TASAPAINOJAKAUMAT KVANTTIMEKAANISISSA SYSTEEMEISSÄ (AH 5.4, 6.1, 6.4, 6.5) Mikrokanoninen joukko

Koko: px
Aloita esitys sivulta:

Download "TASAPAINOJAKAUMAT KVANTTIMEKAANISISSA SYSTEEMEISSÄ (AH 5.4, 6.1, 6.4, 6.5) Mikrokanoninen joukko"

Transkriptio

1 1 TASAPAINOJAKAUMAT KVANTTIMEKAANISISSA SYSTEEMEISSÄ (AH 5.4, 6.1, 6.4, 6.5) Mikrokanoninen joukko Aivan kuten klassisessa tapauksessa, myös kvanttimekaanisille monihiukkassysteemeille voidaan määritellä mikrokanoninen joukko eli ensemble. Sen tiheysoperaattori rakennetaan vaatimalla, että systeemiä vastaavien mahdollisten mikrotilojen energia on välillä [E, E + E] ja maksimoimalla tilastollinen entropia tällä reunaehdolla. Analogisesti klassisen faasiavaruuden todennäköisyystiheyden kanssa määrittelemme nyt tiheysoperaattorin ϱ E = 1 Z E [θ(e + E Ĥ) θ(e Ĥ)], missä normitusvakio eli mikrokanoninen partitiofunktio (tilasumma) saa selvästi tilakertymäfunktion avulla muodon Z E = J(E + E) J(E). Kapealla energiaviipaleella voidaan kirjoittaa myös Z E = ω(e) E, missä ω(e) on tilatiheys. On helppo tehtävä tarkistaa, että yo. operaattori täyttää kaikki tiheysoperaattorilta vaadittavat aksioomat, vaikka ei olekaan eksplisiittisesti muotoa ϱ = α p α Ψ α Ψ α. Aivan kuten klassisessa tapauksessa saadaan mikrokanoniselle entropialle helposti muoto S = Tr ϱ E ln ϱ E = ln Z E = ln[j(e + E) J(E)] = ln[ω(e) E] ln ω(e), jossa olemme toisen yhtäsuuruusmerkin kohdalla käyttäneet hyväksi sitä, että funktio x ln x käviää kun x = 0 tai 1, ja aivan lopussa termi ln E on jätetty suhteellisesti vähäpätöisenä pois (tämän oikeutus osoitetaan tarkemmin myöhemmin). Yhteys termodynamiikkaan saadaan puolestaan samaistamalla S tilastollinen = S termo, jolloin 1 T = ( S E ) V,N = E ln Z E = ln ω(e, V, N). E

2 Käänteinen lämpötila voidaan siis samaistaa tilatiheyden logaritmin kasvunopeuden kanssa, mikä on varsin epätriviaali ja mielenkiintoinen tulos. Esimerkki: N:n vapaan hiukkasen systeemin entropia Käyttämällä edellisellä luennolla johdettua tilatiheyden kaavaa, saadaan S = ln ω N (E) E = ln ( (C 2V) N E 3N 2 1 N! Γ ( 3N 2 ) E) = N ln(c 2 VE 3/2 ) ln (N! Γ ( 3N 2 )) + ln E E, C 2 = g(2πm)3/2 h 3. Suurille N:n arvoille pätee Stirlingin approksimaatio (johda!): ln Γ(N + 1) = ln N! = N ln N N + O(ln N), missä N on oletettu suureksi positiiviseksi reaaliluvuksi (kokonaislukuisuudella ei merkitystä). Näin saadaan S = N ln(c 2 VE 3/2 ) N(ln N 1) 3N 2 joten tällä tarkkuudella (ln 3N 2 1) + ln E E + O(ln N) S = N { ln ( C 2 VE 3 2 N ( 3N 3 2 ) 2 ) } + ln E E + O(ln N). Kaksi viimeistä termiä ovat pieniä (logaritmisia) termodynaamisella rajalla. Siispä Tämä esimerkki osoittaa: S N (ln gv 3/2 h 3 N (4πmE 3N ) ). Energiaviipaleen paksuudella ei ole oleellista merkitystä entropian kaavassa, joka voidaankin laskea suoraan relaatiosta S(E) = ln ω(e) 2

3 Ilman tekijää 1 tilatiheydessä ei entropiasta tule ekstensiivistä suureta N! (S ~ N) termodynaamisella rajalla. Kanoninen joukko Jälleen täysin analogisesti klassisen tilastollisen mekaniikan kanssa määrittelemme kanonisen joukon todennäköisyysjakauman ρ operaattorina, joka maksimoi tilastollisen entropian lausekkeen reunaehtojen H = Tr ρ H = E ja Tr ρ = p n n = 1 vallitessa, mikä vastaa sitä, että systeemi on ns. lämpökylvyssä eli vaihtaa lämpöä ympäristönsä kanssa. Minimoitavaksi variaatiofunktionaaliksi saadaan Lagrangen kertoimien λ ja λ avulla nyt jonka differentiaalin haluamme häviävän. Lasketaan ensin entropian differentiaali Φ = S λ(tr ρ H E) λ (Tr ρ 1), δs = δ(tr ρ ln ρ ) = [Tr(ρ + δρ ) ln(ρ + δρ ) Tr ρ ln ρ ] + = [Trρ ln(ρ + δρ ) + Tr δρ ln ρ Tr ρ ln ρ ] +, missä olemme jättäneet toisen kertaluvun differentiaalit huomiotta. Oletetaan nyt, että on olemassa sellainen tiheysoperaattorin käänteisoperaattori ρ 1, jolle ρ ρ 1 = 1 (tämä nähdään myöhemmin paikkansapitäväksi). Tällöin voimme selvästi kirjoittaa ρ + δρ = ρ (1 + ρ 1 δρ ) ja edelleen ln(1 + ρ 1 δρ ) = ρ 1 δρ +, joiden avulla saamme δs = [Trρ ln ρ + Trρ ln(1 + ρ 1 δρ ) + Trδρ ln ρ Tr ρ ln ρ ] + Toisaalta johdetaan helposti = Tr(1 + ln ρ )δρ. δ[λ(tr ρ H E) + λ (Trρ 1)] = Tr(λH + λ )δρ, 3

4 joten kaikkiaan saamme ekstremointiehdoksi δφ = δ[s λ( H E) λ (Trρ 1)] = Tr( ln ρ 1 λh λ )δρ = 0 ln ρ = 1 λh λ ρ = e 1 λ e λh. Merkitsemällä nyt λ β, ja e 1 λ 1/Z olemme saaneet lopputulokseksi kanonisen ensemblen tiheysoperaattorin muodon ρ = 1 Z e βh, missä β tullaan pian identifioimaan käänteisen lämpötilan kanssa. Normitusvakio Z on puolestaan kanoninen partitiofunktio (tilasumma) joka energiakannassa lausuttuna on Z = Tr e βh, Z = e βe n n = de δ(e E n ) e βe = deω(e)e βe n Kanoninen tilasumma on siis tilatiheyden ω(e) Laplace-muunnos. Yleisen tilan Ψ esiintymistodennäköisyys kanonisessa joukossa saa nyt muodon p Ψ = P Ψ = Tr ρ P Ψ = 1 Z Ψ e βh Ψ, ja erityisesti energian ominaistilojen n todennäköisyydet ovat p n = 1 Z e βe n. Yhden hiukkasen kanonista jakaumaa sanotaan Boltzmannin jakaumaksi; jos yhden hiukkasen energiat ovat E n, niin Z 1 = e βe n n ja p n = 1 Z 1 e βe n. 4

5 Kanoninen joukko: entropia, lämpötila ja vapaa energia Kanonisen joukon tiheysoperaattorissa esiintyvän parametrin β yhteys lämpötilaan johdetaan samaan tapaan kuin klassisessa kanonisessa ensemblessä. Entropialle saadaan helposti jossa toisaalta S = Tr ρ ln ρ = Tr ρ ( ln Z βh ) = ln Z + β H = ln Z + βe ds = βde + Edβ + dz Z, dz = d(tr e βh ) = dβ Tr H e βh = dβ Z H = ZE dβ. Sijoittamalla tämä ds:n kaavaan saadaan nyt ds = βde + Edβ Edβ = βde 1 β = ( E S ), V,N eli täsmälleen lämpötilan määritelmän. Siispä identifioimme 1 β = T. Entropian relaatiosta S = ln Z + E T nähdään puolestaan, että Helmholtzin vapaalle energialle F pätee F = E TS = E T (ln Z + E ) = T ln Z, T joten kanonisen joukon tiheysoperaattori voidaan lausua myös muodossa ρ = 1 Z e βh = e ln Z βh = e β(f H ). Klassisen kanonisen joukon tapauksesta muistamme myös relaatiot 5

6 E = 1 Z S = ln Z + E T Z = ln Z = T2 ln Z β β T = ln Z + T ln Z = T ln Z, T T jotka luonnollisesti pätevät yhtä lailla kvanttimekaanisessa tapauksessa johdon ollessa täysin analoginen. Esimerkki: Vapaan pistehiukkasen kanoninen tilasumma Aivan kuten viime luennon vastaavassa mikrokanonisessa ongelmassa, lähdemme liikkeelle Hamiltonin funktion H = p 2 /(2m) ominaisarvoista ja -tiloista (k = p /ħ ) E k = ħ2 k 2 2m ; Ψ k (r ) = 1 Yhden hiukkasen tilasumma on nyt V eik r ; k = 2π L (n x, n y, n z ) ; n i = 0, ±1, ±2, Z 1 = Z(N = 1, T, V) = Tre βh k 2 = e βħ2 2m eli jatkumorajalla (L 3 = V, E = ħ2 k 2 2m ) Z 1 = V (2π) 3 dk e β ħ 2 k 2 2m = V (2π) 3 4π n 1,n 2,n 3 0 dk k2 e β ħ 2 k 2 2m = V 3/2 4π (2m (2π) 3 ħ 2 ) de E 1/2 e βe 0 = V (2πmT)3/2 h 3 = V λ T 3, missä λ T = h/ 2πmT on ns. terminen de Broglien aallonpituus, ts. tietyssä lämpötilassa olevan kaasun hiukkasten keskimääräinen kvanttimekaaninen aallonpituus (yksiköissä joissa valonnopeus c = 1). Esimerkki: Klassisen idealikaasun termodynamiikka N:n vapaan identtisen hiukkasen tilasummalle saadaan kanonisessa joukossa helposti tulos Z = 1 Z N! 1 N (hiukkaset täysin korreloitumattomia, joten jäljet 6

7 faktoroituvat), jossa olemme jälleen klassisella rajalla saadaan yksinkertaisesti jakaneet permutaatiosymmetrian pois. Tästä saadaan suoraan Helmholtzin vapaaksi energiaksi ottamalla mukaan spin-degeneraatiotekijä g F = T ln Z = T ln [ 1 N (2πmT)3/2 (gv N! h 3 ) ] = T( N ln N + N) NT (ln g + ln V ln T + 3 2πm ln 2 h 2 ) Edelleen saadaan paineeksi kuten ideaalikaasulle pitääkin olla. = NT (ln N V 3 2 ln T + 3 h2 ln 1 ln g). 2 2πm p = ( F V ) T,N = NT V Entropialle ja sisäiselle energialle saadaan puolestaan S = ( F T ) = F V,N T NT ( T ) = F T N, U = F + TS = 3 2 TN, mikä on N kertaa yhden hiukkasen kineettinen energia (vrt. ekvipartitioteoreema). Gibbsin vapaalle energialle pätee edelleen G = F + pv = μn, joten kemialliseksi potentiaaliksi saadaan μ = G N = 1 N (F + pv) = 1 (F + NT) N = T (ln N V 3 2 ln T + 3 h2 ln ln g) 2 2πm = T (ln p 5 ln T ξ) = μ(p, T), 2 7

8 missä ξ = ln g 3 h2 ln on ns. kemiallinen vakio. Harjoitustehtäväksi 2/1 jätetään 2 2πm näiden tulosten vertaaminen mikrokanonisen ensemblen tapaukseen. Fluktuaatioista Energian todennäköisyysjakauma statistisessa systeemissä voidaan määrittää muodossa P(E) = δ(h E), sillä selvästi tällöin de P(E)E n = Tr ρ de E n δ(h E) = Tr ρ H n = H n. Tästä saadaan kanoniselle joukolle yksinkertainen tulos P(E) = Tr 1 Z e βh δ(h E) = 1 Z e βe Tr δ(h E) = ω(e) Z e βe = 1 Z e βe+ln ω(e), Jossa olemme olettaneet jäljen laskettavan Hamiltonin operaattorin ominaistilojen kannassa. Suuren systeemin rajalla jakauma on oletettavasti voimakkaasti piikittynyt energian odotusarvon ympärille, sillä eksponenttifunktion argumentti on ekstensiivinen eli verrannollinen hiukkasten lukumäärään. Tutkitaan seuraavaksi yo. väittämää konkreettisesti laskemalla kanonisen joukon tilasumman (joko yltä tai suoraan määritelmästä) Z = de ω(e)e βe βe+ln ω(e) = de e = dee βe+s mikro(e), missä S mikro merkitsee energiaa E vastaavan ω(e)e βe mikrokanonisen joukon entropiaa. Kehitetään siis eksponenttifunktion argumenttia stationaarisuus- E pisteen E ympäristössä, jossa funktion ensimmäinen 8 E E

9 energiaderivaatta häviää: βe + S mikro (E) = βe + S mikro (E ) + ( β + E Smikro(E )) (E E ) E 2 S mikro(e )(E E ) ! E 3 S mikro(e )(E E ) Stationaarisuuspisteen määritelmästä seuraa suoraan mikrokanonisen ja kanonisen lämpötilan identifikaatio T(E ) = E S(E ) = 1 β, (kanonisessa ensemblessa on tosin luonnollisempaa ajatella, että tästä yhtälöstä ratkaistaan energian odotusarvo E lämpötilan funktiona). Toisen kertaluvun termissä voimme puolestaan kirjoittaa 2 E 2 S mikro(e ) = E S mikro (E ) E = 1 E T = 1 T T 2 E = 1 T 2, C v missä C v on (isokoorinen) lämpökapasiteetti. Kaikkiaan olemme siis johtaneet kanoniselle partitiofunktiolle tuloksen Z = e βe +S mikro (E) de e 1 2T 2 (E E ) C n 3 v n! n S mikro (E ) E n (E E ) n. Merkitään nyt x = E E. Tällöin saamme saman tien C v Z = e βe +S mikro (E) C v dx e x2 jossa E:n, S:n ja C v :n ekstensiivisyyden perusteella 2T 2+ 1 n! C n/2 n S mikro (E ) n 3 v x E n n, C v n/2 n S mikro (E ) E n ~ N n/2 N 1 n = N 1 n/2. 9

10 Näemme siis, että suurilla N:n arvoilla n 3 termien vaikutus integraalin arvoon on pieni, ja johtavassa kertaluvussa voimme neglikoida ne kokonaan. Tällöin yo. Gaussinen integraali voidaan suorittaa, mistä tulokseksi saadaan N:stä riippumaton (epäkiinnostava) normalisaatiotekijä. Kaikkiaan olemme nähneet, että kanonisessa joukossa energian todennäköisyysjakauma todella on approksimatiivisesti gaussinen keskihajonnalla ΔE = T 2 C v. Kanoninen entropia voidaan puolestaan kirjoittaa muodossa S ln Z + βe = βe + S mikro (E ) + ln C v + βe = S mikro (E ) ln C v S mikro (E ), missä olemme viimeisessä vaiheessa jälleen heittäneet pois epäekstensiivisen logaritmitermin. Käytännössä kanoninen entropia lämpötilassa T siis yhtyy tätä lämpötilaa vastaavan energian odotusarvolla laskettuun mikrokanoniseen entropiaan. Jälleen kerran olemme osoittaneet mikrokanonisen ja kanonisen joukon yhtäpitävyyden ison hiukkasmäärän rajalla. Harjoitustehtäväksi jätetään sen osoittaminen, että kaikki yllä johdetut tulokset kanoniselle joukolle voidaan helposti yleistää tapaukseen, jossa systeemi vaihtaa ympäristönsä kanssa lämmön lisäksi myös työtä. Suurkanoninen joukko Aivan kuten klassisessa tapauksessa, kvanttimekaaninen suurkanoninen joukko saadaan, kun entropia maksimoidaan reunaehdoin H = E, N = N, 1 = 1. Vastaavaa kanonisen jakauman johtoa varsin tarkkaan seuraava lasku tuottaa tulokseksi tiheysoperaattorin ρ G = 1 Z G e β(h μn ) 10

11 sekä tilasumman Z G = Tr e β(h μn ), jossa on kuitenkin oltava tarkkana jäljen laskemisen kanssa. Hiukkaslukuoperaattori N nimittäin operoi aiemmin määrittelemässämme Fockin avaruudessa, joten myös jälki on määriteltävä siten, että kaikki N :n ominaisarvot ovat mahdollisia. Helpoin tapa edetä suurkanonisen partitiofunktion laskussa on suorittaa ensin jälki N :n ominaistilojen kannassa. Tämä antaa tulokseksi Z G = e βμn Tr N e βh N, N=0 missä Tr N ja H N ovat N:n hiukasen Hilbertin avaruudessa määritellyt jälki ja Hamiltonin operaattori, ja e βμ z. Koska määrittelimme aiemmin kanonisen tilasumman muodossa Z N = Tr N e βh N, näemme nyt, että aivan kuten klassisessakin tapauksessa suurkanoninen tilasumma saa muodon Z G = z N Z N. N=0 On helppoa nähdä, että tämän summan termit antavat (normitusta vaille) suoraan kunkin hiukkaslukumäärän todennäköisyyden systeemissä, sillä P(N ) = δ N,N = Tr Nρ Gδ N,N N=0 = zn Z N Z G. Klassista tapausta vastaavasti suurkanonisen joukon entropia voidaan kirjoittaa muodossa 11 S = ln ρ G = βe βμn + ln Z G = T (T ln Z G). Vertaamalla suuren potentiaalin määritelmään

12 Ω = U TS μn havaitaan jälleen, että Ω = T ln Z G, eli tiheysoperaattori voidaan kirjoittaa muotoon ρ G = e Ω βh +μn. Hiukkasluvun ja energian odotusarvoille saadaan puolestaan helposti N = N = T ln Z G μ, E = H = T 2 ln Z G T + Tμ ln Z G μ. Lopuksi todettakoon, että aivan kuten klassisessa tapauksessa aiemmin, myös nyt saadaan hiukkaslukumäärän hajonnalle johdettua helposti tulos N = N 2 N 2 = T ( N μ ). T,V Koska N on ekstensiivinen ja T ja μ intensiivisiä, on siis jälleen kerran N N ~ 1 N 0 kun N. Esimerkki: Vapaiden klassisten hiukkasten suurkanoninen tilasumma Z G = e βμn Z N N=0 = e βμn N! = 1 (Z N! 1 e βμ ) N N=0 Z 1 N N=0 = e Z 1e βμ = e Vg(2πmT)3/2 e βμ /h 3, josta suuri potentiaali Ω = T ln Z G = TVg (2πmT)3/2 h 3 e βμ. Tästä saadaan välittömästi laskettua esim. systeemin entropia sekä hiukkaslukumäärän ja energian odotusarvot lämpötilan ja kemiallisen potentiaalin funktioina. 12

TASAPAINOJAKAUMAT KVANTTIMEKAANISISSA SYSTEEMEISSÄ (AH 5.4, 6.1, 6.4, 6.5) Mikrokanoninen joukko

TASAPAINOJAKAUMAT KVANTTIMEKAANISISSA SYSTEEMEISSÄ (AH 5.4, 6.1, 6.4, 6.5) Mikrokanoninen joukko TASAPAINOJAKAUMAT KVANTTIMEKAANISISSA SYSTEEMEISSÄ (AH 5.4, 6.1, 6.4, 6.5) Mikrokanoninen joukko Aivan kuten klassisessa tapauksessa, myös kvanttimekaanisille monihiukkassysteemeille voidaan määritellä

Lisätiedot

TILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH 5.1-5.3) Mikrotilat (kertausta Kvanttimekaniikan kurssilta)

TILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH 5.1-5.3) Mikrotilat (kertausta Kvanttimekaniikan kurssilta) TILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH 5.1-5.3) Mikrotilat (kertausta Kvanttimekaniikan kurssilta) Kvanttimekaniikassa yhden hiukkasen systeemin täydellisen kuvauksen antaa tilavektori, joka on

Lisätiedot

KLASSISET TASAPAINOJOUKOT (AH 4.3, , 7.2) Yleisesti joukoista

KLASSISET TASAPAINOJOUKOT (AH 4.3, , 7.2) Yleisesti joukoista KLASSISET TASAPAINOJOUKOT (AH 4.3, 6.1-6.7, 7.2) 1 Yleisesti joukoista Seuraavaksi tarkastelemme konkreettisella tasolla erilaisia termodynaamisia ensemblejä eli joukkoja, millä tarkoitamme tiettyä makrotilaa

Lisätiedot

Suurkanoninen joukko

Suurkanoninen joukko Suurkanoninen joukko Suurkanonisessa joukossa systeemi on kanonisen joukon tavoin yhdistettynä lämpökylpyyn, mutta nyt systeemin ja kylvyn väliset (kuvitellut) seinät läpäisevät energian lisäksi myös hiukkasia

Lisätiedot

Suurkanoninen joukko

Suurkanoninen joukko Suurkanoninen joukko Suurkanonisessa joukossa systeemi on kanonisen joukon tavoin yhdistettynä lämpökylpyyn, mutta nyt systeemin ja kylvyn väliset (kuvitellut) seinät läpäisevät energian lisäksi myös hiukkasia

Lisätiedot

FYSA242 Statistinen fysiikka, Harjoitustentti

FYSA242 Statistinen fysiikka, Harjoitustentti FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella

Lisätiedot

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1 76628A Termofysiikka Harjoitus no. 4, ratkaisut (syyslukukausi 204). (a) Systeemi koostuu neljästä identtisestä spin- -hiukkasesta. Merkitään ylöspäin olevien spinien lukumäärää n:llä. Systeemin mahdolliset

Lisätiedot

6. Yhteenvetoa kurssista

6. Yhteenvetoa kurssista Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2016 6. Yhteenvetoa kurssista 1 Keskeisiä käsitteitä I Energia TD1, siirtyminen lämpönä

Lisätiedot

Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2

Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2 766328A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 24). Klassisen ideaalikaasun partitiofunktio on luentojen mukaan Z N! [Z (T, V )] N, (9.) missä yksihiukkaspartitiofunktio Z (T, V ) r e βɛr.

Lisätiedot

8. Klassinen ideaalikaasu

8. Klassinen ideaalikaasu Statistinen fysiikka, osa B (FYSA242) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL240. Ei kiinteitä vastaanottoaikoja. kl 2016 8. Klassinen ideaalikaasu 1 Fysikaalinen tilanne Muistetaan: kokeellisesti

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 7: Ekvipartitioteoreema, partitiofunktio ja ideaalikaasu Ke 16.3.2016 1 KURSSIN

Lisätiedot

Astrokemia Kevät 2011 Harjoitus 1, Massavaikutuksen laki, Ratkaisut

Astrokemia Kevät 2011 Harjoitus 1, Massavaikutuksen laki, Ratkaisut Astrokemia Kevät 2011 Harjoitus 1, Massavaikutuksen laki, Ratkaisut 1 a Kaasuseoksen komponentin i vapaa energia voidaan kirjoittaa F i (N,T,V = ln Z i (T,V missä on ko hiukkasten lukumäärä tilavuudessa

Lisätiedot

1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta

1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta 766328A Termofysiikka Harjoitus no. 5, ratkaisut syyslukukausi 204). Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta E n n + ) ω, n 0,, 2,... 2 a) Oskillaattorin partitiofunktio

Lisätiedot

1 Eksergia ja termodynaamiset potentiaalit

1 Eksergia ja termodynaamiset potentiaalit 1 PHYS-C0220 Termodynamiikka ja statistinen fysiikka, kevät 2017 Emppu Salonen 1 Eksergia ja termodynaamiset potentiaalit 1.1 Suurin mahdollinen hyödyllinen työ Tähän mennessä olemme tarkastelleet sisäenergian

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 8: Kemiallinen potentiaali, suurkanoninen ensemble Pe 18.3.2016 1 AIHEET 1. Kanoninen

Lisätiedot

3. Statistista mekaniikkaa

3. Statistista mekaniikkaa Statistinen fysiikka, osa A (FYSA241) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2013 3. Statistista mekaniikkaa 1 Mikrotilojen laskenta Kvanttimekaniikka: diskreetit

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 1: Lämpötila ja Boltzmannin jakauma Ke 24.2.2016 1 YLEISTÄ KURSSISTA Esitietovaatimuksena

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 206 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 2: BE- ja FD-jakaumat, kvanttikaasut Pe 5.4.206 AIHEET. Kvanttimekaanisesta vaihtosymmetriasta

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 6: Faasimuutokset Maanantai 5.12. Kurssin aiheet 1. Lämpötila ja lämpö 2. Työ ja termodynamiikan 1. pääsääntö 3. Lämpövoimakoneet

Lisätiedot

3. Statistista mekaniikkaa

3. Statistista mekaniikkaa Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2016 3. Statistista mekaniikkaa 1 Mikrotilojen laskenta Kvanttimekaniikka: diskreetit

Lisätiedot

Maxwell-Boltzmannin jakauma

Maxwell-Boltzmannin jakauma Maxwell-Boltzmannin jakauma Homogeenisessa tasapainotilassa redusoidut yksihiukkastodennäköisyydet f voivat olla vain nopeuden funktioita, f = f(v ), ja H-funktio ei toisaalta voi riippua ajasta, eli dh

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 6: Vapaaenergia Pe 11.3.2016 1 AIHEET 1. Kemiallinen potentiaali 2. Maxwellin

Lisätiedot

3. Statistista mekaniikkaa

3. Statistista mekaniikkaa FYSA241, kevät 2012 Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2012 3. Statistista mekaniikkaa 1 Mikrotilojen laskenta Muistelua johdanto-osasta: Kvanttimekaniikassa

Lisätiedot

766328A Termofysiikka Harjoitus no. 10, ratkaisut (syyslukukausi 2014)

766328A Termofysiikka Harjoitus no. 10, ratkaisut (syyslukukausi 2014) 7668A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 4). Johdetaan yksiatomisen klassisen ideaalikaasun kemiallisen potentiaalin µ(t,, N) lauseke. (a) Luentojen yhtälön mukaan kemiallinen potentiaali

Lisätiedot

KLASSISISTA REAALIKAASUISTA (AH 10.1)

KLASSISISTA REAALIKAASUISTA (AH 10.1) KLASSISISTA REAALIKAASUISTA (AH 10.1) Palaamme kurssin lopuksi vielä hetkeksi tasapainosysteemien pariin, mutta tarkastelemme nyt todellisten systeemien kannalta realistisempaa tilannetta, jossa hiukkasten

Lisätiedot

m h = Q l h 8380 J = J kg 1 0, kg Muodostuneen höyryn osuus alkuperäisestä vesimäärästä on m h m 0,200 kg = 0,

m h = Q l h 8380 J = J kg 1 0, kg Muodostuneen höyryn osuus alkuperäisestä vesimäärästä on m h m 0,200 kg = 0, 76638A Termofysiikka Harjoitus no. 9, ratkaisut syyslukukausi 014) 1. Vesimäärä, jonka massa m 00 g on ylikuumentunut mikroaaltouunissa lämpötilaan T 1 110 383,15 K paineessa P 1 atm 10135 Pa. Veden ominaislämpökapasiteetti

Lisätiedot

Ekvipartitioteoreema. Entropia MB-jakaumassa. Entropia tilastollisessa mekaniikassa

Ekvipartitioteoreema. Entropia MB-jakaumassa. Entropia tilastollisessa mekaniikassa Ekvipartitioteoreema lämpötilan ollessa riittävän korkea, kukin molekyylin liikkeen vapausaste tuo energian ½ kt sekä keskimääräiseen liike-energiaan ja kineettiseen energiaan energian lisäys ja riittävän

Lisätiedot

Ekvipartitioteoreema

Ekvipartitioteoreema Ekvipartitioteoreema lämpötilan ollessa riittävän korkea, kukin molekyylin liikkeen vapausaste tuo energian ½ kt sekä keskimääräiseen liike-energiaan ja kineettiseen energiaan energian lisäys ja riittävän

Lisätiedot

4. Termodynaamiset potentiaalit

4. Termodynaamiset potentiaalit Statistinen fysiikka, osa A (FYSA241) uomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2013 4. ermodynaamiset potentiaalit 1 asapainotila Mikrokanoninen ensemble Eristetty

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2017

PHYS-A0120 Termodynamiikka syksy 2017 PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 5: Termodynaamiset potentiaalit Maanantai 27.11. ja tiistai 28.11. Kotitentti Julkaistaan ti 5.12., palautus viim. ke 20.12.

Lisätiedot

Tilat ja observaabelit

Tilat ja observaabelit Tilat ja observaabelit Maksimaalinen informaatio systeemistä tietyllä ajanhetkellä sisältyy tilaan ψ (ket). Tila = vektori Hilbertin avaruudessa sisätulo ψ ψ C ψ c 1 ψ 1 + c 2 ψ 2 = c 1 ψ ψ 1 + c 2 ψ ψ

Lisätiedot

kertausta edellisestä seuraa, että todennäköisimmin systeemi löydetään sellaisesta mikrotilasta, jollaisia on

kertausta edellisestä seuraa, että todennäköisimmin systeemi löydetään sellaisesta mikrotilasta, jollaisia on tavoitteet kertausta Tiedät mitä on Boltzmann-jakauma ja osaat soveltaa sitä Ymmärrät miten päädytään kaasumolekyylien nopeusjakaumaan Ymmärrät kuinka voidaan arvioida hiukkasen vapaa matka Kaikki mikrotilat,

Lisätiedot

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ] 766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan

Lisätiedot

BOSONIJÄRJESTELMÄT (AH 8.1, 8.2) Bosekondensaatio

BOSONIJÄRJESTELMÄT (AH 8.1, 8.2) Bosekondensaatio BOSONIJÄRJESTELMÄT (AH 8.1, 8.2) Bosekondensaatio Atomien aaltoluonne tulee parhaiten esiin matalissa lämpötiloissa, jossa niiden terminen de Broglien aallonpituus λ T = h2 2πmT lähestyy niiden keskimääräistä

Lisätiedot

kertausta Boltzmannin jakauma infoa Ideaalikaasu kertausta Maxwellin ja Boltzmannin vauhtijakauma

kertausta Boltzmannin jakauma infoa Ideaalikaasu kertausta Maxwellin ja Boltzmannin vauhtijakauma infoa kertausta Boltzmannin jakauma Huomenna itsenäisyyspäivänä laitos on kiinni, ei luentoa, ei laskareita. Torstaina laboratoriossa assistentit neuvovat myös laskareissa. Ensi viikolla tiistaina vielä

Lisätiedot

Ch7 Kvanttimekaniikan alkeita. Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset.

Ch7 Kvanttimekaniikan alkeita. Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset. Ch7 Kvanttimekaniikan alkeita Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset. Spinnittömät hiukkaset Hiukkasta kuvaa aineaaltokenttä eli aaltofunktio. Aaltofunktio riippuu

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 7 Harjoitus 3: ratkaisut Tehtävä Tarkastellaan äärettömän syvässä laatikossa (väli [, L) olevaa hiukkasta. Kirjoita energiatiloja E n vastaavat aaltofunktiot muodossa ψ n (x,

Lisätiedot

1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria

1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria Kvanttimekaniikka I, tentti 6.. 015 4 tehtävää, 4 tuntia 1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria ( { ( ( } E iδ H =, E, δ R, kannassa B = 1 =, =. iδ E 0 1 (a (p.

Lisätiedot

Aikariippuva Schrödingerin yhtälö

Aikariippuva Schrödingerin yhtälö Aineaaltodynamiikka Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit Aikariippuva Schrödingerin

Lisätiedot

4. Termodynaamiset potentiaalit

4. Termodynaamiset potentiaalit FYSA241, kevät 2012 uomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2012 4. ermodynaamiset potentiaalit 1 asapainotila Mikrokanoninen ensemble Eristetty järjestelmä

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 5: Termodynaamiset potentiaalit Maanantai 28.11. ja tiistai 29.11. Kotitentti Julkaistaan to 8.12., palautus viim. to 22.12.

Lisätiedot

S Fysiikka III (EST) Tentti ja välikoeuusinta

S Fysiikka III (EST) Tentti ja välikoeuusinta S-437 Fysiikka III (EST) Tentti ja välikoeuusinta 65007 Välikoeuusinnassa vastataan vain kolmeen tehtävään Kokeesta saatu pistemäärä kerrotaan tekijällä 5/3 Merkitse paperiin uusitko jommankumman välikokeen,

Lisätiedot

S , Fysiikka III (Sf) tentti/välikoeuusinta

S , Fysiikka III (Sf) tentti/välikoeuusinta S-114.45, Fysiikka III (Sf) tentti/välikoeuusinta.11.4 1. välikokeen alue 1. Osoita, että hyvin alhaisissa lämpötiloissa elektronin FD systeemin energia on U = (3/ 5) ε F. Opastus: oleta, että kaikki tilat

Lisätiedot

4. Termodynaamiset potentiaalit

4. Termodynaamiset potentiaalit Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2015 4. ermodynaamiset potentiaalit 1 ermodynaaminen tasapaino kanonisessa joukossa Mikrokanoninen

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 5: Termodynaamiset potentiaalit Ke 9.3.2016 1 AIHEET 1. Muut työn laadut sisäenergiassa

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28 Numeeriset menetelmät TIEA381 Luento 5 Kirsi Valjus Jyväskylän yliopisto Luento 5 () Numeeriset menetelmät 3.4.2013 1 / 28 Luennon 5 sisältö Luku 4: Ominaisarvotehtävistä Potenssiinkorotusmenetelmä QR-menetelmä

Lisätiedot

F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause

F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause 91 VEKTORIANALYYI Luento 13 9. tokesin lause A 16.5 tokesin lause on kuin Gaussin lause, mutta yhtä dimensiota alempana: se liittää toisiinsa kentän derivaatasta pinnan yli otetun integraalin ja pinnan

Lisätiedot

Statistinen fysiikka, osa B (FYSA2042)

Statistinen fysiikka, osa B (FYSA2042) Käytännön asioita Statistinen fysiikka, osa B (FYSA2042) Kimmo Kainulainen kimmo.kainulainen@jyu.fi Huone: FL220. Ei kiinteitä vastaanottoaikoja. kl 2018 Käytännön asioita 1 Käytännön asioita Ajat, paikat,

Lisätiedot

1 WKB-approksimaatio. Yleisiä ohjeita. S Harjoitus

1 WKB-approksimaatio. Yleisiä ohjeita. S Harjoitus S-114.1427 Harjoitus 3 29 Yleisiä ohjeita Ratkaise tehtävät MATLABia käyttäen. Kirjoita ratkaisut.m-tiedostoihin. Tee tuloksistasi lyhyt seloste, jossa esität laskemasi arvot sekä piirtämäsi kuvat (sekä

Lisätiedot

Kvanttimekaniikan tulkinta

Kvanttimekaniikan tulkinta Kvanttimekaniikan tulkinta 20.1.2011 1 Klassisen ja kvanttimekaniikan tilastolliset formuloinnit 1.1 Klassinen mekaniikka Klassisen mekaniikan systeemin tilaa kuvaavat kappaleiden koordinaatit ja liikemäärät

Lisätiedot

Aineaaltodynamiikkaa

Aineaaltodynamiikkaa Aineaaltodynamiikkaa Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit = kuinka hiukkasen fysikaaliset

Lisätiedot

Muita lämpökoneita. matalammasta lämpötilasta korkeampaan. Jäähdytyksen tehokerroin: Lämmityksen lämpökerroin:

Muita lämpökoneita. matalammasta lämpötilasta korkeampaan. Jäähdytyksen tehokerroin: Lämmityksen lämpökerroin: Muita lämpökoneita Nämäkin vaativat ovat työtälämpövoimakoneiden toimiakseen sillä termodynamiikan pääsääntö Lämpökoneita lisäksi laitteet,toinen jotka tekevät on Clausiuksen mukaan: laiteilmalämpöpumppu

Lisätiedot

Kvanttifysiikan perusteet, harjoitus 5

Kvanttifysiikan perusteet, harjoitus 5 Kvanttifysiikan perusteet, harjoitus 5 February 4, 07 Tehtävä Oletetaan energian ominaisfunktiot φ n ortonormitetuiksi, dxφ nφ m = δ nm, jossa δ nm on Kroneckerin delta. Määritetään ensin superpositiotilan

Lisätiedot

Kuljetusilmiöt ja relaksaatioaika-approksimaatio

Kuljetusilmiöt ja relaksaatioaika-approksimaatio Kuljetusilmiöt ja relaksaatioaika-approksimaatio Tyypillinen kuljetusteoriassa tarkasteltava systeemi on sellainen, että hiukkastiheyden, hiukkasten keskimääräisen nopeuden ja siten lämpötilan arvot riippuvat

Lisätiedot

kolminkertaisesti tehtäviä tavallisiin harjoituksiin verrattuna, voi sen kokonaan tekemällä saada suunnilleen kolmen tavallisen harjoituksen edestä

kolminkertaisesti tehtäviä tavallisiin harjoituksiin verrattuna, voi sen kokonaan tekemällä saada suunnilleen kolmen tavallisen harjoituksen edestä Matematiikkaa kemisteille, kevät 2013 Ylimääräisiä laskuharjoituksia Tällä laskuharjoituksella voi korottaa laskuharjoituspisteitään, mikäli niitä ei ole riittävästi kurssin läpäisemiseen, tai vaihtoehtoisesti

Lisätiedot

Lämmityksen lämpökerroin: Jäähdytin ja lämmitin ovat itse asiassa sama laite, mutta niiden hyötytuote on eri, jäähdytyksessä QL ja lämmityksessä QH

Lämmityksen lämpökerroin: Jäähdytin ja lämmitin ovat itse asiassa sama laite, mutta niiden hyötytuote on eri, jäähdytyksessä QL ja lämmityksessä QH Muita lämpökoneita Nämäkin vaativat työtä toimiakseen sillä termodynamiikan toinen pääsääntö Lämpökoneita ovat lämpövoimakoneiden lisäksi laitteet, jotka tekevät on Clausiuksen mukaan: Mikään laite ei

Lisätiedot

J 2 = J 2 x + J 2 y + J 2 z.

J 2 = J 2 x + J 2 y + J 2 z. FYSA5 Kvanttimekaniikka I, Osa B.. tentti: 4 tehtävää, 4 tuntia. Tarkastellaan pyörimismääräoperaattoria J, jonka komponentit toteuttavat kommutaatiorelaatiot [J x, J y ] = i hj z, [J y, J z ] = i hj x,

Lisätiedot

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen)

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen) Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen Vapaaseen hiukkaseen ei vaikuta voimia, joten U(x = 0. Vapaan hiukkasen energia on sen liike-energia eli E=p /m. Koska hiukkasella on määrätty energia,

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 Emppu Salonen Lasse Laurson Toni Mäkelä Touko Herranen Luento 1: lämpötila, Boltzmannin jakauma Ke 22.2.2017 1 Richard Feynmanin miete If,

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 Emppu Salonen Lasse Laurson Toni Mäkelä Touko Herranen Luento 4: entropia Pe 3.3.2017 1 Aiheet tänään 1. Klassisen termodynamiikan entropia

Lisätiedot

infoa tavoitteet E = p2 2m kr2 Klassisesti värähtelyn amplitudi määrää kokonaisenergian Klassisesti E = 1 2 mω2 A 2 E = 1 2 ka2 = 1 2 mω2 A 2

infoa tavoitteet E = p2 2m kr2 Klassisesti värähtelyn amplitudi määrää kokonaisenergian Klassisesti E = 1 2 mω2 A 2 E = 1 2 ka2 = 1 2 mω2 A 2 infoa tavoitteet Huomenna keskiviikkona 29.11. ei ole luentoa. Oppikirjan lukujen 12-13.3. lisäksi kotisivulla laajennettu luentomateriaali itse opiskeltavaksi Laskarit pidetään normaalisti. Ymmärrät mitä

Lisätiedot

x 4 e 2x dx Γ(r) = x r 1 e x dx (1)

x 4 e 2x dx Γ(r) = x r 1 e x dx (1) HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta IIA, syksy 217 217 Harjoitus 6 Ratkaisuehdotuksia Tehtäväsarja I 1. Laske numeeriset arvot seuraaville integraaleille: x 4 e 2x dx ja 1

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2017

PHYS-A0120 Termodynamiikka syksy 2017 PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 6: Faasimuutokset Maanantai 4.12. ja tiistai 5.12. Metallilangan venytys Metallilankaan tehty työ menee atomien välisten

Lisätiedot

MS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM)

MS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM) MS-A17 Differentiaali- ja integraalilaskenta 1 CHEM) Laskuharjoitus 4lv, kevät 16 1. Tehtävä: Laske cos x dx a) osittaisintegroinnilla, b) soveltamalla sopivaa trigonometrian kaavaa. Ratkaisu: a) Osittaisintegroinnin

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita

Lisätiedot

2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2

2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2 HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 208 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I. Satunnaismuuttuja U Exp(2) ja V = U/(3 + U). Laske f V käyttämällä muuttujanvaihtotekniikkaa.

Lisätiedot

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi 7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi Z p [x]/(m), missä m on polynomirenkaan Z p [x] jaoton polynomi (ks. määritelmä 3.19).

Lisätiedot

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1 1. Tarkastellaan funktiota missä σ C ja y (y 1,..., y n ) R n. u : R n R C, u(x, t) e i(y x σt), (a) Miksi funktiota u(x, t) voidaan kutsua tasoaalloksi, jonka aaltorintama on kohtisuorassa vektorin y

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 4: Entropia Maanantai 21.11. ja tiistai 22.11. Ideaalikaasun isoterminen laajeneminen Kaasuun tuodaan määrä Q lämpöä......

Lisätiedot

Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot

Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot S-1146 Fysiikka V (ES) Tentti 165005 1 välikokeen alue 1 a) Rubiinilaserin emittoiman valon aallonpituus on 694, nm Olettaen että fotonin emissioon tällä aallonpituudella liittyy äärettömän potentiaalikuopan

Lisätiedot

Korkeammat derivaatat

Korkeammat derivaatat Korkeammat derivaatat Jo kerran derivoitu funk6o voidaan derivoida uudelleen. d! df(x) $ dx " # dx % & = d2 f(x) = f''(x) = f (2) (x) dx 2 Yleisemmin merkitään: d n f(x) dx n = f (n) (x) Esimerkki: 2-

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2017

PHYS-A0120 Termodynamiikka syksy 2017 PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 2: Työ ja termodynamiikan 1. pääsääntö Maanantai 6.11. ja tiistai 7.11. Pohdintaa Mitä tai mikä ominaisuus lämpömittarilla

Lisätiedot

Teddy 7. harjoituksen malliratkaisu syksy 2011

Teddy 7. harjoituksen malliratkaisu syksy 2011 Teddy 7. harjoituksen malliratkaisu syksy 2011 1. Systeemin käyttäytymistä faasirajalla kuvaa Clapeyronin yhtälönä tunnettu keskeinen relaatio dt = S m. (1 V m Koska faasitasapainossa reaktion Gibbsin

Lisätiedot

Ei-inertiaaliset koordinaatistot

Ei-inertiaaliset koordinaatistot orstai 25.9.2014 1/17 Ei-inertiaaliset koordinaatistot Tarkastellaan seuraavaa koordinaatistomuunnosta: {x} = (x 1, x 2, x 3 ) {y} = (y 1, y 2, y 3 ) joille valitaan kantavektorit: {x} : (î, ĵ, ˆk) {y}

Lisätiedot

1. Johdanto. FYSA241, kevät Tuomas Lappi kl Huone: FL249. Ei kiinteitä vastaanottoaikoja.

1. Johdanto. FYSA241, kevät Tuomas Lappi kl Huone: FL249. Ei kiinteitä vastaanottoaikoja. FYSA241, kevät 2012 Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2012 1. Johdanto 1 Ajat, paikat Luennot: 20h ma, ke klo 10.15, FYS1,, 9.1.-22.2 Demot: 10h, ke

Lisätiedot

P (X B) = f X (x)dx. xf X (x)dx. g(x)f X (x)dx.

P (X B) = f X (x)dx. xf X (x)dx. g(x)f X (x)dx. Yhteenveto: Satunnaisvektorit ovat kuvauksia tn-avaruudelta seillaiselle avaruudelle, johon sisältyy satunnaisvektorin kaikki mahdolliset reaalisaatiot. Satunnaisvektorin realisaatio eli otos on jokin

Lisätiedot

LIITTEET Liite A Stirlingin kaavan tarkkuudesta...2. Liite B Lagrangen kertoimet...3

LIITTEET Liite A Stirlingin kaavan tarkkuudesta...2. Liite B Lagrangen kertoimet...3 LIITTEET... 2 Liite A Stirligi kaava tarkkuudesta...2 Liite B Lagrage kertoimet... 2 Liitteet Liitteet Liite A Stirligi kaava tarkkuudesta Luoollista logaritmia suureesta! approksimoidaa usei Stirligi

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kertausluento 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat:. Potenssisarjojen suppenemissäde, suppenemisväli ja suppenemisjoukko. 2. Derivaatan

Lisätiedot

Koska ovat negatiiviset. Keskihajontoja ei pystytä laskemaan mutta pätee ¾.

Koska ovat negatiiviset. Keskihajontoja ei pystytä laskemaan mutta pätee ¾. 24.11.2006 1. Oletetaan, että kaksiulotteinen satunnaismuuttuja µ noudattaa kaksiulotteista normaalijakaumaa. Oletetaan lisäksi, että satunnaismuuttujan regressiofunktio satunnaismuuttujan suhteen on ݵ

Lisätiedot

u = 2 u (9.1) x + 2 u

u = 2 u (9.1) x + 2 u 9. Poissonin integraali 9.. Poissonin integraali. Ratkaistaan Diriclet n reuna-arvotehtävä origokeskisessä, R-säteisessä ympyrässä D = {(x, y) R x +y < R }, t.s. kun f : D R on annettu jatkuva funktio,

Lisätiedot

1. (a) (2p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori

1. (a) (2p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori FYSA5 Kvanttimekaniikka I, Osa B 7.. tentti: 4 tehtävää, 4 tuntia. a) p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori T ɛ) = iɛ h P. Osoita tämän avulla, että äärellistä siirtoa

Lisätiedot

Osa IX. Z muunnos. Johdanto Diskreetit funktiot

Osa IX. Z muunnos. Johdanto Diskreetit funktiot Osa IX Z muunnos A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 298 / 322 A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 299 / 322 Johdanto

Lisätiedot

9. Muuttuva hiukkasluku

9. Muuttuva hiukkasluku Statstnen fyskka, osa B (FYSA242) Tuomas Lapp tuomas.v.v.lapp@jyu.f Huone: FL240. E kntetä vastaanottoakoja. kl 2016 9. Muuttuva hukkasluku 1 Kertaus: lämpökylpy Mustetaan kurssn A-osasta Mkrokanonnen

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta 8..206 Gripenberg, Nieminen, Ojanen, Tiilikainen, Weckman Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi

Lisätiedot

Integroimalla ja käyttämällä lopuksi tilanyhtälöä saadaan T ( ) ( ) H 5,0 10 J + 2,0 10 0,50 1,0 10 0,80 Pa m 70 kj

Integroimalla ja käyttämällä lopuksi tilanyhtälöä saadaan T ( ) ( ) H 5,0 10 J + 2,0 10 0,50 1,0 10 0,80 Pa m 70 kj S-4.35 Fysiikka (ES) entti 3.8.. ääritä yhden haikaasumoolin (O) (a) sisäenergian, (b) entalian muutos tilanmuutoksessa alkutilasta =, bar, =,8 m3 loutilaan =, bar, =,5 m3. ärähtelyn vaausasteet voidaan

Lisätiedot

6*. MURTOFUNKTION INTEGROINTI

6*. MURTOFUNKTION INTEGROINTI MAA0 6*. MURTOFUNKTION INTEGROINTI Murtofunktio tarkoittaa kahden polynomin osamäärää, ja sen yleinen muoto on P() R : R(). Q() Mikäli osoittajapolynomin asteluku on nimittäjäpolynomin astelukua korkeampi

Lisätiedot

Satunnaismuuttujien muunnokset ja niiden jakaumat

Satunnaismuuttujien muunnokset ja niiden jakaumat Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja

Lisätiedot

Osittaisdifferentiaaliyhtälöt

Osittaisdifferentiaaliyhtälöt Osittaisdifferentiaaliyhtälöt Harjoituskokoelmat 4 ja 5, kevät 2011 Palautus Eemeli Blåstenille to 23.6. klo 16.00 mennessä 1. Ratkaise Dirichlet ongelma u(x, y) = 0, x 2 + y 2 < 1, u(x, y) = y + x 2,

Lisätiedot

Ekvipartitioperiaatteen mukaisesti jokaiseen efektiiviseen vapausasteeseen liittyy (1 / 2)kT energiaa molekyyliä kohden.

Ekvipartitioperiaatteen mukaisesti jokaiseen efektiiviseen vapausasteeseen liittyy (1 / 2)kT energiaa molekyyliä kohden. . Hiilidioksidiolekyyli CO tiedetään lineaariseksi a) Mitkä ovat eteneisliikkeen, pyöriisliikkeen ja värähtelyn suuriat ekvipartitioperiaatteen ukaiset läpöenergiat olekyyliä kohden, kun kaikki vapausasteet

Lisätiedot

(1) (2) Normalisointiehdoksi saadaan nytkin yhtälö (2). Ratkaisemalla (2)+(3) saamme

(1) (2) Normalisointiehdoksi saadaan nytkin yhtälö (2). Ratkaisemalla (2)+(3) saamme S-446 Fysiikka IV (Sf) Tentti 3934 Oletetaan, että φ ja φ ovat ajasta riippumattoman Scrödingerin yhtälön samaan ominaisarvoon E liittyviä ominaisfunktioita Nämä funktiot ovat normitettuja, mutta eivät

Lisätiedot

Clausiuksen epäyhtälö

Clausiuksen epäyhtälö 1 Kuva 1: Clausiuksen epäyhtälön johtaminen. Clausiuksen epäyhtälö otesimme Carnot n koneelle, että syklissä lämpötiloissa H ja L vastaanotetuille lämmöille Q H ja Q L pätee Q H H oisin ilmaistuna, Carnot

Lisätiedot

I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ

I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ 1.1 Tilastollisen fysiikan ja termodynamiikan tutkimuskohde... 2 1.2 Mikroskooppiset ja makroskooppiset teoriat... 3 1.3 Terminen tasapaino ja lämpötila... 5 1.4 Termodynamiikan

Lisätiedot

Fysikaalinen kemia II kaavakokoelma, osa 1

Fysikaalinen kemia II kaavakokoelma, osa 1 Fysikaalinen kemia II kaavakokoelma, osa 1 Wienin siirtymälaki: T λ max = 0.2898 cm K (1) Stefan Boltzmanin laki: M = σt 4 σ = 5.67 10 8 W m 2 K 4 (2) Planckin jakauma ρ = 8πkT λ 4 ( 1 ) e hc/λkt 1 (3)

Lisätiedot

T H V 2. Kuva 1: Stirling kiertoprosessi. Ideaalisen Stirlingin koneen sykli koostuu neljästä osaprosessista (kts. kuva 1):

T H V 2. Kuva 1: Stirling kiertoprosessi. Ideaalisen Stirlingin koneen sykli koostuu neljästä osaprosessista (kts. kuva 1): 1 c 3 p 2 T H d b T L 4 1 a V Kuva 1: Stirling kiertoprosessi. Stirlingin kone Ideaalisen Stirlingin koneen sykli koostuu neljästä osaprosessista kts. kuva 1: 1. Työaineen ideaalikaasu isoterminen puristus

Lisätiedot

Biofysiikka Luento Entropia, lämpötila ja vapaa energia. Shannonin entropia. Boltzmannin entropia. Lämpötila. Vapaa energia.

Biofysiikka Luento Entropia, lämpötila ja vapaa energia. Shannonin entropia. Boltzmannin entropia. Lämpötila. Vapaa energia. Biofysiikka Luento 7 1 6. Entropia, lämpötila ja vapaa energia Shannonin entropia Boltzmannin entropia M I NK P ln P S k B j1 ln j j Lämpötila Vapaa energia 2 Esimerkkiprobleemoita: Miten DNA-sekvenssistä

Lisätiedot

FYSA2031 Potentiaalikuoppa

FYSA2031 Potentiaalikuoppa FYSA2031 Potentiaalikuoppa Työselostus Laura Laulumaa JYFL YK216 laura.e.laulumaa@student.jyu.fi 16.10-2.11. 2017 Ohjaus Työn ja ohjelman esittely ( 30 min) Harjoitellaan ohjelman käyttöä Harmoninen potentiaali

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 2: Työ ja termodynamiikan 1. pääsääntö Maanantai 7.11. ja tiistai 8.11. Kurssin aiheet 1. Lämpötila ja lämpö 2. Työ ja termodynamiikan

Lisätiedot