MS-C1420 Fourier-analyysi osa I

Koko: px
Aloita esitys sivulta:

Download "MS-C1420 Fourier-analyysi osa I"

Transkriptio

1 1 Johdanto MS-C142 Fourier-analyysi osa I G Gripenberg 2 Fourier-integraali Fourier-muunnos ja derivaatta Konvoluutio Fourier-käänteismuunnos eliöintegroituvat funktiot Aalto-yliopisto 29 tammikuuta Diskreetti Fourier-muunnos 4 Fourier-sarjat eliöintegroituvat jaksolliset funktiot G Gripenberg (Aalto-yliopisto MS-C142 Fourier-analyysiosa I 29 tammikuuta / 3 G Gripenberg (Aalto-yliopisto MS-C142 Fourier-analyysiosa I 29 tammikuuta / 3 Fourier-muunnoksia Jatkuva-aikaisen jaksottoman signaalin muunnos: ŝ(ν e i2πνt s(t dt, ν Jaksollisen jatkuva-aikaisen signaalin muunnos (kun jakso on 1: ŝ(k 1 e i2πkt s(t dt, k Z Diskreetti Fourier-muunnos (diskreettiaikainen jaksollinen signaali: ŝ(m 1 j mj i2π e s(j, m Z Diskreettiaikaisen ei-jaksollisen signaalin Fourier-muunnos: ŝ(ν j Z e i2πνj s(j Fourier-muunnos on lineaarinen, eli summan muunnos on muunnosten summa ja jos signaali kerrotaan luvulla niin muunnoskin tulee kerrotuksi samalla luvulla G Gripenberg (Aalto-yliopisto MS-C142 Fourier-analyysiosa I 29 tammikuuta / 3 Eksponenttifunktio ja Eulerin kaava Eksponenttifunktion määritelmäksi voidaan ottaa exp(z e z j z n n!, z C ja merkinnän e z perusteluna on kaava e z 1+z 2 e z 1 e z 2 Vertaamalla sin:n ja cos:n sarjakehitelmiin saadaan Eulerin kaava e it cos(t + i sin(t, missä siis i on imaginaariyksikkö se i i 1 Erityisesti pätee e it 1, ja e i2πk 1, kun k Z Kompleksiluvun z a + ib kompleksikonjugaatti z on z a ib joten esim e it e it Kompleksikonjugointi on lineaarinen ja multiplikatiivinen joten pätee esim e i2πνt s(t dt e i2πνt s(t dt G Gripenberg (Aalto-yliopisto MS-C142 Fourier-analyysiosa I 29 tammikuuta / 3

2 Fourier-muunnos Jos s(t dt < ja s on mitallinen eli jatkuvien funktioiden raja-arvo melkein kaikkialla eli s L 1 ( niin ŝ(ν F(s(ν Jos t on aika niin ν on taajuus! Fourier-käänteismuunnos s(t F 1 (ŝ(t e i2πtν s(t dt, ν e i2πνt ŝ(ν dν F ( ŝ ( t ν ω F ( ŝ( ω (t Kuten Fourier-muunnoksen määritelmässä ongelmana tässä (todistamisen lisäksi on että jos ŝ(ν dν (niin kuin usein käy ei ole heti selvää mitä integraalilla oikein tarkoitetaan mutta sopivilla määritelmillä tähänkin ongelmaan löytyy hyviä ratkaisuja G Gripenberg (Aalto-yliopisto MS-C142 Fourier-analyysiosa I 29 tammikuuta / 3 Translaatiot, modulaatiot ja dilaatiot Jos s L 1 (, p ja a niin g(t s(t p ĝ(ν e i2πνp ŝ(ν, h(t e i2πpt s(t ĥ(ν ŝ(ν p, k(t s(at k(ν 1 ( ν a ŝ a Oletus s(t dt < ei ole tässä yhteydessä oleellinen muulla tavalla kuin että Fourier-muunnos on toistaiseksi määritelty väin tällaisille funktioille! Miksi? ĝ(ν e i2πνt s(t p dt t p τ e i2πντ e i2πνp s(τ dτ e i2πνp ŝ(ν e i2πν(τ+p s(τ dτ G Gripenberg (Aalto-yliopisto MS-C142 Fourier-analyysiosa I 29 tammikuuta / 3 Translaatiot, modulaatiot ja dilaatiot, jatk ĥ(ν ˆk(ν 1 a e i2πνt e i2πpt s(t dt e i2πνt s(at dt at τ, dt 1 a dτ 1 a e i2π(ν/aτ s(τ dτ 1 ( ν a ŝ a e i2π(ν pt s(t dt ŝ(ν p e i2πντ/a s(τ dτ Jos s L 1 ( niin ŝ on jatkuva ja ν ŝ(ν mutta jokainen jatkuva funktio jonka raja-arvo äärettömyydessä on ei ole integroituvan funktion Fourier-muunnos Fourier-muunnos ja derivaatta Jos D on derivointioperaattori ( d dν tai d dt niin ja D(F(s(ν F(( i2πts(t(ν F(Ds(ν i2πνf(s(ν Miksi? Yllä olevat kaavat pätevät, sopivin tulkinnoin, hyvin yleisesti ja jos esim (1 + t s(t L 1 ( niin voidaan derivoida integraalin sisäpuolella jolloin saadaan D(F(s(ν d dν e i2πνt s(t dt e i2πνt ( i2πts(t dt Samoin jos esim s ja Ds L 1 ( ja s(t s( + t Ds(u du saadaan osittaisintegroinnilla F(Ds(ν / e i2πνt s(t ( i2πνe i2πνt s(t dt i2πνf(s(ν G Gripenberg (Aalto-yliopisto MS-C142 Fourier-analyysiosa I 29 tammikuuta / 3 G Gripenberg (Aalto-yliopisto MS-C142 Fourier-analyysiosa I 29 tammikuuta / 3

3 opeasti vähenevät funktiot S( { s : C : s C (, sup t k s (m (t <, k, m } t S( sisältää siis kaikki äärettömän monta kertaa derivoituvat funktiot, joiden kaikki derivaatat suppenevat kohti nopeammin kuin jokainen muotoa t k oleva funktio kun t ja kaikki tyyppiä t k s (m (t olevat funktiot ovat myös integroituvia Esimerkkinä kelpaa hyvin funktio h (t e πt2 Fourier-muunnos ja nopeasti vähenevät funktiot Fourier-muunnos on bijektio: S( S(, eli jos s S( niin ŝ S( ja jos q S( niin on olemassa täsmälleen yksi s S( siten, että q ŝ Lisäksi pätee (i2πν k D m (F(s(ν F ( D k( ( i2πt m s(t (ν kaikilla k ja m G Gripenberg (Aalto-yliopisto MS-C142 Fourier-analyysiosa I 29 tammikuuta / 3 Konvoluutio Jos g ja h L 1 ( niin g h L 1 ( ja (g h(t dt g(t dt h(t dt missä (g h(t g(t uh(u du ja erityisesti pätee Approksimointi konvoluutioilla f g(ν ˆf (νĝ(ν Jos p L 1 (, p(t dt 1, p a(t ap(at ja s L 1 ( niin a s(t (p a s(t dt, ja jos lisäksi t tp(t ja s on jatkuva pisteessä t niin (p a s(t s(t a G Gripenberg (Aalto-yliopisto MS-C142 Fourier-analyysiosa I 29 tammikuuta / 3 Kertolaskukaava Jos g ja h L 1 ( niin ĝ(νh(ν dν g(tĥ(t dt Miksi? Integroimisjärjestyksen vaihdolla saadaan ( ĝ(νh(ν dν e i2πνt g(t dt h(ν dν ( ( e i2πνt g(th(ν dt dν e i2πνt g(th(ν dν dt ( g(t e i2πνt h(ν dν dt g(tĥ(t dt Kertolaskukaava, erikoistapaus Jos s ja p L 1 ( niin ei2πνt p( νŝ(ν dν (ˆp s(t G Gripenberg (Aalto-yliopisto MS-C142 Fourier-analyysiosa I 29 tammikuuta / 3 Fourier-käänteismuunnos I Jos s L 1 ( niin ɛ s(t e i2πνt ŝ(νe ɛν2 dν dt ja s(t e i2πνt ŝ(νe ɛν2 dν ɛ kaikissa pisteissä t missä s on jatkuva Fourier-käänteismuunnos II Jos s L 1 ( ja ŝ L 1 ( niin s(t e i2πνt ŝ(ν dν, t G Gripenberg (Aalto-yliopisto MS-C142 Fourier-analyysiosa I 29 tammikuuta / 3

4 eliöintegroituvat funktiot Jos s : C on mitallinen ja s(t 2 dt < niin s L 2 ( Pätee S( L 2 ( mutta L 1 ( L 2 ( ja L 2 ( L 1 ( Monissa sovelluksissa s(t 2 dt < on signaalin energia tai ainakin verrannollinen energiaan Merkitään s L 2 ( ( s(t 2 dt 1 2 Fourier-muunnos ja L 2 ( I Jos g ja h S( niin g(th(t dt ĝ(νĥ(ν dν Fourier-muunnos ja L 2 ( II Jos s L 2 ( niin on olemassa funktio ŝ L 2 ( siten, että jos jono (s n n1, s n S( kun n 1 on sellainen, että n s n s L 2 ( niin n ŝ n ŝ L 2 ( Lisäksi pätee s L 2 ( ŝ L 2 ( eli s(t 2 dt ŝ(ν 2 dν ja jos g ja h L 2 ( niin g(th(t dt ĝ(νĥ(ν dν G Gripenberg (Aalto-yliopisto MS-C142 Fourier-analyysiosa I 29 tammikuuta / 3 G Gripenberg (Aalto-yliopisto MS-C142 Fourier-analyysiosa I 29 tammikuuta / 3 Jos s L 1 ( L 2 ( niin ŝ tulee määritellyksi kahdella eri tavalla, toisaalta suoraan integraalina koska f L 1 ( ja toisaalta raja-arvona n ŝ n, missä s n S(, mutta nämä määritelmät antavat saman tuloksen Jos s L 2 ( niin pätee myös T T ŝ(ν e i2πνt s(t dt T 2 dν G Gripenberg (Aalto-yliopisto MS-C142 Fourier-analyysiosa I 29 tammikuuta / 3 Diskreetti Fourier-muunnos Jos on positiivinen kokonaisluku niin lukujen s(k, k, 1,, 1 diskreetti Fourier-muunnos on F (s(m ŝ(m 1 j e i2πmj s(j, m Z Diskreetti Fourier-muunnos määritellään usein kaavoilla 1 1 i2πmj 1 j e s(j tai 1 i2πmj j e s(j Valittu määritelmä vaikuttaa vain siihen missä kohdissa muissa kaavoissa luku esiintyy Koska e i2πj 1 kun j on kokonaisluku, niin Fourier-muunnos ŝ on jaksollinen jaksolla, eli ŝ(m + ŝ(m On hyödyllistä olettaa, että myös luvut s(j, j, 1,, 1 ovat osa jaksollista jonoa s(j, j Z missä s(j + s(j kaikilla j Silloin diskreetti Fourier-muunnos voidaan laskea myös kaavalla ŝ(m j 2 jj1 e i2πmj s(j missä j 2 j 1 1 G Gripenberg (Aalto-yliopisto MS-C142 Fourier-analyysiosa I 29 tammikuuta / 3

5 Diskreetin Fourier-muunnoksen käänteismuunnos F on bijektio -jaksollisten jonojen välillä ja s(m (F 1 (ŝ(m 1 1 e i2πmj ŝ(j eli F j j e i2πmj 1 1 ŝ( m j 1 F 1 F missä (ŝ(m ŝ( m e i2πmj ŝ(mod( j, FFT FFT on algoritmi, jolla diskreetti Fourier-muunnos lasketaan käyttäen c log( laskutoimitusta eikä c 2 niin kuin suoraviivainen lasku edellyttäisi Fourier-integraalin numeerinen laskeminen Olkoon s reaaliakselilla määritelty funktio josta tunnetaan arvot pisteissä t + j t, j, 1,, 1 (missä oletetaan, että t > Jos nyt p on sellainen :llä funktio, että p( 1 ja p(j kun j Z \ {}, niin funktio toteuttaa ehdot g(t 1 j ( t t j t s(t + j tp t, g(j t + t s(t + j t, j,, 1, ja g(t + j t kun j < tai j > 1 Usein on tarkoituksenmukaista vaatia, että myös p(t dt 1 ja joskus voi olla syytä luopua interpolointiehdosta p( 1 ja p(j kun j Perusidea on nyt, että s:n Fourier-muunnoksen sijasta lasketaan g:n Fourier-munnos ja erityisen hyvin se onnistuu pisteissä m ν, m Z missä t ν 1 G Gripenberg (Aalto-yliopisto MS-C142 Fourier-analyysiosa I 29 tammikuuta / 3 G Gripenberg (Aalto-yliopisto MS-C142 Fourier-analyysiosa I 29 tammikuuta / 3 Fourier-integraalin numeerinen laskeminen, jatk Jos nyt valitaan niin q(j s(t + j t, j,, 1, ĝ(m ν te i2πm νtˆq(mˆp ( m, m Z Funktion p valinnaksi on monta vaihtoehtoa: Lineaarinen interpolointi: p(t max{, 1 t } jolloin 2 ˆp(ν ( sin(πν πν Kuutiosplini-interpolointi jolloin ˆp(ν ( 4 sin(πν 1 πν sin(πν2 sinc-interpolointi: p(t sin(πt πt jolloin ˆp(ν 1 kun ν < 1 2 ja ˆp(ν kun ν > 1 2 Miksi? Koska ν 1 t niin ĝ(m ν 1 j 1 j q(j e i2πm νt g(t dt q(j t ( t e i2πm νt t j t p t te i2πm νt dt t t + j t + τ t e i2πm νt e i2πm νj t e i2πm ν t τ p(τ dτ 1 j e i2πmj q(j e i2π m τ p(τ dτ te i2πm νtˆq(mˆp ( m G Gripenberg (Aalto-yliopisto MS-C142 Fourier-analyysiosa I 29 tammikuuta / 3 G Gripenberg (Aalto-yliopisto MS-C142 Fourier-analyysiosa I 29 tammikuuta / 3

6 Jaksolliset funktiot, /Z jne Funktio s : C on jaksollinen jaksolla 1 jos s(t + 1 s(t kaikilla t /Z on ekvivalenssiluokkien { t + n : n Z } muodostama joukko eli joukko missä pisteet t ja t + n on samaistettu kun n Z Jokaista funktiota s : /Z C voidaan käsitellä jaksollisena funktiona s : C ja päinvastoin ja näin tässä tullaan tekemäänkin Välillä [, 1 määritellystä funktiosta s saadaan jaksollinen funktio s(mod (t, 1 Tästä seuraa, että joukko L p (/Z missä joka sisältää kaikki jaksolliset (jaksolla 1 ja mitalliset funktiot s, joilla 1 s(t p dt < missä 1 p < on sama kuin joukko L p ([, 1, mutta huomaa, että jos s C(/Z eli s on jatkuva ja jaksollinen niin s on jatkuva välillä [, 1] ja s( s(1 Jaksollisen funktion Fourier-kertoimet Jos s L 1 (/Z niin ŝ(k 1 e i2πkt s(t dt, k Z Jos s L 1 (/Z niin funktioden s ja e i2πkt jaksollisuudesta seuraa, että Fourier-kertoimet saadaan myös kaavoilla ŝ(k e i2πkt s(t dt 1 a a e i2πkt s(t dt G Gripenberg (Aalto-yliopisto MS-C142 Fourier-analyysiosa I 29 tammikuuta / 3 G Gripenberg (Aalto-yliopisto MS-C142 Fourier-analyysiosa I 29 tammikuuta / 3 Jaksolliset funktiot jaksolla T Jos s:n jakso on T eli s(t + T s(t kaikilla t niin funktio g(t s(tt on jaksollinen jaksolla 1 ja muuttujan vaihdon jälkeen todetaan, että g:n (eli yhtä hyvin s:n Fourier-kertoimiksi tulee 1 T T iemann-lebesguen lemma Jos s L 1 (/Z niin e i2πkt T s(t dt ŝ(k s L 1 (/Z, k Z ja ŝ(k k Fourier-analyysi perustuu tuloksiin, joiden mukaan k Z ŝ(kei2πkt on s(t mutta ongelma on mitä summalla tarkoitetaan Tietyin oletuksin ongelmia ei ole, muissa tapauksissa sen sijaan on valittava sopiva tulkinta tai sitten todistuksista tulee hyvin hankalia Fourier-sarjan suppeneminen, I Jos s L 1 (/Z on derivoituva pisteessä t tai jos pelkästään t s(t + t s(t dt < niin,m k M e i2πktŝ(k s(t G Gripenberg (Aalto-yliopisto MS-C142 Fourier-analyysiosa I 29 tammikuuta / 3 G Gripenberg (Aalto-yliopisto MS-C142 Fourier-analyysiosa I 29 tammikuuta / 3

7 Konvoluutio Jos h ja h L 1 (/Z niin g 1 h L 1 (/Z missä ja (g 1 h(t 1 g(t ug(u du 1 ĝ 1 h(k ĝ(kĥ(k, k Z f (ug(t u du, Tavallisesti kirjoitetaan g h eikä g 1 h jos on selvää minkälaisesta konvoluutiosta on kyse Itseisesti suppenevat Fourier-sarjat Jos k Z a k < niin A(t k Z a ke i2πkt C(/Z ja Â(k a k Jos lisäksi s L 1 (/Z niin Erikoistapaus: Fejerin ydin ( 1 sin(πt 2, t \ Z, F (t sin(πt, t Z, missä 1, 2, { F (k max, k }, k Z F C (/Z ja F (t, t 1 F (t dt 1 Jos s L 1 1 (/Z, niin (F 1 s(t s(t dt ja jos s C(/Z niin sup t (F 1 s(t s(t (A 1 s(t k Z a k ŝ(ke i2πkt G Gripenberg (Aalto-yliopisto MS-C142 Fourier-analyysiosa I 29 tammikuuta / 3 G Gripenberg (Aalto-yliopisto MS-C142 Fourier-analyysiosa I 29 tammikuuta / 3 Fourier-sarjan suppeneminen II Jos s C(/Z niin sup t k ja jos s L 1 (/Z niin 1 k k k Fourier-muunnos on injektio ŝ(kei2πkt s(t ŝ(kei2πkt s(t dt Jos s L 1 (/Z ja ŝ(k kaikilla n Z niin s(t melkien kaikilla t Fourier-sarjan suppeneminen III Jos s L 1 (/Z ja k Z ŝ(k < niin s C(/Z ja s(t k Z ŝ(ke i2πkt, t Sisätulo L 2 (/Z:ssä Jos g ja h L 2 (/Z niin f, g L 2 (/Z on Hilbert-avaruus 1 g(th(t dt Jos funktioden sijasta tarkastellaan ekvivalenssiluokkia eli g h jos ja vain jos g(t h(t melkein kaikilla t, niin silloin L 2 (/Z on Hilbert-avaruus eli täydellinen (eli jokainen Cauchy-jono suppenee sisätuloavaruus (ja siten samanlainen joukko kuin taso 2, jossa sisätulo on x, y x y x 1 y 1 + x 2 y 2, kun 2:n paikalle tulee ja :n paikalle C G Gripenberg (Aalto-yliopisto MS-C142 Fourier-analyysiosa I 29 tammikuuta / 3 G Gripenberg (Aalto-yliopisto MS-C142 Fourier-analyysiosa I 29 tammikuuta / 3

8 Funktiot t e i2πkt muodostavat L 2 (/Z:n ortonormaalin kannan Jos märitellään e k (t e i2πkt niin ja jos s L 2 (/Z niin ja s, e k 1 e m, e k s(te i2πkt dt s k Z 1 { 1, m k,, m k, s(te i2πkt dt ŝ(k, k Z, s, e k e k k Z ŝ(ke k Fourier-sarjan suppeneminen IV Jos s L 2 (/Z niin jokaisella ɛ > on olemassa äärellinen joukko I Z siten, että jos I J Z ja J on äärellinen niin 1 s(t 2 ŝ(ke i2πkt dt < ɛ k J Toisin sanoen, sarja suppenee L 2 -mielessä ja kun lasketaan yhteen sarjan termit, järjestyksellä ei ole merkitystä, eli sarja on summautuva Mutta sen sijaan sarja ei ole välttämättä itseisesti suppeneva Jos g ja h L 2 (/Z niin 1 g(th(t dt k Z ĝ(kĥ(k ja erityisesti 1 s(t 2 dt k Z ŝ(k 2 G Gripenberg (Aalto-yliopisto MS-C142 Fourier-analyysiosa I 29 tammikuuta / 3 G Gripenberg (Aalto-yliopisto MS-C142 Fourier-analyysiosa I 29 tammikuuta / 3

MS-C1420 Fourier-analyysi osa I

MS-C1420 Fourier-analyysi osa I MS-C142 Fourier-analyysi osa I G. Gripenberg Aalto-yliopisto 29. tammikuuta 214 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa I 29. tammikuuta 214 1 / 3 1 Johdanto 2 Fourier-integraali Fourier-muunnos

Lisätiedot

MS-C1420 Fourier-analyysi osa I

MS-C1420 Fourier-analyysi osa I MS-C1420 Fourier-analyysi osa I G. Gripenberg Aalto-yliopisto 29. tammikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-C1420 Fourier-analyysiosa I 29. tammikuuta 2014 1 / 29 Fourier-muunnoksia Jatkuva-aikaisen

Lisätiedot

MS-C1420 Fourier-analyysi Esimerkkejä, perusteluja, osa I

MS-C1420 Fourier-analyysi Esimerkkejä, perusteluja, osa I MS-C140 Fourier-analyysi Esimerkkejä, perusteluja, osa I G. Gripenberg Aalto-yliopisto 3. tammikuuta 014 G. Gripenberg (Aalto-yliopisto MS-C140 Fourier-analyysiEsimerkkejä, perusteluja, osa3. I tammikuuta

Lisätiedot

MS-C1420 Fourier-analyysi Esimerkkejä, perusteluja, osa I

MS-C1420 Fourier-analyysi Esimerkkejä, perusteluja, osa I MS-C14 Fourier-analyysi Esimerkkejä, perusteluja, osa I G. Gripenberg Aalto-yliopisto 3. tammikuuta 14 G. Gripenberg (Aalto-yliopisto MS-C14 Fourier-analyysiEsimerkkejä, perusteluja, osa3. I tammikuuta

Lisätiedot

MS-C1420 Fourier-analyysi osa II

MS-C1420 Fourier-analyysi osa II MS-C142 Fourier-analyysi osa II G. Gripenberg Aalto-yliopisto 14. helmikuuta 214 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta 214 1 / 36 1 Fourier-sarjat ja Fourier-integraalit

Lisätiedot

MS-C1420 Fourier-analyysi osa II

MS-C1420 Fourier-analyysi osa II MS-C142 Fourier-analyysi osa II G. Gripenberg Aalto-yliopisto 14. helmikuuta 214 1 Fourier-sarjat ja Fourier-integraalit Poissonin summakaava Whittaker-Shannonin interpolointikaava 2 Vaimennetunen distribuution

Lisätiedot

Fourier-analyysi, I/19-20, Mallivastaukset, Laskuharjoitus 7

Fourier-analyysi, I/19-20, Mallivastaukset, Laskuharjoitus 7 MS-C14, Fourier-analyysi, I/19- Fourier-analyysi, I/19-, Mallivastaukset, Laskuharjoitus 7 Harjoitustehtävä 7.1. Hetkellä t R olkoon s(t) 1 + cos(4πt) + sin(6πt). Laske tämän 1-periodisen signaalin s Fourier-kertoimet

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 13 Ti 18.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 13 Ti 18.10.2011 p. 1/43 p. 1/43 Nopeat Fourier-muunnokset Fourier-sarja: Jaksollisen funktion esitys

Lisätiedot

Mat Matematiikan peruskurssi L4, osa I

Mat Matematiikan peruskurssi L4, osa I Fourier-sarjat..................... 3 Mat-.4 Matematiikan peruskurssi L4, osa I In matematics you don t understand tings. You just get used to tem. Jon von eumann G. Gripenberg Aalto-yliopisto 9. elmikuuta

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 13. Kirsi Valjus. Jyväskylän yliopisto. Luento 13 () Numeeriset menetelmät / 42

Numeeriset menetelmät TIEA381. Luento 13. Kirsi Valjus. Jyväskylän yliopisto. Luento 13 () Numeeriset menetelmät / 42 Numeeriset menetelmät TIEA381 Luento 13 Kirsi Valjus Jyväskylän yliopisto Luento 13 () Numeeriset menetelmät 8.5.2013 1 / 42 Luennon 13 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Moniaskelmenetelmien

Lisätiedot

Osa VI. Fourier analyysi. A.Rasila, J.v.Pfaler () Mat Matematiikan peruskurssi KP3-i 12. lokakuuta / 246

Osa VI. Fourier analyysi. A.Rasila, J.v.Pfaler () Mat Matematiikan peruskurssi KP3-i 12. lokakuuta / 246 Osa VI Fourier analyysi A.Rasila, J.v.Pfaler () Mat-1.1331 Matematiikan peruskurssi KP3-i 12. lokakuuta 2007 127 / 246 1 Johdanto 2 Fourier-sarja 3 Diskreetti Fourier muunnos A.Rasila, J.v.Pfaler () Mat-1.1331

Lisätiedot

Lebesguen mitta ja integraali

Lebesguen mitta ja integraali Lebesguen mitta ja integraali Olkoon m Lebesguen mitta R n :ssä. R 1 :ssä vastaa pituutta, R 2 :ssa pinta-alaa, R 3 :ssa tilavuutta. Mitallinen joukko E R n = joukko jolla on järkevästi määrätty mitta

Lisätiedot

Mat / Mat Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 42, loppuviikko, syksy 2008

Mat / Mat Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 42, loppuviikko, syksy 2008 Mat-.3 / Mat-.33 Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 4, loppuviikko, syksy 8 Ennen malliratkaisuja, muistin virkistämiseksi kaikkien rakastama osittaisintegroinnin kaava: b a u(tv (t

Lisätiedot

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg)

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg) Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus 4 9.4.-23.4.200 Malliratkaisut (Sauli Lindberg). Näytä, että Lusinin lauseessa voidaan luopua oletuksesta m(a)

Lisätiedot

Signaalit ja järjestelmät aika- ja taajuusalueissa

Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit aika ja taajuusalueissa Muunnokset aika ja taajuusalueiden välillä Fourier sarja (jaksollinen signaali) Fourier muunnos (jaksoton signaali)

Lisätiedot

Oletetaan sitten, että γ(i) = η(j). Koska γ ja η ovat Jordan-polku, ne ovat jatkuvia injektiivisiä kuvauksia kompaktilta joukolta, ja määrittävät

Oletetaan sitten, että γ(i) = η(j). Koska γ ja η ovat Jordan-polku, ne ovat jatkuvia injektiivisiä kuvauksia kompaktilta joukolta, ja määrittävät HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 18 Harjoitus 6 Ratkaisuehdotukset Tehtävä 1. Osoita, että sileille Jordan-poluille on voimassa : I R n ja : J R n (I) = (J) jos ja vain

Lisätiedot

Konvergenssilauseita

Konvergenssilauseita LUKU 4 Konvergenssilauseita Lause 4.1 (Monotonisen konvergenssin lause). Olkoon (f n ) kasvava jono Lebesgueintegroituvia funktioita. Asetetaan f(x) := f n (x). Jos f n

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

Fourier-sarjat ja -muunnos

Fourier-sarjat ja -muunnos 24. marraskuuta 2016 Jaksolliset funktiot, trigonometriset sarjat, parilliset ja p Jaksolliset funktiot Funktio f : R R on jaksollinen, jos on olemassa p > 0 siten, että f (x + p) = f (x) kaikilla x R

Lisätiedot

4. Fourier-analyysin sovelletuksia. Funktion (signaalin) f(t) näytteistäminen tapahtuu kertomalla funktio näytteenottosignaalilla

4. Fourier-analyysin sovelletuksia. Funktion (signaalin) f(t) näytteistäminen tapahtuu kertomalla funktio näytteenottosignaalilla 4.1 Näytteenottolause 4. Fourier-analyysin sovelletuksia Näyttenottosignaali (t) = k= δ(t kt). T on näytteenottoväli, ja ω T = 1 T on näyttenottotaajuus. Funktion (signaalin) f(t) näytteistäminen tapahtuu

Lisätiedot

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita

Lisätiedot

Kompleksianalyysi, viikko 5

Kompleksianalyysi, viikko 5 Kompleksianalyysi, viikko 5 Jukka Kemppainen Mathematics Division Kompleksiset jonot Aloitetaan jonon suppenemisesta. Määr. 1 Kompleksiluvuista z 1,z 2,...,z n,... koostuva jono suppenee kohti raja-arvoa

Lisätiedot

7. Tasaisen rajoituksen periaate

7. Tasaisen rajoituksen periaate 18 FUNKTIONAALIANALYYSIN PERUSKURSSI 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin

Lisätiedot

Sarjoja ja analyyttisiä funktioita

Sarjoja ja analyyttisiä funktioita 3B Sarjoja ja analyyttisiä funktioita 3B a Etsi funktiolle z z 5 potenssisarjaesitys kiekossa B0, 5. b Etsi funktiolle z z potenssisarjaesitys kiekossa, jonka keskipiste on z 0 4. Mikä on tämän potenssisarjan

Lisätiedot

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Olkoon X sisätuloavaruus ja Y X äärellisulotteinen aliavaruus. Tällöin on olemassa lineaarisesti riippumattomat vektorit y 1, y 2,..., yn, jotka

Lisätiedot

LUKU 6. Mitalliset funktiot

LUKU 6. Mitalliset funktiot LUKU 6 Mitalliset funktiot Määritelmistä 3. ja 3.0 seuraa, että jokainen Lebesgue-integroituva funktio on porrasfunktiojonon raja-arvo melkein kaikkialla. Kuitenkin moni tuttu funktio ei ole Lebesgue-integroituva.

Lisätiedot

f(x) sin k x dx, c k = 1

f(x) sin k x dx, c k = 1 f ( n) n 3. Fourier n sarjoista I [1, 8.16, luku 11], [, luku 15], [3, luku IX, 8 9]. [5, luku I], [6, luku XII, 3], [7, luku 8], [8, luku 4], [9, luku 8] Trigonometrinen polynomi on muotoa a + ( ak cos

Lisätiedot

Seuraava topologisluonteinen lause on nk. Bairen lause tai Bairen kategorialause, n=1

Seuraava topologisluonteinen lause on nk. Bairen lause tai Bairen kategorialause, n=1 FUNKTIONAALIANALYYSIN PERUSKURSSI 115 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin

Lisätiedot

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa 8 Potenssisarjoista 8. Määritelmä Olkoot a 0, a, a 2,... reaalisia vakioita ja c R. Määritelmä 8.. Muotoa a 0 + a (x c) + a 2 (x c) 2 + olevaa sarjaa sanotaan c-keskiseksi potenssisarjaksi. Selvästi jokainen

Lisätiedot

Funktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen

Funktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen 4. Funktiojonot ja funktiotermiset sarjat 4.1. Funktiojono ja funktioterminen sarja 60. Tutki, millä muuttujan R arvoilla funktiojono f k suppenee, kun Mikä on rajafunktio? a) f k () = 2k 2k + 1, b) f

Lisätiedot

8. Avoimen kuvauksen lause

8. Avoimen kuvauksen lause 116 FUNKTIONAALIANALYYSIN PERUSKURSSI 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen

Lisätiedot

Positiivitermisten sarjojen suppeneminen

Positiivitermisten sarjojen suppeneminen Positiivitermisten sarjojen suppeneminen Jono (b n ) n= on kasvava, jos b n+ b n kaikilla n =, 2,... Lemma Jokainen ylhäältä rajoitettu kasvava jono (b n ) n= raja-arvo on lim n b n = sup n Z+ b n. suppenee

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 8. Integraalilauseiden sovelluksia 1. Analyyttisen funktion sarjaesitys. (eli jokainen analyyttinen funktio on lokaalisti suppenevan potenssisarjan

Lisätiedot

Sarja. Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,...,

Sarja. Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,..., Sarja Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): Määritelmä 1 s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,..., n s n = a k. Jos osasummien jonolla (s n ) on raja-arvo s R,

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista

Lisätiedot

e int) dt = 1 ( 2π 1 ) (0 ein0 ein2π

e int) dt = 1 ( 2π 1 ) (0 ein0 ein2π Matematiikan ja tilastotieteen laitos Funktionaalianalyysin peruskurssi Kevät 9) Harjoitus 7 Ratkaisuja Jussi Martin). E Hilbert avaruus L [, π]) ja gt) := t, t [, π]. Määrää funktion g Fourier kertoimet

Lisätiedot

1. Viikko. K. Tuominen MApu II 1/17 17

1. Viikko. K. Tuominen MApu II 1/17 17 1. Viikko Keskeiset asiat ja tavoitteet: 1. Kompleksiluvut, kompleksitaso, polaariesitys, 2. Kompleksilukujen peruslaskutoimitukset, 3. Eulerin ja De Moivren kaavat, 4. Potenssi ja juuret, kompleksinen

Lisätiedot

SIGNAALITEORIAN KERTAUSTA 1

SIGNAALITEORIAN KERTAUSTA 1 SIGNAALITEORIAN KERTAUSTA 1 1 (26) Fourier-muunnos ja jatkuva spektri Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka esittäminen graafisesti edellyttää 3D-kuvaajan piirtämisen. Yleensä

Lisätiedot

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos September 13, 2017 Pekka Alestalo,

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 14.9.2016 Pekka Alestalo, Jarmo Malinen

Lisätiedot

MATEMATIIKAN JA TILASTOTIETEEN LAITOS

MATEMATIIKAN JA TILASTOTIETEEN LAITOS f ( n) JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Funktionaalianalyysi Ei harjoituksia 1.4.2015 Funktionaalista viihdettä pääsiäistauolle: viikolla 14 (ma 30.3., ti 31.3. ja ke 1.4.)

Lisätiedot

Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot! Laskin (yo-kirjoituksissa hyväksytty) on sallittu apuväline tässä kokeessa!

Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot! Laskin (yo-kirjoituksissa hyväksytty) on sallittu apuväline tässä kokeessa! Aalto yliopiston teknillinen korkeakoulu Mat-1.1040 L4 Tentti ja välikokeiden uusinta 21.5.2010 Gripenberg, Arponen, Siljander Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot! Laskin

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta

Lisätiedot

LUKU 7. Perusmuodot Ensimmäinen perusmuoto. Funktiot E, F ja G ovat tilkun ϕ ensimmäisen perusmuodon kertoimet ja neliömuoto

LUKU 7. Perusmuodot Ensimmäinen perusmuoto. Funktiot E, F ja G ovat tilkun ϕ ensimmäisen perusmuodon kertoimet ja neliömuoto LUKU 7 Perusmuodot 7 Ensimmäinen perusmuoto Määritelmä 7 Olkoon ϕ: U R 3 tilkku Määritellään funktiot E, F, G: U R asettamalla (7) E := ϕ ϕ, F := ϕ, G := ϕ u u u u Funktiot E, F G ovat tilkun ϕ ensimmäisen

Lisätiedot

Jaksollisen signaalin spektri

Jaksollisen signaalin spektri Jaksollisen signaalin spektri LuK-tutkielma Topi Suviaro 2257699 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 215 Sisältö Johdanto 2 1 Jaksollisuudesta 2 2 Spektristä 3 2.1 Symmetrian vaikutuksesta

Lisätiedot

2 Funktion derivaatta

2 Funktion derivaatta ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 2019 2 Funktion derivaatta 2.1 Määritelmiä ja perusominaisuuksia 1. Määritä suoraan derivaatan määritelmää käyttäen f (0), kun (a) + 1, (b) (2 + ) sin(3). 2. Olkoon

Lisätiedot

Sisältö. Sarjat 10. syyskuuta 2005 sivu 1 / 17

Sisältö. Sarjat 10. syyskuuta 2005 sivu 1 / 17 Sarjat 10. syyskuuta 2005 sivu 1 / 17 Sisältö 1 Peruskäsitteistöä 2 1.1 Määritelmiä 2 1.2 Perustuloksia 4 2 Suppenemistestejä positiivitermisille sarjoille 5 3 Itseinen ja ehdollinen suppeneminen 8 4 Alternoivat

Lisätiedot

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6 Alkeisfunktiot Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6. Funktion määrittely Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon

Lisätiedot

MS-A0102 Differentiaali- ja integraalilaskenta 1

MS-A0102 Differentiaali- ja integraalilaskenta 1 MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 15.11.2016 Sisältö Alkeisfunktiot 1.1 Funktio I Funktio f : A! B on sääntö, joka liittää

Lisätiedot

Täydellisyysaksiooman kertaus

Täydellisyysaksiooman kertaus Täydellisyysaksiooman kertaus Luku M R on joukon A R yläraja, jos a M kaikille a A. Luku M R on joukon A R alaraja, jos a M kaikille a A. A on ylhäältä (vast. alhaalta) rajoitettu, jos sillä on jokin yläraja

Lisätiedot

Ville Turunen: MS-C1420 Fourier-analyysi (5 opintopistettä)

Ville Turunen: MS-C1420 Fourier-analyysi (5 opintopistettä) Ville Turunen: MS-C142 Fourier-analyysi (5 opintopistettä) Esitiedot: Lineaarialgebra 1, Differentiaali- ja integraalilaskenta 1. 1 Johdanto Mitä Fourier-analyysi on? Fourier-analyysi on läsnä kaikkialla,

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu

Lisätiedot

Harjoitus Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia:

Harjoitus Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia: Differentiaaliyhtälöt, Kesä 216 Harjoitus 2 1. Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia: (a) y = (2 y) 3, (b) y = (y 1) 2, (c) y = 2y y 2. 2. Etsi seuraavien

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 26.9.2016 Pekka Alestalo,

Lisätiedot

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat M-A010{2,3,4,5} (CI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: arjat Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos eptember 12, 2018 Pekka

Lisätiedot

Ville Turunen: ( ) MS-C1420 Fourier-analyysi (5 opintopistettä)

Ville Turunen: ( ) MS-C1420 Fourier-analyysi (5 opintopistettä) Ville Turunen: (3.9.215) MS-C142 Fourier-analyysi (5 opintopistettä) Esitiedot: Matriisilaskenta, Differentiaali- ja integraalilaskenta 1. 1 Johdanto Mitä Fourier-analyysi on? Fourier-analyysia on kaikkialla,

Lisätiedot

Luento 2. Jaksolliset signaalit

Luento 2. Jaksolliset signaalit Luento Jaksollisten signaalien Fourier-sarjat Viivaspektri S-.7. Signaalit ja järjestelmät 5 op KK ietoliikennelaboratorio Jaksollinen (periodinen) Jaksolliset signaalit Jaksonaika - / / Perusjakso Amplitudi

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 14. Kirsi Valjus. Jyväskylän yliopisto. Luento 14 () Numeeriset menetelmät / 55

Numeeriset menetelmät TIEA381. Luento 14. Kirsi Valjus. Jyväskylän yliopisto. Luento 14 () Numeeriset menetelmät / 55 Numeeriset menetelmät TIEA381 Luento 14 Kirsi Valjus Jyväskylän yliopisto Luento 14 () Numeeriset menetelmät 15.5.2013 1 / 55 Luennon 14 sisältö Nopeat Fourier-muunnokset (FFT) Yleinen algoritmi 2-kantainen

Lisätiedot

e ax, kun x > 0 f(x) = 0, kun x < 0, 0, kun x > 0 e ax, kun x < 0 e (a iω)x dx = a+iω = 1 a 2 +ω 2. e ax, x > 0 e ax, x < 0,

e ax, kun x > 0 f(x) = 0, kun x < 0, 0, kun x > 0 e ax, kun x < 0 e (a iω)x dx = a+iω = 1 a 2 +ω 2. e ax, x > 0 e ax, x < 0, Harjoitus 5 1. Olkoot a > 0. Laske vaimenevan pulssin e ax, kun x > 0 fx) = 0, kun x < 0, ja voimistuvan pulssin gx) = konvoluution g f Fourier-muunnos. 0, kun x > 0 e ax, kun x < 0 apa 1: Konvoluution

Lisätiedot

Hilbertin avaruudet, 5op Hilbert spaces, 5 cr

Hilbertin avaruudet, 5op Hilbert spaces, 5 cr Hilbertin avaruudet, 5op Hilbert spaces, 5 cr Pekka Salmi 14.3.2015 Pekka Salmi Hilbertin avaruudet 14.3.2015 1 / 64 Yleistä Opettaja: Pekka Salmi, MA327 Kontaktiopetus ti 1012 (L), ke 810 (L), ma 1214

Lisätiedot

Laplace-muunnos: määritelmä

Laplace-muunnos: määritelmä Laplace-muunnos: määritelmä Olkoon f : [, [ R funktio. Funktion f Laplacen muunnos määritellään yhtälöllä F(s) = L(f) := f(t)e st dt edellyttäen, että integraali f(t)e st dt suppenee. Riittävä ehto integraalin

Lisätiedot

3.3 Funktion raja-arvo

3.3 Funktion raja-arvo 3.3 Funktion raja-arvo Olkoot A ja B kompleksitason joukkoja ja f : A B kuvaus. Kuvauksella f on pisteessä z 0 A raja-arvo c, jos jokaista ε > 0 vastaa δ > 0 siten, että 0 < z z 0 < δ ja z A f(z) c < ε.

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

Epäyhtälöt ovat yksi matemaatikon voimakkaimmista

Epäyhtälöt ovat yksi matemaatikon voimakkaimmista 6 Epäyhtälöitä Epäyhtälöt ovat yksi matemaatikon voimakkaimmista työvälineistä. Yhtälö a = b kertoo sen, että kaksi ehkä näennäisesti erilaista asiaa ovat samoja. Epäyhtälö a b saattaa antaa keinon analysoida

Lisätiedot

HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.

HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia. HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä

Lisätiedot

6.2.3 Spektrikertymäfunktio

6.2.3 Spektrikertymäfunktio ja prosessin (I + θl + + θl q )ε t spektritiheysfunktio on Lemman 6. ja Esimerkin 6.4 nojalla σ π 1 + θ 1e iω + + θ q e iqω. Koska viivepolynomien avulla määritellyt prosessit yhtyvät, niin myös niiden

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.

Lisätiedot

Harjoitus 1. Tehtävä 1. Malliratkaisut. f(t) = e (t α) cos(ω 0 t + β) L[f(t)] = f(t)e st dt = e st t+α cos(ω 0 t + β)dt.

Harjoitus 1. Tehtävä 1. Malliratkaisut. f(t) = e (t α) cos(ω 0 t + β) L[f(t)] = f(t)e st dt = e st t+α cos(ω 0 t + β)dt. Harjoitus Malliratkaisut Tehtävä L[f(t)] ˆ f(t) e (t α) cos(ω t + β) f(t)e st dt ˆ e st t+α cos(ω t + β)dt cos(ω t + β) 2 (ej(ωt+β) + e j(ωt+β) ) L[f(t)] 2 eα 2 ˆ ˆ e st t+α (e j(ω t+β) + e j(ω t+β) )

Lisätiedot

3 Lukujonon raja-arvo

3 Lukujonon raja-arvo ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 209 3 Lukujonon raja-arvo 3 Määritelmä Osoita, että 6n + 2n + 3 3 < 4 n ja määritä jokin sellainen n 0 Z +, että 6n + 2n + 3 3 < 0 87 aina, kun n > n 0 2 Olkoon x n

Lisätiedot

3 Lukujonon raja-arvo

3 Lukujonon raja-arvo ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 208 3 Lukujonon raja-arvo 3 Määritelmä Osoita, että 6n + 2n + 3 3 < 4 n ja määritä jokin sellainen n 0 Z +, että 6n + 2n + 3 3 < 0 87 aina, kun n > n 0 2 Olkoon x n

Lisätiedot

Kompleksianalyysi, viikko 6

Kompleksianalyysi, viikko 6 Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että

Lisätiedot

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1 Tehtävä : Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: a) a) x b) e x + Integraali voisi ratketa muuttujanvaihdolla. Integroitava on muotoa (a x ) n joten sopiva muuttujanvaihto voisi olla

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35 Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen

Lisätiedot

nyky-ymmärryksemme mukaan hajaantuvaan sarjaan luvun 1 2 kun n > N Huom! Määritelmä on aivan sama C:ssä ja R:ssä. (Kuva vain on erilainen.

nyky-ymmärryksemme mukaan hajaantuvaan sarjaan luvun 1 2 kun n > N Huom! Määritelmä on aivan sama C:ssä ja R:ssä. (Kuva vain on erilainen. Sarjaoppia Käsitellään kompleksi- ja reaalisarjat yhdessä. Reaalilukujen ominaisuuksista (kuten järjestys) riippuvat asiat tulevat lisämausteena mukaan. Kirjallisuutta: 1. [KRE] Kreyszig: Advanced Engineering

Lisätiedot

2. Todista Lause 1.2 : Jos I on ylinumeroituva indeksijoukko ja a i > 0kaikillai 2 I, niin P i2i a i = 1.

2. Todista Lause 1.2 : Jos I on ylinumeroituva indeksijoukko ja a i > 0kaikillai 2 I, niin P i2i a i = 1. Harjoitus 1, 11.9.2015 1. Näytä, että joukossax on äärettömän monta alkiota jos ja vain jos on joukko X, 6= X, jokaonyhtämahtavakuinx. 2. Todista Lause 1.2 : Jos I on ylinumeroituva indeksijoukko ja a

Lisätiedot

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin FUNKTIONAALIANALYYSI, RATKAISUT 1 KEVÄT 211, (AP) 1. Ovatko seuraavat reaaliarvoiset funktiot p : R 3 R normeja? Ovatko ne seminormeja? ( x = (x 1, x 2, x 3 ) R 3 ) a) p(x) := x 2 1 + x 2 2 + x 2 3, b)

Lisätiedot

Laplace-muunnos. 8. marraskuuta Laplace-muunnoksen määritelmä, olemassaolo ja perusominaisuudet Differentiaaliyhtälöt Integraaliyhtälöt

Laplace-muunnos. 8. marraskuuta Laplace-muunnoksen määritelmä, olemassaolo ja perusominaisuudet Differentiaaliyhtälöt Integraaliyhtälöt 8. marraskuuta 216 Laplace-muunnoksen määritelmä, olemassaolo ja perusom Integraalimuunnos Integraalimuunnos on yleisesti muotoa F(u) = K(t, u)f (t)dt missä K on integraalin ydin. Tässä K ja f ovat tunnettuja.

Lisätiedot

1 Reaaliset lukujonot

1 Reaaliset lukujonot Jonot 10. syyskuuta 2005 sivu 1 / 5 1 Reaaliset lukujonot Reaaliset lukujonot ovat funktioita f : Z + R. Lukujonosta käytetään merkintää (a k ) k=1 tai lyhyemmin vain (a k). missä a k = f(k). Täten lukujonot

Lisätiedot

Matemaattinen Analyysi

Matemaattinen Analyysi Vaasan yliopisto, 009-010 / ORMS1010 Matemaattinen Analyysi 7 harjoitus 1 Määritä seuraavien potenssisarjojen suppenemissäteet a) k k x 5)k b) k=1 k x 5)k = k k 1) k ) 1) Suppenemissäteen R käänteisarvo

Lisätiedot

Sarjat ja integraalit

Sarjat ja integraalit Sarjat ja integraalit Peter Hästö 1. huhtikuuta 2015 Matemaattisten tieteiden laitos Eteneminen pvm luku v 11 2.1, 2.2 v 12 2.3, 2.4 v 13 3.0, 3.1 v 14 3.2 v 15 4 v 16 5.1 v 17 5.2 v 18 6.1 v 19 6.2 Peter

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,

Lisätiedot

Reaaliluvut. tapauksessa metrisen avaruuden täydellisyyden kohdalla. 1 fi.wikipedia.org/wiki/reaaliluku 1 / 13

Reaaliluvut. tapauksessa metrisen avaruuden täydellisyyden kohdalla. 1 fi.wikipedia.org/wiki/reaaliluku 1 / 13 Reaaliluvut Reaalilukujen joukko R. Täsmällinen konstruointi palautuu rationaalilukuihin, jossa eri mahdollisuuksia: - Dedekindin leikkaukset - rationaaliset Cauchy-jonot - desimaaliapproksimaatiot. Reaalilukujen

Lisätiedot

MS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset

MS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset MS-C350 Osittaisdifferentiaaliyhtälöt Haroitukset 5, syksy 207. Oletetaan, että a > 0 a funktio u on yhtälön u a u = 0 ratkaisu. a Osoita, että funktio vx, t = u x, t toteuttaa yhtälön a v = 0. b Osoita,

Lisätiedot

Kuinka määritellään 2 3?

Kuinka määritellään 2 3? Kuinka määritellään 2 3? y Nyt 3 = 1,7320508.... Luvut 3 2 x x 3 2 x 2 1 = 2, 2 1,7 3,2490, 2 1,73 3,3173, 2 1,732 3,3219,... ovat hyvin määriteltyjä koska näihin tarvitaan vain rationaalilukupotenssin

Lisätiedot

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin z muunnos ja sen soveltaminen LTI järjestelmien analysointiin muunnoksella (eng. transform) on vastaava asema diskreettiaikaisten signaalien ja LTI järjestelmien analyysissä kuin Laplace muunnoksella jatkuvaaikaisten

Lisätiedot

Sarjojen suppenemisesta

Sarjojen suppenemisesta TAMPEREEN YLIOPISTO Pro gradu -tutkielma Terhi Mattila Sarjojen suppenemisesta Matematiikan ja tilastotieteen laitos Matematiikka Huhtikuu 008 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 14 To 20.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 14 To 20.10.2011 p. 1/39 p. 1/39 Nopeat Fourier-muunnokset Diskreetti Fourier-muunnos ˆf k = 1 N 1 N

Lisätiedot

2. Fourier-sarjoista. Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu

2. Fourier-sarjoista. Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu 2. Fourier-sarjoista Fourier-analyysi: Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu Matemaattisen analyysin täkein työväline "Jokainen funktio" voidaan esittää harmonisten värähtelyjen, so.

Lisätiedot

2.2.1 Ratkaiseminen arvausta sovittamalla

2.2.1 Ratkaiseminen arvausta sovittamalla 2.2.1 Ratkaiseminen arvausta sovittamalla Esimerkki: lomitusjärjestäminen (edellä) Yleistys: Ratkaistava T (1) c T (n) g(t (1),..., T (n 1), n) missä g on n ensimmäisen parametrin suhteen kasvava. (Ratkaisu

Lisätiedot

0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,

0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7, HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä niistä

Lisätiedot

V. POTENSSISARJAT. V.1. Abelin lause ja potenssisarjan suppenemisväli. a k (x x 0 ) k M

V. POTENSSISARJAT. V.1. Abelin lause ja potenssisarjan suppenemisväli. a k (x x 0 ) k M V. POTENSSISARJAT Funtioterminen sarja V.. Abelin lause ja potenssisarjan suppenemisväli P a x x, missä a, a, a 2,... R ja x R ovat vaioita, on potenssisarja, jona ertoimet ovat luvut a, a,... ja ehitysesus

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,

Lisätiedot

2 Funktion derivaatta

2 Funktion derivaatta ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 2018 2 Funktion derivaatta 1. Määritä derivaatan määritelmää käyttäen f (), kun (a), (b) 1 ( > 0). 2. Tutki, onko funktio sin(2) sin 1, kun 0, 2 0, kun = 0, derivoituva

Lisätiedot

1 Määritelmä ja perusominaisuuksia. 2 Laskutoimitukset kompleksiluvuilla. 3 Reaaliluvut ja kompleksiluvut. 4 Kompleksilukujen algebraa

1 Määritelmä ja perusominaisuuksia. 2 Laskutoimitukset kompleksiluvuilla. 3 Reaaliluvut ja kompleksiluvut. 4 Kompleksilukujen algebraa 1 ja perusominaisuuksia 2 Laskutoimitukset kompleksiluvuilla 3 Reaaliluvut ja kompleksiluvut Matematiikan peruskurssi KP3 I OSA 1: Johdatus kompleksilukuihin 4 Kompleksilukujen algebraa 5 Kompleksitaso

Lisätiedot

Lukujonon raja-arvo 1/7 Sisältö ESITIEDOT: lukujonot

Lukujonon raja-arvo 1/7 Sisältö ESITIEDOT: lukujonot Lukujonon raja-arvo 1/7 Sisältö Esimerkki lukujonon raja-arvosta Lukujonossa a 1,a 2,a 3,... (jossa on äärettömän monta termiä) voivat luvut lähestyä jotakin arvoa, kun jonossa edetään yhä pidemmälle.

Lisätiedot

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m ) Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä

Lisätiedot

Derivaattaluvut ja Dini derivaatat

Derivaattaluvut ja Dini derivaatat Derivaattaluvut Dini derivaatat LuK-tutkielma Helmi Glumo 2434483 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Taustaa 2 2 Määritelmät 4 3 Esimerkkejä lauseita 7 Lähdeluettelo

Lisätiedot

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos

Lisätiedot

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1 infoa Viikon aiheet Tentti ensi viikolla ma 23.0. klo 9.00-3.00 Huomaa, alkaa tasalta! D0 (Sukunimet A-) E204 (Sukunimet S-Ö) Mukaan kynä ja kumi. Ei muuta materiaalia. Tentissä kaavakokoelma valmiina.

Lisätiedot