Numeeriset menetelmät

Koko: px
Aloita esitys sivulta:

Download "Numeeriset menetelmät"

Transkriptio

1 Numeeriset menetelmät Luento 13 Ti Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 1/43 p. 1/43

2 Nopeat Fourier-muunnokset Fourier-sarja: Jaksollisen funktion esitys trigonometristen funktioiden (sin ja cos) sarjakehitelmänä Fourier-muunnos: Integraalimuunnos, jonka avulla signaali voidaan jakaa sinimuotoisiin komponentteihinsa Diskreetti Fourier-muunnos: Jatkuvan Fourier-muunnoksen diskreetti versio Nopea Fourier-muunnos: Algoritmi, jolla diskreetti Fourier-muunnos lasketaan tehokkaasti Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 2/43 p. 2/43

3 Nopeat Fourier-muunnokset Sovelluskohteita: Signaalinkäsittely Spektrianalyysi Magneettikuvaus Äänenpakkaus Yleisesti sovellukset, jotka perustuvat ilmiöiden jaksollisuuteen tai spektrin mittaamiseen Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 3/43 p. 3/43

4 Kompleksiluvut Kompleksiluku z C z = a + ib, missä a = Rez R b = Imz R reaaliosa imaginääriosa i = 1 imaginääriyksikkö Kompleksikonjugaatti z = a ib Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 4/43 p. 4/43

5 Kompleksiluvut De Moivren kaava e ikt = coskt + i sin kt e ikt = coskt i sin kt = cos ( kt) + i sin ( kt) = e ikt Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 5/43 p. 5/43

6 Fourier-sarjat Olkoon f : R C siten, että se on integroituva välillä ] π, π[ 2π-jaksollinen f(x + n2π) = f(x) Merkitään f L 1 (] π, π[) Määritellään kantafunktiot ϕ k : R C siten, että ϕ k (t) = 1 2π e ikt Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 6/43 p. 6/43

7 Fourier-sarjat π π ϕ k (t)ϕ j (t)dt = 1 2π = 1 2π = π π e ikt e ijt dt = 1 π 2π [ π cos (k j)t dt + i π { 1, k = j 0, k j π π e i(k j)t dt ] sin (k j)t dt π Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 7/43 p. 7/43

8 Fourier-sarjat Kuvauksen f Fourier-kertoimet c k (f) = π π f(t)ϕ k (t)dt = 1 2π π π f(t)e ikt dt Kuvauksen f Fourier-sarja F(f, x) = c k (f)ϕ k (x) = 1 2π c k (f)e ikx k= k= Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 8/43 p. 8/43

9 Fourier-sarjat Lause: Olkoon f L 1 (] π, π[) siten, että Fourier-sarja suppenee tasaisesti f jatkuva kaikkialla ja F(f, x) = f(x) Lause: Olkoon f L 1 (] π, π[) paloittain jatkuvasti differentioituva Fourier-sarja suppenee kaikkialla ja F(f, x) = f(x), ( 1 2 lim x x+ ) f( x) + lim f( x) x x jatk., epäjatk. Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 9/43 p. 9/43

10 Fourier-muunnos Olkoon f : R C integroituva koko R:ssä Merkitään f L 1 (R) Fourier-muunnos Ff(y) = ˆf(y) = 1 2π f(t)e iyt dt Fourier-käänteismuunnos F 1 ˆf(x) = 1 2π ˆf(y)e ixy dy Huom: Skaalauskertoimet voidaan valita toisinkin Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 10/43 p. 10/43

11 Fourier-muunnos Muodollisesti F 1 Ff = f Mutta: F 1 ˆf(x) ei välttämättä hyvin määritelty Jos f L 1 (R) ˆf on olemassa ˆf L 1 (R) Lause: Olkoon f L 1 (R) siten, että ˆf L 1 (R) f jatkuva kaikkialla ja F 1 ˆf(x) = f(x) Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 11/43 p. 11/43

12 Fourier-muunnos Lause: Fourier-muunnos on lineaarinen (f + g)(y) = ˆf(y) + ĝ(y), (λf)(y) = λ ˆf(y) missä f, g L 1 (R) ja λ C Lause: Fourier-muunnos muuttaa derivoinnin kertolaskuksi (f )(y) = iy ˆf(y) missä f L 1 (R) siten, että f L 1 (R) ja b a f (t)dt = f(b) f(a) a, b R Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 12/43 p. 12/43

13 Konvoluutiot Olkoot f, g L 1 (R) Konvoluutio (f g)(x) = f(x t)g(t)dt Konvoluutio on symmetrinen: (f g)(x) = (g f)(x) kaikilla x joilla se on määritelty Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 13/43 p. 13/43

14 Konvoluutiot Eräs Fourier-muunnosten sovellus on konvoluutioiden laskeminen Lause: Olkoot f, g L 1 (R) f g L 1 (R) ja (f g)(y) = 2π ˆf(y)ĝ(y) Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 14/43 p. 14/43

15 Diskreetti Fourier-muunnos Fourier-muunnoksen diskreetti versio Sovelluskohde esimerkiksi: Signaalista otetaan näytteitä sopivin väliajoin Käsitellään saatua diskreettiä mittausaineistoa Diskreetti Fourier-muunnos siirtää signaalit aika-alueelta (time domain) taajuusalueelle (frequency domain) Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 15/43 p. 15/43

16 Diskreetti Fourier-muunnos Aika t, mittausjakso [0, 2π] Mittausten lukumäärä N, oletetaan että N = 2M jollain positiivisella kokonaisluvulla M Mittaushetket t j = j2π/n, j = 0, 1,..., N 1 Vastaavat mittausarvot f j C Laajennetaan N-jaksolliseksi pisteistöksi: f j+nn = f j, j = 0, 1,..., N 1 Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 16/43 p. 16/43

17 Diskreetti Fourier-muunnos Merkintä w = e i2π/n Pisteistö w j = e ij2π/n on N-jaksollinen Lause: Jos 0 k, j N 1 N 1 l=0 w kl w lj = { N, k = j 0, k j Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 17/43 p. 17/43

18 Diskreetti Fourier-muunnos Todistus: N 1 w kl w lj = N 1 w kl w lj = N 1 w (k j)l l=0 l=0 l=0 Tapaus k = j w k j = 1 N 1 l=0 w(k j)l = N Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 18/43 p. 18/43

19 Diskreetti Fourier-muunnos Tapaus k j w k j 1 Koska w (k j)n = 1 kaikilla k, j w k j on polynomin p(z) = z N 1 juuri Toisaalta p(z) = (z 1)( N 1 l=0 zl ) ( w k j 1 ) ( N 1 } {{ } 0 N 1 l=0 w(k j)l = 0 l=0 w (k j)l ) = 0 Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 19/43 p. 19/43

20 Diskreetti Fourier-muunnos Määritellään pisteistö ϕ kj siten, että ϕ kj = 1 N w kj, k, j = 0, 1,..., N 1 Edellinen lause N 1 l=0 ϕ kl ϕ lj = { 1, k = j 0, k j Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 20/43 p. 20/43

21 Diskreetti Fourier-muunnos Diskreetti Fourier-muunnos ˆf k = N 1 j=0 f j ϕ kj = 1 N 1 N j=0 f j w kj, k = 0, 1,..., N 1 Diskreetti Fourier-käänteismuunnos f j = N 1 ˆf k ϕ jk = 1 N 1 N ˆf k w jk, j = 0, 1,..., N 1 k=0 k=0 Myös pisteistöt ˆf k ja f j ovat N-jaksollisia Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 21/43 p. 21/43

22 Diskreetti Fourier-muunnos Käänteismuunnos: f l = N 1 ˆf k ϕ lk = N 1 ( N 1 f j ϕ kj )ϕ lk = k=0 N 1 ( N 1 k=0 ϕ lk ϕ kj ) j=0 f j j=0 = f l k=0 } {{ } = 1, l = j = 0, l j Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 22/43 p. 22/43

23 Diskreetti Fourier-muunnos Lause: Diskr. Fourier-muunnos on lineaarinen (f + g) k = ˆf k + ĝ k, (λf)k = λ ˆf k, missä f j, g j ovat N-jaksollisia ja λ C Lause: Diskr. Fourier-muunnos säilyttää normin N 1 ˆf k 2 = N 1 f j 2 k=0 j=0 missä f j on N-jaksollinen Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 23/43 p. 23/43

24 Diskreetti Fourier-muunnos ˆf k = 1 N 1 N j=0 f j w kj N + 1 kertolaskua, N 1 yhteenlaskua (sekä w kj :n laskemiset) Pisteitä N kappaletta N 2 + N kertolaskua, N 2 N yhteenlaskua Diskreetin Fourier-muunnoksen laskennallinen vaativuus määritelmästä laskettuna on O(N 2 ) Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 24/43 p. 24/43

25 Diskreetit konvoluutiot Olkoot f j, g j kaksi N-jaksollista pisteistöä Diskreetti konvoluutio (f g) j = N 1 l=0 f j l g l, j = 0, 1,..., N 1 Symmetrinen: (f g) j = (g f) j N kertolaskua, N 1 yhteenlaskua Pisteitä N kappaletta N 2 kertolaskua, N 2 N yhteenlaskua Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 25/43 p. 25/43

26 Diskreetit konvoluutiot Lause: Olkoot f j, g j N-jaksollisia (f g) k = N ˆf k ĝ k Kaksi N:n pisteen muunnosta, yksi N:n pisteen käänteismuunnos, N + 1 kertolaskua Jos Fourier-muunnosten laskeminen O(N 2 ) Myös konvoluution laskeminen O(N 2 ) Ei parempi kuin suoraan määritelmästä Lause hyödyllinen jos Fourier-muunnos pystytään laskemaan nopeammin kuin O(N 2 ) Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 26/43 p. 26/43

27 Esimerkki Reaaliarvoinen signaali f(t) = sin(2π20t) + sin(2π35t) + sin(2π50t) Näytteenottoväli δt = Näytteiden lukumäärä N = 256 Näytteet f j = f(t j ) ajanhetkillä t j = jδt, j = 0, 1,..., N 1 Mutta: Mitattu signaali sisältää aina myös kohinaa Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 27/43 p. 27/43

28 Esimerkki jatkuu AIKA (MS) Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 28/43 p. 28/43

29 Esimerkki jatkuu AIKA (MS) Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 29/43 p. 29/43

30 Esimerkki jatkuu Pisteistön f j diskreetti Fourier-muunnos ˆf k Signaalin diskreetti tehospektri ˆf k 2 /N Esitetään tehospektri taajuuden ϕ k = k/(nδt) funktiona Suuret piikit alkuper. signaalin taajuuksia Pienet piikit kohinan aiheuttamia Koska f j :t reaalisia tarvitaan vain pisteet k = 0, 1,..., N/2 1 Vain puolet taajuusalueesta käyttökelpoista (taajuudet 0 Hz... 1/2δt Hz) Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 30/43 p. 30/43

31 Esimerkki jatkuu TAAJUUS (HZ) Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 31/43 p. 31/43

32 Esimerkki jatkuu Kohinan suodatus: Poistetaan kohinaa vastaavat taajuudet Asetetaan pisteistöstä ˆf k nolliksi ne komponentit, jotka vastaavat yli 100 Hz taajuuksia Suodatetun pisteistön ˆf k diskreetti Fourier-käänteismuunnos f j Verrataan alkuperäiseen signaaliin Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 32/43 p. 32/43

33 Esimerkki jatkuu AIKA (MS) Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 33/43 p. 33/43

34 Nopeat Fourier-muunnokset Diskreetin Fourier-muunnoksen laskeminen määritelmästä O(N 2 ) nopeilla Fourier-muunnoksilla O(N log N) N N 2 N log N Fast Fourier transforms, FFT Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 34/43 p. 34/43

35 Yleinen algoritmi Diskreetti Fourier-muunnos ˆf k = 1 N 1 N j=0 f j w kj N, w N = e i2π/n Olkoon N = N 1 N 2 Määritellään j ja k uudelleen j = N 1 j 2 + j 1, k = N 2 k 1 + k 2 missä j 1, k 1 = 0, 1,..., N 1 1 ja j 2, k 2 = 0, 1,..., N 2 1 Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 35/43 p. 35/43

36 Yleinen algoritmi ˆf N2 k 1 +k 2 = 1 N 1 1 N j 1 =0 = 1 N 1 1 N N 2 1 j 2 =0 N 2 1 f N1 j 2 +j 1 w (N 2k 1 +k 2 )(N 1 j 2 +j 1 ) N f N1 j 2 +j 1 j 1 =0 j 2 =0 w N 2N 1 k 1 j 2 } N {{} w N 2k 1 j 1 } N{{} w N 1k 2 j 2 } N{{} w k 2j 1 N w N 1N 2 N = 1 w N 2 N = w N 1 w N 1 N = w N 2 Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 36/43 p. 36/43

37 Yleinen algoritmi ˆf N2 k 1 +k 2 = 1 N 1 1 N1 ( j 1 =0 kiertokerroin N N2 {}}{ w k 2j 1 N j 2 =0 ) f N1 j 2 +j 1 w k 2j 2 N 2 }{{} N 2 :n pisteen diskr. Fourier-muunnos w k 1j 1 N 1 } {{ } N 1 :n pisteen diskr. Fourier-muunnos Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 37/43 p. 37/43

38 Yleinen algoritmi (1) Merkitään g j2 = f N1 j 2 +j 1, j 2 = 0, 1,..., N 2 1 Kullakin j 1 saadaan eri pisteistö g j2 = g j1,j 2 Lasketaan N 2 :n pisteen muunnokset ĝ k2 = 1 N 2 1 N2 j 2 =0 g j2 w k 2j 2 N 2 Erikseen kullakin j 1 N 1 kpl N 2 :n pisteen muunnoksia ĝ k2 = ĝ j1,k 2 Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 38/43 p. 38/43

39 Yleinen algoritmi (2) Merkitään h j1 = w k 2j 1 N ĝ j1,k 2, j 1 = 0, 1,..., N 1 1 Toisin sanoen kerrotaan pisteistöjen ĝ j1,k 2 alkiot kiertokertoimilla w k 2j 1 N Kullakin k 2 saadaan eri pisteistö h j1 = h k2,j 1 Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 39/43 p. 39/43

40 Yleinen algoritmi (3) Lasketaan N 1 :n pisteen muunnokset ĥ k1 = 1 N 1 1 N1 j 1 =0 h j1 w k 1j 1 N 1 Erikseen kullakin k 2 N 2 kpl N 1 :n pisteen muunnoksia ĥk 1 = ĥk 2,k 1 ˆf k = ĥk 2,k 1 Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 40/43 p. 40/43

41 Yleinen algoritmi (vaativuus) Muunnos suoraan N:n pisteen muunnoksena: N 2 + N = N 1 N 2 (N 1 N 2 + 1) kertolaskua Edellisellä algoritmilla: N 1 kertaa N 2 :n pisteen muunnos kerrotaan N 1 N 2 kertaa kiertokertoimilla N 2 kertaa N 1 :n pisteen muunnos N 1 (N2 2 + N 2 ) + N 1 N 2 + N 2 (N1 2 + N 1 ) = N 1 N 2 (N 1 + N 2 + 3) < N 1 N 2 (N 1 N 2 + 1) kertolaskua Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 41/43 p. 41/43

42 Yleinen algoritmi Laskut voidaan tehdä myös toisessa järjestyksessä: Kerrotaan N 2 N 1 kertaa kiertokertoimilla N 2 kertaa N 1 :n pisteen muunnos N 1 kertaa N 2 :n pisteen muunnos (Ei käsitellä) Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 42/43 p. 42/43

43 Yleinen algoritmi (rekursio) Olkoot N 1 ja N 2 muotoa N 1 = N 1,1 N 1,2 ja N 2 = N 2,1 N 2,2 Sovelletaan edellistä algoritmia N 1 :n ja N 2 :n pisteen muunnosten laskemiseen FFT rekursiivisesti N = 2 n Cooley Tukey-algoritmit Numeeriset menetelmät Syksy 2011 Luento 13 Ti p. 43/43 p. 43/43

Numeeriset menetelmät TIEA381. Luento 13. Kirsi Valjus. Jyväskylän yliopisto. Luento 13 () Numeeriset menetelmät / 42

Numeeriset menetelmät TIEA381. Luento 13. Kirsi Valjus. Jyväskylän yliopisto. Luento 13 () Numeeriset menetelmät / 42 Numeeriset menetelmät TIEA381 Luento 13 Kirsi Valjus Jyväskylän yliopisto Luento 13 () Numeeriset menetelmät 8.5.2013 1 / 42 Luennon 13 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Moniaskelmenetelmien

Lisätiedot

Nopeat Fourier-muunnokset

Nopeat Fourier-muunnokset opeat Fourier-muunnokset Timo ännikkö 1 Fourier-analyysin alkeita 1.1 Fourier-sarjat Olkoon f koko R:ssä määritelty kuvaus siten, että se on integroituva välillä ] π, π[ ja lisäksi -jaksollinen, ts. fx

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 14. Kirsi Valjus. Jyväskylän yliopisto. Luento 14 () Numeeriset menetelmät / 55

Numeeriset menetelmät TIEA381. Luento 14. Kirsi Valjus. Jyväskylän yliopisto. Luento 14 () Numeeriset menetelmät / 55 Numeeriset menetelmät TIEA381 Luento 14 Kirsi Valjus Jyväskylän yliopisto Luento 14 () Numeeriset menetelmät 15.5.2013 1 / 55 Luennon 14 sisältö Nopeat Fourier-muunnokset (FFT) Yleinen algoritmi 2-kantainen

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 14 To 20.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 14 To 20.10.2011 p. 1/39 p. 1/39 Nopeat Fourier-muunnokset Diskreetti Fourier-muunnos ˆf k = 1 N 1 N

Lisätiedot

MS-C1420 Fourier-analyysi osa I

MS-C1420 Fourier-analyysi osa I MS-C142 Fourier-analyysi osa I G. Gripenberg Aalto-yliopisto 29. tammikuuta 214 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa I 29. tammikuuta 214 1 / 3 1 Johdanto 2 Fourier-integraali Fourier-muunnos

Lisätiedot

MS-C1420 Fourier-analyysi osa I

MS-C1420 Fourier-analyysi osa I 1 Johdanto MS-C142 Fourier-analyysi osa I G Gripenberg 2 Fourier-integraali Fourier-muunnos ja derivaatta Konvoluutio Fourier-käänteismuunnos eliöintegroituvat funktiot Aalto-yliopisto 29 tammikuuta 214

Lisätiedot

MS-C1420 Fourier-analyysi osa I

MS-C1420 Fourier-analyysi osa I MS-C1420 Fourier-analyysi osa I G. Gripenberg Aalto-yliopisto 29. tammikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-C1420 Fourier-analyysiosa I 29. tammikuuta 2014 1 / 29 Fourier-muunnoksia Jatkuva-aikaisen

Lisätiedot

Mat / Mat Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 42, loppuviikko, syksy 2008

Mat / Mat Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 42, loppuviikko, syksy 2008 Mat-.3 / Mat-.33 Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 4, loppuviikko, syksy 8 Ennen malliratkaisuja, muistin virkistämiseksi kaikkien rakastama osittaisintegroinnin kaava: b a u(tv (t

Lisätiedot

Osa VI. Fourier analyysi. A.Rasila, J.v.Pfaler () Mat Matematiikan peruskurssi KP3-i 12. lokakuuta / 246

Osa VI. Fourier analyysi. A.Rasila, J.v.Pfaler () Mat Matematiikan peruskurssi KP3-i 12. lokakuuta / 246 Osa VI Fourier analyysi A.Rasila, J.v.Pfaler () Mat-1.1331 Matematiikan peruskurssi KP3-i 12. lokakuuta 2007 127 / 246 1 Johdanto 2 Fourier-sarja 3 Diskreetti Fourier muunnos A.Rasila, J.v.Pfaler () Mat-1.1331

Lisätiedot

Spektri- ja signaalianalysaattorit

Spektri- ja signaalianalysaattorit Spektri- ja signaalianalysaattorit Pyyhkäisevät spektrianalysaattorit Suora pyyhkäisevä Superheterodyne Reaaliaika-analysaattorit Suora analoginen analysaattori FFT-spektrianalysaattori DFT FFT Analysaattoreiden

Lisätiedot

MS-C1420 Fourier-analyysi Esimerkkejä, perusteluja, osa I

MS-C1420 Fourier-analyysi Esimerkkejä, perusteluja, osa I MS-C140 Fourier-analyysi Esimerkkejä, perusteluja, osa I G. Gripenberg Aalto-yliopisto 3. tammikuuta 014 G. Gripenberg (Aalto-yliopisto MS-C140 Fourier-analyysiEsimerkkejä, perusteluja, osa3. I tammikuuta

Lisätiedot

MS-C1420 Fourier-analyysi Esimerkkejä, perusteluja, osa I

MS-C1420 Fourier-analyysi Esimerkkejä, perusteluja, osa I MS-C14 Fourier-analyysi Esimerkkejä, perusteluja, osa I G. Gripenberg Aalto-yliopisto 3. tammikuuta 14 G. Gripenberg (Aalto-yliopisto MS-C14 Fourier-analyysiEsimerkkejä, perusteluja, osa3. I tammikuuta

Lisätiedot

Jaksollisen signaalin spektri

Jaksollisen signaalin spektri Jaksollisen signaalin spektri LuK-tutkielma Topi Suviaro 2257699 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 215 Sisältö Johdanto 2 1 Jaksollisuudesta 2 2 Spektristä 3 2.1 Symmetrian vaikutuksesta

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 7 Ti 27.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 7 Ti 27.9.2011 p. 1/39 p. 1/39 Interpolointi Ei tunneta funktion f : R R lauseketta, mutta tiedetään funktion

Lisätiedot

1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n.

1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0004/A0006 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 8.9.015 Reaalinen

Lisätiedot

Kompleksianalyysi, viikko 6

Kompleksianalyysi, viikko 6 Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että

Lisätiedot

1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7

1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7 Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7 1 Kompleksiluvut Lukualueiden laajennuksia voi lähestyä polynomiyhtälöiden ratkaisemisen kautta. Yhtälön x+1 = 0 ratkaisemiseksi tarvitaan negatiivisia lukuja.

Lisätiedot

1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2

1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2 Sisältö 1 Kompleksiluvut 1 1.1 Määritelmä............................ 1 1. Kertolasku suorakulmaisissa koordinaateissa.......... 4 1.3 Käänteisluku ja jakolasku..................... 9 1.4 Esimerkkejä.............................

Lisätiedot

Signaalit ja järjestelmät aika- ja taajuusalueissa

Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit aika ja taajuusalueissa Muunnokset aika ja taajuusalueiden välillä Fourier sarja (jaksollinen signaali) Fourier muunnos (jaksoton signaali)

Lisätiedot

y z = (x, y) Kuva 1: Euklidinen taso R 2

y z = (x, y) Kuva 1: Euklidinen taso R 2 Kompleksiluvut. Määritelmä Tarkastellaan euklidista tasoa R = {(, y), y R}. y y z = (, y) R Kuva : Euklidinen taso R Suorakulmaisessa koordinaatistossa on -akseli ja y-akseli. Luvut ja y ovat pisteen z

Lisätiedot

Pienimmän neliösumman menetelmä

Pienimmän neliösumman menetelmä Pienimmän neliösumman menetelmä Keijo Ruotsalainen Division of Mathematics Funktion sovitus Datapisteet (x 1,...,x n ) Annettu data y i = f(x i )+η i, missä f(x) on tuntematon funktio ja η i mittaukseen

Lisätiedot

Kompleksiluvut signaalin taajuusjakauman arvioinnissa

Kompleksiluvut signaalin taajuusjakauman arvioinnissa Kompleksiluvut signaalin taajuusjakauman arvioinnissa Vierailuluento IMA-kurssilla Heikki Huttunen Lehtori, TkT Signaalinkäsittely, TTY heikki.huttunen@tut.fi Department of Signal Processing Fourier-muunnos

Lisätiedot

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Olkoon X sisätuloavaruus ja Y X äärellisulotteinen aliavaruus. Tällöin on olemassa lineaarisesti riippumattomat vektorit y 1, y 2,..., yn, jotka

Lisätiedot

7. Tasaisen rajoituksen periaate

7. Tasaisen rajoituksen periaate 18 FUNKTIONAALIANALYYSIN PERUSKURSSI 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin

Lisätiedot

2. Fourier-sarjoista. Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu

2. Fourier-sarjoista. Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu 2. Fourier-sarjoista Fourier-analyysi: Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu Matemaattisen analyysin täkein työväline "Jokainen funktio" voidaan esittää harmonisten värähtelyjen, so.

Lisätiedot

Diskreetti Fourier-muunnos ja sen hyödyntäminen signaalien spektrien muodostamisessa. Pentti Romppainen

Diskreetti Fourier-muunnos ja sen hyödyntäminen signaalien spektrien muodostamisessa. Pentti Romppainen Diskreetti Fourier-muunnos ja sen hyödyntäminen signaalien spektrien muodostamisessa Pentti Romppainen Kajaanin ammattikorkeakoulu Oy Kajaani University of Applied Sciences Diskreetti Fourier-muunnos ja

Lisätiedot

MS-C1420 Fourier-analyysi osa II

MS-C1420 Fourier-analyysi osa II MS-C142 Fourier-analyysi osa II G. Gripenberg Aalto-yliopisto 14. helmikuuta 214 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta 214 1 / 36 1 Fourier-sarjat ja Fourier-integraalit

Lisätiedot

Funktioiden approksimointi ja interpolointi

Funktioiden approksimointi ja interpolointi Funktioiden approksimointi ja interpolointi Keijo Ruotsalainen Division of Mathematics interpolaatio-ongelma 8 Eksponenttifunktion exp(x) interpolointi 3.5 Funktion e^{0.25x} \sin(x) interpolointi 7 3

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 3 Ti 13.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 3 Ti 13.9.2011 p. 1/37 p. 1/37 Epälineaariset yhtälöt Newtonin menetelmä: x n+1 = x n f(x n) f (x n ) Sekanttimenetelmä:

Lisätiedot

5 Ominaisarvot ja ominaisvektorit

5 Ominaisarvot ja ominaisvektorit 5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A

Lisätiedot

Yhteenveto Fourier-numeriikan luennoista

Yhteenveto Fourier-numeriikan luennoista March 25, 21 versio 1.1 1 Yhteenveto Fourier-numeriikan luennoista 19.3.-25.3.21 Fourier-sarja f paloittain jatkuva funktio [, L]. Kosinisarja: jossa Sinisarja: jossa Esimerkki 1. Funktion sinisarja on

Lisätiedot

6.1 Autokovarianssifunktion karakterisaatio aikatasossa

6.1 Autokovarianssifunktion karakterisaatio aikatasossa 6. Spektraalianalyysi Tällä kurssilla on käyty läpi eräitä stationääristen aikasarjojen ominaispiirteitä, kuten aikasarjaa mallintavan stokastisen prosessin X t odotusarvo E[X t ] ja autokovarianssifunktio

Lisätiedot

Kompleksiluvut., 15. kesäkuuta /57

Kompleksiluvut., 15. kesäkuuta /57 Kompleksiluvut, 15. kesäkuuta 2017 1/57 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen

Lisätiedot

Fourier-sarjat ja -muunnos

Fourier-sarjat ja -muunnos 24. marraskuuta 2016 Jaksolliset funktiot, trigonometriset sarjat, parilliset ja p Jaksolliset funktiot Funktio f : R R on jaksollinen, jos on olemassa p > 0 siten, että f (x + p) = f (x) kaikilla x R

Lisätiedot

(0 desimaalia, 2 merkitsevää numeroa).

(0 desimaalia, 2 merkitsevää numeroa). NUMEERISET MENETELMÄT DEMOVASTAUKSET SYKSY 20.. (a) Absoluuttinen virhe: ε x x ˆx /7 0.4 /7 4/00 /700 0.004286. Suhteellinen virhe: ρ x x ˆx x /700 /7 /00 0.00 0.%. (b) Kahden desimaalin tarkkuus x ˆx

Lisätiedot

e ax, kun x > 0 f(x) = 0, kun x < 0, 0, kun x > 0 e ax, kun x < 0 e (a iω)x dx = a+iω = 1 a 2 +ω 2. e ax, x > 0 e ax, x < 0,

e ax, kun x > 0 f(x) = 0, kun x < 0, 0, kun x > 0 e ax, kun x < 0 e (a iω)x dx = a+iω = 1 a 2 +ω 2. e ax, x > 0 e ax, x < 0, Harjoitus 5 1. Olkoot a > 0. Laske vaimenevan pulssin e ax, kun x > 0 fx) = 0, kun x < 0, ja voimistuvan pulssin gx) = konvoluution g f Fourier-muunnos. 0, kun x > 0 e ax, kun x < 0 apa 1: Konvoluution

Lisätiedot

Kompleksiluvut Kompleksitaso

Kompleksiluvut Kompleksitaso . Kompleksiluvut.. Kompleksitaso 8. Todista kompleksilukujen yhteen- ja kertolaskun (lukuparien avulla annettuihin) määritelmiin perustuen osittelulaki: z (z + z ) = z z + z z. 8. Todista kompleksilukujen

Lisätiedot

Seuraava topologisluonteinen lause on nk. Bairen lause tai Bairen kategorialause, n=1

Seuraava topologisluonteinen lause on nk. Bairen lause tai Bairen kategorialause, n=1 FUNKTIONAALIANALYYSIN PERUSKURSSI 115 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35 Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen

Lisätiedot

Luento 2. Jaksolliset signaalit

Luento 2. Jaksolliset signaalit Luento Jaksollisten signaalien Fourier-sarjat Viivaspektri S-.7. Signaalit ja järjestelmät 5 op KK ietoliikennelaboratorio Jaksollinen (periodinen) Jaksolliset signaalit Jaksonaika - / / Perusjakso Amplitudi

Lisätiedot

6.2.3 Spektrikertymäfunktio

6.2.3 Spektrikertymäfunktio ja prosessin (I + θl + + θl q )ε t spektritiheysfunktio on Lemman 6. ja Esimerkin 6.4 nojalla σ π 1 + θ 1e iω + + θ q e iqω. Koska viivepolynomien avulla määritellyt prosessit yhtyvät, niin myös niiden

Lisätiedot

Satunnaismuuttujien muunnokset ja niiden jakaumat

Satunnaismuuttujien muunnokset ja niiden jakaumat Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja

Lisätiedot

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 6 To 22.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 6 To 22.9.2011 p. 1/38 p. 1/38 Ominaisarvotehtävät Monet sovellukset johtavat ominaisarvotehtäviin Yksi

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 6 Mikko Salo 6.9.2017 Sisältö 1. Kompleksitaso 2. Joukko-oppia Kompleksiluvut Edellisellä luennolla huomattiin, että toisen asteen yhtälö ratkeaa aina, jos ratkaisujen annetaan

Lisätiedot

Harjoitus 1, tehtävä 1

Harjoitus 1, tehtävä 1 Heikki Kallasjoki, 66H, htkallas@cc.hut.fi /34 Harjoitus, tehtävä Oletetaan, että f C(R) on π-jaksollinen funktio ja a R. Näytä, että f(t + a) dt f(t) dt a+π f(t) dt. a () () (3) Tarkastellaan ensin lauseketta

Lisätiedot

Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1

Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1 Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2004) 1 Satunnaismuuttujien muunnokset ja niiden jakaumat Satunnaismuuttujien muunnosten jakaumat

Lisätiedot

Luento 9: Yhtälörajoitukset optimoinnissa

Luento 9: Yhtälörajoitukset optimoinnissa Luento 9: Yhtälörajoitukset optimoinnissa Lagrangen kerroin Oletetaan aluksi, että f, g : R R. Merkitään (x 1, x ) := (x, y) ja johdetaan Lagrangen kerroin λ tehtävälle min f(x, y) s.t. g(x, y) = 0 Olkoon

Lisätiedot

Mat-1.1331 Matematiikan pk KP3-i - kertaus

Mat-1.1331 Matematiikan pk KP3-i - kertaus Mat-.33 Matematiikan pk KP3-i - kertaus J.v.Pfaler TKK 24. lokakuuta 2007 Kurssin ensimmäisen puoliskon selkäranka on Kompleksitason funktioiden teoria, sisältäen analyyttiset funktiot, auchy integraali

Lisätiedot

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1 1. Tarkastellaan funktiota missä σ C ja y (y 1,..., y n ) R n. u : R n R C, u(x, t) e i(y x σt), (a) Miksi funktiota u(x, t) voidaan kutsua tasoaalloksi, jonka aaltorintama on kohtisuorassa vektorin y

Lisätiedot

805324A (805679S) Aikasarja-analyysi Harjoitus 5 (2016)

805324A (805679S) Aikasarja-analyysi Harjoitus 5 (2016) 805324A (805679S) Aikasarja-analyysi Harjoitus 5 (2016) Tavoitteet (teoria): Ymmärtää kausivaihtelun käsite ja sen yhteys otoshetkiin. Oppia käsittelemään periodogrammia.. Tavoitteet (R): Periodogrammin,

Lisätiedot

JATKUVUUS. Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista.

JATKUVUUS. Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista. JATKUVAT FUNKTIOT JATKUVUUS Jatkuva funktio Epäjatkuva funktio Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista., suomennos Matti Pauna JATKUVUUS Jatkuva funktio Epäjatkuva

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

MS-C1420 Fourier-analyysi osa II

MS-C1420 Fourier-analyysi osa II MS-C142 Fourier-analyysi osa II G. Gripenberg Aalto-yliopisto 14. helmikuuta 214 1 Fourier-sarjat ja Fourier-integraalit Poissonin summakaava Whittaker-Shannonin interpolointikaava 2 Vaimennetunen distribuution

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 6 Kirsi Valjus Jyväskylän yliopisto Luento 6 () Numeeriset menetelmät 4.4.2013 1 / 33 Luennon 6 sisältö Interpolointi ja approksimointi Polynomi-interpolaatio: Vandermonden

Lisätiedot

a) z 1 + z 2, b) z 1 z 2, c) z 1 z 2, d) z 1 z 2 = 4+10i 4 = 10i 5 = 2i. 4 ( 1)

a) z 1 + z 2, b) z 1 z 2, c) z 1 z 2, d) z 1 z 2 = 4+10i 4 = 10i 5 = 2i. 4 ( 1) Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Osoita, että kompleksilukujen yhteenlasku määriteltynä tasopisteiden kautta koordinaateittain on liitännäinen, so. z + (z + z ) = (z + z )

Lisätiedot

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu 2 Interpolointi Olkoon annettuna n+1 eri pistettä x 0, x 1, x n R ja n+1 lukua y 0, y 1,, y n Interpoloinnissa etsitään funktiota P, joka annetuissa pisteissä x 0,, x n saa annetut arvot y 0,, y n, (21)

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa MS-A24 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 216 Antti Rasila

Lisätiedot

1 Ominaisarvot ja ominaisvektorit

1 Ominaisarvot ja ominaisvektorit 1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin

Lisätiedot

MATEMATIIKAN JA TILASTOTIETEEN LAITOS

MATEMATIIKAN JA TILASTOTIETEEN LAITOS f ( n) JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Funktionaalianalyysi Ei harjoituksia 1.4.2015 Funktionaalista viihdettä pääsiäistauolle: viikolla 14 (ma 30.3., ti 31.3. ja ke 1.4.)

Lisätiedot

4. Fourier-analyysin sovelletuksia. Funktion (signaalin) f(t) näytteistäminen tapahtuu kertomalla funktio näytteenottosignaalilla

4. Fourier-analyysin sovelletuksia. Funktion (signaalin) f(t) näytteistäminen tapahtuu kertomalla funktio näytteenottosignaalilla 4.1 Näytteenottolause 4. Fourier-analyysin sovelletuksia Näyttenottosignaali (t) = k= δ(t kt). T on näytteenottoväli, ja ω T = 1 T on näyttenottotaajuus. Funktion (signaalin) f(t) näytteistäminen tapahtuu

Lisätiedot

Kompleksianalyysi, viikko 5

Kompleksianalyysi, viikko 5 Kompleksianalyysi, viikko 5 Jukka Kemppainen Mathematics Division Kompleksiset jonot Aloitetaan jonon suppenemisesta. Määr. 1 Kompleksiluvuista z 1,z 2,...,z n,... koostuva jono suppenee kohti raja-arvoa

Lisätiedot

HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 5 Ratkaisuehdotuksia

HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 5 Ratkaisuehdotuksia HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 015 Harjoitus 5 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan väitteiden todistamista tai kumoamista vastaesimerkin

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

HILBERTIN AVARUUDET 802652S MIKAEL LINDSTRÖM KEVÄÄN 2010 ANALYYSI 3 -LUENTOJEN PERUSTEELLA TOIMITTANEET TOMI ALASTE JA LAURI BERKOVITS

HILBERTIN AVARUUDET 802652S MIKAEL LINDSTRÖM KEVÄÄN 2010 ANALYYSI 3 -LUENTOJEN PERUSTEELLA TOIMITTANEET TOMI ALASTE JA LAURI BERKOVITS HILBRTIN AVARUUDT 802652S MIKAL LINDSTRÖM KVÄÄN 2010 ANALYYSI 3 -LUNTOJN PRUSTLLA TOIMITTANT TOMI ALAST JA LAURI BRKOVITS Sisältö 1 Hilbertin Avaruudet 3 1.1 Normi- ja L p -avaruudet........................

Lisätiedot

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos

Lisätiedot

Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 5. joulukuuta Z-muunnos

Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 5. joulukuuta Z-muunnos Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt 5. joulukuuta 2016 Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt Lukujonot Lukujonot Z-muunnoksen ominaisuuksia

Lisätiedot

Kompleksiluvut 1/6 Sisältö ESITIEDOT: reaaliluvut

Kompleksiluvut 1/6 Sisältö ESITIEDOT: reaaliluvut Kompleksiluvut 1/6 Sisältö Kompleksitaso Lukukäsitteen vaiheittainen laajennus johtaa luonnollisista luvuista kokonaislukujen ja rationaalilukujen kautta reaalilukuihin. Jokaisessa vaiheessa ratkeavien

Lisätiedot

Harjoitus Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia:

Harjoitus Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia: Differentiaaliyhtälöt, Kesä 216 Harjoitus 2 1. Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia: (a) y = (2 y) 3, (b) y = (y 1) 2, (c) y = 2y y 2. 2. Etsi seuraavien

Lisätiedot

A B = 100, A = B = 0. D = 1.2. Ce (1.2 D. C (t D) 0, t < 0. t D. )} = Ae πjf D F{Π( t D )} = ADe πjf D sinc(df)

A B = 100, A = B = 0. D = 1.2. Ce (1.2 D. C (t D) 0, t < 0. t D. )} = Ae πjf D F{Π( t D )} = ADe πjf D sinc(df) ELEC-A7 Signaalit ja järjestelmät Syksy 5 Tehtävä 3. a) Suoran tapauksessa ratkaistaan kaksi tuntematonta termiä, A ja B, joten tarvitaan kaksi pistettä, jotka ovat pisteet t = ja t =.. Saadaan yhtälöpari

Lisätiedot

1 Määritelmä ja perusominaisuuksia. 2 Laskutoimitukset kompleksiluvuilla. 3 Reaaliluvut ja kompleksiluvut. 4 Kompleksilukujen algebraa

1 Määritelmä ja perusominaisuuksia. 2 Laskutoimitukset kompleksiluvuilla. 3 Reaaliluvut ja kompleksiluvut. 4 Kompleksilukujen algebraa 1 ja perusominaisuuksia 2 Laskutoimitukset kompleksiluvuilla 3 Reaaliluvut ja kompleksiluvut Matematiikan peruskurssi KP3 I OSA 1: Johdatus kompleksilukuihin 4 Kompleksilukujen algebraa 5 Kompleksitaso

Lisätiedot

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa 8 Potenssisarjoista 8. Määritelmä Olkoot a 0, a, a 2,... reaalisia vakioita ja c R. Määritelmä 8.. Muotoa a 0 + a (x c) + a 2 (x c) 2 + olevaa sarjaa sanotaan c-keskiseksi potenssisarjaksi. Selvästi jokainen

Lisätiedot

MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio

MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio Olkoon a 1 = a 2 = 5 ja a n+1 = a n + 6a n 1 kun n 2. Todista induktiolla, että a n = 3 n ( 2) n, kun n on positiivinen

Lisätiedot

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin z muunnos ja sen soveltaminen LTI järjestelmien analysointiin muunnoksella (eng. transform) on vastaava asema diskreettiaikaisten signaalien ja LTI järjestelmien analyysissä kuin Laplace muunnoksella jatkuvaaikaisten

Lisätiedot

ELEC-C7230 Tietoliikenteen siirtomenetelmät

ELEC-C7230 Tietoliikenteen siirtomenetelmät ELEC-C7230 Tietoliikenteen siirtomenetelmät Laskuharjoitus 8 - ratkaisut 1. Tehtävässä on taustalla ajatus kantoaaltomodulaatiosta, jossa on I- ja Q-haarat, ja joka voidaan kuvata kompleksiarvoisena kantataajuussignaalina.

Lisätiedot

Kuvaus. Määritelmä. LM2, Kesä /160

Kuvaus. Määritelmä. LM2, Kesä /160 Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä

Lisätiedot

e int) dt = 1 ( 2π 1 ) (0 ein0 ein2π

e int) dt = 1 ( 2π 1 ) (0 ein0 ein2π Matematiikan ja tilastotieteen laitos Funktionaalianalyysin peruskurssi Kevät 9) Harjoitus 7 Ratkaisuja Jussi Martin). E Hilbert avaruus L [, π]) ja gt) := t, t [, π]. Määrää funktion g Fourier kertoimet

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 2. Kompleksitason topologiaa Kompleksianalyysi on kompleksiarvoisten kompleksimuuttujien funktioiden teoriaa. Tällä kurssilla käsittelemme vain

Lisätiedot

Matemaattisen analyysin tukikurssi

Matemaattisen analyysin tukikurssi Matemaattisen analyysin tukikurssi 5. Kurssikerta Petrus Mikkola 10.10.2016 Tämän kerran asiat Raja-arvo ja toispuolinen raja-arvo Funktion suurin ja pienin arvo Lukujono Lukujonon suppeneminen Kasvava

Lisätiedot

(a) Kyllä. Jokainen lähtöjoukon alkio kuvautuu täsmälleen yhteen maalijoukon alkioon.

(a) Kyllä. Jokainen lähtöjoukon alkio kuvautuu täsmälleen yhteen maalijoukon alkioon. HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 015 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät kuvauksiin. 1. Merkitään X = {1,,, 4}. Ovatko seuraavat säännöt

Lisätiedot

MS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset

MS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset MS-C350 Osittaisdifferentiaaliyhtälöt Haroitukset 5, syksy 207. Oletetaan, että a > 0 a funktio u on yhtälön u a u = 0 ratkaisu. a Osoita, että funktio vx, t = u x, t toteuttaa yhtälön a v = 0. b Osoita,

Lisätiedot

F {f(t)} ˆf(ω) = 1. F { f (n)} = (iω) n F {f}. (11) BM20A5700 - INTEGRAALIMUUNNOKSET Harjoitus 10, viikko 46/2015. Fourier-integraali:

F {f(t)} ˆf(ω) = 1. F { f (n)} = (iω) n F {f}. (11) BM20A5700 - INTEGRAALIMUUNNOKSET Harjoitus 10, viikko 46/2015. Fourier-integraali: BMA57 - INTEGRAALIMUUNNOKSET Harjoitus, viikko 46/5 Fourier-integraali: f(x) A() π B() π [A() cos x + B() sin x]d, () Fourier-muunnos ja käänteismuunnos: f(t) cos tdt, () f(t) sin tdt. (3) F {f(t)} ˆf()

Lisätiedot

Kompleksianalyysi, viikko 4

Kompleksianalyysi, viikko 4 Kompleksianalyysi, viikko 4 Jukka Kemppainen Mathematics Division Reaalimuuttujan kompleksiarvoisen funktion integraali Aloitetaan reaalimuuttujan kompleksiarvoisen funktion integraalin määrittelyllä,

Lisätiedot

Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 1. joulukuuta Z-muunnos

Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 1. joulukuuta Z-muunnos Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt 1. joulukuuta 2015 Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt Lukujono Lukujono on diskreetti funktio

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-1200 Signaalinkäsittelyn menetelmät, Tentti 24.4.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

1. Piirrä kompleksitasoon seuraavat matemaattiset objektit/alueet.

1. Piirrä kompleksitasoon seuraavat matemaattiset objektit/alueet. BM0A5700 - Integraalimuunnokset Harjoitus 1 1. Piirrä kompleksitasoon seuraavat matemaattiset objektit/alueet. a Piste z 1 i. Ympyrä z 1 i. Avoin kiekko z 1 i

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY exp z., k = 1, 2,... Eksponenttifunktion z exp(z) Laurent-sarjan avulla

KOMPLEKSIANALYYSI I KURSSI SYKSY exp z., k = 1, 2,... Eksponenttifunktion z exp(z) Laurent-sarjan avulla KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 11. Integrointi erillisen erikoispisteen ympäri Olkoot f analyyttinen punkteeratussa kiekossa D(z 0.r\{z 0 }. Funktiolla f on erikoispiste z 0.

Lisätiedot

4.3.7 Epäoleellinen integraali

4.3.7 Epäoleellinen integraali Esimerkki 4.3.16. (Lineaarinen muuttujien vaihto) Olkoot A R m sellainen kompakti joukko, että A on nollajoukko. Olkoon M R m m säännöllinen matriisi (eli det(m) 0) ja f : R m R jatkuva funktio. Tehdään

Lisätiedot

3.4 Käänteiskuvauslause ja implisiittifunktiolause

3.4 Käänteiskuvauslause ja implisiittifunktiolause 3.4 Käänteiskuvauslause ja implisiittifunktiolause Tässä luvussa käsitellään kahta keskeistä vektorianalyysin lausetta. Esitellään aluksi kyseiset lauseet ja tutustutaan niiden käyttötapoihin. Lause 3.4.1

Lisätiedot

Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1.

Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1. Analyysi 1 Harjoituksia lukuihin 4 7 / Syksy 014 1. Tutki funktion x + x jatkuvuutta pisteissä x = 0 ja x = 1.. Määritä vakiot a ja b siten, että funktio a x cos x + b x + b sin x, kun x 0, x 4, kun x

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

SIGNAALITEORIAN KERTAUSTA OSA 1

SIGNAALITEORIAN KERTAUSTA OSA 1 1 SIGNAALITEORIAN KERTAUSTA OSA 1 Millainen on signaalin spektri ja miten se lasketaan? SIGNAALIEN JA SPEKTRIN PERUSKÄSITTEITÄ 2 Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka graafinen

Lisätiedot

(a, 0) + (c, 0) = (a + c, 0)

(a, 0) + (c, 0) = (a + c, 0) . Kompleksiluvut Kompleksiluvut C saadaan varustamalla taso R komponenteittaisella yhteenlaskulla (Esimerkki.3 (b)) ja kertolaskulla, joka määritellään asettamalla Huomaa, että ja (a, b)(c, d) =(ac bd,

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-1200 Signaalinkäsittelyn menetelmät, Tentti 21.3.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

Perustehtävät. Kompleksitehtävät, 10/9/2005, sivu 1 / 10. Tehtävä 1. Sievennä 1.

Perustehtävät. Kompleksitehtävät, 10/9/2005, sivu 1 / 10. Tehtävä 1. Sievennä 1. Kompleksitehtävät, 10/9/2005, sivu 1 / 10 Perustehtävät Tehtävä 1. Sievennä 1. 2 5i 1+2i 2. ( 2 i 2) 150 Tehtävä 2. Olkoon P mielivaltainen reaalikertoiminen polynomi. Osoita, että jos luku z C toteuttaa

Lisätiedot

Nopea kertolasku, Karatsuban algoritmi

Nopea kertolasku, Karatsuban algoritmi Nopea kertolasku, Karatsuban algoritmi Mikko Männikkö 16.8.2004 Lähde: ((Gathen and Gerhard 1999) luku II.8) Esityksen kulku Algoritmien analysointia (1), (2), (3), (4) Klassinen kertolasku Parempi tapa

Lisätiedot

MATP153 Approbatur 1B Harjoitus 3, ratkaisut Maanantai

MATP153 Approbatur 1B Harjoitus 3, ratkaisut Maanantai MATP53 Approbatur B Harjoitus 3, ratkaisut Maanantai 6..5. (Teht. 5 ja s. 4.) Olkoot z = + y i ja z = + y i. Osoita, että (a) z + z = z +z, (b) z z = z z, (c) z z = z ja (d) z = z z, kun z. (a) z + z =

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 8 To 29.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 8 To 29.9.2011 p. 1/36 p. 1/36 Interpolointi kuutiosplinillä Osavälit: I i = [t i 1,t i ], i = 1,2,...,n

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 2 To 8.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 2 To 8.9.2011 p. 1/33 p. 1/33 Lukujen tallennus Kiintoluvut (integer) tarkka esitys aritmeettiset operaatiot

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot