon f : [a, b] R kolme kertaa jatkuvasti differentioituva välillä, ja s [a,b] funktion nollakohta siten, että f (s) 0. Silloin on olemassa väli I δ = [s δ,s +δ], δ > 0, jossa Newtonin menetelmän iteraatiofunktio F : I δ I δ on kontraktio, ja siten Newtonin menetelmä suppenee jokaisella alkuarvauksella x 0 I δ. Lisäksi konvergenssiaste on ainakin kaksi. Todistus sivuutetaan tällä kurssilla. Keijo Ruotsalainen Matematiikan jaos 16 / 27

17 Biasointipiirin toimintapiste Kuvion 1 biasointipiiri koostuu vastuksesta R, jännitelähteestä E ja tunnelidiodista D. Tunnelidiodin läpi kulkee virta j ja jännite-ero komponentin yli on v. Tunnelidiodin jännite-virta-ominaiskäyrä on g(v) = a(e bv 1) µv(v γ). Sovelluksissa tavallisesti parametrit R ja E valitaan siten, että jännite v on ominaiskäyrän vähenevällä osalla so. g (v) < 0. Tehtävänä on määrittää biasointipiirin toimintapiste v, kun E ja R on annettu. Kirchhoffin jännitelain nojalla päädytään yhtälöön g(v) E v R = 0. Määrää toimintapiste v, kun a = [A], b = 40[V 1 ], µ = 10 3 [AV 2 ], γ = 0.4[V], E = 0.4[V], R = 1/ [Ω]. Keijo Ruotsalainen Matematiikan jaos 17 / 27

18 Ominaiskäyrän kuvaaja 5 x Keijo Ruotsalainen Matematiikan jaos 18 / 27

19 Aitkenin δ 2 -prosessi Funktion φ(x) kiintopisteiteraatiot {x n n N}ja α kiintopiste. Tällöin x n+2 α lim n x n+1 α = lim φ(x n+1 ) φ(α) = φ (α). n x n+1 α Riittävän suurilla n:n arvoilla Likiarvon korjaus: x n+2 α x n+1 α φ (α) x n+1 α x n α x n+2 x x n+1 x = x n+1 x x n x x = x n (x n+1 x n ) 2 x n+2 2x n+1 + x n. Keijo Ruotsalainen Matematiikan jaos 19 / 27

20 Aitkenin δ 2 -prosessi Algoritmi x 0 alkuarvaus; 2. Lasketaan kiintopisteiteraatiolla lukujono (x n ) n 0 ; 3. Korjataan Aitkenin δ 2 -prosessilla uudet likiarvot Lause 3.7 z n = x n (x n+1 x n ) 2 x n+2 2x n+1 + x n. Oletetaan, että jono (x n ) n 0 suppenee lineaarisesti, ts. virheelle e n = x n x on voimassa: e n+1 qe n, q < 1. Tällöin Aitkenin δ 2 -prosessilla konstruoidulle jonolle on voimassa z n x lim n x n x = 0. Keijo Ruotsalainen Matematiikan jaos 20 / 27

21 Kiintopisteiteraatio Vektoriarvoisen kuvauksen kiintopiste x 1 Φ 1 (x 1,x 2,,x n ) x 2 x =. = Φ 2 (x 1,x 2,,x n ). = Φ(x) x n Φ n (x 1,x 2,...,x n ) Algoritmi Alkuarvaus x (0) R n ; 2. Kaikille k 0 : x (k+1) = Φ(x (k) ) R n ; 3. If x (k+1) x (k) < ǫ, then STOP. Keijo Ruotsalainen Matematiikan jaos 21 / 27

22 Suppenemisehto Lause 3.8 Oletetaan, että seuraavat ehdot ovat voimassa 1. Suljettu ja rajoitettu joukko A R n s.e. 2. Lipschitz-ehto: kaikilla x, y A Φ(A) A; Φ(x) Φ(y) L x y < x y Tällöin joukossa A on olemassa yksikäsitteisesti määrätty kiintopiste x A, ja kiintopisteiteraatiot suppenevat. Keijo Ruotsalainen Matematiikan jaos 22 / 27

23 Huomioita Lipschitz-ehto on tosi, jos Φ:n funktionaalimatriisille l. derivaatalle Φ 1 (x) Φ Φ 2 (x) (x) =. Φ n (x) on voimassa Φ (x) L < 1, x A, jonkin matriisinormin suhteen (kts. liite A). Tämä on yhtäpitävä sen ehdon kanssa, että funktionaalimatriisin spektraalisäde ρ(φ (x)) < 1. Keijo Ruotsalainen Matematiikan jaos 23 / 27

24 Yhtälöryhmä Yhtälöryhmä: F 1 (x 1,...,x n ) 0 F(x) =. =. F n (x 1,...,x n ) 0 Funktion F(x) derivaatta: F 1 (x) F. (x) = F i (x) =. F n (x) F 1 F 1 x 1 F 2 F 2 x 1. F n x 1 F 1 x n F 2 x n x 2... x F n x 2... F n x n Keijo Ruotsalainen Matematiikan jaos 24 / 27

25 Oletukset ja algoritmi Yhtälöryhmän ratkaisulle ζ R n : det(f (ζ)) 0. Algoritmi Alkuarvaus x (0) R n ; 2. Ratkaise δx R n : F (x (k) )δx = F(x (k) ); 3. Uusi approksimaatio x (k+1) = x (k) +δx; 4. Lopetuskriteerio: δx < ǫ ja F(x (k+1) ) < ρ. Keijo Ruotsalainen Matematiikan jaos 25 / 27

26 Ostrowski n lause Lause 3.9 Olkoon funktion F(x) koordinaattifunktiot kolmesti jatkuvasti differentioituvia suorakaiteessa A = {x R n a i x i b i }, joka sisältää F:n nollakohdan, ja funktionaalimatriisi F (x) on säännöllinen matriisi nollakohdassa. Silloin Newtonin menetelmä suppenee kvadraattisesti kohti nollakohtaa, jos alkuarvaus on riittävän hyvä: x (k+1) ζ lim k x (k) ζ 2 = α <. Keijo Ruotsalainen Matematiikan jaos 26 / 27

27 Yksinkertaistettu Newtonin menetelmä Newtonin menetelmässä ratkaistaan lineaarinen yhtälöryhmä jokaisella iteraatiokierroksella. Jos jono (x (k) ; k = 0,1,2,...) suppenee ja funktio F(x) on riittävän sileä, niin lim k F (x (k) ) = F (x) Riittävän suurilla k:n arvoilla F (x (m) ) F (x (k) ), m = k + 1,k + 2,... Näin ollen seuraavan algoritmin käyttö on perusteltua Algoritmi Alkuarvaus x (0) R n ; 2. Ratkaise δx R n : F (x (0) )δx = F(x (k) ); 3. Uusi approksimaatio x (k+1) = x (k) +δx; 4. Lopetuskriteerio: δx < ǫ ja F(x (k+1) ) < ρ. Keijo Ruotsalainen Matematiikan jaos 27 / 27

Epälineaaristen yhtälöiden ratkaisumenetelmät

Epälineaaristen yhtälöiden ratkaisumenetelmät Epälineaaristen yhtälöiden ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Perusoletus Lause 3.1 Olkoon f : [a, b] R jatkuva funktio siten, että f(a)f(b) < 0. Tällöin funktiolla on ainakin

Lisätiedot

MATEMATIIKAN JAOS NUMEERISET MENETELMÄT

MATEMATIIKAN JAOS NUMEERISET MENETELMÄT MATEMATIIKAN JAOS NUMEERISET MENETELMÄT Harjoitustehtäviä, kevät 2012 1. Tarkastellaan summaa S = 1+0.4+0.3+0.2+0.04+0.03+0.02+0.01. a) Laske summa laskukoneella vasemmalta oikealle käyttäen liukulukuaritmetiikkaa,

Lisätiedot

Iteratiiviset ratkaisumenetelmät

Iteratiiviset ratkaisumenetelmät Iteratiiviset ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Yleinen iteraatio Lineaarisen yhtälöryhmän iteratiivinen ratkaisumenetelmä voidaan esittää muodossa: Anna alkuarvaus: x 0 R n

Lisätiedot

Numeeriset Menetelmät, P. Keijo Ruotsalainen Teknillinen tiedekunta matematiikan jaos

Numeeriset Menetelmät, P. Keijo Ruotsalainen Teknillinen tiedekunta matematiikan jaos Numeeriset Menetelmät, 031022P Keijo Ruotsalainen Teknillinen tiedekunta matematiikan jaos 11. helmikuuta 2009 2 Sisältö 1 Johdanto 7 1.1 Varoitus.............................. 7 1.2 Numeeriset menetelmät

Lisätiedot

Numeeriset Menetelmät, P. Keijo Ruotsalainen Teknillinen tiedekunta matematiikan jaos

Numeeriset Menetelmät, P. Keijo Ruotsalainen Teknillinen tiedekunta matematiikan jaos Numeeriset Menetelmät, 031022P Keijo Ruotsalainen Teknillinen tiedekunta matematiikan jaos 11. helmikuuta 2010 2 Sisältö 1 Johdanto 7 1.1 Varoitus.............................. 7 1.2 Numeeriset menetelmät

Lisätiedot

Funktioiden approksimointi ja interpolointi

Funktioiden approksimointi ja interpolointi Funktioiden approksimointi ja interpolointi Keijo Ruotsalainen Division of Mathematics interpolaatio-ongelma 8 Eksponenttifunktion exp(x) interpolointi 3.5 Funktion e^{0.25x} \sin(x) interpolointi 7 3

Lisätiedot

Este- ja sakkofunktiomenetelmät

Este- ja sakkofunktiomenetelmät Este- ja sakkofunktiomenetelmät Keijo Ruotsalainen Mathematics Division Luennon kulku Este- ja sisäpistemenetelmät LP-ongelmat ja logaritminen estefunktio Polun seuranta Newtonin menetelmällä Sakkofunktiomenetelmistä

Lisätiedot

Konjugaattigradienttimenetelmä

Konjugaattigradienttimenetelmä Konjugaattigradienttimenetelmä Keijo Ruotsalainen Division of Mathematics Konjugaattigradienttimenetelmä Oletukset Matriisi A on symmetrinen: A T = A Positiivisesti definiitti: x T Ax > 0 kaikille x 0

Lisätiedot

Teknillinen tiedekunta, matematiikan jaos Numeeriset menetelmät

Teknillinen tiedekunta, matematiikan jaos Numeeriset menetelmät Numeeriset menetelmät 1. välikoe, 14.2.2009 1. Määrää matriisin 1 1 a 1 3 a a 4 a a 2 1 LU-hajotelma kaikille a R. Ratkaise LU-hajotelmaa käyttäen yhtälöryhmä Ax = b, missä b = [ 1 3 2a 2 a + 3] T. 2.

Lisätiedot

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu 2 Interpolointi Olkoon annettuna n+1 eri pistettä x 0, x 1, x n R ja n+1 lukua y 0, y 1,, y n Interpoloinnissa etsitään funktiota P, joka annetuissa pisteissä x 0,, x n saa annetut arvot y 0,, y n, (21)

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 2 To 8.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 2 To 8.9.2011 p. 1/33 p. 1/33 Lukujen tallennus Kiintoluvut (integer) tarkka esitys aritmeettiset operaatiot

Lisätiedot

Numeerinen integrointi ja derivointi

Numeerinen integrointi ja derivointi Numeerinen integrointi ja derivointi Keijo Ruotsalainen Division of Mathematics Interpolaatiokaavat Approksimoitava integraali I = b a f(x)dx. Tasavälinen hila: x i = a+ (b a)i n, i = 0,...,n Funktion

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Nollakohdan olemassaolo. Kaikki tuntevat

Lisätiedot

Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1.

Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1. Analyysi 1 Harjoituksia lukuihin 4 7 / Syksy 014 1. Tutki funktion x + x jatkuvuutta pisteissä x = 0 ja x = 1.. Määritä vakiot a ja b siten, että funktio a x cos x + b x + b sin x, kun x 0, x 4, kun x

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-.39 Optimointioppi Kimmo Berg 8. harjoitus - ratkaisut. a)huomataan ensinnäkin että kummankin jonon raja-arvo r on nolla. Oletetaan lisäksi että

Lisätiedot

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg)

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg) Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus 4 9.4.-23.4.200 Malliratkaisut (Sauli Lindberg). Näytä, että Lusinin lauseessa voidaan luopua oletuksesta m(a)

Lisätiedot

5.1. Normi ja suppeneminen Vektoriavaruus V on normiavaruus, jos siinä on määritelty normi : V R + = [0, ) jolla on ominaisuudet:

5.1. Normi ja suppeneminen Vektoriavaruus V on normiavaruus, jos siinä on määritelty normi : V R + = [0, ) jolla on ominaisuudet: 5.. Normi ja suppeneminen Vektoriavaruus V on normiavaruus, jos siinä on määritelty normi : V R + = [, ) jolla on ominaisuudet: x = x = x + y x + y, x, y V a x = a x, x V, a K (= R tai C) Esimerkki 5..

Lisätiedot

Analyysi 1. Harjoituksia lukuihin 1 3 / Syksy Osoita täsmällisesti perustellen, että joukko A = x 4 ei ole ylhäältä rajoitettu.

Analyysi 1. Harjoituksia lukuihin 1 3 / Syksy Osoita täsmällisesti perustellen, että joukko A = x 4 ei ole ylhäältä rajoitettu. Analyysi Harjoituksia lukuihin 3 / Syksy 204. Osoita täsmällisesti perustellen, että joukko { 2x A = x ]4, [. x 4 ei ole ylhäältä rajoitettu. 2. Anna jokin ylä- ja alaraja joukoille { x( x) A = x ], [,

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016

Lisätiedot

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x Seuraavaksi tarkastellaan C 1 -sileiden pintojen eräitä ominaisuuksia. Lemma 2.7.1. Olkoon S R m sellainen C 1 -sileä pinta, että S on C 1 -funktion F : R m R eräs tasa-arvojoukko. Tällöin S on avaruuden

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 2. Kirsi Valjus. Jyväskylän yliopisto. Luento 2 () Numeeriset menetelmät / 39

Numeeriset menetelmät TIEA381. Luento 2. Kirsi Valjus. Jyväskylän yliopisto. Luento 2 () Numeeriset menetelmät / 39 Numeeriset menetelmät TIEA381 Luento 2 Kirsi Valjus Jyväskylän yliopisto Luento 2 () Numeeriset menetelmät 14.3.2013 1 / 39 Luennon 2 sisältö Luvusta 1: Numeerinen stabiilisuus Liite A: Liukulukuaritmetiikasta

Lisätiedot

Tenttiin valmentavia harjoituksia

Tenttiin valmentavia harjoituksia Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.

Lisätiedot

Luento 11: Rajoitusehdot. Ulkopistemenetelmät

Luento 11: Rajoitusehdot. Ulkopistemenetelmät Luento 11: Rajoitusehdot. Ulkopistemenetelmät ja sisäpistemenetelmät Lagrangen välttämättömien ehtojen ratkaiseminen Newtonin menetelmällä Jos tehtävässä on vain yhtälörajoituksia, voidaan minimipistekandidaatteja

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Reaaliluvut. tapauksessa metrisen avaruuden täydellisyyden kohdalla. 1 fi.wikipedia.org/wiki/reaaliluku 1 / 13

Reaaliluvut. tapauksessa metrisen avaruuden täydellisyyden kohdalla. 1 fi.wikipedia.org/wiki/reaaliluku 1 / 13 Reaaliluvut Reaalilukujen joukko R. Täsmällinen konstruointi palautuu rationaalilukuihin, jossa eri mahdollisuuksia: - Dedekindin leikkaukset - rationaaliset Cauchy-jonot - desimaaliapproksimaatiot. Reaalilukujen

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Kaarenpituus. Olkoon r: [a, b] R

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kertausluento 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat:. Potenssisarjojen suppenemissäde, suppenemisväli ja suppenemisjoukko. 2. Derivaatan

Lisätiedot

reaalifunktioiden ominaisuutta, joiden perusteleminen on muita perustuloksia hankalampaa. Kalvoja täydentää erillinen moniste,

reaalifunktioiden ominaisuutta, joiden perusteleminen on muita perustuloksia hankalampaa. Kalvoja täydentää erillinen moniste, Reaaliluvuista Pekka Alestalo Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Nämä kalvot sisältävät tiivistelmän reaaliluvuista ja niihin liittyvistä käsitteistä.

Lisätiedot

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa 8 Potenssisarjoista 8. Määritelmä Olkoot a 0, a, a 2,... reaalisia vakioita ja c R. Määritelmä 8.. Muotoa a 0 + a (x c) + a 2 (x c) 2 + olevaa sarjaa sanotaan c-keskiseksi potenssisarjaksi. Selvästi jokainen

Lisätiedot

nyky-ymmärryksemme mukaan hajaantuvaan sarjaan luvun 1 2 kun n > N Huom! Määritelmä on aivan sama C:ssä ja R:ssä. (Kuva vain on erilainen.

nyky-ymmärryksemme mukaan hajaantuvaan sarjaan luvun 1 2 kun n > N Huom! Määritelmä on aivan sama C:ssä ja R:ssä. (Kuva vain on erilainen. Sarjaoppia Käsitellään kompleksi- ja reaalisarjat yhdessä. Reaalilukujen ominaisuuksista (kuten järjestys) riippuvat asiat tulevat lisämausteena mukaan. Kirjallisuutta: 1. [KRE] Kreyszig: Advanced Engineering

Lisätiedot

Kun yhtälöä ei voi ratkaista tarkasti (esim yhtälölle x-sinx = 1 ei ole tarkkaa ratkaisua), voidaan sille etsiä likiarvo.

Kun yhtälöä ei voi ratkaista tarkasti (esim yhtälölle x-sinx = 1 ei ole tarkkaa ratkaisua), voidaan sille etsiä likiarvo. Kun yhtälöä ei voi ratkaista tarkasti (esim yhtälölle x-sinx = 1 ei ole tarkkaa ratkaisua), voidaan sille etsiä likiarvo. Iterointi on menetelmä, missä jollakin likiarvolla voidaan määrittää jokin toinen,

Lisätiedot

Shorin algoritmin matematiikkaa Edvard Fagerholm

Shorin algoritmin matematiikkaa Edvard Fagerholm Edvard Fagerholm 1 Määritelmiä Määritelmä 1 Ryhmä G on syklinen, jos a G s.e. G = a. Määritelmä 2 Olkoon G ryhmä. Tällöin alkion a G kertaluku ord(a) on pienin luku n N \ {0}, jolla a n = 1. Jos lukua

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 4. Kirsi Valjus. Jyväskylän yliopisto. Luento 4 () Numeeriset menetelmät / 44

Numeeriset menetelmät TIEA381. Luento 4. Kirsi Valjus. Jyväskylän yliopisto. Luento 4 () Numeeriset menetelmät / 44 Numeeriset menetelmät TIEA381 Luento 4 Kirsi Valjus Jyväskylän yliopisto Luento 4 () Numeeriset menetelmät 21.3.2013 1 / 44 Luennon 4 sisältö Lineaarisen yhtälöryhmän ratkaisemisesta: Choleskyn menetelmä

Lisätiedot

Funktiojonon tasainen suppeneminen

Funktiojonon tasainen suppeneminen TAMPEREEN YLIOPISTO Pro gradu -tutkielma Taina Saari Funktiojonon tasainen suppeneminen Matematiikan ja tilastotieteen laitos Matematiikka Elokuu 2009 Tampereen yliopisto Matematiikan ja tilastotieteen

Lisätiedot

Luento 10: Optimointitehtävien numeerinen ratkaiseminen; optimointi ilman rajoitusehtoja

Luento 10: Optimointitehtävien numeerinen ratkaiseminen; optimointi ilman rajoitusehtoja Luento 10: Optimointitehtävien numeerinen ratkaiseminen; optimointi ilman rajoitusehtoja Seuraavassa esitetään optimointitehtävien numeerisia ratkaisumenetelmiä, eli optimointialgoritmeja, keittokirjamaisesti.

Lisätiedot

Konvergenssilauseita

Konvergenssilauseita LUKU 4 Konvergenssilauseita Lause 4.1 (Monotonisen konvergenssin lause). Olkoon (f n ) kasvava jono Lebesgueintegroituvia funktioita. Asetetaan f(x) := f n (x). Jos f n

Lisätiedot

Harjoitus 7 -- Ratkaisut

Harjoitus 7 -- Ratkaisut Harjoitus 7 -- Ratkaisut 1 Solve osaa ratkaista polynomiyhtälöitä, ainakin astelukuun 4 asti. Erikoistapauksissa korkeammankin asteen yhtälöt ratkeavat. Clear a, b, c, d, e, x ; Solve a x 3 b x 2 c 0,

Lisätiedot

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei. PITKÄ MATEMATIIKKA PRELIMINÄÄRIKOE 7..07 NIMI: A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-. Taulukkokirjaa saa käyttää apuna, laskinta ei.. Valitse oikea vaihtoehto ja

Lisätiedot

Pienimmän neliösumman menetelmä

Pienimmän neliösumman menetelmä Pienimmän neliösumman menetelmä Keijo Ruotsalainen Division of Mathematics Funktion sovitus Datapisteet (x 1,...,x n ) Annettu data y i = f(x i )+η i, missä f(x) on tuntematon funktio ja η i mittaukseen

Lisätiedot

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin FUNKTIONAALIANALYYSI, RATKAISUT 1 KEVÄT 211, (AP) 1. Ovatko seuraavat reaaliarvoiset funktiot p : R 3 R normeja? Ovatko ne seminormeja? ( x = (x 1, x 2, x 3 ) R 3 ) a) p(x) := x 2 1 + x 2 2 + x 2 3, b)

Lisätiedot

Luento 9: Newtonin iteraation sovellus: optimointiongelma

Luento 9: Newtonin iteraation sovellus: optimointiongelma Luento 9: Newtonin iteraation sovellus: optimointiongelma ilman rajoitusehtoja Optimointiongelmassa tehtävänä on löytää annetun reaaliarvoisen jatkuvan funktion f(x 1,x,,x n ) maksimi tai minimi jossain

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

Todista raja-arvon määritelmään perustuen seuraava lause: Jos lukujonolle a n pätee lima n = a ja lima n = b, niin a = b.

Todista raja-arvon määritelmään perustuen seuraava lause: Jos lukujonolle a n pätee lima n = a ja lima n = b, niin a = b. 2 Lukujonot 21 Lukujonon määritelmä 16 Fibonacci n luvut määritellään ehdoilla Osoita: 17 a 1 = a 2 = 1; a n+2 = a n+1 + a n, n N a n = 1 [( 1 + ) n ( 2 1 ) n ] 2 Olkoon a 1 = 3, a 2 = 6, a n+1 = 1 n (na

Lisätiedot

BM20A1501 Numeeriset menetelmät 1 - AIMO

BM20A1501 Numeeriset menetelmät 1 - AIMO 6. marraskuuta 2014 Opetusjärjestelyt Luennot + Harjoitukset pe 7.11.2014 10-14 2310, 14-17 7337 la 8.11.2014 9-12 2310, 12-16 7337 pe 14.11.2014 10-14 2310, 14-17 6216 la 15.11.2014 9-12 2310, 12-16 7337

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa.

n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa. MAA 12 kertaus Funktion kuvaaja n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa. Funktion nollakohta on piste, jossa f () = 0, eli kuvaaja leikkaa -akselin. Kuvaajan avulla

Lisätiedot

Reuna-arvotehtävien ratkaisumenetelmät

Reuna-arvotehtävien ratkaisumenetelmät Reuna-arvotehtävien ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Malliprobleema Kahden pisteen reuna-arvotehtävä u (x) = f (x) (1) u() = u(1) = Jos u C ([,1]) ratkaisu, niin missä x u(x)

Lisätiedot

Numeeriset menetelmät Pekka Vienonen

Numeeriset menetelmät Pekka Vienonen Numeeriset menetelmät Pekka Vienonen 1. Funktion nollakohta Newtonin menetelmällä 2. Määrätty integraali puolisuunnikassäännöllä 3. Määrätty integraali Simpsonin menetelmällä Newtonin menetelmä Newtonin

Lisätiedot

Mapu 1. Laskuharjoitus 3, Tehtävä 1

Mapu 1. Laskuharjoitus 3, Tehtävä 1 Mapu. Laskuharjoitus 3, Tehtävä Lineaarisessa approksimaatiossa funktion arvoa lähtöpisteen x 0 ympäristössä arvioidaan liikkumalla lähtöpisteeseen sovitetun tangentin kulmakertoimen mukaisesti: f(x 0

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 26.9.2016 Pekka Alestalo,

Lisätiedot

Mikäli funktio on koko ajan kasvava/vähenevä jollain välillä, on se tällä välillä monotoninen.

Mikäli funktio on koko ajan kasvava/vähenevä jollain välillä, on se tällä välillä monotoninen. 4.1 Polynomifunktion kulun tutkiminen s. 100 digijohdanto Funktio f on kasvava jollain välillä, jos ehdosta a < b seuraa ehto f(a) < f(b). Funktio f on vähenevä jollain välillä, jos ehdosta a < b seuraa

Lisätiedot

5 Differentiaalilaskentaa

5 Differentiaalilaskentaa 5 Differentiaalilaskentaa 5.1 Raja-arvo Esimerkki 5.1. Rationaalifunktiota g(x) = x2 + x 2 x 1 ei ole määritelty nimittäjän nollakohdassa eli, kun x = 1. Funktio on kuitenkin määritelty kohdan x = 1 läheisyydessä.

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu

Lisätiedot

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS Huomautus. Analyysin yksi keskeisimmistä käsitteistä on jatkuvuus! Olkoon A R mielivaltainen joukko

Lisätiedot

Cantorin joukon suoristuvuus tasossa

Cantorin joukon suoristuvuus tasossa Cantorin joukon suoristuvuus tasossa LuK-tutkielma Miika Savolainen 2380207 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Cantorin joukon esittely 2 2 Suoristuvuus ja

Lisätiedot

Harjoituskokeiden ratkaisut Painoon mennyt versio.

Harjoituskokeiden ratkaisut Painoon mennyt versio. Harjoituskokeiden ratkaisut 8.6.7 Painoon mennyt versio. PYRAMIDI NUMEERISIA JA ALGEBRALLISIA MENETELMIÄ RATKAISUT, HARJOITUSKOE SIVU.7.7 Koe a) i) =,, = kpl ii) 9,876 =,9876,99 = 9,9 iii),66,66 =,7 =,7

Lisätiedot

Ratkaisuehdotus 2. kurssikoe

Ratkaisuehdotus 2. kurssikoe Ratkaisuehdotus 2. kurssikoe 4.2.202 Huomioitavaa: - Tässä ratkaisuehdotuksessa olen pyrkinyt mainitsemaan lauseen, johon kulloinenkin päätelmä vetoaa. Näin opiskelijan on helpompi jäljittää teoreettinen

Lisätiedot

Luku 2. Jatkuvien funktioiden ominaisuuksia.

Luku 2. Jatkuvien funktioiden ominaisuuksia. 1 MAT-1343 Laaja matematiikka 3 TTY 21 Risto Silvennoinen Luku 2. Jatkuvien funktioiden ominaisuuksia. Jatkossa väli I tarkoittaa jotakin seuraavista reaalilukuväleistä: ( ab, ) = { x a< x< b} = { x a

Lisätiedot

3.1 Väliarvolause. Funktion kasvaminen ja väheneminen

3.1 Väliarvolause. Funktion kasvaminen ja väheneminen Väliarvolause Funktion kasvaminen ja väheneminen LAUSE VÄLIARVOLAUSE Oletus: Funktio f on jatkuva suljetulla välillä I: a < x < b f on derivoituva välillä a < x < b Väite: On olemassa ainakin yksi välille

Lisätiedot

Anna jokaisen kohdan vastaus kolmen merkitsevän numeron tarkkuudella muodossa

Anna jokaisen kohdan vastaus kolmen merkitsevän numeron tarkkuudella muodossa Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

f[x i ] = f i, f[x i,..., x j ] = f[x i+1,..., x j ] f[x i,..., x j 1 ] x j x i T n+1 (x) = 2xT n (x) T n 1 (x), T 0 (x) = 1, T 1 (x) = x.

f[x i ] = f i, f[x i,..., x j ] = f[x i+1,..., x j ] f[x i,..., x j 1 ] x j x i T n+1 (x) = 2xT n (x) T n 1 (x), T 0 (x) = 1, T 1 (x) = x. Kaavakokoelma f[x i ] = f i, f[x i,..., x j ] = f[x i+,..., x j ] f[x i,..., x j ] x j x i T n+ (x) = 2xT n (x) T n (x), T (x) =, T (x) = x. n I,n = h f(t i + h 2 ), E,n = h2 (b a) f (2) (ξ). 24 i= I,n

Lisätiedot

Poistumislause Kandidaatintutkielma

Poistumislause Kandidaatintutkielma Poistumislause Kandidaatintutkielma Mikko Nikkilä 013618832 26. helmikuuta 2011 Sisältö 1 Johdanto................................... 2 2 Olemassaolon ja yksikäsitteisyyden historiaa............ 3 3 Esitietoja..................................

Lisätiedot

Matemaattisen analyysin tukikurssi

Matemaattisen analyysin tukikurssi Matemaattisen analyysin tukikurssi 10. Kurssikerta Petrus Mikkola 22.11.2016 Tämän kerran asiat Globaali ääriarvo Konveksisuus Käännepiste L Hôpitalin sääntö Newtonin menetelmä Derivaatta ja monotonisuus

Lisätiedot

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi 7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi Z p [x]/(m), missä m on polynomirenkaan Z p [x] jaoton polynomi (ks. määritelmä 3.19).

Lisätiedot

Sarja. Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,...,

Sarja. Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,..., Sarja Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): Määritelmä 1 s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,..., n s n = a k. Jos osasummien jonolla (s n ) on raja-arvo s R,

Lisätiedot

jakokulmassa x 4 x 8 x 3x

jakokulmassa x 4 x 8 x 3x Laudatur MAA ratkaisut kertausarjoituksiin. Polynomifunktion nollakodat 6 + 7. Suoritetaan jakolasku jakokulmassa 5 4 + + 4 8 6 6 5 4 + 0 + 0 + 0 + 0+ 6 5 ± 5 5 4 ± 4 4 ± 4 4 ± 4 8 8 ± 8 6 6 + ± 6 Vastaus:

Lisätiedot

Rollen lause polynomeille

Rollen lause polynomeille Rollen lause polynomeille LuK-tutkielma Anna-Helena Hietamäki 7193766 Matemaattisten tieteiden tutkinto-ohjelma Oulun yliopisto Kevät 015 Sisältö 1 Johdanto 1.1 Rollen lause analyysissä.......................

Lisätiedot

Vastausehdotukset analyysin sivuainekurssin syksyn välikokeeseen

Vastausehdotukset analyysin sivuainekurssin syksyn välikokeeseen Vastausehdotukset analyysin sivuainekurssin syksyn 015 1. välikokeeseen Heikki Korpela November 1, 015 1. Tehtävä: funktio f : R R toteuttaa ehdot ax, kun x 1 f(x) x + 1, kun x < 1 Tutki, millä vakion

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

Luku 4. Derivoituvien funktioiden ominaisuuksia.

Luku 4. Derivoituvien funktioiden ominaisuuksia. 1 MAT-1343 Laaja matematiikka 3 TTY 1 Risto Silvennoinen Luku 4 Derivoituvien funktioiden ominaisuuksia Derivaatan olemassaolosta seuraa funktioille eräitä säännöllisyyksiä Näistä on jo edellisessä luvussa

Lisätiedot

Sarjojen suppenemisesta

Sarjojen suppenemisesta TAMPEREEN YLIOPISTO Pro gradu -tutkielma Terhi Mattila Sarjojen suppenemisesta Matematiikan ja tilastotieteen laitos Matematiikka Huhtikuu 008 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot

3.3 Funktion raja-arvo

3.3 Funktion raja-arvo 3.3 Funktion raja-arvo Olkoot A ja B kompleksitason joukkoja ja f : A B kuvaus. Kuvauksella f on pisteessä z 0 A raja-arvo c, jos jokaista ε > 0 vastaa δ > 0 siten, että 0 < z z 0 < δ ja z A f(z) c < ε.

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

Matematiikan tukikurssi: kurssikerta 12

Matematiikan tukikurssi: kurssikerta 12 Matematiikan tukikurssi: kurssikerta 2 Tenttiin valmentavia harjoituksia Huomio. Tähän tulee lisää ratkaisuja sitä mukaan kun ehin niitä kirjoittaa. Kurssilla käyään läpi tehtävistä niin monta kuin mahollista.

Lisätiedot

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden

Lisätiedot

6. Toisen ja korkeamman kertaluvun lineaariset

6. Toisen ja korkeamman kertaluvun lineaariset SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 51 6. Toisen ja korkeamman kertaluvun lineaariset differentiaaliyhtälöt Määritelmä 6.1. Olkoon I R avoin väli. Olkoot p i : I R, i = 0, 1, 2,..., n, ja q : I R jatkuvia

Lisätiedot

1 Määrittelyjä ja aputuloksia

1 Määrittelyjä ja aputuloksia 1 Määrittelyjä ja aputuloksia 1.1 Supremum ja infimum Aluksi kerrataan pienimmän ylärajan (supremum) ja suurimman alarajan (infimum) perusominaisuuksia ja esitetään muutamia myöhemmissä todistuksissa tarvittavia

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 3 Ti 13.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 3 Ti 13.9.2011 p. 1/37 p. 1/37 Epälineaariset yhtälöt Newtonin menetelmä: x n+1 = x n f(x n) f (x n ) Sekanttimenetelmä:

Lisätiedot

7. Tasaisen rajoituksen periaate

7. Tasaisen rajoituksen periaate 18 FUNKTIONAALIANALYYSIN PERUSKURSSI 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin

Lisätiedot

(0 desimaalia, 2 merkitsevää numeroa).

(0 desimaalia, 2 merkitsevää numeroa). NUMEERISET MENETELMÄT DEMOVASTAUKSET SYKSY 20.. (a) Absoluuttinen virhe: ε x x ˆx /7 0.4 /7 4/00 /700 0.004286. Suhteellinen virhe: ρ x x ˆx x /700 /7 /00 0.00 0.%. (b) Kahden desimaalin tarkkuus x ˆx

Lisätiedot

funktiojono. Funktiosarja f k a k (x x 0 ) k

funktiojono. Funktiosarja f k a k (x x 0 ) k SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 3 4. Funtiosarjat Tässä luvussa esitettävissä funtiosarjojen tulosissa yhdistämme luujen 3 teoriaa. Esimeri 4.. Geometrinen sarja x suppenee aiilla x ], [ ja hajaantuu

Lisätiedot

Differentiaalilaskenta 1.

Differentiaalilaskenta 1. Differentiaalilaskenta. a) Mikä on tangentti? Mikä on sekantti? b) Määrittele funktion monotonisuuteen liittyvät käsitteet: kasvava, aidosti kasvava, vähenevä ja aidosti vähenevä. Anna esimerkit. c) Selitä,

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen

Lisätiedot

Yhtälön ratkaiseminen

Yhtälön ratkaiseminen Yhtälön ratkaiseminen Suora iterointi Kirjoitetaan yhtälö muotoon x = f(x). Ensin päätellään jollakin tavoin jokin alkuarvo x 0 ja sijoitetaan yhtälön oikealle puolelle, jolloin saadaan tarkennettu ratkaisu

Lisätiedot

Kokelaan sukunimi ja kaikki etunimet selväsi kirjoitetuna. Kaava 1 b =2a 2 b =0,5a 3 b =1,5a 4 b = 1a. 4 5 b =4a 6 b = 5a

Kokelaan sukunimi ja kaikki etunimet selväsi kirjoitetuna. Kaava 1 b =2a 2 b =0,5a 3 b =1,5a 4 b = 1a. 4 5 b =4a 6 b = 5a 1 YLIOPPILASTUTKINTO- LAUTAKUNTA 28.9.2016 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän

Lisätiedot

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 6 Kirsi Valjus Jyväskylän yliopisto Luento 6 () Numeeriset menetelmät 4.4.2013 1 / 33 Luennon 6 sisältö Interpolointi ja approksimointi Polynomi-interpolaatio: Vandermonden

Lisätiedot

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot. 7 Sovelluksia 90 a) Koska sin saa kaikki välillä [,] olevat arvot, niin funktion f ( ) = sin pienin arvo on = ja suurin arvo on ( ) = b) Koska sin saa kaikki välillä [0,] olevat arvot, niin funktion f

Lisätiedot

Analyysin peruslause

Analyysin peruslause LUKU 10 Analyysin peruslause 10.1. Peruslause I Aiemmin Cantorin funktion ψ kohdalla todettiin, että analyysin peruslause II ei päde: [0,1] ψ (x) dm(x) < ψ(1) ψ(0). Kasvavalle funktiolle analyysin peruslauseesta

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta

Lisätiedot

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio x = x 2 = 5/2 x 3 = 2 eli Ratkaisu on siis x = (x x 2 x 3 ) = ( 5/2 2) (Tarkista sijoittamalla!) 5/2 2 Tämä piste on alkuperäisten tasojen ainoa leikkauspiste Se on myös piste/vektori jonka matriisi A

Lisätiedot

e int) dt = 1 ( 2π 1 ) (0 ein0 ein2π

e int) dt = 1 ( 2π 1 ) (0 ein0 ein2π Matematiikan ja tilastotieteen laitos Funktionaalianalyysin peruskurssi Kevät 9) Harjoitus 7 Ratkaisuja Jussi Martin). E Hilbert avaruus L [, π]) ja gt) := t, t [, π]. Määrää funktion g Fourier kertoimet

Lisätiedot

Tasainen suppeneminen ja sen sovellukset

Tasainen suppeneminen ja sen sovellukset Tasainen suppeneminen ja sen sovellukset Tuomas Hentunen Matematiikan pro gradu tutkielma Kesäkuu 2014 Tiivistelmä: Tuomas Hentunen, Tasainen suppeneminen ja sen sovellukset (engl. Uniform convergence

Lisätiedot

Kompleksianalyysi, viikko 5

Kompleksianalyysi, viikko 5 Kompleksianalyysi, viikko 5 Jukka Kemppainen Mathematics Division Kompleksiset jonot Aloitetaan jonon suppenemisesta. Määr. 1 Kompleksiluvuista z 1,z 2,...,z n,... koostuva jono suppenee kohti raja-arvoa

Lisätiedot

Ominaisvektoreiden lineaarinen riippumattomuus

Ominaisvektoreiden lineaarinen riippumattomuus Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin

Lisätiedot

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Pitkä Matematiikka..5 Vastaa enintään kymmeneen tehtävään. Tähdellä merkittyjen (*) tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. a) Ratkaise epäyhtälö >.

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori = (,..., ). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot