Kuljetusilmiöt ja relaksaatioaika-approksimaatio

Koko: px
Aloita esitys sivulta:

Download "Kuljetusilmiöt ja relaksaatioaika-approksimaatio"

Transkriptio

1 Kuljetusilmiöt ja relaksaatioaika-approksimaatio Tyypillinen kuljetusteoriassa tarkasteltava systeemi on sellainen, että hiukkastiheyden, hiukkasten keskimääräisen nopeuden ja siten lämpötilan arvot riippuvat ainakin paikasta ja mahdollisesti myös ajasta, ts. kirjoitamme n = n(r, t), u = u (r, t), T = T(r, t). Systeemi ei tällöin selvästikään ole aidossa tasapainossa, vaan siinä syntyy virtauksia, siis kuljetusta, joka pyrkii tuomaan systeemiä lähemmäs globaalia tasapainotilaa. Kuljetusilmiöt noudattavat tyypillisesti lakia, jonka muoto on Systeemin responssi = kuljetuskerroin * pakote, missä responssi on tyypillisesti jonkinlainen virta ja pakote puolestaan yllä lueteltujen suureiden (tiheys, lämpötila, jne) gradientti. Aiemmin olemme jo tavanneet muutamia esimerkkejä tämänkaltaisista relaatioista, kuten diffuusion ja lämmönjohtumisen yhteydessä esiintyneet ns. konstitutiiviset lait j = D n, j q = κ T. äissä yhtälöissä esiintyvien kuljetuskertoimien D ja κ samoin kuin muiden vastaavien suureiden vaikkapa eri viskositeettien määrittäminen on usein hyvin vaikea tehtävä, koska Boltzmannin kuljetusyhtälön törmäystermi on epälineaarinen redusoidun yksihiukkastiheyden suhteen. Yleisten tulosten johtaminen jopa vuorovaikuttamattomille systeemeille vaatiikin tyypillisesti monimutkaisia tarkasteluita. Tästä johtuen käytännön laskuissa joudutaan usein turvautumaan erilaisiin approksimaatiivisiin menetelmiin, joista tunnetuin on ns. relaksaatioaikaapproksimaatio. Seuraavassa tulemme näkemään, että Maxwell-Boltzmann kaasun kuljetuskertoimet ovat melko vaivattomasti johdettavissa tässä kuvailussa. Relaksaatioaika-approksimaatiossa Boltzmannin yhtälön epälineaarinen kollisiotermi linearisoidaan olettaen systeemin olevan lähellä tasapainotilaa. Käytännössä tämä tarkoittaa sitä, että kirjoitamme ( f t ) coll = 1 τ (f f 0), 1

2 missä f 0 edustaa tasapainotilan jakaumaa ja τ on ns. relaksaatioaika vakio jota ei tule sekoittaa keskimääräiseen törmäysaikaan systeemissä. Boltzmannin yhtälö saa tällöin muodon 2 f t + v rf + 1 m F v f = 1 τ (f f 0), josta saamme homogeenisen systeemin ja häviävien ulkoisten voimien tapauksessa välittömästi ratkaistua f t = 1 τ (f f 0) f(t) = f 0 + [f(0) f 0 ]e Tämä tulos selittää välittömästi termin relaksaatioaika: parametri τ todella kuvaa sitä nopeutta, jolla systeemi lähestyy tasapainotilaa. Relaksaatioaikaapproksimaation ongelmana on kuitenkin paitsi sen rajottuneisuus tasapainotilan läheisyyteen, myös uuden tuntemattoman parametrin introdusoiminen systeemin kuvaukseen. Kuten tulemme pian näkemään, approksimaatio kuitenkin mahdollistaa τ:sta riippumattomien relaatioiden johtamisen eri kuljetuskertoimien välille. Sen hyödyllisyys liittyykin approksimaation universaaliuteen: törmäystermin linearisaatio on järkevä approksimaatio hyvin erityyppisille systeemeille, eikä vaadi mikroskooppista ymmärrystä törmäysten laadusta tai esim. vaikutusalan tuntemista. Oletetaan nyt, että systeemi on melkein homogeeninen, mikä tarkoittaa sitä, että hiukkastiheyden ja muiden vastaavien suureiden X spatiaalisten vaihteluiden karakteristinen pituusskaala X/ X on selvästi suurempi kuin ne pituuden dimensioiset parametrit, jotka kuvaavat systeemin mikroskooppista rakennetta (hiukkasten keskimääräinen etäisyys, vapaa matka, jne). Jos oletetaan lisäksi systeemin olevan lähellä lokaalia termistä tasapainotilaa, voidaan sen redusoitu yksihiukkastodennäköisyys kussakin avaruuden pisteessä kirjoittaa muodossa m f 0 (r, v ) = n(r ) ( 2πT(r ) ) 3 2 m(v u (r ))2 e 2T(r ). Tämä funktio vastaa siis tasapainojakaumaa, joka vallitsisi eksaktisti, jos koko systeemi olisi pisteen r tiheyttä ja lämpötilaa vastaavassa homogeenisessa tilassa keskimääräisen virtausnopeuden ollessa u (r ). yt sallimme systeemille kuitenkin pienen poikkeaman tästä tilasta, joten kirjoitamme f = f 0 + f 1, jossa f 1 on ensimmäiseen termiin verrattuna pieni. Sijoittamalla tämä Boltzmannin yhtälöön ja t τ.

3 olettamalla lisäksi, että funktion f 1 (r, v, t) aikariippuvuus häviää 1, saadaan poikkeamalle yhtälö f 1 (r, v ) = τ [v r f m F v f 0 ], jota tulemme käyttämään johtaessamme seuraavaksi erilaisia kuljetuskertoimia Maxwell-Boltzmannin kaasulle relaksaatioaika-approksimaatiossa. Esimerkki 1: diffuusiovakio Diffuusioilmiö liittyy tilanteeseen, jossa systeemiä poikkeutetaan tasapainoasemasta pienellä hiukkastiheyden fluktuaatiolla, mutta lämpötila voidaan olettaa vakioksi ja u sekä F häviäviksi. Tarkasteltava funktio on nyt hiukkasvirta, eli hiukkasten määrä pinta-ala- ja aikayksikköä kohti, j = nv = d 3 vv (f 0 + f 1 ) = d 3 vv f 1 = τ d 3 vv v r f 0, jossa olemme käyttäneet hyväksi sekä yo. kaavaa f 1 :lle että nopeuden odotusarvon häviämistä homogeenisessa tasapainosysteemissä. yt voimme edelleen käyttää f 0 :n eksplisiittistä kaavaa yltä, jossa ainoa paikkariippuvuus on normitustekijänä toimivassa funktiossa n(r ). Tämän seurauksena voimme kirjoittaa r f 0 = rn f 0 ja siirtää vain paikkavektorista riippuva osa nopeusintegraalin ulkopuolelle, mikä redusoi laskun nopeusvektorin kvadraattisten odotusarvojen laskemiseen Maxwell- Boltzmann statistiikassa. Pallosymmetrian seurauksena voimme kirjoittaa 1 n d3 vv i v j f 0 = δ ij 3 v2 0, missä alaindeksi viitta siihen, että odotusarvo lasketaan f 0 :n avulla, ja joka voidaan helposti todentaa kontraktoimalla yhtälön molemmat puolet tensorilla δ ij. Tämän tuloksen avulla voidaan kirjoittaa edelleen n 1 Kyseisen oletuksen järkevyys johtuu siitä, että pyrimme tässä kuvaamaan yhtälön j = D n tyyppisiä konstitutiivisia lakeja, joissa pakote voidaan olettaa ajasta riippumattomaksi. 3

4 j i = τ ( rn) i n josta luemme diffuusiovakion n 3 v2 0 = τ 3 v2 0 ( r n) i, D = τ 3 v2 0 = τ 2 3 m 3T 2 = τt m. Tässä olemme käyttäneet Maxwell-Boltzmann kaasun tulosta E kin = 3T 2. Esimerkki 2: lämmönjohtavuus yt ainoa paikasta riippuva suure on selvästi lämpötila, ts. T = T(r ). Lämmönjohtavuuden käsittelyssä aiemmin esitelty suure lämpövirta j q voidaan edellisen luvun perusteella samaistaa liike-energian virraksi, joten voimme edellistä esimerkkiä mukaillen kirjoittaa j q = mv2 2 nv = m 2 d3 v v 2 v f = m 2 d3 v v 2 v f 1 = τm 2 d3 v v 2 v v r f 0 = τm 2 d3 v v 2 v v r T f 0 T. Tästä muodosta pääsemme helpoimmin eteenpäin kirjoittamalla virran jälleen komponenttimuodossa missä kaavan mukaisesti pätee j q i = τm 2 ( rt) j d 3 v v 2 v i v j f 0 T, f 0 = n ( m 2πT ) 3/2 e mv2 /(2T) f 0 T = (mv2 2T 2 3 2T ) f 0. Yhdistämällä yo. tulokset ja käyttämällä rotaatioinvarianssia samaan tapaan kuin edellisessä esimerkissä päädymme nyt relaatioon 4

5 j q i = τm 2 ( rt) j d 3 v v 2 v i v j ( mv2 2T 2 3 2T ) f 0 = τmn 2 ( rt) j δ ij 3 (m v6 0 2T 2 3 v4 0 2T ). Harjoitustehtävänä 6/2 on johtaa Maxwell-Boltzmann jakaumalle tulokset v 4 0 = 15 ( T 2 m ), v 6 0 = 105 ( T 3 m ), joiden avulla saamme vihdoin lopullisen tuloksen j q = 5 τnt m rt. Tästä voimme suoraan lukea lämmönjohtavuudelle κ = 5 τnt m. Harjoitustehtävänä 6/3 on vihdoin johtaa leikkausviskositeetille tulos η = τnt. Kuten kaksi yllä johdettua kuljetuskerrointa, myös tämä suure sisältää fenomenologisen relaksaatioajan τ parametrinaan. Arvokkaampia ovat kuitenkin tulokset, jotka relatoivat viskositeetin, diffuusiovakion sekä lämmönjohtavuuden toisiinsa. Jos diffuusiovakiota D pidetään näistä suureista fundamentaaleimpana diffuusioprosessihan on selvästi muiden kuljetusilmiöiden takana voidaan yllä johdetut tulokset antaa muodossa κ = 5nD, η = nmd. ämä relaatiot ovat esimerkkejä epätriviaaleista kuljetusteorian ennusteista vuorovaikutuksettomalle Maxwell-Boltzmann ideaalikaasulle. 5

6 KLASSISISTA REAALIKAASUISTA (AH 10.1) Palaamme kurssin lopuksi vielä hetkeksi tasapainosysteemien pariin, mutta tarkastelemme nyt todellisten fysikaalisten systeemien kannalta realistisempaa tilannetta, jossa hiukkasten välillä olevia vuorovaikutuksia ei voida jättää täysin huomiotta. Tämä monimutkaistaa yksinkertaistenkin suureiden määrittämistä huomattavasti ja johtaa käytännössä aina joko erilaisten approksimatiivisten laskumenetelmien tai numeeristen simulaatioiden käyttöön. Seuraavassa tulemme tutustumaan lähinnä yleisimmin käytettyyn analyyttiseen menetelmään eli häiriöteoriaan, jossa fysikaaliset suureet ekspandoidaan jonkin pieneksi oletetun usein vuorovaikutuksen voimakkuutta kuvaavan parametrin potenssisarjaksi. Vastaavat menetelmät ovat käytössä useilla fysiikan aloilla, ja esimerkiksi hiukkasfysiikassa häiriöteoria on ylivoimaisesti tärkein työkalu, jonka kautta vuorovaikuttavien kvanttikenttäteorioiden ominaisuuksia on pystytty selvittämään. Tarkastellaan nyt klassista :n hiukkasen systeemiä, jossa hiukkasten välillä on parivuorovaikutuksia. Tällöin Hamiltonin operaattori saa muodon H = p i 2 + v(r 2m ij ), r ij r i r j, i=1 i<j missä v(r) on hiukkasten vuorovaikutusta kuvaava kahden hiukkasen vuorovaikutuspotentiaali. Potentiaali kuvaa tyypillisesti sähkömagneettista voimaa kokonaisuutena sähköisesti neutraalien molekyylien välillä ja on periaatteessa johdettavista näiden rakenteesta. Useimmissa käytännön laskuissa potentiaalina v(r) käytetään kuitenkin jotakin fenomenologista funktiota, jonka on havaittu olevan hyvin sopusoinnussa kokeellisten tulosten kanssa. Tällainen on esim. ns. Lennard-Jonesin 6-12-potentiaali v(r) = 4ε [( σ 12 r ) ( σ 6], r ) jossa σ on potentiaalin karakteristinen pituusskaala ja energian dimensioisen parametrin ε arvo voidaan tyypillisesti olettaa pieneksi systeemin lämpöliikkeeseen liittyvään energiaan verrattuna. 6

7 Klassinen kanoninen tilasumma saadaan nyt määritettyä tunnetulla tavalla, ts. suorittamalla faasiavaruusintegraali Z (T, V) = dγ e βh = 1 h 3! d3 p i d 3 r i exp [ β ( p i + v(r 2m ij ))], missä pystymme selvästi suorittamaan impulssi-integraalit analyyttisesti. i=1 Merkitsemällä kuten aiemminkin λ T = h/ 2πmT saadaan helposti formaali tulos missä olemme määritelleet Z (T, V) = 1 λ T 3! Q (T, V), i=1 Q (T, V) d 3 r i exp [ β v(r ij )]. i=1 Suurkanoniseksi tilasummaksi saadaan tästä edelleen (yhtä formaalisti) Z(T, V, μ) = z Z (T, V) i<j = ζ Q! (T, V), missä ζ z/λ T 3 = e βμ /λ T 3. Suuri potentiaali päästään näin kirjoittamaan intensiivisen suureen ω(t, z) avulla muodossa 2 i<j Ω(T, V, μ) = TVω(T, z), ω(t, z) = 1 ln Z(T, V, μ). V yt saadaan edelleen termodynaamisille funktioille 7 p = Tω(T, z), n = V ω(t, z) = z, z ja edelleen ratkaisemalla jälkimmäisestä yhtälöstä fugasiteetti hiukkastiheyden funktiona p = Tφ(T, n), missä funktio φ(t, n) parametrisoi tulosta. Viimeisin saatu muoto on siitä kätevä, että se mahdollistaa suoraan ns. viriaalikehitelmän muotoilun, eli paineen lausumisen hiukkastiheyden potenssisarjana.

8 Yllä suoritettu tarkastelu on täysin formaali, ja erityisesti emme ole vielä sanoneet mitään funktioiden Q (T, V) määrittämisestä. Tässä prosessissa käytetään tyypillisesti ns. graafimenetelmää, mitä varten kirjoitamme nyt Q (T, V) = d 3 r i e βv(r ij) i=1 i<j = d 3 r i (1 + f ij ), i=1 i<j missä olemme määritelleet ns. Mayerin funktion f ij = e βv(r ij) 1. Syynä tähän notaatioon on se, että funktiot f ij ovat tyypillisesti paitsi lyhytkantamaisia, myös numeerisesti varsin pieniä (tämä on totta erityisesti harvan kaasun rajalla); ks. ao. kuva jossa näytämme funktioiden v (sininen käyrä) ja f (oranssi) käytöksen Lennard- Jonesin potentiaalille tapauksessa, jossa olemme valinneet T/ε = 10: Johtuen funktion f pienuudesta äärellisillä r:n arvoilla 2 voimme ekspandoida Q :n kaavaa tämän funktion potensseissa. äin päädymme muotoon Q (T, V) = d 3 r i (1 + f ij i=1 (ij) + f ij f kl + ), (ij)<(kl) missä notaatio (ij) viittaa kaikkiin pareihin joissa i < j ja (ij) < (kl) puolestaan tarkoittaa sitä, että indeksiparit (ij) ja (kl) eivät voi olla samoja ja kukin kombinaatio (ij), (kl) lasketaan mukaan vain kerran. Sama pätee yltä pois 2 Huomaa, että pienen r:n alue on suppressoitu kolmiulotteisissa paikkaintegraaleissa, minkä olemme ottaneet yo. kuvissa huomioon 8

9 jätettyihin termeihin; esim. seuraavassa kertaluvussa tarkasteltaisiin indeksiparien kolmikoita (ij) < (kl) < (mn). Ekspansion aivan ensimmäinen termi vastaa tilannetta jossa v = 0, eli vuorovaikuttamatonta Maxwell-Boltzmannin kaasua, jonka partitiofunktio on meille ennestään tuttu. Termi graafimenetelmä puolestaan viittaa siihen, että ekspansio voidaan esittää graafien tai diagrammojen muodossa määrittelemällä = d 3 r i, = f(r ij ) f ij, jossa termiä f ij vastaava viiva kulkee pisteiden r i ja r j välillä. Tämä kvanttikenttäteorioiden Feynmanin diagrammoja jossain määrin muistuttava notaatio antaa meille mahdollisuuden kirjoittaa funktiot Q yksinkertaisessa kuvallisessa muodossa, kuten kurssikirjan sivulla 204 on tehty: Koska kukin piste vastaa tiettyä paikka-avaruuden koordinaattia r i, saamme helposti esimerkiksi = d 3 r 1 d 3 r 2 f 12 = V d 3 r 12 f 12, missä olemme vaihtaneet integroimismuuttujaksi r 12 r 1 r 2 ja suorittaneet integraalin toisen paikkakoordinaatin yli, josta integrandi ei riipu lainkaan. Korkeammissa kertaluvuissa törmäämme siihen, että täsmälleen sama graafi voi tulla ekspansiossa vastaan useammassa eri muodossa. Ajatellaan esimerkkinä Q 3 :een kontribuoivaa graafia, jossa pisteiden 1, 2 ja 3 välillä kulkee tasan kaksi 9

10 viivaa. ämä viivat voidaan selvästi piirtää kolmella eri tavalla siten, että viivaa ei kulje joko pisteiden 1 ja 2, 2 ja 3 tai 1 ja 3 välillä. Tällöin huomaamme, että koska kunkin näistä koordinaateista yli integroidaan, ei indeksien identiteetillä ole merkitystä, mikä onkin yo. tuloksissa otettu huomioon siinä, että käsiteltyä graafia kertoo Q 3 :n lausekkeessa luku 3. äitä kokonaislukukertoimia kutsutaan joskus symmetriakertoimiksi. Graafia kutsutaan yhtenäiseksi, jos jokaista kahta sen verteksiä eli pistettä yhdistää jokin yhtenäinen viivojen polku. On helppoa todeta, että epäyhtenäiset graafit faktorisoituvat yhtenäisten alidiagrammojensa tuloksi. Tämän johdosta määrittelemmekin nyt ns. l-rypäleet ja rypäleintegraalit q l yhtenäisten tasan l pistettä sisältävien graafien summana: q 1 = = d 3 r 1 = V, q 2 = = d 3 r 1 d 3 r 2 f 12 = V d 3 r 12 f 12, q 3 = d 3 r 1 d 3 r 2 d 3 r 3 (3f 12 f 23 + f 12 f 23 f 13 ) = V d 3 r 12 d 3 r 23 (3f 12 f 23 + f 12 f 23 f( r 12 + r 23 )), On huomionarvoista, että jokainen näistä funktioista osoittautuu olevan verrannollinen systeemin tilavuuteen. Osoitamme nyt esimerkkilaskun avulla, että funktioiden Q ja q l välillä pätee mielenkiintoinen yhteys (jolla on suora vastine myös kvanttikenttäteorian Feynmanin diagrammojen teoriassa). Esimerkkitehtävä: Osoita eksplisiittisesti, että seuraava identiteetti pätee ainakin 4. kertalukuun asti: Z(T, V, μ) = ζ! Q =0 = exp [ ζl l! q l], l=1 missä määrittelemme Q 0 = 1. Ensi viikolla jatkamme graafikehitelmän parissa pyrkimyksenämme näyttää, että tilanyhälön viriaalikehitelmä on varsin suoraviivaista lausua sen avulla. 10

Maxwell-Boltzmannin jakauma

Maxwell-Boltzmannin jakauma Maxwell-Boltzmannin jakauma Homogeenisessa tasapainotilassa redusoidut yksihiukkastodennäköisyydet f voivat olla vain nopeuden funktioita, f = f(v ), ja H-funktio ei toisaalta voi riippua ajasta, eli dh

Lisätiedot

KLASSISISTA REAALIKAASUISTA (AH 10.1)

KLASSISISTA REAALIKAASUISTA (AH 10.1) KLASSISISTA REAALIKAASUISTA (AH 10.1) Palaamme kurssin lopuksi vielä hetkeksi tasapainosysteemien pariin, mutta tarkastelemme nyt todellisten systeemien kannalta realistisempaa tilannetta, jossa hiukkasten

Lisätiedot

Suurkanoninen joukko

Suurkanoninen joukko Suurkanoninen joukko Suurkanonisessa joukossa systeemi on kanonisen joukon tavoin yhdistettynä lämpökylpyyn, mutta nyt systeemin ja kylvyn väliset (kuvitellut) seinät läpäisevät energian lisäksi myös hiukkasia

Lisätiedot

KULJETUSSUUREET Kuljetussuureilla tai -ominaisuuksilla tarkoitetaan kaasumaisen, nestemäisen tai kiinteän väliaineen kykyä siirtää ainetta, energiaa, tai jotain muuta fysikaalista ominaisuutta paikasta

Lisätiedot

FYSA242 Statistinen fysiikka, Harjoitustentti

FYSA242 Statistinen fysiikka, Harjoitustentti FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 10: Reaalikaasut Pe 1.4.2016 1 AIHEET 1. Malleja, joissa pyritään huomioimaan

Lisätiedot

Osoitetaan tämä nyt formaalisti esimerkkitehtävänä lähtien liikkeelle kombinatorisesta tuloksesta

Osoitetaan tämä nyt formaalisti esimerkkitehtävänä lähtien liikkeelle kombinatorisesta tuloksesta Viime uennon opussa äpikäydyssä esimerkkitehtävässä näimme, että ainakin mataissa kertauvuissa :stä pisteestä koostuvia yhtenäisiä graafeia q on äheinen yhteys yeiseen graafisummaan Q N vieäpä niin, että

Lisätiedot

Suurkanoninen joukko

Suurkanoninen joukko Suurkanoninen joukko Suurkanonisessa joukossa systeemi on kanonisen joukon tavoin yhdistettynä lämpökylpyyn, mutta nyt systeemin ja kylvyn väliset (kuvitellut) seinät läpäisevät energian lisäksi myös hiukkasia

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 206 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 2: BE- ja FD-jakaumat, kvanttikaasut Pe 5.4.206 AIHEET. Kvanttimekaanisesta vaihtosymmetriasta

Lisätiedot

Käyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on

Käyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on 766328A ermofysiikka Harjoitus no. 3, ratkaisut (syyslukukausi 201) 1. (a) ilavuus V (, P ) riippuu lämpötilasta ja paineesta P. Sen differentiaali on ( ) ( ) V V dv (, P ) dp + d. P Käyttämällä annettua

Lisätiedot

Törmäystaajuus. Määritellään seuraavaksi hiukkasten törmäysaika kaasussa keskiarvona yksittäisten törmäysten välisistä ajoista τ j,

Törmäystaajuus. Määritellään seuraavaksi hiukkasten törmäysaika kaasussa keskiarvona yksittäisten törmäysten välisistä ajoista τ j, Törmäystaajuus Määritellään seuraavaksi hiukkasten törmäysaika kaasussa keskiarvona yksittäisten törmäysten välisistä ajoista τ j, n 1 τ coll = lim n n τ j ja vastaavasti törmäystaajuus (yhden hiukkasen

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista

Lisätiedot

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä 1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 9 Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 6: Faasimuutokset Maanantai 5.12. Kurssin aiheet 1. Lämpötila ja lämpö 2. Työ ja termodynamiikan 1. pääsääntö 3. Lämpövoimakoneet

Lisätiedot

LASKENNALLISEN TIETEEN OHJELMATYÖ: Diffuusion Monte Carlo -simulointi yksiulotteisessa systeemissä

LASKENNALLISEN TIETEEN OHJELMATYÖ: Diffuusion Monte Carlo -simulointi yksiulotteisessa systeemissä LASKENNALLISEN TIETEEN OHJELMATYÖ: Diffuusion Monte Carlo -simulointi yksiulotteisessa systeemissä. Diffuusio yksiulotteisessa epäjärjestäytyneessä hilassa E J ii, J ii, + 0 E b, i E i i i i+ x Kuva.:

Lisätiedot

Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2

Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2 766328A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 24). Klassisen ideaalikaasun partitiofunktio on luentojen mukaan Z N! [Z (T, V )] N, (9.) missä yksihiukkaspartitiofunktio Z (T, V ) r e βɛr.

Lisätiedot

Astrokemia Kevät 2011 Harjoitus 1, Massavaikutuksen laki, Ratkaisut

Astrokemia Kevät 2011 Harjoitus 1, Massavaikutuksen laki, Ratkaisut Astrokemia Kevät 2011 Harjoitus 1, Massavaikutuksen laki, Ratkaisut 1 a Kaasuseoksen komponentin i vapaa energia voidaan kirjoittaa F i (N,T,V = ln Z i (T,V missä on ko hiukkasten lukumäärä tilavuudessa

Lisätiedot

a) Sievennä lauseke 1+x , kun x 0jax 1. b) Aseta luvut 2, 5 suuruusjärjestykseen ja perustele vastauksesi. 3 3 ja

a) Sievennä lauseke 1+x , kun x 0jax 1. b) Aseta luvut 2, 5 suuruusjärjestykseen ja perustele vastauksesi. 3 3 ja 1 YLIOPPILASTUTKINTO- LAUTAKUNTA 1.10.2018 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän

Lisätiedot

VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4

VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4 VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4 Jokaisen tehtävän jälkeen on pieni kommentti tehtävään liittyen Nämä eivät sisällä mitään kovin kriittistä tietoa tehtävään liittyen, joten niistä ei tarvitse välittää

Lisätiedot

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta. K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy

Lisätiedot

TASAPAINOJAKAUMAT KVANTTIMEKAANISISSA SYSTEEMEISSÄ (AH 5.4, 6.1, 6.4, 6.5) Mikrokanoninen joukko

TASAPAINOJAKAUMAT KVANTTIMEKAANISISSA SYSTEEMEISSÄ (AH 5.4, 6.1, 6.4, 6.5) Mikrokanoninen joukko 1 TASAPAINOJAKAUMAT KVANTTIMEKAANISISSA SYSTEEMEISSÄ (AH 5.4, 6.1, 6.4, 6.5) Mikrokanoninen joukko Aivan kuten klassisessa tapauksessa, myös kvanttimekaanisille monihiukkassysteemeille voidaan määritellä

Lisätiedot

Markov-ketjut pitkällä aikavälillä

Markov-ketjut pitkällä aikavälillä 2A Markov-ketjut pitkällä aikavälillä Tämän harjoituksen tavoitteena on oppia lukemaan siirtymämatriisista tai siirtymäkaaviosta, milloin Markov-ketju on yhtenäinen ja jaksoton; oppia tunnistamaan, milloin

Lisätiedot

4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä 1 Laaja matematiikka 5 Kevät 010 4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa esiintyvistä matemaattisista malleista on differentiaaliyhtälö.

Lisätiedot

BM20A0900, Matematiikka KoTiB3

BM20A0900, Matematiikka KoTiB3 BM20A0900, Matematiikka KoTiB3 Luennot: Matti Alatalo Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luvut 1 4. 1 Sisältö Ensimmäisen kertaluvun differentiaaliyhtälöt

Lisätiedot

Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen

Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen Yhden faktorin malli: n kpl sijoituskohteita, joiden tuotot ovat r i, i =, 2,..., n. Olkoon f satunnaismuuttuja ja oletetaan, että tuotot voidaan selittää yhtälön r i = a i + b i f + e i avulla, missä

Lisätiedot

Integroimalla ja käyttämällä lopuksi tilanyhtälöä saadaan T ( ) ( ) H 5,0 10 J + 2,0 10 0,50 1,0 10 0,80 Pa m 70 kj

Integroimalla ja käyttämällä lopuksi tilanyhtälöä saadaan T ( ) ( ) H 5,0 10 J + 2,0 10 0,50 1,0 10 0,80 Pa m 70 kj S-4.35 Fysiikka (ES) entti 3.8.. ääritä yhden haikaasumoolin (O) (a) sisäenergian, (b) entalian muutos tilanmuutoksessa alkutilasta =, bar, =,8 m3 loutilaan =, bar, =,5 m3. ärähtelyn vaausasteet voidaan

Lisätiedot

TASAPAINOJAKAUMAT KVANTTIMEKAANISISSA SYSTEEMEISSÄ (AH 5.4, 6.1, 6.4, 6.5) Mikrokanoninen joukko

TASAPAINOJAKAUMAT KVANTTIMEKAANISISSA SYSTEEMEISSÄ (AH 5.4, 6.1, 6.4, 6.5) Mikrokanoninen joukko TASAPAINOJAKAUMAT KVANTTIMEKAANISISSA SYSTEEMEISSÄ (AH 5.4, 6.1, 6.4, 6.5) Mikrokanoninen joukko Aivan kuten klassisessa tapauksessa, myös kvanttimekaanisille monihiukkassysteemeille voidaan määritellä

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28 Numeeriset menetelmät TIEA381 Luento 5 Kirsi Valjus Jyväskylän yliopisto Luento 5 () Numeeriset menetelmät 3.4.2013 1 / 28 Luennon 5 sisältö Luku 4: Ominaisarvotehtävistä Potenssiinkorotusmenetelmä QR-menetelmä

Lisätiedot

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1 76628A Termofysiikka Harjoitus no. 4, ratkaisut (syyslukukausi 204). (a) Systeemi koostuu neljästä identtisestä spin- -hiukkasesta. Merkitään ylöspäin olevien spinien lukumäärää n:llä. Systeemin mahdolliset

Lisätiedot

10. Toisen kertaluvun lineaariset differentiaaliyhtälöt

10. Toisen kertaluvun lineaariset differentiaaliyhtälöt 37. Toisen kertaluvun lineaariset differentiaalihtälöt Tarkastelemme muotoa () ( x) + a( x) ( x) + a( x) ( x) = b( x) olevia htälöitä, missä kerroinfunktiot ja oikea puoli ovat välillä I jatkuvia. Edellisen

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

TILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH 5.1-5.3) Mikrotilat (kertausta Kvanttimekaniikan kurssilta)

TILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH 5.1-5.3) Mikrotilat (kertausta Kvanttimekaniikan kurssilta) TILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH 5.1-5.3) Mikrotilat (kertausta Kvanttimekaniikan kurssilta) Kvanttimekaniikassa yhden hiukkasen systeemin täydellisen kuvauksen antaa tilavektori, joka on

Lisätiedot

y 2 h 2), (a) Näytä, että virtauksessa olevan fluidialkion tilavuus ei muutu.

y 2 h 2), (a) Näytä, että virtauksessa olevan fluidialkion tilavuus ei muutu. Tehtävä 1 Tarkastellaan paineen ajamaa Poisseuille-virtausta kahden yhdensuuntaisen levyn välissä Levyjen välinen etäisyys on 2h Nopeusjakauma raossa on tällöin u(y) = 1 dp ( y 2 h 2), missä y = 0 on raon

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 6: Vapaaenergia Pe 11.3.2016 1 AIHEET 1. Kemiallinen potentiaali 2. Maxwellin

Lisätiedot

1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria

1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria Kvanttimekaniikka I, tentti 6.. 015 4 tehtävää, 4 tuntia 1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria ( { ( ( } E iδ H =, E, δ R, kannassa B = 1 =, =. iδ E 0 1 (a (p.

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 8: Kemiallinen potentiaali, suurkanoninen ensemble Pe 18.3.2016 1 AIHEET 1. Kanoninen

Lisätiedot

KLASSISET TASAPAINOJOUKOT (AH 4.3, , 7.2) Yleisesti joukoista

KLASSISET TASAPAINOJOUKOT (AH 4.3, , 7.2) Yleisesti joukoista KLASSISET TASAPAINOJOUKOT (AH 4.3, 6.1-6.7, 7.2) 1 Yleisesti joukoista Seuraavaksi tarkastelemme konkreettisella tasolla erilaisia termodynaamisia ensemblejä eli joukkoja, millä tarkoitamme tiettyä makrotilaa

Lisätiedot

Teddy 7. harjoituksen malliratkaisu syksy 2011

Teddy 7. harjoituksen malliratkaisu syksy 2011 Teddy 7. harjoituksen malliratkaisu syksy 2011 1. Systeemin käyttäytymistä faasirajalla kuvaa Clapeyronin yhtälönä tunnettu keskeinen relaatio dt = S m. (1 V m Koska faasitasapainossa reaktion Gibbsin

Lisätiedot

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua Ideaalikaasulaki Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua ja tilanmuuttujat (yhä) paine, tilavuus ja lämpötila Isobaari, kun paine on vakio Kaksi

Lisätiedot

Markov-ketjut pitkällä aikavälillä

Markov-ketjut pitkällä aikavälillä MS-C2111 Stokastiset prosessit 2A Markov-ketjut pitkällä aikavälillä Tämän harjoituksen tavoitteena on oppia lukemaan siirtymämatriisista tai siirtymäkaaviosta, milloin Markov-ketju on yhtenäinen ja jaksoton;

Lisätiedot

Matemaattinen Analyysi

Matemaattinen Analyysi Vaasan yliopisto, kevät 01 / ORMS1010 Matemaattinen Analyysi. harjoitus, viikko 1 R1 ke 1 16 D11 (..) R to 10 1 D11 (..) 1. Määritä funktion y(x) MacLaurinin sarjan kertoimet, kun y(0) = ja y (x) = (x

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle / Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle / 16. 18.5. Lineaariset differentiaaliyhtälöt, homogeeniset differentiaaliyhtälöt Tehtävä 1: a) Määritä differentiaaliyhtälön y 3y = 14e 4x

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 5: Kaarenpituus ja skalaarikentän viivaintegraali

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 5: Kaarenpituus ja skalaarikentän viivaintegraali MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 5: Kaarenpituus ja skalaarikentän viivaintegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 /

Lisätiedot

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016

Lisätiedot

6. Differentiaaliyhtälösysteemien laadullista teoriaa.

6. Differentiaaliyhtälösysteemien laadullista teoriaa. 1 MAT-13450 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 2010 6. Differentiaaliyhtälösysteemien laadullista teoriaa. Olemme keskittyneet tässä kurssissa ensimmäisen kertaluvun

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2017

PHYS-A0120 Termodynamiikka syksy 2017 PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 5: Termodynaamiset potentiaalit Maanantai 27.11. ja tiistai 28.11. Kotitentti Julkaistaan ti 5.12., palautus viim. ke 20.12.

Lisätiedot

CP-rikkovan Diracin yhtälön eksakti ratkaisu ja koherentti kvasihiukkasapproksimaatio

CP-rikkovan Diracin yhtälön eksakti ratkaisu ja koherentti kvasihiukkasapproksimaatio CP-rikkovan Diracin yhtälön eksakti ratkaisu ja koherentti kvasihiukkasapproksimaatio Olli Koskivaara Ohjaaja: Kimmo Kainulainen Jyväskylän yliopisto 30.10.2015 Kenttäteoriasta Kvanttikenttäteoria on modernin

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 12 To 13.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 12 To 13.10.2011 p. 1/38 p. 1/38 Tavalliset differentiaaliyhtälöt Yhtälöissä tuntematon funktio Tavalliset

Lisätiedot

H7 Malliratkaisut - Tehtävä 1

H7 Malliratkaisut - Tehtävä 1 H7 Malliratkaisut - Tehtävä Eelis Mielonen 7. lokakuuta 07 a) Palautellaan muistiin Maclaurin sarjan määritelmä (Taylorin sarja origon ympäristössä): f n (0) f(x) = (x) n Nyt jos f(x) = ln( + x) saadaan

Lisätiedot

m h = Q l h 8380 J = J kg 1 0, kg Muodostuneen höyryn osuus alkuperäisestä vesimäärästä on m h m 0,200 kg = 0,

m h = Q l h 8380 J = J kg 1 0, kg Muodostuneen höyryn osuus alkuperäisestä vesimäärästä on m h m 0,200 kg = 0, 76638A Termofysiikka Harjoitus no. 9, ratkaisut syyslukukausi 014) 1. Vesimäärä, jonka massa m 00 g on ylikuumentunut mikroaaltouunissa lämpötilaan T 1 110 383,15 K paineessa P 1 atm 10135 Pa. Veden ominaislämpökapasiteetti

Lisätiedot

Kuljetusilmiöt. Diffuusio Lämmönjohtuminen Viskoosin nesteen virtaus Produktio ja absorptio

Kuljetusilmiöt. Diffuusio Lämmönjohtuminen Viskoosin nesteen virtaus Produktio ja absorptio Kuljetusilmiöt Diffuusio Lämmönjohtuminen Viskoosin nesteen virtaus Produktio ja absorptio Johdanto Kuljetusilmiöt on yhteinen nimitys prosesseille, joissa aineen molekyylien liike aiheuttaa energian,

Lisätiedot

Vauhti = nopeuden itseisarvo. Nopeuden itseisarvon keskiarvo N:lle hiukkaselle määritellään yhtälöllä

Vauhti = nopeuden itseisarvo. Nopeuden itseisarvon keskiarvo N:lle hiukkaselle määritellään yhtälöllä S-4.35, Fysiikka III (ES) entti 8.3.006. Laske nopeuden itseisarvon keskiarvo v ave ja nopeuden neliöllinen keskiarvo v rms seuraaville 6 molekyylien nopeusjakaumille: a) kaikkien vauhti 0 m/s, b) kolmen

Lisätiedot

7 Vapaus. 7.1 Vapauden määritelmä

7 Vapaus. 7.1 Vapauden määritelmä 7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan

Lisätiedot

6. Yhteenvetoa kurssista

6. Yhteenvetoa kurssista Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2016 6. Yhteenvetoa kurssista 1 Keskeisiä käsitteitä I Energia TD1, siirtyminen lämpönä

Lisätiedot

5 Differentiaaliyhtälöryhmät

5 Differentiaaliyhtälöryhmät 5 Differentiaaliyhtälöryhmät 5.1 Taustaa ja teoriaa Differentiaaliyhtälöryhmiä tarvitaan useissa sovelluksissa. Toinen motivaatio yhtälöryhmien käytölle: Korkeamman asteen differentiaaliyhtälöt y (n) =

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u.

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u. DEE-00 Lineaariset järjestelmät Harjoitus, ratkaisuehdotukset Järjestelmien lineaarisuus ja aikainvarianttisuus Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35 Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen

Lisätiedot

1. Tilastollinen malli??

1. Tilastollinen malli?? 1. Tilastollinen malli?? https://fi.wikipedia.org/wiki/tilastollinen_malli https://en.wikipedia.org/wiki/statistical_model http://projecteuclid.org/euclid.aos/1035844977 Tilastollinen malli?? Numeerinen

Lisätiedot

Moniulotteisia todennäköisyysjakaumia

Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1 Tehtävä : Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: a) a) x b) e x + Integraali voisi ratketa muuttujanvaihdolla. Integroitava on muotoa (a x ) n joten sopiva muuttujanvaihto voisi olla

Lisätiedot

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt 766328A Termofysiikka Harjoitus no. 2, ratkaisut (syyslukukausi 204). Kun sylinterissä oleva n moolia ideaalikaasua laajenee reversiibelissä prosessissa kolminkertaiseen tilavuuteen 3,lämpötilamuuttuuprosessinaikanasiten,ettäyhtälö

Lisätiedot

F x y z. F voidaan ymmärtää kahden vektorin. Divergenssi. Vektorikentän F( x, y, z ) divergenssi määritellään

F x y z. F voidaan ymmärtää kahden vektorin. Divergenssi. Vektorikentän F( x, y, z ) divergenssi määritellään 31 VEKTORIANALYYSI Luento 5 Divergenssi F Vektorikentän F(, y, z ) divergenssi määritellään F F F y z y F z. Divergenssistä käytetään usein myös merkintää div, Divergenssi pistetulona, F div F. F voidaan

Lisätiedot

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2, MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +

Lisätiedot

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1 infoa Viikon aiheet Tentti ensi viikolla ma 23.0. klo 9.00-3.00 Huomaa, alkaa tasalta! D0 (Sukunimet A-) E204 (Sukunimet S-Ö) Mukaan kynä ja kumi. Ei muuta materiaalia. Tentissä kaavakokoelma valmiina.

Lisätiedot

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti 14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on

Lisätiedot

Luento 2: Liikkeen kuvausta

Luento 2: Liikkeen kuvausta Luento 2: Liikkeen kuvausta Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Luennon sisältö Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Liikkeen ratkaisu kiihtyvyydestä

Lisätiedot

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1 1. Tarkastellaan funktiota missä σ C ja y (y 1,..., y n ) R n. u : R n R C, u(x, t) e i(y x σt), (a) Miksi funktiota u(x, t) voidaan kutsua tasoaalloksi, jonka aaltorintama on kohtisuorassa vektorin y

Lisätiedot

1 Kertaus. Lineaarinen optimointitehtävä on muotoa:

1 Kertaus. Lineaarinen optimointitehtävä on muotoa: 1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n

Lisätiedot

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +

Lisätiedot

kertausta Boltzmannin jakauma infoa Ideaalikaasu kertausta Maxwellin ja Boltzmannin vauhtijakauma

kertausta Boltzmannin jakauma infoa Ideaalikaasu kertausta Maxwellin ja Boltzmannin vauhtijakauma infoa kertausta Boltzmannin jakauma Huomenna itsenäisyyspäivänä laitos on kiinni, ei luentoa, ei laskareita. Torstaina laboratoriossa assistentit neuvovat myös laskareissa. Ensi viikolla tiistaina vielä

Lisätiedot

Clausiuksen epäyhtälö

Clausiuksen epäyhtälö 1 Kuva 1: Clausiuksen epäyhtälön johtaminen. Clausiuksen epäyhtälö otesimme Carnot n koneelle, että syklissä lämpötiloissa H ja L vastaanotetuille lämmöille Q H ja Q L pätee Q H H oisin ilmaistuna, Carnot

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

x 4 e 2x dx Γ(r) = x r 1 e x dx (1)

x 4 e 2x dx Γ(r) = x r 1 e x dx (1) HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta IIA, syksy 217 217 Harjoitus 6 Ratkaisuehdotuksia Tehtäväsarja I 1. Laske numeeriset arvot seuraaville integraaleille: x 4 e 2x dx ja 1

Lisätiedot

Koska ovat negatiiviset. Keskihajontoja ei pystytä laskemaan mutta pätee ¾.

Koska ovat negatiiviset. Keskihajontoja ei pystytä laskemaan mutta pätee ¾. 24.11.2006 1. Oletetaan, että kaksiulotteinen satunnaismuuttuja µ noudattaa kaksiulotteista normaalijakaumaa. Oletetaan lisäksi, että satunnaismuuttujan regressiofunktio satunnaismuuttujan suhteen on ݵ

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1 763306A JOHDATUS SUHTLLISUUSTORIAAN Ratkaisut 3 Kevät 07. Fuusioreaktio. Lähdetään suoraan annetuista yhtälöistä nergia on suoraan yhtälön ) mukaan + m ) p P ) m + p 3) M + P 4) + m 5) Ratkaistaan seuraavaksi

Lisätiedot

Värähdysliikkeet. q + f (q, q, t) = 0. q + f (q, q) = F (t) missä nopeusriippuvuus kuvaa vaimenemista ja F (t) on ulkoinen pakkovoima.

Värähdysliikkeet. q + f (q, q, t) = 0. q + f (q, q) = F (t) missä nopeusriippuvuus kuvaa vaimenemista ja F (t) on ulkoinen pakkovoima. Torstai 18.9.2014 1/17 Värähdysliikkeet Värähdysliikkeet ovat tyypillisiä fysiikassa: Häiriö oskillaatio Jaksollinen liike oskillaatio Yleisesti värähdysliikettä voidaan kuvata yhtälöllä q + f (q, q, t)

Lisätiedot

Wiener-prosessi: Tarkastellaan seuraavanlaista stokastista prosessia

Wiener-prosessi: Tarkastellaan seuraavanlaista stokastista prosessia Wiener-prosessi: Tarkastellaan seuraavanlaista stokastista prosessia { z(t k+1 ) = z(t k ) + ɛ(t k ) t t k+1 = t k + t, k = 0,..., N, missä ɛ(t i ), ɛ(t j ), i j ovat toisistaan riippumattomia siten, että

Lisätiedot

LIITTEET Liite A Stirlingin kaavan tarkkuudesta...2. Liite B Lagrangen kertoimet...3

LIITTEET Liite A Stirlingin kaavan tarkkuudesta...2. Liite B Lagrangen kertoimet...3 LIITTEET... 2 Liite A Stirligi kaava tarkkuudesta...2 Liite B Lagrage kertoimet... 2 Liitteet Liitteet Liite A Stirligi kaava tarkkuudesta Luoollista logaritmia suureesta! approksimoidaa usei Stirligi

Lisätiedot

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus värähtelytiheyden. 1 Funktiot ja aallot Aiemmin käsiteltiin funktioita ja miten niiden avulla voidaan kuvata fysiikan

Lisätiedot

= 84. Todennäköisin partitio on partitio k = 6,

= 84. Todennäköisin partitio on partitio k = 6, S-435, Fysiikka III (ES) entti 43 entti / välikoeuusinta I Välikokeen alue Neljän tunnistettavissa olevan hiukkasen mikrokanonisen joukon mahdolliset energiatasot ovat, ε, ε, 3ε, 4ε,, jotka kaikki ovat

Lisätiedot

1 Eksergia ja termodynaamiset potentiaalit

1 Eksergia ja termodynaamiset potentiaalit 1 PHYS-C0220 Termodynamiikka ja statistinen fysiikka, kevät 2017 Emppu Salonen 1 Eksergia ja termodynaamiset potentiaalit 1.1 Suurin mahdollinen hyödyllinen työ Tähän mennessä olemme tarkastelleet sisäenergian

Lisätiedot

Ratkaisu. Tarkastellaan aluksi Fe 3+ - ja Fe 2+ -ionien välistä tasapainoa: Nernstin yhtälö tälle reaktiolle on:

Ratkaisu. Tarkastellaan aluksi Fe 3+ - ja Fe 2+ -ionien välistä tasapainoa: Nernstin yhtälö tälle reaktiolle on: Esimerkki Pourbaix-piirroksen laatimisesta Laadi Pourbaix-piirros, jossa on esitetty metallisen ja ionisen raudan sekä raudan oksidien stabiilisuusalueet vesiliuoksessa 5 C:een lämpötilassa. Ratkaisu Tarkastellaan

Lisätiedot

F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause

F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause 91 VEKTORIANALYYI Luento 13 9. tokesin lause A 16.5 tokesin lause on kuin Gaussin lause, mutta yhtä dimensiota alempana: se liittää toisiinsa kentän derivaatasta pinnan yli otetun integraalin ja pinnan

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 7: Ekvipartitioteoreema, partitiofunktio ja ideaalikaasu Ke 16.3.2016 1 KURSSIN

Lisätiedot

Lämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi.

Lämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi. Lämpöoppi Termodynaaminen systeemi Tilanmuuttujat (suureet) Lämpötila T (K) Absoluuttinen asteikko eli Kelvinasteikko! Paine p (Pa, bar) Tilavuus V (l, m 3, ) Ainemäärä n (mol) Eristetty systeemi Ei ole

Lisätiedot

1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta

1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta 766328A Termofysiikka Harjoitus no. 5, ratkaisut syyslukukausi 204). Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta E n n + ) ω, n 0,, 2,... 2 a) Oskillaattorin partitiofunktio

Lisätiedot

v AB q(t) = q(t) v AB p(t) v B V B ṗ(t) = q(t) v AB Φ(t, τ) = e A(t τ). e A = I + A + A2 2! + A3 = exp(a D (t τ)) (I + A N (t τ)), A N = =

v AB q(t) = q(t) v AB p(t) v B V B ṗ(t) = q(t) v AB Φ(t, τ) = e A(t τ). e A = I + A + A2 2! + A3 = exp(a D (t τ)) (I + A N (t τ)), A N = = Mat-214 Dynaaminen optimointi Mitri Kitti Mallivastaukset kierros 1 1 a) Sekoitussäiliöön A virtaa puhdasta vettä virtauksella v A säiliöstä A säiliöön B täysin sekoittunutta liuosta virtauksella v AB

Lisätiedot

9. Tila-avaruusmallit

9. Tila-avaruusmallit 9. Tila-avaruusmallit Aikasarjan stokastinen malli ja aikasarjasta tehdyt havainnot voidaan esittää joustavassa ja monipuolisessa muodossa ns. tila-avaruusmallina. Useat aikasarjat edustavat dynaamisia

Lisätiedot

8. Klassinen ideaalikaasu

8. Klassinen ideaalikaasu Statistinen fysiikka, osa B (FYSA242) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL240. Ei kiinteitä vastaanottoaikoja. kl 2016 8. Klassinen ideaalikaasu 1 Fysikaalinen tilanne Muistetaan: kokeellisesti

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3 Suorat ja tasot Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3.1 Suora Havaitsimme skalaarikertolaskun tulkinnan yhteydessä, että jos on mikä tahansa nollasta

Lisätiedot

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi Tehtävä 1 Tornadon virtauskenttää voidaan approksimoida kaksiulotteisen nielun ja pyörteen summana Oleta, että nielun voimakkuus on m < ja pyörteen voimakkuus on > (a Määritä tornadon potentiaali- ja virtafunktiot

Lisätiedot

Mat Dynaaminen optimointi, mallivastaukset, kierros 1

Mat Dynaaminen optimointi, mallivastaukset, kierros 1 Mat-214 Dynaaminen optimointi, mallivastaukset, kierros 1 1 a) Sekoitussäiliöön A virtaa puhdasta vettä virtauksella v A, säiliöstä A säiliöön B täysin sekoittunutta liuosta virtauksella v AB ja säiliöstä

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2017

PHYS-A0120 Termodynamiikka syksy 2017 PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 6: Faasimuutokset Maanantai 4.12. ja tiistai 5.12. Metallilangan venytys Metallilankaan tehty työ menee atomien välisten

Lisätiedot