1. Viikko. K. Tuominen MApu II 1/17 17
|
|
- Pauli Jokinen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 1. Viikko Keskeiset asiat ja tavoitteet: 1. Kompleksiluvut, kompleksitaso, polaariesitys, 2. Kompleksilukujen peruslaskutoimitukset, 3. Eulerin ja De Moivren kaavat, 4. Potenssi ja juuret, kompleksinen eksponenttifunktio 5. Trigonometriset ja hyperboliset funktiot 6. Logaritmi, kompleksinen potenssifunktio CDH: luku 9 (s ). Tällä kurssilla on tärkeää oppia manipuloimaan kompleksilukuja. Kompleksifunktioihin ja kompleksianalyysiin palataan myöhemmillä kursseilla. 1 / K. Tuominen kimmo.i.tuominen@helsinki.fi MApu II 1/17 17
2 Kompleksiluvut Toisen asteen yhtälön az 2 + bz + c = 0 ratkaisu: z = b± b 2 4ac. 2a Jos diskriminantti d = (b 2 4ac) < 0, niin määrittelemällä 1 = i, yhtälöllä on aina kaksi ratkaisua. Lukuja z = x + iy, missä x, y R, sanotaan kompleksiluvuiksi. x on luvun z reaaliosa. y on luvun z imaginaariosa. i on ns. imaginaariyksikkö. Kompleksilukujen kuntaa merkitään C. C voidaan samaistaa 2-ulotteisen tason kanssa. 2 / K. Tuominen kimmo.i.tuominen@helsinki.fi MApu II 2/17 17
3 Kompleksitaso Luvut z = x + iy voidaan esittää järj. parina (x, y). Napakoordinaatit: x = r cos θ, y = r sin θ. z r = x 2 + y 2 on luvun z moodi. θ = arctan(y/x) on luvun z argumentti. Polaariesitys: z = x + iy = r(cos θ + i sin θ) = re iθ. Kompleksikonjugaatti: z = x iy = r(cos θ i sin θ) = re iθ. HUOM: ilmaise laskuissa θ radiaaneissa. 3 / K. Tuominen kimmo.i.tuominen@helsinki.fi MApu II 3/17 17
4 Yhdellä pisteellä on monta eri esitystä Esimerkki: kompleksitason hahmottamista Kirjoita z = 1 i polaariesityksessä. Mikä on kompleksiluvun 2e iπ/4 reaaliosa? Mikä on kompleksiluvun 1 i 3 normi ja argumentti? 4 / K. Tuominen kimmo.i.tuominen@helsinki.fi MApu II 4/17 17
5 Kompleksilukujen algebraa Yhteenlasku ja kertolasku kuten reaaliluvuille. Muista i 2 = 1. Esimerkki: Kompleksilukujen kertomista (1 + i) 2 = 2i Tee lasku karteesisessa kannassa ja polaariesityksessä. Jakolaskussa lavenna nimittäjän konjugaatilla. Sievennä osoittaja muotoon a + ib. Esimerkki: Kompleksilukujen osamäärä 2 + i 3 i = i 5 / K. Tuominen kimmo.i.tuominen@helsinki.fi MApu II 5/17 17
6 Kompleksikonjugaatti ja normi Summan (erotuksen) konjugaatti on konjugaatien summa (erotus), (z 1 + z 2 ) = z 1 + z 2. Tulon (osamäärän) konjugaatti on konjugaattien tulo (osamäärä), (z 1 z 2 ) = z1z 2. Normi: z = r = x 2 + y 2 = z z. HUOM: Normi on aina reaaliluku. Esimerkki: Normin laskeminen Laske 5 + 3i 1 i 6 / K. Tuominen kimmo.i.tuominen@helsinki.fi MApu II 6/17 17
7 Kompleksiyhtälöt Kompleksiyhtälöä z 1 = z 2 vastaa kaksi reaaliyhtälöä: Rez 1 = Rez 2, Imz 1 = Imz 2. Esimerkki: kompleksiyhtälö Etsi reaaliluvut x ja y, joille (x + iy) 2 = 2i. Kompleksitaso: geometrinen tulkinta Mikä (x, y)-tason käyrä on z = 3? Entä z 1 = 2? Mikä (x, y)-tason alue on Rez < 1/2? 7 / K. Tuominen kimmo.i.tuominen@helsinki.fi MApu II 7/17 17
8 Kompleksiset sarjat Kompleksilukujen sarja n=0 z n, missä z n = x n + iy n, suppenee, jos osasummien S N jono lähestyy raja-arvoa lim S N = lim X N + lim Y N = X + iy = S. N N N Toisin sanoen reaalilukujen x n ja y n osasummien jonot X N ja Y N lähestyvät raja-arvoja X ja Y. (MAPU I) Kuten reaaliset sarjat, kompleksiset sarjat suppenevat jos ne suppenevat itseisesti. Tätä voidaan testata suhdetestillä. Esimerkki: kompleksisarjan suppeneminen Tutki suppeneeko sarja i 2 + (1 + i) (1 + i)n 2 n / K. Tuominen kimmo.i.tuominen@helsinki.fi MApu II 8/17 17
9 Kompleksiset potenssisarjat n a n z n, z = x + iy, a n C. Esimerkki: Tutki suppenemista suhdetestillä (Suppenee kun z < 1.) 1 + iz + (iz)2 2! (Suppenee koko kompleksitasossa.) 1 z + z2 2 z3 3 + z , n=0 + (iz)3 3! (z + 1 i) n 3 n n , (Suppenee alueessa z ( 1 + i) < 3. (Ympyrä, säde 3, KP: 1 + i)) 9 / K. Tuominen kimmo.i.tuominen@helsinki.fi MApu II 9/17 17
10 Kompleksiset funktiot Polynomit ja rationaalifunktiot: Esim. f(z) = z 2 2z + 1, laske f(1 i). (Vastaus: f(1 i) = 1.) Eksponenttifunktio: e z = 1 + z + z2 2! + z3 3! +... Suppenee itseisesti kaikilla z C. e z toteuttaa tutut laskusäännöt d dz ez = e z, e z1 e z 2 = e z 1+z / K. Tuominen kimmo.i.tuominen@helsinki.fi MApu II 10/17 17
11 Eulerin kaava e iθ = 1 + iθ + (iθ)2 2! + (iθ)3 3! +... = 1 + iθ θ2 2! iθ3 3! + θ4 4! + iθ5 5! +... = 1 θ2 2! + θ4 4! + + i ( θ θ3 3! + θ5 5! +... Tästä tunnistetaan cos θ ja sin θ sarjakehitelmät (MAPU I). HUOM: θ R. Näin saamme Eulerin kaavan: e iθ = cos θ + i sin θ. ). z = x + iy = r(cos θ + i sin θ) = re iθ. 11 / K. Tuominen kimmo.i.tuominen@helsinki.fi MApu II 11/17 17
12 Kompleksilukujen potenssit ja juuret De Moivre: z n = (re iθ ) n = r n e inθ = r n (cos(nθ) + i sin(nθ)). z:n n.s juuri: ( z 1/n = (re iθ ) 1/n = n r cos θ n + i sin θ ). n Esimerkki: potenssi Laske (1 + i) 8. Esimerkki: juuri Laske / K. Tuominen kimmo.i.tuominen@helsinki.fi MApu II 12/17 17
13 Juuren lasku yleisesti Luvun z n.s juuria on n kappaletta. Etene seuraavasti: Kirjoita z polaariesityksessä: z = re i(θ+2πk), (k = 0, 1, 2,... ). Juuret ovat n r-säteisen ympyrän kehällä. Ensimmäisen juuren argumentti on θ/n. Seuraavan juuren saat lisäämällä edelliseen 2π/n, kunnes kaikki n juurta on konstruoitu. Edellisen sivun esimerkki: 64 = 64e i(π+2πk) = juuri: z 1 = 2 2e iπ/4. 2. juuri: z 2 = 2 2e i2π/4, 3. juuri: z 3 = 2 2e i5π/4, 4. juuri: z 4 = 2 2e i7π/4. 13 / K. Tuominen kimmo.i.tuominen@helsinki.fi MApu II 13/17 17
14 Eksponenttifunktio ja trigonometriset funktiot Eulerin kaavasta seuraa sin θ = 1 2i (eiθ e iθ ), cos θ = 1 2 (eiθ + e iθ ). Määritellään näiden avulla kaikille z C sin z = 1 2i (eiz e iz ), cos z = 1 2 (eiz + e iz ). Näiden avulla on helppoa osoittaa esim. sin 2 z + cos 2 z = 1, d sin z dz Lisäksi tan z = sin z/ cos z, cot z = cos z/ sin z. = cos z, etc. 14 / K. Tuominen kimmo.i.tuominen@helsinki.fi MApu II 14/17 17
15 Hyperboliset funktiot Edelleen määritellään sinh z = 1 2 (ez e z ), cosh z = 1 2 (ez + e z ). tanh = sinh z cosh z, Suoraan laskemalla voidaan osoittaa, että cosh z coth = sinh z. cosh 2 z sinh 2 d z = 1, cosh z = sinh z. dz HUOM: Imaginaariselle iy (ts. y R) pätee sin(iy) = i sinh y cos(iy) = cosh y. 15 / K. Tuominen kimmo.i.tuominen@helsinki.fi MApu II 15/17 17
16 Kompleksinen logaritmi Olkoon kompleksiluku z = e w. Silloin w = ln z. Eksponenttifunktion laskusäännöistä seuraa, että ja ln(z 1 z 2 ) = ln z 1 + ln z 2. ln z = ln(re iθ ) = Lnr + iθ. Tässä Ln on tuttu reaalinen logaritmi. Huomaa, että ln z on moniarvoinen (vastaten θ θ ± n2π, n = 0, 1, 2,... ). Rajoittamalla θ [0, 2π] saadaan ns. logaritmin päähaara Esimerkki: kompleksiluvun logaritmi Laske ln(1 + i). Vastaus: Ln2 + i( π 4 ± 2nπ). 16 / K. Tuominen kimmo.i.tuominen@helsinki.fi MApu II 16/17 17
17 Kompleksiset potenssit ja juuret Määritellään kompleksiluvuille a (a e) ja b a b = e b ln a. Koska logarimi on moniarvoinen, myös potenssit ovat. Esimerkki: kompleksiluvun kompleksinen potenssi Laske (1 + i) 1 i. Vastaus: 2e π/4 e ±2nπ (cos(π/4 Ln2) + i sin(π/4 Ln2)). HUOM: Logaritmin moniarvoisuudesta seuraa, että a b a c ei välttämättä ole sama kuin a b+c ja (a b ) c ei välttämättä ole sama kuin a bc. 17 / K. Tuominen kimmo.i.tuominen@helsinki.fi MApu II 17/17 17
1 Määritelmä ja perusominaisuuksia. 2 Laskutoimitukset kompleksiluvuilla. 3 Reaaliluvut ja kompleksiluvut. 4 Kompleksilukujen algebraa
1 ja perusominaisuuksia 2 Laskutoimitukset kompleksiluvuilla 3 Reaaliluvut ja kompleksiluvut Matematiikan peruskurssi KP3 I OSA 1: Johdatus kompleksilukuihin 4 Kompleksilukujen algebraa 5 Kompleksitaso
Lisätiedot1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7
Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7 1 Kompleksiluvut Lukualueiden laajennuksia voi lähestyä polynomiyhtälöiden ratkaisemisen kautta. Yhtälön x+1 = 0 ratkaisemiseksi tarvitaan negatiivisia lukuja.
LisätiedotMS-A0102 Differentiaali- ja integraalilaskenta 1
MS-A0102 Differentiaali- ja integraalilaskenta 1 Kompleksiluvut Riikka Korte (muokannut Riikka Kangaslammen materiaalin pohjalta) Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.11.2015 1 /
LisätiedotVII. KOMPLEKSILUVUT. VII.1. Laskutoimitukset
VII. KOMPLEKSILUVUT Kompleksilukujen joukko on VII.1. Laskutoimitukset C = {(x, y x R ja y R} ; siis joukkona C = taso R 2. Kun z = (x, y C, niin x R on z:n reaaliosa ja y R imaginaariosa, merkitään x
LisätiedotMatriisilaskenta Luento 10: Polaarimuoto ja kompleksilukujen geometriaa
Matriisilaskenta Luento 10: Polaarimuoto ja kompleksilukujen geometriaa Antti Rasila 2016 Polaarimuoto Kuvasta nähdään: { x = r cos θ, y = r sin θ. Siis z = x + iy = r cos θ + ir sin θ. Saadaan kompleksiluvun
LisätiedotKOMPLEKSIANALYYSI I KURSSI SYKSY 2012
KOMPLEKSIANALYYSI I KURSSI SYKSY 01 RITVA HURRI-SYRJÄNEN 5. Eksponenttifunktio ja sini- ja kosinifunktiot Kertausta. (1 Reaaliselle eksponenttifunktiolle e x : R R + pätee e x x k = kaikilla x R. k! (
Lisätiedot1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2
Sisältö 1 Kompleksiluvut 1 1.1 Määritelmä............................ 1 1. Kertolasku suorakulmaisissa koordinaateissa.......... 4 1.3 Käänteisluku ja jakolasku..................... 9 1.4 Esimerkkejä.............................
LisätiedotKompleksiluvut., 15. kesäkuuta /57
Kompleksiluvut, 15. kesäkuuta 2017 1/57 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen
Lisätiedoty z = (x, y) Kuva 1: Euklidinen taso R 2
Kompleksiluvut. Määritelmä Tarkastellaan euklidista tasoa R = {(, y), y R}. y y z = (, y) R Kuva : Euklidinen taso R Suorakulmaisessa koordinaatistossa on -akseli ja y-akseli. Luvut ja y ovat pisteen z
LisätiedotPerustehtävät. Kompleksitehtävät, 10/9/2005, sivu 1 / 10. Tehtävä 1. Sievennä 1.
Kompleksitehtävät, 10/9/2005, sivu 1 / 10 Perustehtävät Tehtävä 1. Sievennä 1. 2 5i 1+2i 2. ( 2 i 2) 150 Tehtävä 2. Olkoon P mielivaltainen reaalikertoiminen polynomi. Osoita, että jos luku z C toteuttaa
Lisätiedot1. Piirrä kompleksitasoon seuraavat matemaattiset objektit/alueet.
BM0A5700 - Integraalimuunnokset Harjoitus 1 1. Piirrä kompleksitasoon seuraavat matemaattiset objektit/alueet. a Piste z 1 i. Ympyrä z 1 i. Avoin kiekko z 1 i
LisätiedotAnalyysi I. Visa Latvala. 3. joulukuuta 2004
Analyysi I Visa Latvala 3. joulukuuta 004 95 Sisältö 6 Kompleksiluvut 96 6.1 Yhteen- ja kertolasku.............................. 96 6. Napakoordinaattiesitys............................. 10 96 6 Kompleksiluvut
Lisätiedot1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n.
ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0004/A0006 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 8.9.015 Reaalinen
LisätiedotKompleksianalyysi Funktiot
Kompleksianalyysi Funktiot Jukka Kemppainen Mathematics Division Kompleksimuuttujan funktio Aloitetaan funktion määritelmällä. Määr. 1 Kompleksimuuttujan funktio f : C C on sääntö, joka liittää joukkoon
LisätiedotKompleksiluvut Kompleksitaso Kompleksifunktiot ja kuvaukset Funktioiden raja-arvo, jatkuvuus ja derivaatta Eräitä kompleksifun.
17. lokakuuta 2016 Kompleksiluvut Kompleksiluku Kompleksiluku z on järjestetty reaalilukupari missä x ja y ovat reaalilukuja. z = (x, y), Lukuparin reaaliosa on x ja imaginaariosa on y. Lukuparin reaaliosa
LisätiedotKompleksiluvut. JYM, Syksy /99
Kompleksiluvut JYM, Syksy 2014 1/99 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen
LisätiedotResidylaskenta ja sen sovelluksena äärettömien sarjojen summien laskeminen ja Mittag-Leerin laajennuslause
Residylaskenta ja sen sovelluksena äärettömien sarjojen summien laskeminen ja Mittag-Leerin laajennuslause Pro Gradu-tutkielma Urho Erkkilä Matemaattisten tieteiden laitos Oulun Yliopisto Kevät 03 Sisältö
LisätiedotSimo K. Kivelä. Kompleksiluvut. 30.8.2009 Versio 1.01, 23.10.2012
Simo K. Kivelä Kompleksiluvut 30.8.2009 Versio 1.01, 23.10.2012 c Simo K. Kivelä Tämän teoksen käyttöoikeutta koskee Creative Commons Nimeä-JaaSamoin 3.0 Muokkaamaton -lisenssi (http://creativecommons.org/licenses/by-sa/3.0/deed.fi)
LisätiedotKompleksiluvut 1/6 Sisältö ESITIEDOT: reaaliluvut
Kompleksiluvut 1/6 Sisältö Kompleksitaso Lukukäsitteen vaiheittainen laajennus johtaa luonnollisista luvuista kokonaislukujen ja rationaalilukujen kautta reaalilukuihin. Jokaisessa vaiheessa ratkeavien
LisätiedotKompleksitermiset jonot ja sarjat
Kompleksitermiset jonot ja sarjat Aalto MS-C300, 205, v., Kari Eloranta Tutkitaan kompleksitermisten jonojen ja sarjojen ominaisuuksia. Päätavoite on kompleksifunktioiden sarjakehitelmien ymmärrys. Määritelmä
LisätiedotMat Matematiikan peruskurssi KP3-i. Osa I. Kompleksiluvut. TKK lokakuuta Määritelmä ja perusominaisuuksia
Mat-1.1331 Matematiikan peruskurssi KP3-i A.Rasila J.v.Pfaler TKK27 19. lokakuuta 27 A.Rasila, J.v.Pfaler () Mat-1.1331 Matematiikan peruskurssi KP3-i 19. lokakuuta 27 1 / 353 A.Rasila, J.v.Pfaler () Mat-1.1331
Lisätiedot2. Funktiot. Keijo Ruotsalainen. Mathematics Division
2. Funktiot Keijo Ruotsalainen Mathematics Division Kompleksimuuttujan funktio Kompleksimuuttujan z kompleksiarvoinen funktio f(z) voi olla yksiarvoinen tai moniarvoinen, esimerkiksi f(z) = e z f(z) =
LisätiedotKaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.
6 Alkeisfunktiot Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6. Funktion määrittely Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon
LisätiedotKompleksiluvut Kompleksitaso
. Kompleksiluvut.. Kompleksitaso 8. Todista kompleksilukujen yhteen- ja kertolaskun (lukuparien avulla annettuihin) määritelmiin perustuen osittelulaki: z (z + z ) = z z + z z. 8. Todista kompleksilukujen
Lisätiedot6. Kompleksiluvut. Kompleksilukuja esiintyy usein polynomiyhtälöiden ratkaisuina. Esim:
6. Kompleksiluvut Yhtälöllä x = 1 ei ole reaalilukuratkaisua: tarvitaan uusia lukuja. Kompleksiluku on kahden reaaliluvun järjesteby "pari" (x,y): Z = x +iy Missä i on imaginääriyksikkö, jolla on ominaisuus
LisätiedotHY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 5 Ratkaisuehdotuksia
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 015 Harjoitus 5 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan väitteiden todistamista tai kumoamista vastaesimerkin
LisätiedotKOMPLEKSIANALYYSI I KURSSI SYKSY 2012
KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 2. Kompleksitason topologiaa Kompleksianalyysi on kompleksiarvoisten kompleksimuuttujien funktioiden teoriaa. Tällä kurssilla käsittelemme vain
LisätiedotKOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut
KOMPLEKSILUVUT C Luonnolliset luvut N Kokonaisluvut Z Rationaaliluvut Q Reaaliluvut R Kompleksi luvut C Negat kokonaisluvut Murtoluvut Irrationaaliluvut Imaginaariluvut Erilaisten yhtälöiden ratkaiseminen
Lisätiedota) z 1 + z 2, b) z 1 z 2, c) z 1 z 2, d) z 1 z 2 = 4+10i 4 = 10i 5 = 2i. 4 ( 1)
Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Osoita, että kompleksilukujen yhteenlasku määriteltynä tasopisteiden kautta koordinaateittain on liitännäinen, so. z + (z + z ) = (z + z )
Lisätiedot(a, 0) + (c, 0) = (a + c, 0)
. Kompleksiluvut Kompleksiluvut C saadaan varustamalla taso R komponenteittaisella yhteenlaskulla (Esimerkki.3 (b)) ja kertolaskulla, joka määritellään asettamalla Huomaa, että ja (a, b)(c, d) =(ac bd,
LisätiedotKompleksianalyysi, viikko 5
Kompleksianalyysi, viikko 5 Jukka Kemppainen Mathematics Division Kompleksiset jonot Aloitetaan jonon suppenemisesta. Määr. 1 Kompleksiluvuista z 1,z 2,...,z n,... koostuva jono suppenee kohti raja-arvoa
LisätiedotMAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio
MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio Olkoon a 1 = a 2 = 5 ja a n+1 = a n + 6a n 1 kun n 2. Todista induktiolla, että a n = 3 n ( 2) n, kun n on positiivinen
LisätiedotKOMPLEKSIANALYYSIN KURSSI SYKSY 2012
KOMPLEKSIANALYYSIN KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 1. Kompleksiluvuista Kaksiulotteinen reaalinen vektoriavaruus R 2 koostuu lukupareista (x 1, x 2 ), missä x 1 ja x 2 ovat reaalilukuja, eli R 2
Lisätiedot6 Eksponentti- ja logaritmifunktio
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 019 6 Eksponentti- ja logaritmifunktio 6.1 Eksponenttifunktio 1. Määritä (a) e 3 e + 5, (b) e, (c) + 3e e cos.. Tutki, onko funktiolla f() = 1 e tan + 1 ( π + nπ, n
Lisätiedot5. lukujonot ja sarjat.
5. lukujonot ja sarjat. Lukujono on järjeste1y joukko lukuja x 1, x 2, x 3,..., x N Kun jonon alkiot lasketaan yhteen, saadaan summa: N x i = x 1 + x 2 + x 3 +...+ x N i=1 Jos lukujono on ääre1ömän pitkä
LisätiedotYksinkertaisin (jollain tavalla mielenkiintoinen) yhtälö lienee muotoa. x + a = b,
Kompleksiluvut c Pekka Alestalo 013 Tämä moniste sisältää perusasiat kompleksiluvuista. Tähdellä merkityt kohdat ovat lähinnä oheislukemistoksi tarkoitettua materiaalia. 1 Lukujoukot Uuden tyyppisten lukujen
LisätiedotJohdatus matematiikkaan
Johdatus matematiikkaan Luento 6 Mikko Salo 6.9.2017 Sisältö 1. Kompleksitaso 2. Joukko-oppia Kompleksiluvut Edellisellä luennolla huomattiin, että toisen asteen yhtälö ratkeaa aina, jos ratkaisujen annetaan
LisätiedotKaikki tarpeellinen kompleksiluvuista
Solmu 1 Kaikki tarpeellinen kompleksiluvuista Matti Lehtinen Maanpuolustuskorkeakoulu Kompleksiluvut ovat poistumassa lukion matematiikan opetussunnitelmista Ne ovat kuitenkin keskeinen osa matematiikan
Lisätiedot5. lukujonot ja sarjat.
5. lukujonot ja sarjat. Lukujono on järjeste1y joukko lukuja x 1, x 2, x 3,..., x N Kun jonon alkiot lasketaan yhteen, saadaan sarja: N x i = x 1 + x 2 + x 3 +...+ x N i=1 Yhteenlaskun tulosta sanotaan
LisätiedotMATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +
LisätiedotTRIGONOMETRISET JA HYPERBOLISET FUNKTIOT
TRIGONOMETRISET JA HYPERBOLISET FUNKTIOT ARI LEHTONEN. Trigonometriset funktiot.. Peruskaavat. tan x := sin x cos x, cos x cot x := sin x Anglosaksisissa maissa käytössä ovat myös funktiot sekantti sec
LisätiedotSarjoja ja analyyttisiä funktioita
3B Sarjoja ja analyyttisiä funktioita 3B a Etsi funktiolle z z 5 potenssisarjaesitys kiekossa B0, 5. b Etsi funktiolle z z potenssisarjaesitys kiekossa, jonka keskipiste on z 0 4. Mikä on tämän potenssisarjan
Lisätiedotl 1 2l + 1, c) 100 l=0
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)
LisätiedotKompleksilukujen alkeet
Kompleksilukuje alkeet Samuli Reuae Soja Kouva Kuva 1: Abraham De Moivre (1667-175) Sisältö 1 Kompleksiluvut ja kompleksitaso 1.1 Yhtee- ja väheyslasku...................... 1. Kertolasku ja z = x + yi
LisätiedotSisältö MONISTEESTA...2 KOMPLEKSILUVUT...4 JOHDANNOKSI...4 KERTAUSTA LUKUJOUKOISTA...4 HUOMAUTUS...8 KOMPLEKSILUKUJEN MÄÄRITTELY...5 ARGUMENTTI...
Sisältö MONISTEESTA KOMPLEKSILUVUT4 JOHDANNOKSI4 KERTAUSTA LUKUJOUKOISTA 4 HUOMAUTUS5 KOMPLEKSILUKUJEN MÄÄRITTELY 5 HUOMAUTUS8 ARGUMENTTI 9 KOMPLEKSILUVUN ITSEISARVO9 LIITTOLUKU 0 VASTALUKU KOMPLEKSILUKUJEN
LisätiedotKompleksianalyysi. Jukka Kemppainen. Mathematics Division
Kompleksianalyysi Jukka Kemppainen Mathematics Division Sisältö 1. Kompleksiluvut 2. Funktiot 3. Differentiaalilaskentaa 4. Integrointi 5. Sarjat 6. Residylaskentaa 7. Diskreetti systeemi 2 / 43 Kompleksiluvut
LisätiedotNumeeriset menetelmät
Numeeriset menetelmät Luento 13 Ti 18.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 13 Ti 18.10.2011 p. 1/43 p. 1/43 Nopeat Fourier-muunnokset Fourier-sarja: Jaksollisen funktion esitys
Lisätiedotl 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +
LisätiedotMat-1.433/443 Matematiikan peruskurssit K3/P3 syksy 2004 KOMPLEKSILUVUT JA -FUNKTIOT. Sisältö
Mat-1.433/443 Matematiikan peruskurssit K3/P3 syksy 2004 KOMPLEKSILUVUT JA -FUNKTIOT Sisältö Päivitetty 16. syyskuuta 2004 Johdanto ii 1. Kompleksiluvun määritelmä ja perusominaisuudet 1 1.1. Kompleksiluvun
LisätiedotMS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon
Lisätiedot5. lukujonot ja sarjat.
5. lukujonot ja sarjat. Lukujono on järjeste1y joukko lukuja x 1, x 2, x 3,..., x N Kun jonon alkiot lasketaan yhteen, saadaan sarja: N x i = x 1 + x 2 + x 3 +...+ x N i=1 Yhteenlaskun tulosta sanotaan
LisätiedotFunktion määrittely (1/2)
Funktion määrittely (1/2) Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon a täsmälleen yhden B:n alkion b. Merkitään b = f (a). Tässä A = M f on f :n määrittelyjoukko, B on f :n maalijoukko.
LisätiedotMat-1.1331 Matematiikan pk KP3-i - kertaus
Mat-.33 Matematiikan pk KP3-i - kertaus J.v.Pfaler TKK 24. lokakuuta 2007 Kurssin ensimmäisen puoliskon selkäranka on Kompleksitason funktioiden teoria, sisältäen analyyttiset funktiot, auchy integraali
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 28.9.2016 Pekka Alestalo,
LisätiedotKolmannen asteen yhtälön ratkaisukaava
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Johanna Harju Kolmannen asteen yhtälön ratkaisukaava Matematiikan tilastotieteen laitos Matematiikka Heinäkuu 008 Tampereen yliopisto Matematiikan tilastotieteen
LisätiedotMS-A0102 Differentiaali- ja integraalilaskenta 1
MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 15.11.2016 Sisältö Alkeisfunktiot 1.1 Funktio I Funktio f : A! B on sääntö, joka liittää
LisätiedotKompleksianalyysi. Tero Kilpeläinen
Kompleksianalyysi Tero Kilpeläinen Luentomuistiinpanoja keväälle 2005 26. huhtikuuta 2006 Alkusanat Seuraavilla sivuilla on luentomuistiinpanoja kompleksianalyysin laudatur-kurssille. Toivoakseni kirjoitus
LisätiedotFunktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen
4. Funktiojonot ja funktiotermiset sarjat 4.1. Funktiojono ja funktioterminen sarja 60. Tutki, millä muuttujan R arvoilla funktiojono f k suppenee, kun Mikä on rajafunktio? a) f k () = 2k 2k + 1, b) f
LisätiedotMat / Mat Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 42, loppuviikko, syksy 2008
Mat-.3 / Mat-.33 Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 4, loppuviikko, syksy 8 Ennen malliratkaisuja, muistin virkistämiseksi kaikkien rakastama osittaisintegroinnin kaava: b a u(tv (t
Lisätiedot(a) avoin, yhtenäinen, rajoitettu, alue.
1. Hahmottele seuraavat tasojoukot. Mitkä niistä ovat avoimia, suljettuja, kompakteja, rajoitettuja, yhtenäisiä, alueita? (a) {z C 1 < 2z + 1 < 2} (b) {z C z i + z + i = 4} (c) {z C z + Im z < 1} (d) {z
LisätiedotSMG-2100: SÄHKÖTEKNIIKKA. Kompleksilukujen hyödyntäminen vaihtosähköpiirien
SMG-100: SÄHKÖTEKNIIKKA Kompleksilukujen hyödyntäminen vaihtosähköpiirien analyysissä Osoitin Trigonometrinen muoto Polaarimuoto Kompleksilukujen peruslaskutoimitukset Viime luennolla esitettiin, että
LisätiedotPERUSASIOITA ALGEBRASTA
PERUSASIOITA ALGEBRASTA Matti Lehtinen Tässä luetellut lauseet ja käsitteet kattavat suunnilleen sen mitä algebrallisissa kilpatehtävissä edellytetään. Ns. algebrallisia struktuureja jotka ovat nykyaikaisen
LisätiedotTämän luvun tarkoituksena on antaa perustaidot kompleksiluvuilla laskemiseen sekä niiden geometriseen tulkintaan. { (a, b) a, b œ R }
7 Kompleksiluvut Tämän luvun tarkoituksena on antaa perustaidot kompleksiluvuilla laskemiseen sekä niiden geometriseen tulkintaan. 7.1 Kompleksilukujen määritelmä Määritelmä 7.1.1. Kompleksilukujen joukko
Lisätiedot0. Kertausta. Luvut, lukujoukot (tavalliset) Osajoukot: Yhtälöt ja niiden ratkaisu: N, luonnolliset luvut (1,2,3,... ) Z, kokonaisluvut
0. Kertausta Luvut, lukujoukot (tavalliset) N, luonnolliset luvut (1,2,3,... ) Z, kokonaisluvut Rationaaliluvut n/m, missä n,m Z Reaaliluvut R muodostavat jatkumon fysiikan lukujoukko Kompleksiluvut C:z
Lisätiedot1 Kompleksitason geometriaa ja topologiaa
1 Kompleksitason geometriaa ja topologiaa Tavallisessa analyyttisessä geometriassa käyrien yhtälöt esitetään x-koordinaattien ja y-koordinaattien avulla, esimerkiksi y = 1 x esittää tasasivuista hyperbeliä,
LisätiedotMATP153 Approbatur 1B Harjoitus 3, ratkaisut Maanantai
MATP53 Approbatur B Harjoitus 3, ratkaisut Maanantai 6..5. (Teht. 5 ja s. 4.) Olkoot z = + y i ja z = + y i. Osoita, että (a) z + z = z +z, (b) z z = z z, (c) z z = z ja (d) z = z z, kun z. (a) z + z =
LisätiedotMS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat
MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos September 13, 2017 Pekka Alestalo,
LisätiedotKompleksianalyysi 1. Tero Kilpeläinen
Kompleksianalyysi 1 Tero Kilpeläinen Luentomuistiinpanoja keväälle 2015 6. maaliskuuta 2015 Alkusanat Seuraavilla sivuilla on luentomuistiinpanoja Kompleksianalyysi 1 -kurssille. Nämä on muokattu kompleksianalyysin
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 14.9.2016 Pekka Alestalo, Jarmo Malinen
LisätiedotReaalisten funktioiden integrointia kompleksianalyysin keinoin
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Mervi Paavola Reaalisten funktioiden integrointia kompleksianalyysin keinoin Informaatiotieteiden yksikkö Matematiikka Tampereen yliopisto Informaatiotieteiden
LisätiedotAlgebra. 1. Ovatko alla olevat väittämät tosia? Perustele tai anna vastaesimerkki. 2. Laske. a) Luku 2 on luonnollinen luku.
Algebra 1. Ovatko alla olevat väittämät tosia? Perustele tai anna vastaesimerkki. a) Luku on luonnollinen luku. b) Z c) Luvut 5 6 ja 7 8 ovat rationaalilukuja, mutta luvut ja π eivät. d) sin(45 ) R e)
LisätiedotMS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat
M-A010{2,3,4,5} (CI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: arjat Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos eptember 12, 2018 Pekka
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 26.9.2016 Pekka Alestalo,
LisätiedotÄärettömät raja-arvot
Äärettömät raja-arvot Määritelmä Funktion f oikeanpuoleinen raja-arvo pisteessä x 0 on + mikäli kaikilla R > 0 löytyy sellainen δ > 0 että f (x) > R aina kun x 0 < x < x 0 + δ. Funktion f oikeanpuoleinen
Lisätiedotz Im (z +1) 2 = 0. Mitkä muut kompleksitason pisteet toteuttavat tämän yhtälön? ( 1) 0 z ( 1) z ( 1) arg = arg(z 0) arg(z ( 1)), z ( 1) z ( 1)
. Osoita geometrisesti, että jos = ja niin pätee Im +) = 0. Mitkä muut kompleksitason pisteet toteuttavat tämän htälön? Kirjoitetaan +) = 0 ) ), ) 0 jossa, ja 0 vastaavat kolmion pisteitä kompleksitasossa.
LisätiedotKompleksianalyysi, viikko 6
Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että
Lisätiedotz 1+i (a) f (z) = 3z 4 5z 3 + 2z (b) f (z) = z 4z + 1 f (z) = 12z 3 15z 2 + 2
BM20A5700 - Integraauunnokset Harjoitus 2 1. Laske seuraavat raja-arvot. -kohta ratkeaa, kun pistät sekä yläkerran että alakerran muotoon (z z 1 )(z z 2 ), missä siis z 1 ja z 2 ovat näiden lausekkeiden
LisätiedotA = (a 2x) 2. f (x) = 12x 2 8ax + a 2 = 0 x = 8a ± 64a 2 48a x = a 6 tai x = a 2.
MATP53 Approbatur B Harjoitus 7 Maanantai..5. (Teht. s. 9.) Neliön muotoisesta pahviarkista, jonka sivun pituus on a, taitellaan kanneton laatikko niin, että pahviarkin nurkista leikataan neliön muotoiset
LisätiedotIntegroimistekniikkaa Integraalifunktio
. Integroimistekniikkaa.. Integraalifunktio 388. Vertaa funktioiden ln ja ln, b) arctan ja arctan + k k, c) ln( + 2 ja ln( 2, missä a >, derivaattoja toisiinsa. Tutki funktioiden erotusta muuttujan eri
Lisätiedot1 Peruslaskuvalmiudet
1 Peruslaskuvalmiudet 11 Lukujoukot N {1,, 3, 4,} on luonnollisten lukujen joukko (0 mukana, jos tarvitaan), Z {, 3,, 1, 0, 1,, 3,} on kokonaislukujen joukko, Q m n : m, n Z, n 0 on rationaalilukujen joukko,
LisätiedotLaajennetaan lukualuetta lisäämällä murtoluvut
91 5 KOMPLEKSILUVUT 5.1 LUKUALUEEN LAAJENNUS Luoolliset luvut N : 1,, 3,... Määritelty - yhteelasku ab N, ku a, b N - kertolasku ab N, ku a, b N Kysymys: Löytyykö aia sellaie x N, että ax b, ku a, b N
LisätiedotFysiikan matematiikka P
Fysiikan matematiikka 763101P Luennoija: Kari Rummukainen, Fysikaalisten tieteiden laitos Tavoite: tarjota opiskelijalle nopeasti fysikaalisten tieteiden tarvitsemia matematiikan perustietoja ja taitoja.
LisätiedotSarja. Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,...,
Sarja Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): Määritelmä 1 s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,..., n s n = a k. Jos osasummien jonolla (s n ) on raja-arvo s R,
Lisätiedot5. lukujonot ja sarjat. Suppeneminen. Geometrinen lukujono ja summa. AritmeeMnen lukujono ja summa 1/31/13
5. lukujonot ja sarjat. Lukujono on järjeste4y joukko lukuja x 1, x, x 3,..., x N Kun jonon alkiot lasketaan yhteen, saadaan summa: N x i = x 1 + x + x 3 +...+ x N i=1 Jos lukujono on ääre4ömän pitkä (eli
LisätiedotKOMPLEKSIANALYYSI I KURSSI SYKSY 2012
KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 8. Integraalilauseiden sovelluksia 1. Analyyttisen funktion sarjaesitys. (eli jokainen analyyttinen funktio on lokaalisti suppenevan potenssisarjan
LisätiedotOLLI HUOPIO JOHDANTO KOMPLEKSISIIN MONIARVOISIIN FUNKTIOI- HIN. Kandidaatintyö
OLLI HUOPIO JOHDANTO KOMPLEKSISIIN MONIARVOISIIN FUNKTIOI- HIN Kandidaatintyö Tarkastaja: Petteri Laakkonen 1.12.2017 i TIIVISTELMÄ OLLI HUOPIO: Johdanto kompleksisiin moniarvoisiin funktioihin Tampereen
LisätiedotKompleksilukujen historia alkoi yhtälönratkaisusta. Lineaarisella yhtälöllä on aina yksi ratkaisu, mutta jo toisen asteen yhtälön
Kompleksiluvut Aalto MS-C1300, 2015, v1.1, Kari Eloranta Kompleksilukujen historia alkoi yhtälönratkaisusta. Lineaarisella yhtälöllä on aina yksi ratkaisu, mutta jo toisen asteen yhtälön ax 2 +bx +c =
LisätiedotKOMPLEKSIANALYYSI I KURSSI SYKSY exp z., k = 1, 2,... Eksponenttifunktion z exp(z) Laurent-sarjan avulla
KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 11. Integrointi erillisen erikoispisteen ympäri Olkoot f analyyttinen punkteeratussa kiekossa D(z 0.r\{z 0 }. Funktiolla f on erikoispiste z 0.
LisätiedotC = {(x,y) x,y R} joiden joukossa on määritelty yhteen- ja kertolasku seuraavasti
Vaasan yliopiston julkaisuja 189 9 OMINAISARVOTEHTÄVÄ Ch:EigSystem Sec:CMatrix 9.1 Kompleksinen lineaariavaruus 9.1.1 Kompleksiluvut Pian tulemme tarvitsemaan kompleksisen lineaariavaruuden alkeita. Tätä
LisätiedotKompleksianalyysi I. Helsingin yliopisto Matematiikan ja tilastotieteen laitos Syyslukukausi Kari Astala
Kompleksianalyysi I Helsingin yliopisto Matematiikan ja tilastotieteen laitos Syyslukukausi 2016 Kari Astala Teksti hyödyntää myös Pekka Niemisen ja Ritva Hurri-Syrjäsen aikaisempia muistiinpanoja. Kuvat:
LisätiedotEulerin summia. Kai Kaskela. Matematiikan pro gradu
Eulerin summia Kai Kaskela Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 4 Tiivistelmä: Kai Kaskela, Eulerin summia, matematiikan pro gradu -tutkielma, 37 s.,
LisätiedotValintakoe
Valintakoe 7.3.05 Kokeessa saa käyttää kirjoitusvälinewiden lisäksi ainoastaan kokeessa jaettavaa funktiolaskinta ja taulukkoa Pisteytys 8*3p=4p. Tehtävien alakohtien pistemäärät voivat poiketa toisistaan..
LisätiedotVastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:
. Koska F( ) on jokin funktion f ( ) integraalifunktio, niin a+ a f() t dt F( a+ t) F( a) ( a+ ) b( a b) Vastaus: Kertausharjoituksia. Lukujonot 87. + n + lim lim n n n n Vastaus: suppenee raja-arvona
LisätiedotKompleksianalyysi viikko 3
Kompleksianalyysi viikko 3 Jukka Kemppainen Mathematics Division Derivaatta Oletetaan seuraavassa, että joukko A C on avoin, eli jokaista z 0 A kohti on olemassa sellainen ǫ > 0, että z z 0 < ǫ z A. f
Lisätiedot5 Differentiaalilaskentaa
5 Differentiaalilaskentaa 5.1 Raja-arvo Esimerkki 5.1. Rationaalifunktiota g(x) = x2 + x 2 x 1 ei ole määritelty nimittäjän nollakohdassa eli, kun x = 1. Funktio on kuitenkin määritelty kohdan x = 1 läheisyydessä.
LisätiedotMatematiikan peruskurssi 2
Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat
LisätiedotJohdatus matematiikkaan
Johdatus matematiikkaan Luento 5 Mikko Salo 5.9.2017 The natural development of this work soon led the geometers in their studies to embrace imaginary as well as real values of the variable.... It came
LisätiedotKaavoja: Aalto-yliopisto. Hyperboliset ja trigonometriset funktiot: coshz = ez +e z. , sinhz = ez e z. 1. (a) Esitä polaarimuodossa kompleksiluku
Aalto-yliopisto Rasila/Murtola Mat-1.130 peruskurssi S3 Syksy 011 1. välikoe Ti 11.10.011 klo 16.00-19.00 Kokeessa saa käyttää ylioppilaskirjoituksessa sallittua laskinta mutta ei taulukkokirjaa. 1. (a)
LisätiedotMatriisilaskenta Laskuharjoitus 1 - Ratkaisut / vko 37
Matriisilaskenta Laskuharjoitus 1 - Ratkaisut / vko 37 Tehtävä 1: Käynnistä Matlab-ohjelma ja kokeile laskea sillä muutama peruslaskutoimitus: laske jokin yhteen-, vähennys-, kerto- ja jakolasku. Laske
LisätiedotPotenssisarja, suppenemissäde. Potenssisarja ja derivointi. Potenssisarja ja analyyttiset funktiot. Potenssisarja ja integrointi.
Matematiikan peruskurssi KP3 I OSA 4: Taylorin sarja, residymenetelmä A.Rasila J.v.Pfaler 26. syyskuuta 2007 Kompleksista sarjoista Jono, suppeneminen, summasarja Potenssisarja, suppenemissäde ja analyyttiset
Lisätiedot