Kvanttimekaniikan tulkinta
|
|
- Sari Melasniemi
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 Kvanttimekaniikan tulkinta Klassisen ja kvanttimekaniikan tilastolliset formuloinnit 1.1 Klassinen mekaniikka Klassisen mekaniikan systeemin tilaa kuvaavat kappaleiden koordinaatit ja liikemäärät (q 1,..., q n, p 1,..., p n ), lyhyesti (q, p). Mahdollisten tilojen avaruutta (phase space) merkitään kirjaimella P. Tarkoituksena on vertailla kvanttimekaanista ja klassista systeemiä. Tätä varten tarkastellaan klassisen mekaniikan systeemiä, jossa informaatio tilasta ei ole tarkkaa. Tarkan tilan sijasta meillä on käytössämme todennäköisyysjakaumat tilan (q, p) arvoille. Määritellään systeemin status ρ (Experimental status, status) siten, että se on todennäköisyysmitta avaruudessa P. Tässä tapauksessa riittää tietää, että ρ : P [0, ) on mitallinen funktio ja ρ(q, p)dqdp = 1, ρ(e) = ρ(q, p)dqdp, E P. P Tämä mitta määrää todennäköisyydet ja odotusarvot observaabelien arvoille. Tähän päästään määräämällä observaabelin A : P R, (q, p) A(q, p) odotusarvoksi A ρ = A(q, p)ρ(q, p)dqdp. P Todennäköisyys, että observaabelin A(q, p) arvo on reaaliakselin välillä saadaan kaavalla P (A ) = ρ(q, p)dqdp, A 1 ( ) missä A 1 ( ) on välin alkukuva avaruudessa P. Tämä saadaan myös odotusarvon määritelmästä korvaamalla observaabeli A(q, p) karakteristisella funktiolla { 1 A(q, p) χ (A) = 0 A(q, p) /, joten odotusarvon määritelmää voidaan pitää formuloinnin perustana. Tämän lisäksi myös todennäköisyysmitta (eli status) määräytyy yksikäsitteisesti odotusarvon määritelmästä. Tästä syystä formuloinnissa voitaisiin myös lähteä kuvauksesta, joka kuvaa observaabelin A sen vastaavalle odotusarvolle A ρ. Jos ρ 1, ρ 2 ovat statuksia ja w 1, w 2 [0, 1] s.e w 1 + w 2 = 1, niin E ρ = w 1 ρ 1 + w 2 ρ 2 1
2 1 KLASSISEN JA KVANTTIMEKANIIKAN TILASTOLLISET FORMULOINNIT 2 on myös status. Tällaista statusta kutsutaan epäpuhtaaksi statukseksi. Vastaavasti statusta, jota ei voida kirjoittaa tässä muodossa, kutsutaan puhtaaksi statukseksi. Puhtaat statukset ovat tiloja, jotka ovat keskittyneet yksittäisiin pisteisiin. Niitä kuvaavat statukset ρ ovat delta-funktiot. Edellisen ominaisuuden vuoksi mahdolliset statukset muodostavat konveksin joukon todennäköisyysmittojen avaruudessa. Puhtaat tilat ovat tämän konveksin joukon ääripisteitä. Klassisen mekaniikan systeemin aikakehityksen määräävät Hamiltonin yhtälöt dq i dt = H p i, dp i dt = H q i. Tästä syystä systeemin status kehittyy yhtälön ρ t = {H, ρ} mukaan, missä kaarisulut ovat Poissonin sulut {A, B} = n i=1 Tämä johtuu derivoinnin ketjusäännöstä ( A B A ) B. q i p i p i q i t ρ(q(t), p(t)) = i dρ(q, p) dq i (t) + dq i dt i dρ(q, p) dp i (t) dp i dt 1.2 Kvanttimekaniikka Tarkastellaan vastaavasti kvanttimekaanista systeemiä, jonka tila-avaruus P koostuu mahdollisista tiloista ψ 1,..., ψ n. Systeemin tilastollinen operaattori (statistical operator) eli tiheysmatriisi on hermiittinen operaattori ρ : P [0, 1] n ρ = p i ψ i ψ i. i=1 Todennäköisyydet observaabelien arvoille saadaan seuraavasti. Theorem 1. Todennäköisyys, että observaabelin A mittaus antaa arvon α, kun systeemin tiheysmatriisi on ρ on p A (α ρ) = Tr(ρP α ), missä P α on projektio operaattorin A ominaisarvoa α vastaavalle ominaisavaruudelle. Observaabelin A odotusarvo on A ρ = Tr(Aρ)
3 1 KLASSISEN JA KVANTTIMEKANIIKAN TILASTOLLISET FORMULOINNIT 3 Erityisesti valitsemalla A = 1 ja P α = ψ ψ saadaan, että Tr(ρ) = 1 ja 0 p A (α ρ) = Tr(ρP α ) = i φ i ρ ψ ψ φ i = ψ ρ ψ. eli ρ on positiivisesti semidefiniitti. Hermiittiset positiivisesti semidefiniitit operaattorit, joiden jälki on 1 muodostavat konveksin joukon. Tämän joukon ääripisteitä sanotaan puhtaiksi tiloiksi ja muita epäpuhtaiksi tiloiksi. Theorem 2. Tilastollisille operaattoreille pätevät seuraavat. 1. Tilannetta, jossa todennäköisyydellä w 1 tilastollinen operaattori on ρ 1 ja todennäköisyydellä w 2 se on ρ 2 kuvaa tilastollinen operaattori w 1 ρ 1 + w 2 ρ Systeemi on puhtaassa tilassa täsmälleen silloin, kun tilastollinen operaattori on muotoa ρ = ψ ψ. Scrödingerin yhtälöstä ja sen hermiittisestä konjugaatista saadaan, että tilastollisen operaattorin aikakäyttäytymistä kuvaa yhtälö i ρ t = i p i {(i d dt ψ i ) ψ i + ψ i ( i d dt ψ i )} = i p i {H ψ i ψ i + ψ i ( ψ i H)} = [H, ρ] missä [, ] on kommutaattori. Tästä saadaan, että ajanhetkellä t tilastollinen operaattori on ρ(t) = e iht/ ρ(0)e iht/. Kvanttimekaaniikan ominaisuudella, jonka mukaan mittaus vaikuttaa systeemin tilaan, ei ole vastinetta klassisen mekaniikan puolella. Klassisessa mekaniikassa voidaan ajatella, että mittaus vaikuttaa tietoomme systeemin tilasta, mutta varsinainen tila ei muutu. Toisaalta kvanttimekaniikassa tilastollinen operaattori muuttuu postulaattien mukaan seuraavasti: Theorem 3. Jos tilastollinen operaattori on ρ juuri ennen observaabelin A mittausta, niin heti mittauksen jälkeen tilastollinen operaattori on ρ = α σ(a) P α ρp α, missä σ(a) on operaattorin A spektri (ominaisarvojen joukko) ja P α on projektio ominaisarvoa α vastaavalle ominaisavaruudelle.
4 1 KLASSISEN JA KVANTTIMEKANIIKAN TILASTOLLISET FORMULOINNIT 4 Todistus. Tarkastellaan ensin tilannetta, jossa systeemi on aluksi puhtaassa tilassa ψ, jolloin tilastollinen operaattori on ρ = ψ ψ. Postulaattien II ja III mukaan mittauksen jälkeen se on ominaistilassa P α ψ todennäköisyydellä ψ P α ψ. Normalisoiduksi tilavektoriksi saadaan ψ α = P α ψ ψ P α ψ josta seuraa, että tilastollinen operaattori heti mittauksen jälkeen saadaan kaavalla ρ = α ψ P α ψ ψ α ψ α = α P α ψ ψ P α Yleisessä tapauksessa tilastollinen operaattori on ρ = i p i ψ i ψ i. Todennäköisyydellä p i on tilastollinen operaattori mittauksen jälkeen ρ i = α P α ψ i ψ i P α, joten koko tilastollinen operaattori on ρ = i p i ρ i = α P α ρp α. Edellisistä tuloksista nähdään, että tilastollinen operaattori määrää mittausten tulosten todennäköisyydet. Se kuitenkaan ei määrää systeemin tilaa. Tarkasteellaan esimerkiksi tapausta, jossa tila-avaruus on n-ulotteinen ja ψ 1,..., ψ n on ortonormaali joukko tiloja. Jos tilat ovat yhtä todennäköisiä, saadaan tilastolliseksi operaattoriksi ρ = 1 ψ i ψ i = 1 n i n 1. Toisaalta sama tilastollinen operaattori saadaan millä tahansa ortonormaalilla joukolla tiloja Yhdistetyt systeemit Tarkastellaan osasysteemejä S ja T tila-avaruudessa S T, missä merkitsee tensorituloa. Tilastollinen operaattori on hermiittinen ja positiivisesti semidefiniitti operaattori tässä avaruudessa. Jos { φ i } on täysi joukko ortonormaaleja tiloja avaruudessa S ja { ψ i } avaruudessa T, saadaan avaruuden operaattorin Ω jälki kaavalla Tr(Ω) = ψ j φ i Ω φ i ψ j, i,j missä φ i ψ j ovat yhdistetyn systeemin tiloja siten, että kiinteällä φ tilat φ ψ edustavat osasysteemin T tiloja ja päinvastoin.
5 2 MITTAAMISEN KVANTTITEORIA 5 Olkoon A systeemin T observaabeli. Tätä vastaa yhdistetyn systeemin observaabeli 1 A avaruudessa S T. Käyttämällä tensoritulon ominaisuuksia, saadaan observaabelin A odotusarvoksi A = Tr[ρ(1 A)] = ψ j φ i ρ(1 A) φ i ψ j = ψ j φ i ρ φ i A ψ j i,j i,j = j ψ j Tr S (ρ)a ψ j = Tr T (Tr S (ρ)a), missä operaattori Tr S avaruudessa S on osittainen jälki, joka määritellään siten, että Tr S (ρ) ψ = i φ i ρ ( φ i ψ ). Tässä φ tulkitaan operaattoriksi φ : χ ψ φ χ ψ. 2 Mittaamisen kvanttiteoria Suurin ero klassisen mekaniikan ja kvanttimekaniikan systeemien välillä on mittauksen vaikutus systeemin tilaan. Myös klassisessa mekaniikassa mittaus välttämättäkin muuttaa systeemin tilaa, koska mittaukseen sisältyy aina vuorovaikutus systeemin ja mittausjärjestelmän välillä. Kvanttimekaniikassa tämä systeemin tilaan vaikuttaminen on kuitenkin erilaista. Kvanttimekaanisen systeemin tilaa kuvaa postulaattien mukaan kaksi lakia. Systeemin, jonka tilaa ei häiritä mittauksilla, tilan aikakehitystä kuvaa täydellisesti Schrödingerin yhtälö. Toisaalta, kun systeemiä mitataan, tulee käyttöön projektiopostulaatti, joka kuvaa systeemin tilan ennustamattomissa olevaa muutosta todennäköisyyksien avulla. Selviä ongelmia tässä ovat ainakin se, miten järjestelmät pitäiis jakaa kvanttimekaanisiin ja klassisen mekaniikan järjestelmiin ja se, miten mittausprosessi pitäisi määritellä erotuksena muista mahdollisista systeemiin kohdistuvista prosesseista? Ensimmäiseen kysymykseen ei auta tavallinen argumentti siitä, että mikroskooppiset järjestelmät noudattaisivat kvanttimekaniikan lakeja ja makroskooppiset klassisen mekaniikan. Koostuisivathan tällöin kaikki klassisen mekaniikan järjestelmät kvanttimekaanisista osista. Tarkastellaan seuraavassa esimerkkinä mittausjärjestelyä. Tämän esimerkin tarkoituksena on osoittaa, että vaikka rajanveto on välttämätön, ei itse rajan paikka ole yhtä oleellinen. Olkoon S kvanttimekaanisen objektin tila-avaruus ja A koelaitteen (apparatus) tilaavaruus. Tarkastellaan näiden kahden systeemin yhteisen tilan kehittymistä avaruudessa S A. Olkoot ψ 1, ψ 2 S kaksi objektin ominaistilaa, jotka tuottavat eri koetulokset. Näiden koetulosten täytyy jättää koelaitteen tilaksi erilliset tilat α 1 ja α 2, vastaavasti. Olkoon koelaite aluksi tilassa α 0. Koetilanteessa objekti ja koelaite vuorovaikuttavat siten, että jos objektin tila oli ennen koetta ψ i, on koelaitteen tila kokeen jälkeen α i. Siis kokeen aikana systeemien yhteinen
6 2 MITTAAMISEN KVANTTITEORIA 6 Hamiltonin operaattori toteuttaa e ihτ/ ( ψ 1 α 0 ) = e iθ 1 ψ 1 α 1 e ihτ/ ( ψ 2 α 0 ) = e iθ 2 ψ 2 α 2, missä τ on kokeen kesto ja θ i ovat mahdollisia vaihe-eroja. Jos ennen koetta objekti on tilassa ψ 0 = c 1 ψ 1 + c 2 ψ 2 niin kokeen jälkeen objektin ja koelaitteen yhteinen tila on e ihτ/ ( ψ 0 α 0 ) = e ihτ/ (c 1 ψ 1 α 0 + c 2 ψ 2 α 0 ) = e iθ 1 c 1 ψ 1 α 1 + e iθ 2 c 2 ψ 2 α 2 Postulaatin II mukaan tämä tarkoittaa sitä, että kokeen tulos on α 1 todennäköisyydellä c 1 2 ja α 2 todennäköisyydellä c 2 2. Projektiopostulaatin mukaan pätee, että jos koetulos on α 1, niin objektin ja koelaitteen yhteinen tila kokeen jälkeen on ψ 1 α 1, joten objektin tila on ψ 1. Tämä esimerkki näyttää, että on sama, käytetäänkö projektiopostulaattia objektin ja koelaitteiston yhdistettyyn systeemiin, vai pelkkään objektiin. Kuitenkin juuri projektiopostulaatin käyttö oli systeemin tilan tulkinnan kannalta välttämätöntä.
Tilat ja observaabelit
Tilat ja observaabelit Maksimaalinen informaatio systeemistä tietyllä ajanhetkellä sisältyy tilaan ψ (ket). Tila = vektori Hilbertin avaruudessa sisätulo ψ ψ C ψ c 1 ψ 1 + c 2 ψ 2 = c 1 ψ ψ 1 + c 2 ψ ψ
LisätiedotMääritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )
Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä
LisätiedotAikariippuva Schrödingerin yhtälö
Aineaaltodynamiikka Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit Aikariippuva Schrödingerin
LisätiedotAineaaltodynamiikkaa
Aineaaltodynamiikkaa Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit = kuinka hiukkasen fysikaaliset
LisätiedotAlijärjestelmän mittaus ja muita epätäydellisiä mittauksia
T-79.4001 Tietojenkäsittelyteorian seminaari 0..008 1 Alijärjestelmän mittaus ja muita epätäydellisiä mittauksia Loepp & Wootters, Protecting Information, luvut.4-.5 T-79.4001 Tietojenkäsittelyteorian
LisätiedotInversio-ongelmien laskennallinen peruskurssi Luento 7
Inversio-ongelmien laskennallinen peruskurssi Luento 7 Kevät 2012 1 Tilastolliset inversio-ongelmat Tilastollinen ionversio perustuu seuraaviin periaatteisiin: 1. Kaikki mallissa olevat muuttujat mallinnetaan
LisätiedotKvanttidynamiikka Tarkastellaan ensin hieman bra/ket-merkintää ja vertaillaan sitä muihin merkintätapoihin.
Kvanttidynamiikka 30.10.2010 0.1 Bra- ja Ket-merkinnöistä Tarkastellaan ensin hieman bra/ket-merkintää ja vertaillaan sitä muihin merkintätapoihin. Oletetaan, että ket ψ ja bra φ ovat alkioita, jotka liittyvät
LisätiedotCh7 Kvanttimekaniikan alkeita. Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset.
Ch7 Kvanttimekaniikan alkeita Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset. Spinnittömät hiukkaset Hiukkasta kuvaa aineaaltokenttä eli aaltofunktio. Aaltofunktio riippuu
LisätiedotTILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH 5.1-5.3) Mikrotilat (kertausta Kvanttimekaniikan kurssilta)
TILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH 5.1-5.3) Mikrotilat (kertausta Kvanttimekaniikan kurssilta) Kvanttimekaniikassa yhden hiukkasen systeemin täydellisen kuvauksen antaa tilavektori, joka on
LisätiedotNollasummapelit ja bayesilaiset pelit
Nollasummapelit ja bayesilaiset pelit Kristian Ovaska HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Seminaari: Peliteoria Helsinki 18. syyskuuta 2006 Sisältö 1 Johdanto 1 2 Nollasummapelit 1 2.1
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 20. syyskuuta 2007 Antti Rasila () TodB 20. syyskuuta 2007 1 / 17 1 Kolmogorovin aksioomat σ-algebra Tapahtuman todennäköisyys 2 Satunnaismuuttujat Todennäköisyysjakauma
LisätiedotIlkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio TKK (c) Ilkka Mellin (2007) 1 Kertymäfunktio >> Kertymäfunktio: Määritelmä Diskreettien jakaumien
LisätiedotJ 2 = J 2 x + J 2 y + J 2 z.
FYSA5 Kvanttimekaniikka I, Osa B.. tentti: 4 tehtävää, 4 tuntia. Tarkastellaan pyörimismääräoperaattoria J, jonka komponentit toteuttavat kommutaatiorelaatiot [J x, J y ] = i hj z, [J y, J z ] = i hj x,
LisätiedotJatko-opintoseminaari Kevyttä johdattelua kvanttimekaniikkaan: Tila-avaruus. Petteri Laakkonen
Jatko-opintoseminaari 21-211 Kevyttä johdattelua kvanttimekaniikkaan: Tila-avaruus Petteri Laakkonen 23.9.21 Tämä teksti on tiivistelmä kirjan [1] luvun 2 tekstistä. Pyrkimyksenä on esittää perustellusti
LisätiedotJohdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Kertymäfunktio TKK (c) Ilkka Mellin (2005) 1 Kertymäfunktio Kertymäfunktio: Määritelmä Diskreettien jakaumien kertymäfunktiot Jatkuvien jakaumien kertymäfunktiot TKK (c)
LisätiedotMS-A0004/A0006 Matriisilaskenta
4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin
LisätiedotHamiltonin formalismia
Perjantai 3.10.2014 1/20 Hamiltonin formalismia Olemme valmiit siirtymään seuraavalle tasolle klassisen mekaniikan formalismissa, jonka aloitti Hamilton n. 1830. Emme käytä tätä formalismia minkään vaikeamman
Lisätiedot1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria
Kvanttimekaniikka I, tentti 6.. 015 4 tehtävää, 4 tuntia 1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria ( { ( ( } E iδ H =, E, δ R, kannassa B = 1 =, =. iδ E 0 1 (a (p.
LisätiedotKvanttimekaniikka: Luento 4. Martikainen Jani- Petri
Kvanttimekaniikka: Luento 4 Martikainen Jani- Petri Viimeksi Ajasta riippuva Schrödingerin yhtälö Alkuarvo- ongelman ratkaisu Aaltofunktio Tänään Mittauspostulaatti Diracin merkintätapa. Hermiittiset operaattorit
LisätiedotMatriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit
Matriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit Antti Rasila 2016 Ominaisarvot ja ominaisvektorit 1/5 Määritelmä Skalaari λ C on matriisin A C n n ominaisarvo ja vektori v C n sitä
Lisätiedot1 Aaltofunktio, todennäköisyystulkinta ja normitus
KEMA5 syksy 16 Kertausta keskeisistä asioista 1 Aaltofunktio, todennäköisyystulkinta ja normitus Kvanttimekaniikassa tarkasteltavaa systeemiä kuvaa aaltofunktio ψ. Aaltofunktio on puhtaan matemaattinen
Lisätiedot1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.
Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i
LisätiedotKorrespondenssiperiaate. Tapio Hansson Oulun Yliopisto, Fysiikan laitos Ohjaaja: Mikko Saarela
Korrespondenssiperiaate Tapio Hansson Oulun Yliopisto, Fysiikan laitos Ohjaaja: Mikko Saarela Sisältö 1 Johdanto 2 2 Liikeyhtälöt 2 2.1 Klassisen mekaniikan liikeyhtälöt................ 2 2.2 Poissonin
Lisätiedot3.6 Feynman s formulation of quantum mechanics
3.6 Feynman s formulation of quantum mechanics Course MAT-66000: Quantum mechanics and the particles of nature Ilkka Kylänpää Tampere University of Technology 14.10.2010 Sisältö Johdattelua Klassinen action
LisätiedotMatriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?
Harjoitus 1, kevät 007 1. Olkoon [ ] cos α sin α A(α) =. sin α cos α Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?. Olkoon a x y A = 0 b z, 0 0 c missä a, b, c 0. Määrää käänteismatriisi
LisätiedotKertausta: avaruuden R n vektoreiden pistetulo
Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2012 227/310 Kertausta:
Lisätiedot8. Klassinen ideaalikaasu
Statistinen fysiikka, osa B (FYSA242) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL240. Ei kiinteitä vastaanottoaikoja. kl 2016 8. Klassinen ideaalikaasu 1 Fysikaalinen tilanne Muistetaan: kokeellisesti
LisätiedotABHELSINKI UNIVERSITY OF TECHNOLOGY
Todennäköisyyslaskennan käsitteitä Satunnaisuus ja deterministisyys Deterministisessä ilmiössä alkutila määrää lopputilan yksikäsitteisesti. Satunnaisilmiö puolestaan arpoo - yhdestä alkutilasta voi päätyä
LisätiedotVektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on
13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu
LisätiedotKvanttimekaniikka: Luento 2. Mar$kainen Jani- Petri
Kvanttimekaniikka: Luento 2 Mar$kainen Jani- Petri Assarointimainos Fyssa tarvitsee assareita Noin 30 euroa tun$+ lisiä tyypillises$ n. 4h/viikko, muba voi olla enemmän/vähemmän Opintosuoritukset+ lyhyt
LisätiedotSisätuloavaruudet. 4. lokakuuta 2006
Sisätuloavaruudet 4. lokakuuta 2006 Tässä esityksessä vektoriavaruudet V ja W ovat kompleksisia ja äärellisulotteisia. Käydään ensin lyhyesti läpi määritelmiä ja perustuloksia. Merkitään L(V, W ) :llä
LisätiedotMatriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo
Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo Antti Rasila 2016 Vektoriavaruuden kannan olemassaolo Jos {v 1, v 2,..., v k } on äärellisulotteisen vektoriavaruuden V lineaarisesti riippumaton
LisätiedotABHELSINKI UNIVERSITY OF TECHNOLOGY
Satunnaismuuttujat ja todennäköisyysjakaumat Mitä tänään? Jos satunnaisilmiötä halutaan mallintaa matemaattisesti, on ilmiön tulosvaihtoehdot kuvattava numeerisessa muodossa. Tämä tapahtuu liittämällä
LisätiedotMoniulotteisia todennäköisyysjakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen
Lisätiedot3.7 Todennäköisyysjakaumia
MAB5: Todennäköisyyden lähtökohdat 4 Luvussa 3 Tunnusluvut perehdyimme jo jakauman käsitteeseen yleensä ja normaalijakaumaan vähän tarkemmin. Lähdetään nyt tutustumaan binomijakaumaan ja otetaan sen jälkeen
LisätiedotIlkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (006) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen
Lisätiedot5 Ominaisarvot ja ominaisvektorit
5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A
LisätiedotVarma tapahtuma, Yhdiste, Yhdistetty tapahtuma, Yhteenlaskusääntö
Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Unioni, Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Alkeistapahtuma, Ehdollinen todennäköisyys,
LisätiedotSuora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste
Suora 1/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Suora geometrisena peruskäsitteenä Pisteen ohella suora on geometrinen peruskäsite, jota varsinaisesti ei määritellä. Alkeisgeometriassa
LisätiedotOrtogonaalisen kannan etsiminen
Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,
LisätiedotLebesguen mitta ja integraali
Lebesguen mitta ja integraali Olkoon m Lebesguen mitta R n :ssä. R 1 :ssä vastaa pituutta, R 2 :ssa pinta-alaa, R 3 :ssa tilavuutta. Mitallinen joukko E R n = joukko jolla on järkevästi määrätty mitta
LisätiedotVerkot ja todennäköisyyslaskenta Verkko Verkko eli graafi muodostuu pisteiden joukosta V, särmien joukosta A ja insidenssikuvauksesta : A V V jossa
Mat-.6 Sovellettu todennäköisyyslaskenta B Mat-.6 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Verkot ja todennäköisyyslaskenta Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio Jakaumien
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila Kalvoissa käytetään materiaalia P. Palon vuoden 2005 kurssista. 07.09.2007 Antti Rasila () SovTodB 07.09.2007 07.09.2007 1 / 24 1 Todennäköisyyslaskennan
LisätiedotOrtogonaaliprojektio äärellisulotteiselle aliavaruudelle
Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Olkoon X sisätuloavaruus ja Y X äärellisulotteinen aliavaruus. Tällöin on olemassa lineaarisesti riippumattomat vektorit y 1, y 2,..., yn, jotka
LisätiedotDerivaatat lasketaan komponenteittain, esimerkiksi E 1 E 2
MS-C50 Osittaisdifferentiaaliyhtälöt Harjoitukset syksy 07. Oletetaan että vektorikenttä E E E E : R R on kaksi kertaa jatkuvasti derivoituva E C R. Näytä että E E. Derivaatat lasketaan komponenteittain
LisätiedotKertausta: avaruuden R n vektoreiden pistetulo
Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2014 164/246 Kertausta:
LisätiedotKannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:
8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden
LisätiedotKlassisen mekaniikan muotoilu symplektisen geometrian avulla
Klassisen mekaniikan muotoilu symplektisen geometrian avulla Ville Kivioja 21. kesäkuuta 2017 Tämän lyhyen artikkelin tarkoituksena on muotoilla klassinen mekaniikka mahdollisimman yleisesti ja käyttäen
LisätiedotMoniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?
TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia: Mitä
LisätiedotMatemaattinen Analyysi / kertaus
Matemaattinen Analyysi / kertaus Ensimmäinen välikoe o { 2x + 3y 4z = 2 5x 2y + 5z = 7 ( ) x 2 3 4 y = 5 2 5 z ) ( 3 + y 2 ( 2 x 5 ( 2 7 ) ) ( 4 + z 5 ) = ( 2 7 ) yhteys determinanttiin Yhtälöryhmän ratkaiseminen
LisätiedotShorin algoritmin matematiikkaa Edvard Fagerholm
Edvard Fagerholm 1 Määritelmiä Määritelmä 1 Ryhmä G on syklinen, jos a G s.e. G = a. Määritelmä 2 Olkoon G ryhmä. Tällöin alkion a G kertaluku ord(a) on pienin luku n N \ {0}, jolla a n = 1. Jos lukua
LisätiedotOPETUSSUUNNITELMALOMAKE
OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit
LisätiedotRatkaisu: Ensimmäinen suunta. Olkoon f : R n R m jatkuva eli kaikilla ε > 0 on olemassa sellainen δ > 0, että. kun x a < δ. Nyt kaikilla j = 1,...
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 2017 Harjoitus 1 Ratkaisuehdotukset 11 Osoita, että vektorifunktio f = (f 1,, f m ): R n R m, on jatkuva, jos ja vain jos jokainen komponenttifunktio
LisätiedotJohdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma
Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen
LisätiedotKVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA
KVANTTITEORIA 1 MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA Fysiikka KVANTTITEORIA Metso Tampere 13.11.2005 MODERNI
LisätiedotEpäyhtälöt ovat yksi matemaatikon voimakkaimmista
6 Epäyhtälöitä Epäyhtälöt ovat yksi matemaatikon voimakkaimmista työvälineistä. Yhtälö a = b kertoo sen, että kaksi ehkä näennäisesti erilaista asiaa ovat samoja. Epäyhtälö a b saattaa antaa keinon analysoida
Lisätiedota) Sievennä lauseke 1+x , kun x 0jax 1. b) Aseta luvut 2, 5 suuruusjärjestykseen ja perustele vastauksesi. 3 3 ja
1 YLIOPPILASTUTKINTO- LAUTAKUNTA 1.10.2018 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän
LisätiedotHavainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v.
Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin w = w w = ( 4) 2 + ( 3) 2 = 25 = 5 v = v v = ( 3) 2 + 2 2 = 13. w =5 3 2 v = 13 4 3 LM1, Kesä 2014 76/102 Normin ominaisuuksia I Lause
Lisätiedot3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset
31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita
LisätiedotHarjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio,
Differentiaaliyhtälöt, Kesä 06 Harjoitus 3 Kaikissa tehtävissä, joissa pitää tarkastella kriittisten pisteiden stabiliteettia, jos kyseessä on satulapiste, ilmoita myös satulauraratkaisun (tai kriittisessä
Lisätiedotkolminkertaisesti tehtäviä tavallisiin harjoituksiin verrattuna, voi sen kokonaan tekemällä saada suunnilleen kolmen tavallisen harjoituksen edestä
Matematiikkaa kemisteille, kevät 2013 Ylimääräisiä laskuharjoituksia Tällä laskuharjoituksella voi korottaa laskuharjoituspisteitään, mikäli niitä ei ole riittävästi kurssin läpäisemiseen, tai vaihtoehtoisesti
LisätiedotPuhtaiden lomittuneiden kubittien Bell-tyypin epälokaalisuudesta ja Gisinin teoreemasta
Puhtaiden lomittuneiden kubittien Bell-tyypin epälokaalisuudesta ja Gisinin teoreemasta Kirjoittaja: Riku E. Järvinen Ohjaaja: Professori Jukka Maalampi Pro Gradu Fysiikan laitos Helmikuu 2018 Anybody
Lisätiedot1. (a) (2p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori
FYSA5 Kvanttimekaniikka I, Osa B 7.. tentti: 4 tehtävää, 4 tuntia. a) p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori T ɛ) = iɛ h P. Osoita tämän avulla, että äärellistä siirtoa
LisätiedotJohdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (005) 1 Moniulotteisia todennäköisyysjakaumia Multinomijakauma Kaksiulotteinen normaalijakauma TKK (c) Ilkka
Lisätiedot3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.
3 Suorat ja tasot Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3.1 Suora Havaitsimme skalaarikertolaskun tulkinnan yhteydessä, että jos on mikä tahansa nollasta
Lisätiedot1 Kertaus. Lineaarinen optimointitehtävä on muotoa:
1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n
LisätiedotLineaarikuvauksen R n R m matriisi
Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 22 R. Kangaslampi matriisiteoriaa Kertaus: ominaisarvot
Lisätiedot4. Lasketaan transienttivirrat ja -jännitteet kuvan piiristä. Piirielimien arvot ovat C =
BMA58 Funktiot, lineaarialgebra ja vektorit Harjoitus 6, Syksy 5. Olkoon [ 6 6 A =, B = 4 [ 3 4, C = 4 3 [ 5 Määritä matriisien A ja C ominaisarvot ja ominaisvektorit. Näytä lisäksi että matriisilla B
LisätiedotJohdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita
Lisätiedot9. Tila-avaruusmallit
9. Tila-avaruusmallit Aikasarjan stokastinen malli ja aikasarjasta tehdyt havainnot voidaan esittää joustavassa ja monipuolisessa muodossa ns. tila-avaruusmallina. Useat aikasarjat edustavat dynaamisia
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ominaisarvot Kertaus: ominaisarvot Määritelmä
LisätiedotSekastrategia ja Nash-tasapainon määrääminen
May 24, 2016 Sekastrategia Monissa peleissä ei ole Nash-tasapainoa puhtaissa strategioissa H T H 1, 1 1, 1 T 1, 1 1, 1 Ratkaisu ongelmaan löytyy siitä, että laajennetaan strategiat käsittämään todennäköisyysjakaumat
LisätiedotLisävaatimuksia aaltofunktiolle
Lisävaatimuksia aaltofunktiolle (1) Koska Ψ*Ψ on äärellinen => Ψ on äärellinen. () Koska P = Ψ*Ψdτ => Ψ on yksiselitteinen. (3) Ψ on jatkuva. (4) dψ/dτ on jatkuva. Esimerkki Epäkelpoja aaltofunktioita
LisätiedotHamiltonin-Jacobin teoriaa
Perjantai 10.10.2014 1/21 Hamiltonin-Jacobin teoriaa Tällä viimeisellä luennolla käsittelemme vielä uuden näkökulman klassiseen mekaniikkaan, joka kulkee nimellä Hamiltonin-Jacobin teoria. Aloitetaan Hamiltonin
Lisätiedot= 2±i2 7. x 2 = 0, 1 x 2 = 0, 1+x 2 = 0.
HARJOITUS 1, RATKAISUEHDOTUKSET, YLE11 2017. 1. Ratkaise (a.) 2x 2 16x 40 = 0 (b.) 4x 2 2x+2 = 0 (c.) x 2 (1 x 2 )(1+x 2 ) = 0 (d.) lnx a = b. (a.) Toisen asteen yhtälön ratkaisukaavalla: x = ( 16)± (
LisätiedotJohdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 16. marraskuuta 2007 Antti Rasila () TodB 16. marraskuuta 2007 1 / 15 1 Epäparametrisia testejä χ 2 -yhteensopivuustesti Homogeenisuuden testaaminen Antti
Lisätiedot5.10. HIUKKANEN POTENTIAALIKUOPASSA
5.10. HIUKKANEN POTENTIAALIKUOPASSA eli miten reunaehdot ja normitus vaikuttavat aaltofunktioihin Yleensä Schrödingerin yhtälön ratkaiseminen matemaattisesti on hyvin työlästä ja edellyttää vahvaa matemaattista
LisätiedotTodennäköisyys (englanniksi probability)
Todennäköisyys (englanniksi probability) Todennäköisyyslaskenta sai alkunsa 1600-luvulla uhkapeleistä Ranskassa (Pascal, Fermat). Nykyisin todennäköisyyslaskentaa käytetään hyväksi mm. vakuutustoiminnassa,
LisätiedotOsoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.
LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,
LisätiedotSymmetriat ja säilymislait
Symmetriat ja säilymislait Onni Veteläinen 2437668 LuK-tutkielma Fysiikan laitos Oulun yliopisto Kevät 2017 Sisältö Johdanto 1 1 Symmetriat ja säilymislait klassisessa mekaniikassa 2 1.1 Liikemäärän säilyminen......................
LisätiedotMat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat:
Mat-.9 Sovellettu todennäköisyyslasku A Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Moniulotteiset jakaumat Diskreetti jakauma, Ehdollinen jakauma, Ehdollinen odotusarvo, Jatkuva
LisätiedotMATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009
EB-TUTKINTO 2009 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa
Lisätiedotja KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA
ja KVANTTITEORIA 1 MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA Fysiikka WYP2005 ja KVANTTITEORIA 24.1.2006 WYP 2005
LisätiedotKantavektorien kuvavektorit määräävät lineaarikuvauksen
Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin
Lisätiedot1 Sisätulo- ja normiavaruudet
1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v
Lisätiedot802320A LINEAARIALGEBRA OSA II
802320A LINEAARIALGEBRA OSA II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 64 Sisätuloavaruus Määritelmä 1 Olkoon V reaalinen vektoriavaruus. Kuvaus on reaalinen
LisätiedotKuvaus. Määritelmä. LM2, Kesä /160
Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä
LisätiedotTehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä todistuksia ja lineaarikuvauksen muodostamista. Sarjaan liittyvät Stack-tehtävät: 1 ja 2.
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2016 Harjoitus 3 Ratkaisut palautettava viimeistään maanantaina 29.8.2016 klo 13.15. Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä
LisätiedotBijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.
Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin
LisätiedotKuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.
Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Vastaavuus puolestaan on erikoistapaus relaatiosta.
LisätiedotFunktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.
Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],
LisätiedotEstimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?
TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman
Lisätiedot802320A LINEAARIALGEBRA OSA III
802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V
Lisätiedotb 1. b m ) + ( 2b Ax) + (b b)
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-9 Optimointioppi Kimmo Berg 5 harjoitus - ratkaisut min Ax b (vertaa PNS-tehtävät) a x + + a n x n a) Ax b = a m x + + a mn x n = x a a m }{{}
LisätiedotOsa IX. Z muunnos. Johdanto Diskreetit funktiot
Osa IX Z muunnos A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 298 / 322 A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 299 / 322 Johdanto
LisätiedotIlkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio
Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio
LisätiedotNormaalijakaumasta johdettuja jakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2007) 1 Normaalijakaumasta johdettuja jakaumia >> Johdanto χ 2 -jakauma F-jakauma
LisätiedotTehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2014 Harjoitus 4 Ratkaisujen viimeinen palautuspäivä: pe 662014 klo 1930 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun
Lisätiedot