Numeeriset menetelmät

Koko: px
Aloita esitys sivulta:

Download "Numeeriset menetelmät"

Transkriptio

1 Numeeriset menetelmät Luento 4 To Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 4 To p. 1/38 p. 1/38

2 Lineaarinen yhtälöryhmä Lineaarinen yhtälöryhmä matriisimuodossa Ax = b missä a 11 a a 1n a 21 a a 2n A =... x = a n1 a n2... a nn x 1 x 2. x n b = b 1 b 2. b n ( A R n n, x R n, b R n ) Numeeriset menetelmät Syksy 2011 Luento 4 To p. 2/38 p. 2/38

3 Gaussin eliminointimenetelmä 1. Muunnetaan yhtälöryhmä yläkolmiomuotoon äärellisellä määrällä alkeisoperaatioita: kerrotaan yhtälö nollasta eroavalla vakiolla lisätään yhtälöön toinen yhtälö nollasta eroavalla vakiolla kerrottuna vaihdetaan kaksi yhtälöä keskenään 2. Ratkaistaan yläkolmiomuotoinen yhtälöryhmä takenevilla sijoituksilla Numeeriset menetelmät Syksy 2011 Luento 4 To p. 3/38 p. 3/38

4 LU-hajotelma Edellä esitetty klassinen Gaussin eliminointimenetelmä: Oikean puolen vektori b mukana eliminointivaiheessa Yleisempi versio Gaussin eliminointimenetelmästä: Tehdään eliminointivaihe b:stä riippumatta Muodostetaan LU-hajotelma Sama hajotelma käy mille tahansa b:lle Numeeriset menetelmät Syksy 2011 Luento 4 To p. 4/38 p. 4/38

5 LU-hajotelma Olkoon A (i) kerroinmatriisi (i 1):n eliminointiaskeleen jälkeen A (1) = A (alkuperäinen matriisi) A (2). A (n) = U (yläkolmiomatriisi) Numeeriset menetelmät Syksy 2011 Luento 4 To p. 5/38 p. 5/38

6 LU-hajotelma Olkoon M i siten, että A (i+1) = M i A (i) A (i) = M 1 i A (i+1) A = A (1) = M 1 1 A (2) = M 1 1 M 1 2 A (3) = M 1 1 M 1 2 M 1 3 A (4). = M 1 1 M 1 2 M 1 n 1 }{{} =L A (n) }{{} =U Numeeriset menetelmät Syksy 2011 Luento 4 To p. 6/38 p. 6/38

7 LU-hajotelma Saatiin hajotelma A = LU missä U on yläkolmiomatriisi (konstruktionsa perusteella) L on alakolmiomatriisi, jonka diagonaalialkiot ovat ykkösiä (voidaan laskea) Numeeriset menetelmät Syksy 2011 Luento 4 To p. 7/38 p. 7/38

8 LU-hajotelman matriisit M i = m i+1,i m i+2,i m n,i m ki = a (i) ki /a(i) ii Numeeriset menetelmät Syksy 2011 Luento 4 To p. 8/38 p. 8/38

9 LU-hajotelman matriisit M 1 i = ˆm i+1,i ˆm i+2,i ˆm n,i ˆm ki = m ki = a (i) ki /a(i) ii Numeeriset menetelmät Syksy 2011 Luento 4 To p. 9/38 p. 9/38

10 LU-hajotelman matriisit L = ˆm i 1, ˆm i,1... ˆm i,i ˆm i+1,1... ˆm i+1,i 1 ˆm i+1,i ˆm n,1... ˆm n,i 1 ˆm n,i ˆm n,i Numeeriset menetelmät Syksy 2011 Luento 4 To p. 10/38 p. 10/38

11 LU-hajotelma Vertaamalla vastinalkioita LU-hajotelmassa voidaan johtaa suoraan kaavat matriisien L ja U nollasta eroaville alkioille A = LU a ij = n l ik u kj Numeeriset menetelmät Syksy 2011 Luento 4 To p. 11/38 p. 11/38

12 Matriisi L j < i a ij = n l ik u kj = j 1 l ik u kj + l ij u jj + n k=j+1 l ik u kj }{{} =0 l ij = ( a ij j 1 l ik u kj )/u jj, j < i Numeeriset menetelmät Syksy 2011 Luento 4 To p. 12/38 p. 12/38

13 Matriisi U j i a ij = n l ik u kj = i 1 l ik u kj + l ii }{{} =1 u ij + n k=i+1 l ik }{{} =0 u kj u ij = a ij i 1 l ik u kj, j i Numeeriset menetelmät Syksy 2011 Luento 4 To p. 13/38 p. 13/38

14 Hajotelmamatriisit Matriisien alkiot voidaan laskea järjestyksessä: U:n 1. rivi, L:n 1. sarake U:n 2. rivi, L:n 2. sarake jne. Matriisit voidaan tallentaa A:n päälle: U:n alkiot A:n yläkolmio ja diagonaali L:n alkiot A:n alakolmio (L:n diagonaalia ei tarvitse tallentaa) Numeeriset menetelmät Syksy 2011 Luento 4 To p. 14/38 p. 14/38

15 Yhtälöryhmän ratkaiseminen Ax = b LUx = b L (Ux) }{{} =y = b { Ly = b Ux = y Numeeriset menetelmät Syksy 2011 Luento 4 To p. 15/38 p. 15/38

16 Etenevät sijoitukset Ly = b b i = n l ik y k = i 1 l ik y k + l ii }{{} =1 y i + n k=i+1 l ik }{{} =0 y k y i = b i i 1 l ik y k, i = 1, 2,..., n Numeeriset menetelmät Syksy 2011 Luento 4 To p. 16/38 p. 16/38

17 Takenevat sijoitukset Ux = y x i = y i = = ( y i n i 1 n k=i+1 u ik x k u ik }{{} =0 x k + u ii x i + n k=i+1 u ik x k u ik x k )/u ii, i = n, n 1,..., 1 Numeeriset menetelmät Syksy 2011 Luento 4 To p. 17/38 p. 17/38

18 Yhtälöryhmän ratkaiseminen Apuvektoria y ei tarvita: y:n alkiot x:n päälle Myöskään vektoria x ei välttämättä tarvita: x:n alkiot b:n päälle Numeeriset menetelmät Syksy 2011 Luento 4 To p. 18/38 p. 18/38

19 Rivien permutointi Jos u jj = 0 jollain j LU-hajotelmaa ei voi muodostaa edellä esitetyllä tavalla Ratkaisu: Permutoidaan matriisin rivejä Jos A 1 on olemassa rivejä voidaan permutoida siten, että u jj 0 kaikilla j Lisäksi: Numeerinen stabiilisuus vältetään itseisarvoltaan pienellä luvulla jakamista Permutoidaan rivejä siten, että u jj on itseisarvoltaan mahdollisimman suuri Numeeriset menetelmät Syksy 2011 Luento 4 To p. 19/38 p. 19/38

20 Rivien permutointi Osittaistuenta (partial pivoting): permutoidaan vain rivejä ei aina takaa parasta mahdollista tarkkuutta Osittaistuentaan voidaan liittää skaalaus: yhtälöitä kerrotaan vakioilla siten, että rivien itseisarvoltaan suurimmat alkiot ovat samaa suuruusluokkaa Täydellinen tuenta (complete pivoting): permutoidaan sekä rivejä että sarakkeita (ei käsitellä) Numeeriset menetelmät Syksy 2011 Luento 4 To p. 20/38 p. 20/38

21 LU-hajotelma osittaistuennalla Eliminointiaskeleessa j : Etsitään rivi r siten, että jos vaihdetaan rivit r ja j keskenään, niin alkioksi u jj tulisi itseisarvoltaan mahdollisimman suuri luku Vaihdetaan matriisin rivit r ja j keskenään Suoritetaan muut laskutoimitukset Huom: Järjestämällä laskutoimitukset sopivasti, rivi r saadaan selville etsimällä sarakkeesta j itseisarvoltaan suurin matriisialkio Numeeriset menetelmät Syksy 2011 Luento 4 To p. 21/38 p. 21/38

22 Permutaatiomatriisit Matriisi P on permutaatiomatriisi, jos jokaisella rivillä ja sarakkeella on täsmälleen yksi ykkönen ja muut alkiot ovat nollia Permutoidaan matriisin A rivejä P A Permutoidaan matriisin A sarakkeita AP Permutaatiomatriisien tulo on permutaatiomatriisi Huom: Permutaatiomatriiseja ei tallenneta kokonaan (vektori riittää) Numeeriset menetelmät Syksy 2011 Luento 4 To p. 22/38 p. 22/38

23 Esimerkki = = Numeeriset menetelmät Syksy 2011 Luento 4 To p. 23/38 p. 23/38

24 LU-hajotelma osittaistuennalla Olkoon P i permutaatiomatriisi, jolla vaihdetaan rivit eliminointiaskeleessa i Olkoon P = P n 1 P n 2 P 1... LU-hajotelma permutoidulle matriisille PA = ˆLÛ Numeeriset menetelmät Syksy 2011 Luento 4 To p. 24/38 p. 24/38

25 Yhtälöryhmän ratkaiseminen Ax = b PAx = Pb ˆLÛx = Pb ˆL (Û }{{ x) = Pb } =y { ˆLy = Pb Ûx = y Numeeriset menetelmät Syksy 2011 Luento 4 To p. 25/38 p. 25/38

26 Yhtälöryhmän ratkaiseminen Permutaatiot voidaan tallentaa vektoriin p : Aluksi p i = i kaikilla i = 1,..., n Vaihdetaan rivit r ja j vaihdetaan p r ja p j Eliminointivaiheen päätyttyä: Alkuperäisen yhtälöryhmän rivin i alkiot ovat permutoidun yhtälöryhmän rivillä p i Ennen eteneviä sijoituksia: Oikean puolen vektori permutoidaan samalla tavalla kuin hajotelmamatriisit Numeeriset menetelmät Syksy 2011 Luento 4 To p. 26/38 p. 26/38

27 Algoritmi: Hajotelma LU_factor(A,p,δ,error) error [ := 0 ] p = n do k = 1,...,n 1 Etsi r s.e. a rk = max { a sk } k s n swap(a k,1:n,a r,1:n ) swap(p k,p r ) if a kk δ then error := 1 do i = k + 1,...,n a ik := a ik /a kk do j = k + 1,...,n a ij := a ij a ik a kj end do end do end do (tarkistetaan myös return onko a nn δ) end if Numeeriset menetelmät Syksy 2011 Luento 4 To p. 27/38 p. 27/38

28 Algoritmi: Sijoitukset backsolve(a, p, b, x) do i = 1,...,n do i = n,n 1,...,1 x i := b pi do j = i + 1,...,n do j = 1,...,i 1 x i := x i a ij x j x i := x i a ij x j end do end do x i := x i /a ii end do end do (Tarvittaessa x voidaan tallentaa b:n päälle) Numeeriset menetelmät Syksy 2011 Luento 4 To p. 28/38 p. 28/38

29 Käänteismatriisit Yleensä käänteismatriisia ei kannata laskea numeerisesti Esimerkiksi: α = c T A 1 d { x = A 1 d α = c T x missä x ratkaistaan yhtälöryhmästä A x = d Numeeriset menetelmät Syksy 2011 Luento 4 To p. 29/38 p. 29/38

30 Lineaarinen yhtälöryhmä Ax = b LU-hajotelma tarkoitettu yleiselle matriisille A Jos tunnetaan matriisin erityisominaisuuksia, voidaan käyttää niille kehitettyjä, tehokkaampia menetelmiä Esimerkiksi: A positiivisesti definiitti voidaan käyttää Choleskyn menetelmää Numeeriset menetelmät Syksy 2011 Luento 4 To p. 30/38 p. 30/38

31 Positiividefiniittisyys Matriisi A R n n on positiivisesti definiitti, jos A T = A eli A on symmetrinen x T Ax > 0 kaikille x R n, x 0 Käytännössä positiividefiniittisyyttä on vaikea todeta määritelmän avulla Mutta: Usein se tiedetään yhtälöryhmään johtaneen alkuperäisen tehtävän perusteella Numeeriset menetelmät Syksy 2011 Luento 4 To p. 31/38 p. 31/38

32 Positiividefiniittisyys Olkoon A R n n positiivisesti definiitti Matriisin A suurin alkio on diagonaalilla, diagonaalialkiot ja ominaisarvot ovat > 0 On olemassa A 1 eli matriisi on kääntyvä On olemassa yksikäsitteinen alakolmiomatriisi L, jonka diagonaalialkiot ovat > 0 ja jolle pätee A = LL T Numeeriset menetelmät Syksy 2011 Luento 4 To p. 32/38 p. 32/38

33 Positiividefiniittisyys Aikaisemmin: Matriisi A kääntyvä yhtälöryhmällä Ax = b yksikäsitteinen ratkaisu Joten: Positiividefiniittisillä yhtälöryhmillä aina yksikäsitteinen ratkaisu Numeeriset menetelmät Syksy 2011 Luento 4 To p. 33/38 p. 33/38

34 Choleskyn menetelmä Positiivisesti definiiteillä matriiseilla kolmiohajotelma A = LL T Kuten LU-hajotelma, missä yläkolmiomatriisia U vastaa yläkolmiomatriisi L T Numeeriset menetelmät Syksy 2011 Luento 4 To p. 34/38 p. 34/38

35 Choleskyn hajotelma Vertaamalla vastinalkioita kolmiohajotelmassa voidaan johtaa kaavat matriisin L nollasta eroaville alkioille A = LL T a ij = n l ik (l T ) kj = n l ik l jk Numeeriset menetelmät Syksy 2011 Luento 4 To p. 35/38 p. 35/38

36 Matriisi L j < i a ij = n l ik l jk = j 1 l ik l jk + l ij l jj + n k=j+1 l ik l jk }{{} =0 l ij = ( a ij j 1 l ik l jk )/l jj, j < i Numeeriset menetelmät Syksy 2011 Luento 4 To p. 36/38 p. 36/38

37 Matriisin L diagonaali j = i a ii = = n i 1 l ii = l 2 ik l 2 ik + l 2 ii + ( a ii i 1 n k=i+1 l 2 ik ) 1/2 l 2 ik }{{} =0 Numeeriset menetelmät Syksy 2011 Luento 4 To p. 37/38 p. 37/38

38 Hajotelmamatriisi Matriisin alkiot voidaan laskea riveittäin: l 11 = (a 11 ) 1/2 l 21 = a 21 /l 11, l 22 = (a 22 l 2 21) 1/2 l 31 = a 31 /l 11, l 32 = (a 32 l 31 l 21 )/l 22, l 33 = (a 33 l 2 31 l 2 32) 1/2 jne. Matriisi voidaan tallentaa A:n päälle: L:n alkiot A:n alakolmio (mukaanlukien diagonaali) Numeeriset menetelmät Syksy 2011 Luento 4 To p. 38/38 p. 38/38

Numeeriset menetelmät TIEA381. Luento 3. Kirsi Valjus. Jyväskylän yliopisto. Luento 3 () Numeeriset menetelmät / 45

Numeeriset menetelmät TIEA381. Luento 3. Kirsi Valjus. Jyväskylän yliopisto. Luento 3 () Numeeriset menetelmät / 45 Numeeriset menetelmät TIEA381 Luento 3 Kirsi Valjus Jyväskylän yliopisto Luento 3 () Numeeriset menetelmät 20.3.2013 1 / 45 Luennon 3 sisältö Luku 2: Epälineaarisen yhtälön ratkaiseminen Polynomin reaaliset

Lisätiedot

LU-hajotelma. Esimerkki 1 Matriisi on yläkolmiomatriisi ja matriisi. on alakolmiomatriisi. 3 / 24

LU-hajotelma. Esimerkki 1 Matriisi on yläkolmiomatriisi ja matriisi. on alakolmiomatriisi. 3 / 24 LU-hajotelma 1 / 24 LU-hajotelma Seuravassa tarkastellaan kuinka neliömatriisi voidaan esittää kahden kolmiomatriisin tulona. Käytämme alkeismatriiseja tälläisen esityksen löytämiseen. Edellä mainittua

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 3 Ti 13.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 3 Ti 13.9.2011 p. 1/37 p. 1/37 Epälineaariset yhtälöt Newtonin menetelmä: x n+1 = x n f(x n) f (x n ) Sekanttimenetelmä:

Lisätiedot

Matriisilaskenta Luento 8: LU-hajotelma

Matriisilaskenta Luento 8: LU-hajotelma Matriisilaskenta Luento 8: LU-hajotelma Antti Rasila 2016 Matriisihajotelmat 1/2 Usein matriisiyhtälön Ax = y ratkaiseminen on epäkäytännöllistä ja hidasta. Siksi numeerisessa matriisilaskennassa usein

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 5 Ti 20.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 5 Ti 20.9.2011 p. 1/40 p. 1/40 Choleskyn menetelmä Positiivisesti definiiteillä matriiseilla kolmiohajotelma

Lisätiedot

Osittaistuenta Gaussin algoritmissa: Etsitään 1. sarakkeen itseisarvoltaan suurin alkio ja vaihdetaan tämä tukialkioiksi (eli ko. rivi 1. riviksi).

Osittaistuenta Gaussin algoritmissa: Etsitään 1. sarakkeen itseisarvoltaan suurin alkio ja vaihdetaan tämä tukialkioiksi (eli ko. rivi 1. riviksi). Liukuluvut Tietokonelaskuissa käytetään liukulukuja: mikä esittää lukua ± α α α M β k ± ( M α i β i )β k, i= β on järjestelmän kantaluku, α α M liukuluvun mantissa, α,, α M lukuja,,,, β, siten että α Esimerkki

Lisätiedot

(0 desimaalia, 2 merkitsevää numeroa).

(0 desimaalia, 2 merkitsevää numeroa). NUMEERISET MENETELMÄT DEMOVASTAUKSET SYKSY 20.. (a) Absoluuttinen virhe: ε x x ˆx /7 0.4 /7 4/00 /700 0.004286. Suhteellinen virhe: ρ x x ˆx x /700 /7 /00 0.00 0.%. (b) Kahden desimaalin tarkkuus x ˆx

Lisätiedot

Johdatus tekoälyn taustalla olevaan matematiikkaan

Johdatus tekoälyn taustalla olevaan matematiikkaan Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 5. luento.2.27 Lineaarialgebraa - Miksi? Neuroverkon parametreihin liittyvät kaavat annetaan monesti

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 4. Kirsi Valjus. Jyväskylän yliopisto. Luento 4 () Numeeriset menetelmät / 44

Numeeriset menetelmät TIEA381. Luento 4. Kirsi Valjus. Jyväskylän yliopisto. Luento 4 () Numeeriset menetelmät / 44 Numeeriset menetelmät TIEA381 Luento 4 Kirsi Valjus Jyväskylän yliopisto Luento 4 () Numeeriset menetelmät 21.3.2013 1 / 44 Luennon 4 sisältö Lineaarisen yhtälöryhmän ratkaisemisesta: Choleskyn menetelmä

Lisätiedot

Ennakkotehtävän ratkaisu

Ennakkotehtävän ratkaisu Ennakkotehtävän ratkaisu Ratkaisu [ ] [ ] 1 3 4 3 A = ja B =. 1 4 1 1 [ ] [ ] 4 3 12 12 1 0 a) BA = =. 1 + 1 3 + 4 0 1 [ ] [ ] [ ] 1 0 x1 x1 b) (BA)x = =. 0 1 x 2 x [ ] [ ] [ 2 ] [ ] 4 3 1 4 9 5 c) Bb

Lisätiedot

Käänteismatriisin ominaisuuksia

Käänteismatriisin ominaisuuksia Käänteismatriisin ominaisuuksia Lause 1.4. Jos A ja B ovat säännöllisiä ja luku λ 0, niin 1) (A 1 ) 1 = A 2) (λa) 1 = 1 λ A 1 3) (AB) 1 = B 1 A 1 4) (A T ) 1 = (A 1 ) T. Tod.... Ortogonaaliset matriisit

Lisätiedot

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä Matriisien tulo Lause Olkoot A, B ja C matriiseja ja R Tällöin (a) A(B + C) =AB + AC, (b) (A + B)C = AC + BC, (c) A(BC) =(AB)C, (d) ( A)B = A( B) = (AB), aina, kun kyseiset laskutoimitukset on määritelty

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 6 To 22.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 6 To 22.9.2011 p. 1/38 p. 1/38 Ominaisarvotehtävät Monet sovellukset johtavat ominaisarvotehtäviin Yksi

Lisätiedot

Matematiikka B2 - TUDI

Matematiikka B2 - TUDI Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 4 / vko 47

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 4 / vko 47 MS-A3/A5 Matriisilaskenta Malliratkaisut 4 / vko 47 Tehtävä 1 (L): Oletetaan, että AB = AC, kun B ja C ovat m n-matriiseja. a) Näytä, että jos A on kääntyvä, niin B = C. b) Seuraako yhtälöstä AB = AC yhtälö

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt ja pienimmän neliösumman menetelmä Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi QR ja PNS PNS-ongelma

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 3 /

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 3 / MS-A3/A5 Matriisilaskenta, II/27 MS-A3/A5 Matriisilaskenta Laskuharjoitus 3 / 3. 7..27 Tehtävä (L): Etsi kaikki yhtälön Ax = b ratkaisut, kun 3 5 4 A = 3 2 4 ja b = 6 8 7 4. Ratkaisu : Koetetaan ratkaista

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt QR-hajotelma ja pienimmän neliösumman menetelmä Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto PNS-ongelma PNS-ongelma

Lisätiedot

1.1. Määritelmiä ja nimityksiä

1.1. Määritelmiä ja nimityksiä 1.1. Määritelmiä ja nimityksiä Luku joko reaali- tai kompleksiluku. R = {reaaliluvut}, C = {kompleksiluvut} R n = {(x 1, x 2,..., x n ) x 1, x 2,..., x n R} C n = {(x 1, x 2,..., x n ) x 1, x 2,..., x

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 14 To 20.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 14 To 20.10.2011 p. 1/39 p. 1/39 Nopeat Fourier-muunnokset Diskreetti Fourier-muunnos ˆf k = 1 N 1 N

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28 Numeeriset menetelmät TIEA381 Luento 5 Kirsi Valjus Jyväskylän yliopisto Luento 5 () Numeeriset menetelmät 3.4.2013 1 / 28 Luennon 5 sisältö Luku 4: Ominaisarvotehtävistä Potenssiinkorotusmenetelmä QR-menetelmä

Lisätiedot

Matriisilaskenta (TFM) MS-A0001 Hakula/Vuojamo Ratkaisut, Viikko 47, 2017

Matriisilaskenta (TFM) MS-A0001 Hakula/Vuojamo Ratkaisut, Viikko 47, 2017 Matriisilaskenta (TFM) MS-A1 Hakula/Vuojamo Ratkaisut, Viikko 47, 17 R Alkuviikko TEHTÄVÄ J1 Mitkä matriisit E 1 ja E 31 nollaavat sijainnit (, 1) ja (3, 1) matriiseissa E 1 A ja E 31 A kun 1 A = 1. 8

Lisätiedot

BM20A0700, Matematiikka KoTiB2

BM20A0700, Matematiikka KoTiB2 BM20A0700, Matematiikka KoTiB2 Luennot: Matti Alatalo, Harjoitukset: Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luku 7. 1 Kurssin sisältö Matriiseihin

Lisätiedot

Matematiikka B2 - Avoin yliopisto

Matematiikka B2 - Avoin yliopisto 6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

Iteratiiviset ratkaisumenetelmät

Iteratiiviset ratkaisumenetelmät Iteratiiviset ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Yleinen iteraatio Lineaarisen yhtälöryhmän iteratiivinen ratkaisumenetelmä voidaan esittää muodossa: Anna alkuarvaus: x 0 R n

Lisätiedot

Talousmatematiikan perusteet: Luento 9. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Transponointi Matriisitulo

Talousmatematiikan perusteet: Luento 9. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Transponointi Matriisitulo Talousmatematiikan perusteet: Luento 9 Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Transponointi Matriisitulo Viime luennolta Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta,

Lisätiedot

Ratkaisuehdotukset LH 7 / vko 47

Ratkaisuehdotukset LH 7 / vko 47 MS-C34 Lineaarialgebra, II/7 Ratkaisuehdotukset LH 7 / vko 47 Tehtävä : Olkoot M R symmetrinen ja positiividefiniitti matriisi (i) Näytä, että m > ja m > (ii) Etsi Eliminaatiomatriisi E R siten, että [

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear

Lisätiedot

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset 32 Idea: Lineaarikuvausten laskutoimitusten avulla määritellään vastaavat matriisien laskutoimitukset Vakiolla kertominen ja summa Olkoon t R ja A, B R n m Silloin ta, A + B R n m ja määritellään ta ta

Lisätiedot

1 Matriisit ja lineaariset yhtälöryhmät

1 Matriisit ja lineaariset yhtälöryhmät 1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Luentokalvot 5 1

Lisätiedot

Käänteismatriisi 1 / 14

Käänteismatriisi 1 / 14 1 / 14 Jokaisella nollasta eroavalla reaaliluvulla on käänteisluku, jolla kerrottaessa tuloksena on 1. Seuraavaksi tarkastellaan vastaavaa ominaisuutta matriiseille ja määritellään käänteismatriisi. Jokaisella

Lisätiedot

Matriisilaskenta. Harjoitusten 3 ratkaisut (Kevät 2019) 1. Olkoot AB = ja 2. Osoitetaan, että matriisi B on matriisin A käänteismatriisi.

Matriisilaskenta. Harjoitusten 3 ratkaisut (Kevät 2019) 1. Olkoot AB = ja 2. Osoitetaan, että matriisi B on matriisin A käänteismatriisi. Matriisilaskenta Harjoitusten ratkaisut (Kevät 9). Olkoot ja A = B = 5. Osoitetaan, että matriisi B on matriisin A käänteismatriisi. Tapa Käänteismatriisin määritelmän nojalla riittää osoittaa, että AB

Lisätiedot

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla:

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla: 11 Determinantti Neliömatriisille voidaan laskea luku, joka kertoo muun muassa, onko matriisi kääntyvä vai ei Tätä lukua kutsutaan matriisin determinantiksi Determinantilla on muitakin sovelluksia, mutta

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij. Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 3

Inversio-ongelmien laskennallinen peruskurssi Luento 3 Inversio-ongelmien laskennallinen peruskurssi Luento 3 Kevät 2011 1 Singulaariarvohajotelma (Singular Value Decomposition, SVD) Olkoon A R m n matriisi 1. Tällöin A voidaan esittää muodossa A = UΣV T,

Lisätiedot

Lineaarinen yhtälöryhmä

Lineaarinen yhtälöryhmä Lineaarinen yhtälöryhmä 1 / 39 Lineaarinen yhtälö Määritelmä 1 Lineaarinen yhtälö on muotoa a 1 x 1 + a 2 x 2 + + a n x n = b, missä a i, b R, i = 1,..., n ovat tunnettuja ja x i R, i = 1,..., n ovat tuntemattomia.

Lisätiedot

Talousmatematiikan perusteet: Luento 10. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Matriisitulo Determinantti

Talousmatematiikan perusteet: Luento 10. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Matriisitulo Determinantti Talousmatematiikan perusteet: Luento 1 Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Matriisitulo Determinantti Viime luennolta Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta,

Lisätiedot

Determinantit. Kaksirivinen determinantti. Aiheet. Kaksirivinen determinantti. Kaksirivinen determinantti. Kolmirivinen determinantti

Determinantit. Kaksirivinen determinantti. Aiheet. Kaksirivinen determinantti. Kaksirivinen determinantti. Kolmirivinen determinantti Determinantit 1 2 2-matriisin ( A = on det(a) = a 11 a 12 a 21 a 22 a 11 a 12 a 21 a 22 ) = a 11a 22 a 12 a 21. 1 2 2-matriisin on det(a) = Esim. Jos A = ( a 11 a 12 a 21 a 22 A = a 11 a 12 a 21 a 22 )

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja

Lisätiedot

2.5. Matriisin avaruudet ja tunnusluvut

2.5. Matriisin avaruudet ja tunnusluvut 2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja

Lisätiedot

Talousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi

Talousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi Talousmatematiikan perusteet: Luento 11 Lineaarikuvaus Matriisin aste Käänteismatriisi Viime luennolla Käsittelimme matriisien peruskäsitteitä ja laskutoimituksia Vakiolla kertominen, yhteenlasku ja vähennyslasku

Lisätiedot

Matriisilaskenta Laskuharjoitus 5 - Ratkaisut / vko 41

Matriisilaskenta Laskuharjoitus 5 - Ratkaisut / vko 41 MS-A0004/MS-A0006 Matriisilaskenta, I/06 Matriisilaskenta Laskuharjoitus 5 - Ratkaisut / vko 4 Tehtävä 5 (L): a) Oletetaan, että λ 0 on kääntyvän matriisin A ominaisarvo. Osoita, että /λ on matriisin A

Lisätiedot

Lineaariset yhtälöryhmät ja matriisit

Lineaariset yhtälöryhmät ja matriisit Lineaariset yhtälöryhmät ja matriisit Lineaarinen yhtälöryhmä a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. a m1 x 1 + a m2 x 2 + + a mn x n = b m, (1) voidaan esittää

Lisätiedot

Vektoreiden virittämä aliavaruus

Vektoreiden virittämä aliavaruus Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden

Lisätiedot

Gaussin ja Jordanin eliminointimenetelmä

Gaussin ja Jordanin eliminointimenetelmä 1 / 25 : Se on menetelmä lineaarisen yhtälöryhmän ratkaisemiseksi. Sitä käytetään myöhemmin myös käänteismatriisin määräämisessä. Ideana on tiettyjä rivioperaatioita käyttäen muokata yhtälöryhmää niin,

Lisätiedot

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on? Harjoitus 1, kevät 007 1. Olkoon [ ] cos α sin α A(α) =. sin α cos α Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?. Olkoon a x y A = 0 b z, 0 0 c missä a, b, c 0. Määrää käänteismatriisi

Lisätiedot

Luento 5: Suurten lineaaristen yhtälöryhmien ratkaiseminen iteratiivisilla menetelmillä

Luento 5: Suurten lineaaristen yhtälöryhmien ratkaiseminen iteratiivisilla menetelmillä Luento 5: Suurten lineaaristen yhtälöryhmien ratkaiseminen iteratiivisilla menetelmillä Matriisit voivat olla kooltaan niin suuria, että LU-hajotelman laskeminen ei ole järkevä tapa ratkaista lineaarista

Lisätiedot

Konjugaattigradienttimenetelmä

Konjugaattigradienttimenetelmä Konjugaattigradienttimenetelmä Keijo Ruotsalainen Division of Mathematics Konjugaattigradienttimenetelmä Oletukset Matriisi A on symmetrinen: A T = A Positiivisesti definiitti: x T Ax > 0 kaikille x 0

Lisätiedot

Determinantti 1 / 30

Determinantti 1 / 30 1 / 30 on reaaliluku, joka on määritelty neliömatriiseille Determinantin avulla voidaan esimerkiksi selvittää, onko matriisi kääntyvä a voidaan käyttää käänteismatriisin määräämisessä ja siten lineaarisen

Lisätiedot

Kurssin loppuosassa tutustutaan matriiseihin ja niiden käyttöön yhtälöryhmien ratkaisemisessa.

Kurssin loppuosassa tutustutaan matriiseihin ja niiden käyttöön yhtälöryhmien ratkaisemisessa. 7 Matriisilaskenta Kurssin loppuosassa tutustutaan matriiseihin ja niiden käyttöön yhtälöryhmien ratkaisemisessa. 7.1 Lineaariset yhtälöryhmät Yhtälöryhmät liittyvät tilanteisiin, joissa on monta tuntematonta

Lisätiedot

Kaksirivisen matriisin determinantille käytämme myös merkintää. a 11 a 12 a 21 a 22. = a 11a 22 a 12 a 21. (5.1) kaksirivine

Kaksirivisen matriisin determinantille käytämme myös merkintää. a 11 a 12 a 21 a 22. = a 11a 22 a 12 a 21. (5.1) kaksirivine Vaasan yliopiston julkaisuja 97 5 DETERMINANTIT Ch:Determ Sec:DetDef 5.1 Determinantti Tämä kappale jakautuu kolmeen alakappaleeseen. Ensimmäisessä alakappaleessa määrittelemme kaksi- ja kolmiriviset determinantit.

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Talousmatematiikan perusteet: Luento 10 Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Lineaarikuvaus Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta, jossa käytetään

Lisätiedot

Matriisit, kertausta. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi

Matriisit, kertausta. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi Matriisit, kertausta Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ) ( 0, 4 ), ( ) ( 1 4 2, a 11 a 12 a 21 a 22 ) Kaavio kirjoitetaan kaarisulkujen väliin

Lisätiedot

ax + y + 2z = 0 2x + y + az = b 2. Kuvassa alla on esitetty nesteen virtaus eräässä putkistossa.

ax + y + 2z = 0 2x + y + az = b 2. Kuvassa alla on esitetty nesteen virtaus eräässä putkistossa. BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 7, Syksy 206 Tutkitaan yhtälöryhmää x + y + z 0 2x + y + az b ax + y + 2z 0 (a) Jos a 0 ja b 0 niin mikä on yhtälöryhmän ratkaisu? Tulkitse ratkaisu

Lisätiedot

Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi

Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi Matriisit, L20 Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ) ( 0, 4 ), ( ) ( 1 4 2, a 11 a 12 a 21 a 22 ) Merkintöjä 1 Matriisi on suorakulmainen lukukaavio.

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät

1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät 1 1 LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT Muotoa 11 Lineaariset yhtälöryhmät (1) a 1 x 1 + a x + + a n x n b oleva yhtälö on tuntemattomien x 1,, x n lineaarinen yhtälö, jonka kertoimet ovat luvut a 1,,

Lisätiedot

5 OMINAISARVOT JA OMINAISVEKTORIT

5 OMINAISARVOT JA OMINAISVEKTORIT 5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön

Lisätiedot

Matriisilaskenta (TFM) MS-A0001 Hakula/Vuojamo Ratkaisut, Viikko 48, , c)

Matriisilaskenta (TFM) MS-A0001 Hakula/Vuojamo Ratkaisut, Viikko 48, , c) Matriisilaskenta (TFM) MS-A0001 Hakula/Vuojamo Ratkaisut, Viikko 48, 2017 R Alkuviikko TEHTÄVÄ J1 Laske Gaussin algoritmilla ja Sarrus n säännöllä seuraavat determinantit: 2 3 1 a) 1 2 0 1 4 3, b) 0 2

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 6 Kirsi Valjus Jyväskylän yliopisto Luento 6 () Numeeriset menetelmät 4.4.2013 1 / 33 Luennon 6 sisältö Interpolointi ja approksimointi Polynomi-interpolaatio: Vandermonden

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 6.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Kertausta: Kääntyvien matriisien lause Lause 1 Oletetaan, että A on n n -neliömatriisi. Seuraavat ehdot ovat yhtäpitäviä.

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 2

Inversio-ongelmien laskennallinen peruskurssi Luento 2 Inversio-ongelmien laskennallinen peruskurssi Luento 2 Kevät 2012 1 Lineaarinen inversio-ongelma Määritelmä 1.1. Yleinen (reaaliarvoinen) lineaarinen inversio-ongelma voidaan esittää muodossa m = Ax +

Lisätiedot

802118P Lineaarialgebra I (4 op)

802118P Lineaarialgebra I (4 op) 802118P Lineaarialgebra I (4 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Lineaarialgebra I Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M206 Kurssin kotisivu

Lisätiedot

Sisätuloavaruudet. 4. lokakuuta 2006

Sisätuloavaruudet. 4. lokakuuta 2006 Sisätuloavaruudet 4. lokakuuta 2006 Tässä esityksessä vektoriavaruudet V ja W ovat kompleksisia ja äärellisulotteisia. Käydään ensin lyhyesti läpi määritelmiä ja perustuloksia. Merkitään L(V, W ) :llä

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =

Lisätiedot

5 Lineaariset yhtälöryhmät

5 Lineaariset yhtälöryhmät 5 Lineaariset yhtälöryhmät Edellisen luvun lopun esimerkissä päädyttiin yhtälöryhmään, jonka ratkaisemisesta riippui, kuuluuko tietty vektori eräiden toisten vektorien virittämään aliavaruuteen Tämäntyyppisiä

Lisätiedot

Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi

Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi Matriisit, L20 Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ( 0, 4, ( ( 1 4 2, a 11 a 12 a 21 a 22 Kaavio kirjoitetaan kaarisulkujen väliin (amer. kirjoissa

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 13.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/12 Käytännön asioita Kesäkuun tentti: ke 19.6. klo 17-20, päärakennuksen sali 1. Anna palautetta kurssisivulle ilmestyvällä

Lisätiedot

Determinantti. Määritelmä

Determinantti. Määritelmä Determinantti Määritelmä Oletetaan, että A on n n-neliömatriisi. Merkitään normaaliin tapaan matriisin A alkioita lyhyesti a ij = A(i, j). (a) Jos n = 1, niin det(a) = a 11. (b) Muussa tapauksessa n det(a)

Lisätiedot

Ax, y = x, A y. A = A A hermiittinen. Jokainen reaalinen ja symmetrinen matriisi on määritelmän mukaan myös hermiittinen. A =, HARJOITUSTEHTÄVIÄ

Ax, y = x, A y. A = A A hermiittinen. Jokainen reaalinen ja symmetrinen matriisi on määritelmän mukaan myös hermiittinen. A =, HARJOITUSTEHTÄVIÄ X.. Matriisialgebra Esimerkki 4 Jos niin x =[i, +i, 2 i ] T C 3, y =[ 2i, 2i, i ] T C 3, x, x = x 2 =+(+)+(4+)=8, y, y =(+4)+4+(+)=, x, y = i( + 2i)+(+i)( 2i)+(2 i)( +i) = +3i. Matriisia A = ĀT sanotaan

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2014 Mika Hirvensalo mikhirve@utu.fi Luentokalvot 3 1 of 16 Kertausta Lineaarinen riippuvuus

Lisätiedot

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. Olkoot A 2 := AA =

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. Olkoot A 2 := AA = 3 3 Olkoot 9 8 B 7 6 ja A 5 4 [ 3 4 Nyt A + B, AB ja BB eivät ole mielekkäitä (vastaavilla lineaarikuvauksilla menisivät dimensiot solmuun tällaisista yhdistelmistä) Kuitenkin voidaan laskea BA ja 9( )

Lisätiedot

10 Matriisit ja yhtälöryhmät

10 Matriisit ja yhtälöryhmät 10 Matriisit ja yhtälöryhmät Tässä luvussa esitellään uusi tapa kirjoittaa lineaarinen yhtälöryhmä matriisien avulla käyttäen hyväksi matriisikertolaskua sekä sarakevektoreita Pilkotaan sitä varten yhtälöryhmän

Lisätiedot

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen Informaatiotieteiden yksikkö Lineaarialgebra 1A Pentti Haukkanen Puhtaaksikirjoitus: Joona Hirvonen . 2 Sisältö 1 Matriisit, determinantit ja lineaariset yhtälöryhmät 4 1.1 Matriisit..............................

Lisätiedot

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen Informaatiotieteiden yksikkö Lineaarialgebra 1A Pentti Haukkanen Puhtaaksikirjoitus: Joona Hirvonen . 2 Sisältö 1 Matriisit, determinantit ja lineaariset yhtälöryhmät 4 1.1 Matriisin määritelmä.......................

Lisätiedot

2.8. Kannanvaihto R n :ssä

2.8. Kannanvaihto R n :ssä 28 Kannanvaihto R n :ssä Seuraavassa kantavektoreiden { x, x 2,, x n } järjestystä ei saa vaihtaa Vektorit ovat pystyvektoreita ( x x 2 x n ) on vektoreiden x, x 2,, x n muodostama matriisi, missä vektorit

Lisätiedot

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja 7 NELIÖMATRIISIN DIAGONALISOINTI. Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T () Muistutus: Kokoa n olevien vektorien

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Keijo Ruotsalainen Division of Mathematics Kurssitiedot Luennot alkavat ke 11.1.2012 Ke 12-14 L3 To 14-16 L6 Kurssin viimeinen luento To 22.3 2012 Kurssin suorittaminen välikokein:

Lisätiedot

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen

Lisätiedot

Ratkaisuehdotukset LH 3 / alkuvko 45

Ratkaisuehdotukset LH 3 / alkuvko 45 Ratkaisuehdotukset LH 3 / alkuvko 45 Tehtävä : Olkoot A, B, X R n n, a, b R n ja jokin vektorinormi. Kätetään vektorinormia vastaavasta operaattorinormista samaa merkintää. Nätä, että. a + b a b, 2. A

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Idea Lineaarisen systeemin ratkaiseminen Olkoon

Lisätiedot

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen Informaatiotieteiden yksikkö Lineaarialgebra 1A Pentti Haukkanen Puhtaaksikirjoitus: Joona Hirvonen . 2 Sisältö 1 Matriisit, determinantit ja lineaariset yhtälöryhmät 4 1.1 Matriisin määritelmä.......................

Lisätiedot

MS-A0003/A Matriisilaskenta Laskuharjoitus 6

MS-A0003/A Matriisilaskenta Laskuharjoitus 6 MS-A3/A - Matriisilaskenta Laskuharjoitus 6 Ratkaisuehdotelmia. Diagonalisointi on hajotelma A SΛS, jossa diagonaalimatriisi Λ sisältää matriisin A ominaisarvot ja matriisin S sarakkeet ovat näitä ominaisarvoja

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35 Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen

Lisätiedot

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81 Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/81 Lineaarialgebra (muut ko) p. 2/81 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2 )

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori = (,..., ). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

x 2 x 3 x 1 x 2 = 1 2x 1 4 x 2 = 3 x 1 x 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili

x 2 x 3 x 1 x 2 = 1 2x 1 4 x 2 = 3 x 1 x 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili 6 4 2 x 2 x 3 15 10 5 0 5 15 5 3 2 1 1 2 3 2 0 x 2 = 1 2x 1 0 4 x 2 = 3 x 1 x 5 2 5 x 1 10 x 1 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili Sisältö

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 14. Kirsi Valjus. Jyväskylän yliopisto. Luento 14 () Numeeriset menetelmät / 55

Numeeriset menetelmät TIEA381. Luento 14. Kirsi Valjus. Jyväskylän yliopisto. Luento 14 () Numeeriset menetelmät / 55 Numeeriset menetelmät TIEA381 Luento 14 Kirsi Valjus Jyväskylän yliopisto Luento 14 () Numeeriset menetelmät 15.5.2013 1 / 55 Luennon 14 sisältö Nopeat Fourier-muunnokset (FFT) Yleinen algoritmi 2-kantainen

Lisätiedot

Ominaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3.

Ominaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3. Matematiikan ja tilastotieteen laitos Lineaarialgebra ja matriisilaskenta II Ylimääräinen harjoitus 6 Ratkaisut A:n karakteristinen funktio p A on λ p A (λ) det(a λi ) 0 λ ( λ) 0 5 λ λ 5 λ ( λ) (( λ) (

Lisätiedot

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen Informaatiotieteiden yksikkö Lineaarialgebra 1A Pentti Haukkanen Puhtaaksikirjoitus: Joona Hirvonen . 2 Sisältö 1 Matriisit, determinantit ja lineaariset yhtälöryhmät 4 1.1 Matriisin määritelmä.......................

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

9 Matriisit. 9.1 Matriisien laskutoimituksia

9 Matriisit. 9.1 Matriisien laskutoimituksia 9 Matriisit Aiemmissa luvuissa matriiseja on käsitelty siinä määrin kuin on ollut tarpeellista yhtälönratkaisun kannalta. Matriiseja käytetään kuitenkin myös muihin tarkoituksiin, ja siksi on hyödyllistä

Lisätiedot