Kvanttimekaniikan tulkinta

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Kvanttimekaniikan tulkinta"

Transkriptio

1 Kvanttimekaniikan tulkinta Klassisen ja kvanttimekaniikan tilastolliset formuloinnit 1.1 Klassinen mekaniikka Klassisen mekaniikan systeemin tilaa kuvaavat kappaleiden koordinaatit ja liikemäärät (q 1,..., q n, p 1,..., p n ), lyhyesti (q, p). Mahdollisten tilojen avaruutta (phase space) merkitään kirjaimella P. Tarkoituksena on vertailla kvanttimekaanista ja klassista systeemiä. Tätä varten tarkastellaan klassisen mekaniikan systeemiä, jossa informaatio tilasta ei ole tarkkaa. Tarkan tilan sijasta meillä on käytössämme todennäköisyysjakaumat tilan (q, p) arvoille. Määritellään systeemin status ρ (Experimental status, status) siten, että se on todennäköisyysmitta avaruudessa P. Tässä tapauksessa riittää tietää, että ρ : P [0, ) on mitallinen funktio ja ρ(q, p)dqdp = 1, ρ(e) = ρ(q, p)dqdp, E P. P Tämä mitta määrää todennäköisyydet ja odotusarvot observaabelien arvoille. Tähän päästään määräämällä observaabelin A : P R, (q, p) A(q, p) odotusarvoksi A ρ = A(q, p)ρ(q, p)dqdp. P Todennäköisyys, että observaabelin A(q, p) arvo on reaaliakselin välillä saadaan kaavalla P (A ) = ρ(q, p)dqdp, A 1 ( ) missä A 1 ( ) on välin alkukuva avaruudessa P. Tämä saadaan myös odotusarvon määritelmästä korvaamalla observaabeli A(q, p) karakteristisella funktiolla { 1 A(q, p) χ (A) = 0 A(q, p) /, joten odotusarvon määritelmää voidaan pitää formuloinnin perustana. Tämän lisäksi myös todennäköisyysmitta (eli status) määräytyy yksikäsitteisesti odotusarvon määritelmästä. Tästä syystä formuloinnissa voitaisiin myös lähteä kuvauksesta, joka kuvaa observaabelin A sen vastaavalle odotusarvolle A ρ. Jos ρ 1, ρ 2 ovat statuksia ja w 1, w 2 [0, 1] s.e w 1 + w 2 = 1, niin E ρ = w 1 ρ 1 + w 2 ρ 2 1

2 1 KLASSISEN JA KVANTTIMEKANIIKAN TILASTOLLISET FORMULOINNIT 2 on myös status. Tällaista statusta kutsutaan epäpuhtaaksi statukseksi. Vastaavasti statusta, jota ei voida kirjoittaa tässä muodossa, kutsutaan puhtaaksi statukseksi. Puhtaat statukset ovat tiloja, jotka ovat keskittyneet yksittäisiin pisteisiin. Niitä kuvaavat statukset ρ ovat delta-funktiot. Edellisen ominaisuuden vuoksi mahdolliset statukset muodostavat konveksin joukon todennäköisyysmittojen avaruudessa. Puhtaat tilat ovat tämän konveksin joukon ääripisteitä. Klassisen mekaniikan systeemin aikakehityksen määräävät Hamiltonin yhtälöt dq i dt = H p i, dp i dt = H q i. Tästä syystä systeemin status kehittyy yhtälön ρ t = {H, ρ} mukaan, missä kaarisulut ovat Poissonin sulut {A, B} = n i=1 Tämä johtuu derivoinnin ketjusäännöstä ( A B A ) B. q i p i p i q i t ρ(q(t), p(t)) = i dρ(q, p) dq i (t) + dq i dt i dρ(q, p) dp i (t) dp i dt 1.2 Kvanttimekaniikka Tarkastellaan vastaavasti kvanttimekaanista systeemiä, jonka tila-avaruus P koostuu mahdollisista tiloista ψ 1,..., ψ n. Systeemin tilastollinen operaattori (statistical operator) eli tiheysmatriisi on hermiittinen operaattori ρ : P [0, 1] n ρ = p i ψ i ψ i. i=1 Todennäköisyydet observaabelien arvoille saadaan seuraavasti. Theorem 1. Todennäköisyys, että observaabelin A mittaus antaa arvon α, kun systeemin tiheysmatriisi on ρ on p A (α ρ) = Tr(ρP α ), missä P α on projektio operaattorin A ominaisarvoa α vastaavalle ominaisavaruudelle. Observaabelin A odotusarvo on A ρ = Tr(Aρ)

3 1 KLASSISEN JA KVANTTIMEKANIIKAN TILASTOLLISET FORMULOINNIT 3 Erityisesti valitsemalla A = 1 ja P α = ψ ψ saadaan, että Tr(ρ) = 1 ja 0 p A (α ρ) = Tr(ρP α ) = i φ i ρ ψ ψ φ i = ψ ρ ψ. eli ρ on positiivisesti semidefiniitti. Hermiittiset positiivisesti semidefiniitit operaattorit, joiden jälki on 1 muodostavat konveksin joukon. Tämän joukon ääripisteitä sanotaan puhtaiksi tiloiksi ja muita epäpuhtaiksi tiloiksi. Theorem 2. Tilastollisille operaattoreille pätevät seuraavat. 1. Tilannetta, jossa todennäköisyydellä w 1 tilastollinen operaattori on ρ 1 ja todennäköisyydellä w 2 se on ρ 2 kuvaa tilastollinen operaattori w 1 ρ 1 + w 2 ρ Systeemi on puhtaassa tilassa täsmälleen silloin, kun tilastollinen operaattori on muotoa ρ = ψ ψ. Scrödingerin yhtälöstä ja sen hermiittisestä konjugaatista saadaan, että tilastollisen operaattorin aikakäyttäytymistä kuvaa yhtälö i ρ t = i p i {(i d dt ψ i ) ψ i + ψ i ( i d dt ψ i )} = i p i {H ψ i ψ i + ψ i ( ψ i H)} = [H, ρ] missä [, ] on kommutaattori. Tästä saadaan, että ajanhetkellä t tilastollinen operaattori on ρ(t) = e iht/ ρ(0)e iht/. Kvanttimekaaniikan ominaisuudella, jonka mukaan mittaus vaikuttaa systeemin tilaan, ei ole vastinetta klassisen mekaniikan puolella. Klassisessa mekaniikassa voidaan ajatella, että mittaus vaikuttaa tietoomme systeemin tilasta, mutta varsinainen tila ei muutu. Toisaalta kvanttimekaniikassa tilastollinen operaattori muuttuu postulaattien mukaan seuraavasti: Theorem 3. Jos tilastollinen operaattori on ρ juuri ennen observaabelin A mittausta, niin heti mittauksen jälkeen tilastollinen operaattori on ρ = α σ(a) P α ρp α, missä σ(a) on operaattorin A spektri (ominaisarvojen joukko) ja P α on projektio ominaisarvoa α vastaavalle ominaisavaruudelle.

4 1 KLASSISEN JA KVANTTIMEKANIIKAN TILASTOLLISET FORMULOINNIT 4 Todistus. Tarkastellaan ensin tilannetta, jossa systeemi on aluksi puhtaassa tilassa ψ, jolloin tilastollinen operaattori on ρ = ψ ψ. Postulaattien II ja III mukaan mittauksen jälkeen se on ominaistilassa P α ψ todennäköisyydellä ψ P α ψ. Normalisoiduksi tilavektoriksi saadaan ψ α = P α ψ ψ P α ψ josta seuraa, että tilastollinen operaattori heti mittauksen jälkeen saadaan kaavalla ρ = α ψ P α ψ ψ α ψ α = α P α ψ ψ P α Yleisessä tapauksessa tilastollinen operaattori on ρ = i p i ψ i ψ i. Todennäköisyydellä p i on tilastollinen operaattori mittauksen jälkeen ρ i = α P α ψ i ψ i P α, joten koko tilastollinen operaattori on ρ = i p i ρ i = α P α ρp α. Edellisistä tuloksista nähdään, että tilastollinen operaattori määrää mittausten tulosten todennäköisyydet. Se kuitenkaan ei määrää systeemin tilaa. Tarkasteellaan esimerkiksi tapausta, jossa tila-avaruus on n-ulotteinen ja ψ 1,..., ψ n on ortonormaali joukko tiloja. Jos tilat ovat yhtä todennäköisiä, saadaan tilastolliseksi operaattoriksi ρ = 1 ψ i ψ i = 1 n i n 1. Toisaalta sama tilastollinen operaattori saadaan millä tahansa ortonormaalilla joukolla tiloja Yhdistetyt systeemit Tarkastellaan osasysteemejä S ja T tila-avaruudessa S T, missä merkitsee tensorituloa. Tilastollinen operaattori on hermiittinen ja positiivisesti semidefiniitti operaattori tässä avaruudessa. Jos { φ i } on täysi joukko ortonormaaleja tiloja avaruudessa S ja { ψ i } avaruudessa T, saadaan avaruuden operaattorin Ω jälki kaavalla Tr(Ω) = ψ j φ i Ω φ i ψ j, i,j missä φ i ψ j ovat yhdistetyn systeemin tiloja siten, että kiinteällä φ tilat φ ψ edustavat osasysteemin T tiloja ja päinvastoin.

5 2 MITTAAMISEN KVANTTITEORIA 5 Olkoon A systeemin T observaabeli. Tätä vastaa yhdistetyn systeemin observaabeli 1 A avaruudessa S T. Käyttämällä tensoritulon ominaisuuksia, saadaan observaabelin A odotusarvoksi A = Tr[ρ(1 A)] = ψ j φ i ρ(1 A) φ i ψ j = ψ j φ i ρ φ i A ψ j i,j i,j = j ψ j Tr S (ρ)a ψ j = Tr T (Tr S (ρ)a), missä operaattori Tr S avaruudessa S on osittainen jälki, joka määritellään siten, että Tr S (ρ) ψ = i φ i ρ ( φ i ψ ). Tässä φ tulkitaan operaattoriksi φ : χ ψ φ χ ψ. 2 Mittaamisen kvanttiteoria Suurin ero klassisen mekaniikan ja kvanttimekaniikan systeemien välillä on mittauksen vaikutus systeemin tilaan. Myös klassisessa mekaniikassa mittaus välttämättäkin muuttaa systeemin tilaa, koska mittaukseen sisältyy aina vuorovaikutus systeemin ja mittausjärjestelmän välillä. Kvanttimekaniikassa tämä systeemin tilaan vaikuttaminen on kuitenkin erilaista. Kvanttimekaanisen systeemin tilaa kuvaa postulaattien mukaan kaksi lakia. Systeemin, jonka tilaa ei häiritä mittauksilla, tilan aikakehitystä kuvaa täydellisesti Schrödingerin yhtälö. Toisaalta, kun systeemiä mitataan, tulee käyttöön projektiopostulaatti, joka kuvaa systeemin tilan ennustamattomissa olevaa muutosta todennäköisyyksien avulla. Selviä ongelmia tässä ovat ainakin se, miten järjestelmät pitäiis jakaa kvanttimekaanisiin ja klassisen mekaniikan järjestelmiin ja se, miten mittausprosessi pitäisi määritellä erotuksena muista mahdollisista systeemiin kohdistuvista prosesseista? Ensimmäiseen kysymykseen ei auta tavallinen argumentti siitä, että mikroskooppiset järjestelmät noudattaisivat kvanttimekaniikan lakeja ja makroskooppiset klassisen mekaniikan. Koostuisivathan tällöin kaikki klassisen mekaniikan järjestelmät kvanttimekaanisista osista. Tarkastellaan seuraavassa esimerkkinä mittausjärjestelyä. Tämän esimerkin tarkoituksena on osoittaa, että vaikka rajanveto on välttämätön, ei itse rajan paikka ole yhtä oleellinen. Olkoon S kvanttimekaanisen objektin tila-avaruus ja A koelaitteen (apparatus) tilaavaruus. Tarkastellaan näiden kahden systeemin yhteisen tilan kehittymistä avaruudessa S A. Olkoot ψ 1, ψ 2 S kaksi objektin ominaistilaa, jotka tuottavat eri koetulokset. Näiden koetulosten täytyy jättää koelaitteen tilaksi erilliset tilat α 1 ja α 2, vastaavasti. Olkoon koelaite aluksi tilassa α 0. Koetilanteessa objekti ja koelaite vuorovaikuttavat siten, että jos objektin tila oli ennen koetta ψ i, on koelaitteen tila kokeen jälkeen α i. Siis kokeen aikana systeemien yhteinen

6 2 MITTAAMISEN KVANTTITEORIA 6 Hamiltonin operaattori toteuttaa e ihτ/ ( ψ 1 α 0 ) = e iθ 1 ψ 1 α 1 e ihτ/ ( ψ 2 α 0 ) = e iθ 2 ψ 2 α 2, missä τ on kokeen kesto ja θ i ovat mahdollisia vaihe-eroja. Jos ennen koetta objekti on tilassa ψ 0 = c 1 ψ 1 + c 2 ψ 2 niin kokeen jälkeen objektin ja koelaitteen yhteinen tila on e ihτ/ ( ψ 0 α 0 ) = e ihτ/ (c 1 ψ 1 α 0 + c 2 ψ 2 α 0 ) = e iθ 1 c 1 ψ 1 α 1 + e iθ 2 c 2 ψ 2 α 2 Postulaatin II mukaan tämä tarkoittaa sitä, että kokeen tulos on α 1 todennäköisyydellä c 1 2 ja α 2 todennäköisyydellä c 2 2. Projektiopostulaatin mukaan pätee, että jos koetulos on α 1, niin objektin ja koelaitteen yhteinen tila kokeen jälkeen on ψ 1 α 1, joten objektin tila on ψ 1. Tämä esimerkki näyttää, että on sama, käytetäänkö projektiopostulaattia objektin ja koelaitteiston yhdistettyyn systeemiin, vai pelkkään objektiin. Kuitenkin juuri projektiopostulaatin käyttö oli systeemin tilan tulkinnan kannalta välttämätöntä.

Tilat ja observaabelit

Tilat ja observaabelit Tilat ja observaabelit Maksimaalinen informaatio systeemistä tietyllä ajanhetkellä sisältyy tilaan ψ (ket). Tila = vektori Hilbertin avaruudessa sisätulo ψ ψ C ψ c 1 ψ 1 + c 2 ψ 2 = c 1 ψ ψ 1 + c 2 ψ ψ

Lisätiedot

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m ) Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä

Lisätiedot

Aikariippuva Schrödingerin yhtälö

Aikariippuva Schrödingerin yhtälö Aineaaltodynamiikka Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit Aikariippuva Schrödingerin

Lisätiedot

Kvanttidynamiikka Tarkastellaan ensin hieman bra/ket-merkintää ja vertaillaan sitä muihin merkintätapoihin.

Kvanttidynamiikka Tarkastellaan ensin hieman bra/ket-merkintää ja vertaillaan sitä muihin merkintätapoihin. Kvanttidynamiikka 30.10.2010 0.1 Bra- ja Ket-merkinnöistä Tarkastellaan ensin hieman bra/ket-merkintää ja vertaillaan sitä muihin merkintätapoihin. Oletetaan, että ket ψ ja bra φ ovat alkioita, jotka liittyvät

Lisätiedot

Alijärjestelmän mittaus ja muita epätäydellisiä mittauksia

Alijärjestelmän mittaus ja muita epätäydellisiä mittauksia T-79.4001 Tietojenkäsittelyteorian seminaari 0..008 1 Alijärjestelmän mittaus ja muita epätäydellisiä mittauksia Loepp & Wootters, Protecting Information, luvut.4-.5 T-79.4001 Tietojenkäsittelyteorian

Lisätiedot

Ch7 Kvanttimekaniikan alkeita. Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset.

Ch7 Kvanttimekaniikan alkeita. Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset. Ch7 Kvanttimekaniikan alkeita Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset. Spinnittömät hiukkaset Hiukkasta kuvaa aineaaltokenttä eli aaltofunktio. Aaltofunktio riippuu

Lisätiedot

TILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH 5.1-5.3) Mikrotilat (kertausta Kvanttimekaniikan kurssilta)

TILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH 5.1-5.3) Mikrotilat (kertausta Kvanttimekaniikan kurssilta) TILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH 5.1-5.3) Mikrotilat (kertausta Kvanttimekaniikan kurssilta) Kvanttimekaniikassa yhden hiukkasen systeemin täydellisen kuvauksen antaa tilavektori, joka on

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 20. syyskuuta 2007 Antti Rasila () TodB 20. syyskuuta 2007 1 / 17 1 Kolmogorovin aksioomat σ-algebra Tapahtuman todennäköisyys 2 Satunnaismuuttujat Todennäköisyysjakauma

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio TKK (c) Ilkka Mellin (2007) 1 Kertymäfunktio >> Kertymäfunktio: Määritelmä Diskreettien jakaumien

Lisätiedot

J 2 = J 2 x + J 2 y + J 2 z.

J 2 = J 2 x + J 2 y + J 2 z. FYSA5 Kvanttimekaniikka I, Osa B.. tentti: 4 tehtävää, 4 tuntia. Tarkastellaan pyörimismääräoperaattoria J, jonka komponentit toteuttavat kommutaatiorelaatiot [J x, J y ] = i hj z, [J y, J z ] = i hj x,

Lisätiedot

Jatko-opintoseminaari Kevyttä johdattelua kvanttimekaniikkaan: Tila-avaruus. Petteri Laakkonen

Jatko-opintoseminaari Kevyttä johdattelua kvanttimekaniikkaan: Tila-avaruus. Petteri Laakkonen Jatko-opintoseminaari 21-211 Kevyttä johdattelua kvanttimekaniikkaan: Tila-avaruus Petteri Laakkonen 23.9.21 Tämä teksti on tiivistelmä kirjan [1] luvun 2 tekstistä. Pyrkimyksenä on esittää perustellusti

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria

1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria Kvanttimekaniikka I, tentti 6.. 015 4 tehtävää, 4 tuntia 1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria ( { ( ( } E iδ H =, E, δ R, kannassa B = 1 =, =. iδ E 0 1 (a (p.

Lisätiedot

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Kertymäfunktio TKK (c) Ilkka Mellin (2005) 1 Kertymäfunktio Kertymäfunktio: Määritelmä Diskreettien jakaumien kertymäfunktiot Jatkuvien jakaumien kertymäfunktiot TKK (c)

Lisätiedot

Nollasummapelit ja bayesilaiset pelit

Nollasummapelit ja bayesilaiset pelit Nollasummapelit ja bayesilaiset pelit Kristian Ovaska HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Seminaari: Peliteoria Helsinki 18. syyskuuta 2006 Sisältö 1 Johdanto 1 2 Nollasummapelit 1 2.1

Lisätiedot

Kvanttimekaniikka: Luento 4. Martikainen Jani- Petri

Kvanttimekaniikka: Luento 4. Martikainen Jani- Petri Kvanttimekaniikka: Luento 4 Martikainen Jani- Petri Viimeksi Ajasta riippuva Schrödingerin yhtälö Alkuarvo- ongelman ratkaisu Aaltofunktio Tänään Mittauspostulaatti Diracin merkintätapa. Hermiittiset operaattorit

Lisätiedot

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on? Harjoitus 1, kevät 007 1. Olkoon [ ] cos α sin α A(α) =. sin α cos α Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?. Olkoon a x y A = 0 b z, 0 0 c missä a, b, c 0. Määrää käänteismatriisi

Lisätiedot

1 Aaltofunktio, todennäköisyystulkinta ja normitus

1 Aaltofunktio, todennäköisyystulkinta ja normitus KEMA5 syksy 16 Kertausta keskeisistä asioista 1 Aaltofunktio, todennäköisyystulkinta ja normitus Kvanttimekaniikassa tarkasteltavaa systeemiä kuvaa aaltofunktio ψ. Aaltofunktio on puhtaan matemaattinen

Lisätiedot

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi. Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i

Lisätiedot

Korrespondenssiperiaate. Tapio Hansson Oulun Yliopisto, Fysiikan laitos Ohjaaja: Mikko Saarela

Korrespondenssiperiaate. Tapio Hansson Oulun Yliopisto, Fysiikan laitos Ohjaaja: Mikko Saarela Korrespondenssiperiaate Tapio Hansson Oulun Yliopisto, Fysiikan laitos Ohjaaja: Mikko Saarela Sisältö 1 Johdanto 2 2 Liikeyhtälöt 2 2.1 Klassisen mekaniikan liikeyhtälöt................ 2 2.2 Poissonin

Lisätiedot

3.6 Feynman s formulation of quantum mechanics

3.6 Feynman s formulation of quantum mechanics 3.6 Feynman s formulation of quantum mechanics Course MAT-66000: Quantum mechanics and the particles of nature Ilkka Kylänpää Tampere University of Technology 14.10.2010 Sisältö Johdattelua Klassinen action

Lisätiedot

8. Klassinen ideaalikaasu

8. Klassinen ideaalikaasu Statistinen fysiikka, osa B (FYSA242) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL240. Ei kiinteitä vastaanottoaikoja. kl 2016 8. Klassinen ideaalikaasu 1 Fysikaalinen tilanne Muistetaan: kokeellisesti

Lisätiedot

Kvanttimekaniikka: Luento 2. Mar$kainen Jani- Petri

Kvanttimekaniikka: Luento 2. Mar$kainen Jani- Petri Kvanttimekaniikka: Luento 2 Mar$kainen Jani- Petri Assarointimainos Fyssa tarvitsee assareita Noin 30 euroa tun$+ lisiä tyypillises$ n. 4h/viikko, muba voi olla enemmän/vähemmän Opintosuoritukset+ lyhyt

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo

Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo Antti Rasila 2016 Vektoriavaruuden kannan olemassaolo Jos {v 1, v 2,..., v k } on äärellisulotteisen vektoriavaruuden V lineaarisesti riippumaton

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Satunnaismuuttujat ja todennäköisyysjakaumat Mitä tänään? Jos satunnaisilmiötä halutaan mallintaa matemaattisesti, on ilmiön tulosvaihtoehdot kuvattava numeerisessa muodossa. Tämä tapahtuu liittämällä

Lisätiedot

Sisätuloavaruudet. 4. lokakuuta 2006

Sisätuloavaruudet. 4. lokakuuta 2006 Sisätuloavaruudet 4. lokakuuta 2006 Tässä esityksessä vektoriavaruudet V ja W ovat kompleksisia ja äärellisulotteisia. Käydään ensin lyhyesti läpi määritelmiä ja perustuloksia. Merkitään L(V, W ) :llä

Lisätiedot

3.7 Todennäköisyysjakaumia

3.7 Todennäköisyysjakaumia MAB5: Todennäköisyyden lähtökohdat 4 Luvussa 3 Tunnusluvut perehdyimme jo jakauman käsitteeseen yleensä ja normaalijakaumaan vähän tarkemmin. Lähdetään nyt tutustumaan binomijakaumaan ja otetaan sen jälkeen

Lisätiedot

Ortogonaalisen kannan etsiminen

Ortogonaalisen kannan etsiminen Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,

Lisätiedot

Kertausta: avaruuden R n vektoreiden pistetulo

Kertausta: avaruuden R n vektoreiden pistetulo Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2012 227/310 Kertausta:

Lisätiedot

Verkot ja todennäköisyyslaskenta Verkko Verkko eli graafi muodostuu pisteiden joukosta V, särmien joukosta A ja insidenssikuvauksesta : A V V jossa

Verkot ja todennäköisyyslaskenta Verkko Verkko eli graafi muodostuu pisteiden joukosta V, särmien joukosta A ja insidenssikuvauksesta : A V V jossa Mat-.6 Sovellettu todennäköisyyslaskenta B Mat-.6 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Verkot ja todennäköisyyslaskenta Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio Jakaumien

Lisätiedot

Lebesguen mitta ja integraali

Lebesguen mitta ja integraali Lebesguen mitta ja integraali Olkoon m Lebesguen mitta R n :ssä. R 1 :ssä vastaa pituutta, R 2 :ssa pinta-alaa, R 3 :ssa tilavuutta. Mitallinen joukko E R n = joukko jolla on järkevästi määrätty mitta

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila Kalvoissa käytetään materiaalia P. Palon vuoden 2005 kurssista. 07.09.2007 Antti Rasila () SovTodB 07.09.2007 07.09.2007 1 / 24 1 Todennäköisyyslaskennan

Lisätiedot

Moniulotteisia todennäköisyysjakaumia

Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

5 Ominaisarvot ja ominaisvektorit

5 Ominaisarvot ja ominaisvektorit 5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A

Lisätiedot

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Olkoon X sisätuloavaruus ja Y X äärellisulotteinen aliavaruus. Tällöin on olemassa lineaarisesti riippumattomat vektorit y 1, y 2,..., yn, jotka

Lisätiedot

Varma tapahtuma, Yhdiste, Yhdistetty tapahtuma, Yhteenlaskusääntö

Varma tapahtuma, Yhdiste, Yhdistetty tapahtuma, Yhteenlaskusääntö Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Unioni, Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Alkeistapahtuma, Ehdollinen todennäköisyys,

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

Klassisen mekaniikan muotoilu symplektisen geometrian avulla

Klassisen mekaniikan muotoilu symplektisen geometrian avulla Klassisen mekaniikan muotoilu symplektisen geometrian avulla Ville Kivioja 21. kesäkuuta 2017 Tämän lyhyen artikkelin tarkoituksena on muotoilla klassinen mekaniikka mahdollisimman yleisesti ja käyttäen

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit

Lisätiedot

Matemaattinen Analyysi / kertaus

Matemaattinen Analyysi / kertaus Matemaattinen Analyysi / kertaus Ensimmäinen välikoe o { 2x + 3y 4z = 2 5x 2y + 5z = 7 ( ) x 2 3 4 y = 5 2 5 z ) ( 3 + y 2 ( 2 x 5 ( 2 7 ) ) ( 4 + z 5 ) = ( 2 7 ) yhteys determinanttiin Yhtälöryhmän ratkaiseminen

Lisätiedot

Shorin algoritmin matematiikkaa Edvard Fagerholm

Shorin algoritmin matematiikkaa Edvard Fagerholm Edvard Fagerholm 1 Määritelmiä Määritelmä 1 Ryhmä G on syklinen, jos a G s.e. G = a. Määritelmä 2 Olkoon G ryhmä. Tällöin alkion a G kertaluku ord(a) on pienin luku n N \ {0}, jolla a n = 1. Jos lukua

Lisätiedot

Ratkaisu: Ensimmäinen suunta. Olkoon f : R n R m jatkuva eli kaikilla ε > 0 on olemassa sellainen δ > 0, että. kun x a < δ. Nyt kaikilla j = 1,...

Ratkaisu: Ensimmäinen suunta. Olkoon f : R n R m jatkuva eli kaikilla ε > 0 on olemassa sellainen δ > 0, että. kun x a < δ. Nyt kaikilla j = 1,... HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 2017 Harjoitus 1 Ratkaisuehdotukset 11 Osoita, että vektorifunktio f = (f 1,, f m ): R n R m, on jatkuva, jos ja vain jos jokainen komponenttifunktio

Lisätiedot

kolminkertaisesti tehtäviä tavallisiin harjoituksiin verrattuna, voi sen kokonaan tekemällä saada suunnilleen kolmen tavallisen harjoituksen edestä

kolminkertaisesti tehtäviä tavallisiin harjoituksiin verrattuna, voi sen kokonaan tekemällä saada suunnilleen kolmen tavallisen harjoituksen edestä Matematiikkaa kemisteille, kevät 2013 Ylimääräisiä laskuharjoituksia Tällä laskuharjoituksella voi korottaa laskuharjoituspisteitään, mikäli niitä ei ole riittävästi kurssin läpäisemiseen, tai vaihtoehtoisesti

Lisätiedot

Harjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio,

Harjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio, Differentiaaliyhtälöt, Kesä 06 Harjoitus 3 Kaikissa tehtävissä, joissa pitää tarkastella kriittisten pisteiden stabiliteettia, jos kyseessä on satulapiste, ilmoita myös satulauraratkaisun (tai kriittisessä

Lisätiedot

1. (a) (2p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori

1. (a) (2p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori FYSA5 Kvanttimekaniikka I, Osa B 7.. tentti: 4 tehtävää, 4 tuntia. a) p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori T ɛ) = iɛ h P. Osoita tämän avulla, että äärellistä siirtoa

Lisätiedot

1 Kertaus. Lineaarinen optimointitehtävä on muotoa:

1 Kertaus. Lineaarinen optimointitehtävä on muotoa: 1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n

Lisätiedot

Lineaarikuvauksen R n R m matriisi

Lineaarikuvauksen R n R m matriisi Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:

Lisätiedot

4. Lasketaan transienttivirrat ja -jännitteet kuvan piiristä. Piirielimien arvot ovat C =

4. Lasketaan transienttivirrat ja -jännitteet kuvan piiristä. Piirielimien arvot ovat C = BMA58 Funktiot, lineaarialgebra ja vektorit Harjoitus 6, Syksy 5. Olkoon [ 6 6 A =, B = 4 [ 3 4, C = 4 3 [ 5 Määritä matriisien A ja C ominaisarvot ja ominaisvektorit. Näytä lisäksi että matriisilla B

Lisätiedot

9. Tila-avaruusmallit

9. Tila-avaruusmallit 9. Tila-avaruusmallit Aikasarjan stokastinen malli ja aikasarjasta tehdyt havainnot voidaan esittää joustavassa ja monipuolisessa muodossa ns. tila-avaruusmallina. Useat aikasarjat edustavat dynaamisia

Lisätiedot

Sekastrategia ja Nash-tasapainon määrääminen

Sekastrategia ja Nash-tasapainon määrääminen May 24, 2016 Sekastrategia Monissa peleissä ei ole Nash-tasapainoa puhtaissa strategioissa H T H 1, 1 1, 1 T 1, 1 1, 1 Ratkaisu ongelmaan löytyy siitä, että laajennetaan strategiat käsittämään todennäköisyysjakaumat

Lisätiedot

Hamiltonin-Jacobin teoriaa

Hamiltonin-Jacobin teoriaa Perjantai 10.10.2014 1/21 Hamiltonin-Jacobin teoriaa Tällä viimeisellä luennolla käsittelemme vielä uuden näkökulman klassiseen mekaniikkaan, joka kulkee nimellä Hamiltonin-Jacobin teoria. Aloitetaan Hamiltonin

Lisätiedot

Derivaatat lasketaan komponenteittain, esimerkiksi E 1 E 2

Derivaatat lasketaan komponenteittain, esimerkiksi E 1 E 2 MS-C50 Osittaisdifferentiaaliyhtälöt Harjoitukset syksy 07. Oletetaan että vektorikenttä E E E E : R R on kaksi kertaa jatkuvasti derivoituva E C R. Näytä että E E. Derivaatat lasketaan komponenteittain

Lisätiedot

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme? TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia: Mitä

Lisätiedot

Lisävaatimuksia aaltofunktiolle

Lisävaatimuksia aaltofunktiolle Lisävaatimuksia aaltofunktiolle (1) Koska Ψ*Ψ on äärellinen => Ψ on äärellinen. () Koska P = Ψ*Ψdτ => Ψ on yksiselitteinen. (3) Ψ on jatkuva. (4) dψ/dτ on jatkuva. Esimerkki Epäkelpoja aaltofunktioita

Lisätiedot

5.10. HIUKKANEN POTENTIAALIKUOPASSA

5.10. HIUKKANEN POTENTIAALIKUOPASSA 5.10. HIUKKANEN POTENTIAALIKUOPASSA eli miten reunaehdot ja normitus vaikuttavat aaltofunktioihin Yleensä Schrödingerin yhtälön ratkaiseminen matemaattisesti on hyvin työlästä ja edellyttää vahvaa matemaattista

Lisätiedot

= 2±i2 7. x 2 = 0, 1 x 2 = 0, 1+x 2 = 0.

= 2±i2 7. x 2 = 0, 1 x 2 = 0, 1+x 2 = 0. HARJOITUS 1, RATKAISUEHDOTUKSET, YLE11 2017. 1. Ratkaise (a.) 2x 2 16x 40 = 0 (b.) 4x 2 2x+2 = 0 (c.) x 2 (1 x 2 )(1+x 2 ) = 0 (d.) lnx a = b. (a.) Toisen asteen yhtälön ratkaisukaavalla: x = ( 16)± (

Lisätiedot

Todennäköisyys (englanniksi probability)

Todennäköisyys (englanniksi probability) Todennäköisyys (englanniksi probability) Todennäköisyyslaskenta sai alkunsa 1600-luvulla uhkapeleistä Ranskassa (Pascal, Fermat). Nykyisin todennäköisyyslaskentaa käytetään hyväksi mm. vakuutustoiminnassa,

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 16. marraskuuta 2007 Antti Rasila () TodB 16. marraskuuta 2007 1 / 15 1 Epäparametrisia testejä χ 2 -yhteensopivuustesti Homogeenisuuden testaaminen Antti

Lisätiedot

Symmetriat ja säilymislait

Symmetriat ja säilymislait Symmetriat ja säilymislait Onni Veteläinen 2437668 LuK-tutkielma Fysiikan laitos Oulun yliopisto Kevät 2017 Sisältö Johdanto 1 1 Symmetriat ja säilymislait klassisessa mekaniikassa 2 1.1 Liikemäärän säilyminen......................

Lisätiedot

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste Suora 1/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Suora geometrisena peruskäsitteenä Pisteen ohella suora on geometrinen peruskäsite, jota varsinaisesti ei määritellä. Alkeisgeometriassa

Lisätiedot

Kertausta: avaruuden R n vektoreiden pistetulo

Kertausta: avaruuden R n vektoreiden pistetulo Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2014 164/246 Kertausta:

Lisätiedot

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa. LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,

Lisätiedot

Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat:

Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat: Mat-.9 Sovellettu todennäköisyyslasku A Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Moniulotteiset jakaumat Diskreetti jakauma, Ehdollinen jakauma, Ehdollinen odotusarvo, Jatkuva

Lisätiedot

KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA

KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA KVANTTITEORIA 1 MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA Fysiikka KVANTTITEORIA Metso Tampere 13.11.2005 MODERNI

Lisätiedot

Kantavektorien kuvavektorit määräävät lineaarikuvauksen

Kantavektorien kuvavektorit määräävät lineaarikuvauksen Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin

Lisätiedot

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen

Lisätiedot

Epäyhtälöt ovat yksi matemaatikon voimakkaimmista

Epäyhtälöt ovat yksi matemaatikon voimakkaimmista 6 Epäyhtälöitä Epäyhtälöt ovat yksi matemaatikon voimakkaimmista työvälineistä. Yhtälö a = b kertoo sen, että kaksi ehkä näennäisesti erilaista asiaa ovat samoja. Epäyhtälö a b saattaa antaa keinon analysoida

Lisätiedot

Kuvaus. Määritelmä. LM2, Kesä /160

Kuvaus. Määritelmä. LM2, Kesä /160 Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä

Lisätiedot

1 Sisätulo- ja normiavaruudet

1 Sisätulo- ja normiavaruudet 1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v

Lisätiedot

Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä todistuksia ja lineaarikuvauksen muodostamista. Sarjaan liittyvät Stack-tehtävät: 1 ja 2.

Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä todistuksia ja lineaarikuvauksen muodostamista. Sarjaan liittyvät Stack-tehtävät: 1 ja 2. HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2016 Harjoitus 3 Ratkaisut palautettava viimeistään maanantaina 29.8.2016 klo 13.15. Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä

Lisätiedot

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio. Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],

Lisätiedot

802320A LINEAARIALGEBRA OSA III

802320A LINEAARIALGEBRA OSA III 802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V

Lisätiedot

Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v.

Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v. Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin w = w w = ( 4) 2 + ( 3) 2 = 25 = 5 v = v v = ( 3) 2 + 2 2 = 13. w =5 3 2 v = 13 4 3 LM1, Kesä 2014 76/102 Normin ominaisuuksia I Lause

Lisätiedot

Normaalijakaumasta johdettuja jakaumia

Normaalijakaumasta johdettuja jakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2007) 1 Normaalijakaumasta johdettuja jakaumia >> Johdanto χ 2 -jakauma F-jakauma

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 22 R. Kangaslampi matriisiteoriaa Kertaus: ominaisarvot

Lisätiedot

(1) (2) Normalisointiehdoksi saadaan nytkin yhtälö (2). Ratkaisemalla (2)+(3) saamme

(1) (2) Normalisointiehdoksi saadaan nytkin yhtälö (2). Ratkaisemalla (2)+(3) saamme S-446 Fysiikka IV (Sf) Tentti 3934 Oletetaan, että φ ja φ ovat ajasta riippumattoman Scrödingerin yhtälön samaan ominaisarvoon E liittyviä ominaisfunktioita Nämä funktiot ovat normitettuja, mutta eivät

Lisätiedot

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2014 Harjoitus 4 Ratkaisujen viimeinen palautuspäivä: pe 662014 klo 1930 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun

Lisätiedot

SEKASTRATEGIAT PELITEORIASSA

SEKASTRATEGIAT PELITEORIASSA SEKASTRATEGIAT PELITEORIASSA Matti Estola 8. joulukuuta 2013 Sisältö 1 Johdanto 2 2 Ratkaistaan sukupuolten välinen taistelu sekastrategioiden avulla 5 Teksti on suomennettu kirjasta: Gibbons: A Primer

Lisätiedot

FYSA234 Potentiaalikuoppa, selkkarityö

FYSA234 Potentiaalikuoppa, selkkarityö FYSA234 Potentiaalikuoppa, selkkarityö Jari Partanen, Jani Komppula JYFL FL246, S118 japapepa@jyu.fi, jani.komppula@jyu.fi 16. lokakuuta 2013 Ohjaus Työn ja ohjelman esittely (15-30 min) Harjoitellaan

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista

Lisätiedot

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3 Suorat ja tasot Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3.1 Suora Havaitsimme skalaarikertolaskun tulkinnan yhteydessä, että jos on mikä tahansa nollasta

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ominaisarvot Kertaus: ominaisarvot Määritelmä

Lisätiedot

2.8. Kannanvaihto R n :ssä

2.8. Kannanvaihto R n :ssä 28 Kannanvaihto R n :ssä Seuraavassa kantavektoreiden { x, x 2,, x n } järjestystä ei saa vaihtaa Vektorit ovat pystyvektoreita ( x x 2 x n ) on vektoreiden x, x 2,, x n muodostama matriisi, missä vektorit

Lisätiedot

FYSA234 Potentiaalikuoppa, selkkarityö

FYSA234 Potentiaalikuoppa, selkkarityö FYSA234 Potentiaalikuoppa, selkkarityö Jari Partanen, Jani Komppula JYFL FL246, S118 japapepa@jyu.fi, jani.komppula@jyu.fi 13. lokakuuta 2014 Ohjaus Työn ja ohjelman esittely (15-30 min) Harjoitellaan

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen

Lisätiedot

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly Bayesin pelit Kalle Siukola MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 12.10.2016 Toistetun pelin esittäminen automaatin avulla Ekstensiivisen muodon puu on tehoton esitystapa, jos peliä

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

ja KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA

ja KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA ja KVANTTITEORIA 1 MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA Fysiikka WYP2005 ja KVANTTITEORIA 24.1.2006 WYP 2005

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 2. luento: Tilastolliset testit Kai Virtanen 1 Tilastollinen testaus Tutkimuksen kohteena olevasta perusjoukosta esitetään väitteitä oletuksia joita

Lisätiedot

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:

Lisätiedot

Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus.

Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus. 1 Lineaarikuvaus 1.1 Määritelmä Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V W on lineaarinen, jos (a) L(v + w) = L(v) + L(w); (b) L(λv) = λl(v) aina, kun v, w V ja λ K. Termejä:

Lisätiedot

PHYS-C0210 Kvanttimekaniikka: peruskäsitteitä

PHYS-C0210 Kvanttimekaniikka: peruskäsitteitä PHYS-C0210 Kvanttimekaniikka: peruskäsitteitä J.-P. Martikainen 1 1 Aalto Varoitus! Tämä tiedosto on tarkoitettu lyhyeksi muistutukseksi kurssilla esiintyneistä konsepteista ja keskeisimmistä kaavoista

Lisätiedot

Harjoitus 2: Matlab - Statistical Toolbox

Harjoitus 2: Matlab - Statistical Toolbox Harjoitus 2: Matlab - Statistical Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen tavoitteet Satunnaismuuttujat ja todennäköisyysjakaumat

Lisätiedot

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (005) 1 Moniulotteisia todennäköisyysjakaumia Multinomijakauma Kaksiulotteinen normaalijakauma TKK (c) Ilkka

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 2

Inversio-ongelmien laskennallinen peruskurssi Luento 2 Inversio-ongelmien laskennallinen peruskurssi Luento 2 Kevät 2012 1 Lineaarinen inversio-ongelma Määritelmä 1.1. Yleinen (reaaliarvoinen) lineaarinen inversio-ongelma voidaan esittää muodossa m = Ax +

Lisätiedot