x 4 e 2x dx Γ(r) = x r 1 e x dx (1)
|
|
- Jarkko Halttunen
- 6 vuotta sitten
- Katselukertoja:
Transkriptio
1 HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta IIA, syksy Harjoitus 6 Ratkaisuehdotuksia Tehtäväsarja I 1. Laske numeeriset arvot seuraaville integraaleille: x 4 e 2x dx ja 1 x 3/2 (1 x) 3 dx. Vihjeitä: Gammafunktio ja beetafunktio jaksosta 5.2. (Jälkimmäisen integraalin voisi laskea myös työläämmin laskemalla (1 x) 3 auki ja integroimalla näin saatua funktiota.) Muistetaan, että ja B(x, y) = Γ(r) = 1 x r 1 e x dx (1) t x 1 (1 t) y 1 dt = Γ(x)Γ(y) Γ(x + y) Lisäksi Γ(n + 1) = nγ(n), luonnollisille luvuille pätee Γ(n) = (n 1)! ja yleisesti pätee Γ( 1 2 ) = π. Muokkaamalla funktioita sopivasti voimme integroida "kuin tilastotieteilijä"ja välttyä työläiltä laskuilta käyttämällä gamma- ja beetafunktiota. Sijoitetaan ensimmäiseen integraaliin t = 1 dt, jolloin. Nyt 2 2 (2) x 4 e 2x 1 t 4 e t dt = Γ(5) = ! = Toisen integraalin tapauksessa huomaamme ilman suurempia ongelmia, että (3) 1 x 3/2 (1 x) 3 B( 5 2, 4) = Γ( 5)Γ(4) Γ( 5 + 4) = Γ( 1)3! Γ( 1) = = (4) 2. Olkoon Z N(, 1). Laske arvot Z :n kuudelle ensimmäiselle momentille EZ k, k = 1, 2,..., 6 seuraavilla kahdella tavalla. a) Tarkastele integraalia EZ k = z k f(z)dz. Parittomilla k integrandi on pariton funktio, joten integraali on nolla. Parillisilla k integrandi on parillinen funktio: muuta integrointialueeksi ensin (, ), tee muuttujanvaihto y = x 2 /2 sekä ilmaise lopputulos gammafunktion avulla. Käytä hyväksi jaksossa 5.2 kerrottuja gammafunktion ominaisuuksia.
2 b) Kehitä jakauman momenttiemäfunktio M(t) = exp(t 2 /2) potessisarjaksi, ja tutki sarjan termejä. a) Tehtävänannon vihjeen nojalla EZ k =, kun k on pariton. Voimme siis keskittyä tarkastelemaan tilannetta, jossa k = 2n, n N. Nyt EZ 2n = = 2 z 2n f Z (z)dz z 2n (2π) 1/2 e z2 /2 dz = 2(2π) 1/2 (z 2 ) 2n 1 2 e z2 2 zdz = 2(2π) 1/2 (2y) n 1/2 e y dy = 2n+ 1 2 y n+1/2 1 e y dy 2π = 2n Γ(n ) π (5) Tämän kaavan avulla voidaan laskea parilliset momentit käyttäen apuna gammafunktion ominaisuuksia. Γ( ) = 1 2 Γ(1 2 ) = π 2 EZ 2 = 2Γ( ) π = 1 EZ 4 = 22 Γ( ) π = Γ( ) π = 3 (6) EZ 6 = 23 Γ( ) π = Γ( ) π = 15 b) Taylorin kaavan tai eksponentin sarjakehitelmän nojalla M Z (t) = e t2 /2 = (t 2 /2) n = n! n= n= (t 2n ) 2 n n! Voimme keskittyä sarjan neljään ensimmäiseen termiin, sillä tarkoitus on tarkastella satunnaismuuttujan kuutta ensimmäistä momenttia. Tällöin M Z (t) = 1 + t2 2 + t4 8 + t6 + n=4 (t 2n ) 2 n n! Tässä kohtaa huomataan, että koska tarkoituksemme on derivoida momenttiemäfunktiota enintään kuusi kertaa ja t:n aste on suurempaa kuin kahdeksan, voimme unohtaa ylläolevasta yhtälöstä sarjan hännän (t 2n ) n=4, sillä pisteessä 2 n n! t = on jokaisen termin arvo sarjan hännässä. Nyt (7) (8)
3 M Z(t) = t + 4t t5 M Z(t) = t t4 8 M (3) Z (t) = t t3 8 M (4) Z (t) = t2 M (5) Z (t) = t M (6) Z (t) = 6! Nyt huomataan, että M (k) Z () =, kun k {1, 3, 5} ja EZ 2 = M Z() = 1 EZ 4 = M (4) Z () = 3 EZ 6 = M (4) Z () = 15 (9) (1) 3. Satunnaismuuttujan X odotusarvo on, varianssi on 1 ja vinous on S(X) = s, kun sm:n vinous määritellään S(X) = µ 3 /σ 3, missä µ 3 on kolmas keskusmomentti ja σ on kesihajonta. Laske seuraavien satunnaismuuttujien vinoudet: (a) Y = X + b; (b) Z = ax (missä a > ); (c) W = X. Satunnaismuuttujan kolmas keskusmomentti määritellään kaavalla E((X EX) 3 ). Lisäksi keskihajonta on varianssin neliöjuuri. Koska V ar(x) = σ 2 = 1 ja EX =, saamme ratkaistua µ 3 /σ 3 = s µ 3 = s E((X EX) 3 ) = s EX 3 = s (11) a) Nyt var(y ) = var(x +b) = var(x) = 1, ja EY = E(X +b) = EX +Eb = +b. Tällöin S(Y ) = E((Y EY )3 ) = E((X + b b)3 ) ( var(y )) 3 1 = E(X 3 ) = s (12) b) Lasketaan ensin varianssi var(z) = var(ax) = a 2 var(x) = a 2 ja odotusarvo EZ = EaX = aex =. Nyt helposti E((Z EZ) 3 ) ( var(z)) 3 = EZ3 a 3 = a3 E(X 3 ) a 3 = EX 3 = s (13) c) Taas lasketaan ensin varianssi var(w ) = ( 1) 2 var(x) = 1 ja odotusarvo EW = 1EX =, jolloin E((W EW ) 3 ) = E((W EW )3 ) = E(W 3 ) = E( 1 3 X 3 ) = s (14) ( var(w )) 3 1
4 4. Olkoon sm:lla X tasajakauma U(, a). Laske jakauman momenttiemäfunktio ja kehitä se potenssisarjaksi (eksponenttifunktion Taylorin sarjan avulla). Päättele tuloksesta momentit EX k, kun k = 2, 4, 6, 8. (Tarkista lopuksi, että saat samat momentit suoraan integroimalla.) X :n tiheysfunktio on 1, jolloin momenttiemäfunktio saadaan odotusarvosta 2a M X (t) = E(e tx ) = Tunnetusti eksponenttifunktion sarjakehitelmä on muotoa: e tx 1 2a eta e ta. (15) 2at jolloin e x = x k /k! (16) k= M X (t) = 1 2at (ta) k ( ta) k = k! k= (ta) k 1 ( ta) k 1 k=1 2(k!) Nyt huomionarvoista on, että joka toinen sarjan termi on nolla osoittajan termien kumotessa toisensa. Merkitään virhetermiksi O(t) = k=1 (ta) k 1 ( ta) k 1 2(k!), nyt (17) M X (t) = (ta) (ta) (ta) (ta)8 + + O(t) (18) Nyt siis momenttiemäfunktion toiseksi, neljänneksi, kuudenneksi ja kahdeksanneksi derivaataksi saadaan (derivoimalla ylläolevaa polynomia): M (2) X () = 2a 6 = a2 3 = EX2 M (4) X () = a4 5 = EX4 M (6) X () = a6 7 = EX6 M (8) X () = a8 9 = EX8 Tarkistetaan vielä momentit integroimalla eli odotusarvoina xk 1 dx k:n 2a ollessa 2, 4, 6, 8: (19) x 2 1 a2 2a 3 x 4 1 a4 2a 5 x 6 1 a6 2a 7 x 8 1 a8 2a 9 (2)
5 Yhtälöt täsmäävät aiempien (15) kanssa, joten kaikki on kunnosssa! 5. Johda Geom(p)-jakauman kertymäfunktiolle geometrisen sarjan avulla yksinkertainen lauseke. Haluamme ratkaista kertymäfunktion x F (x) = p(1 p) k (21) k= arvon. Koska F(x) on kertymäfunktio, F ( ) = k= p(1 p) k = 1. Tästä seuraa, että x F ( ) F (x) = p(1 p) k p(1 p) k k= k= 1 F (X) = k=x+1 p(1 p) k 1 F (X) = p((1 p) x+1 (1 + (1 p) + (1 p) 2 + )) (1 p)x+1 1 F (X) = p( 1 (1 p) ) F (X) = 1 (1 p) x+1 6. Olkoon X ja Y riippumattomia satunnaismuuttujia, ja oletetaan, että X, Y Poi(1). Muodosta sarjaesitys todennäköisyydelle p = P(X = Y ). a) Määrää alaraja todennäköisyydelle p laskemalla yhteen todennäköisyydet P(X = Y = k), kun k =, 1, 2, 3. b) Arvioi tapahtuman P(X = Y ja X, Y 4) todennäköisyyttä unohtamalla vaatimus, että X = Y ja käyttämällä sitten hyväksi riippumattomuutta. c) Määrää yläraja todennäköisyydelle p laskemalla yhteen a) kohdan alaraja ja b) kohdan arvio hännälle. a) Koska X ja Y ovat riippumattomia, pätee P (X = Y = k) = (P (X = k)) 2. Koska Poisson(1)-jakauman pistetodennäköisyysfunktio on (22) f X (x) = e 1 1 x! (23) saamme f X () = 1, f e X(1) = 1, f e X(2) = 1, f 2e X(3) = 1, ja nyt P (X = Y ) = 6e (f X (x)) 2, josta saamme alarajatodennäköisyydeksi 2 ( 1 e )2 + ( 1 2e )2 + ( 1 6e )2 = 82 36e 2 (24) b) Tehtävänannon mukaisesti "unohdamme"vaatimuksen X = Y, jolloin voimme arvioida jakauman häntää ylhäältä päin: P (X = Y, X 4, Y 4) P (X 4, Y 4) = (1 P (X 3)) 2 = (1 16 6e )2 (25)
6 c) Nyt siis saamme arvioksi todennäköisyydelle P (X = Y ) P (X = Y, X, Y 3) + P (X 4, Y 4) = (1 36e2 6e )2 (26) Tämän likiarvo on, 3862 ja e 2, Siis.383 P (X = Y )
1. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden heittojen lukumäärä, joilla tuli 1, 2, 3 tai 4.
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 206 Kurssikoe 28.0.206 Ratkaisuehdotuksia. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden
LisätiedotIlkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio
Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio
LisätiedotHY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2017 Harjoitus 1 Ratkaisuehdotuksia
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Osa tämän viikon tehtävistä ovat varsin haastavia, joten ei todellakaan
Lisätiedotk S P[ X µ kσ] 1 k 2.
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 28 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Osa tämän viikon tehtävistä ovat varsin haastavia, joten ei todellakaan
LisätiedotJohdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita
LisätiedotTehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Tehtävät -5 perustuvat monisteen kappaleisiin..7 ja tehtävä 6 kappaleeseen.8..
Lisätiedot0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä niistä
LisätiedotHY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä
Lisätiedot(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio.
Todennäköisyyslaskenta I, kesä 7 Harjoitus 4 Ratkaisuehdotuksia. Satunnaismuuttujalla X on ns. kaksipuolinen eksponenttijakauma eli Laplacen jakauma: sen tiheysfunktio on fx = e x. a Piirrä tiheysfunktio.
Lisätiedot2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 208 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I. Satunnaismuuttuja U Exp(2) ja V = U/(3 + U). Laske f V käyttämällä muuttujanvaihtotekniikkaa.
LisätiedotMS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2)
MS-A4 Differentiaali- ja integraalilaskenta (ELEC2) MS-A6 Differentiaali- ja integraalilaskenta (ENG2) Harjoitukset 3L, syksy 27 Tehtävä. a) Määritä luvun π likiarvo käyttämällä Newtonin menetelmää yhtälölle
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 21. syyskuuta 2007 Antti Rasila () TodB 21. syyskuuta 2007 1 / 19 1 Satunnaismuuttujien riippumattomuus 2 Jakauman tunnusluvut Odotusarvo Odotusarvon ominaisuuksia
LisätiedotDifferentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /
MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,
Lisätiedot5 Tärkeitä yksiulotteisia jakaumia
5 Tärkeitä yksiulotteisia jakaumia Jakaumista löytyy lisätietoja ja kuvaajia Wikipediasta. Kirjallisuudessa käytetään useille näistä jakaumista monia erilaisia parametrointeja. Kussakin lähteessä käytetty
LisätiedotMS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 2 Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden
LisätiedotSatunnaismuuttujien muunnokset ja niiden jakaumat
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja
LisätiedotJohdatus tn-laskentaan torstai 16.2.2012
Johdatus tn-laskentaan torstai 16.2.2012 Muunnoksen jakauma (ei pelkkä odotusarvo ja hajonta) Satunnaismuuttujien summa; Tas ja N Vakiokerroin (ax) ja vakiolisäys (X+b) Yleinen muunnos: neulanheittoesimerkki
LisätiedotSallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1,
Todennäköisyyslaskenta, 2. kurssikoe 7.2.22 Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu.. Satunnaismuuttujien X ja Y yhteistiheysfunktio on
LisätiedotTilastomatematiikka Kevät 2008
Tilastomatematiikka Kevät 2008 Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastomatematiikka p.1/19 4.3 Varianssi Satunnaismuuttuja on neliöintegroituva, jos odotusarvo
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 26.9.2016 Pekka Alestalo,
LisätiedotJohdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1
Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2004) 1 Satunnaismuuttujien muunnokset ja niiden jakaumat Satunnaismuuttujien muunnosten jakaumat
LisätiedotTehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1
Tehtävä : Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: a) a) x b) e x + Integraali voisi ratketa muuttujanvaihdolla. Integroitava on muotoa (a x ) n joten sopiva muuttujanvaihto voisi olla
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kertausluento 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat:. Potenssisarjojen suppenemissäde, suppenemisväli ja suppenemisjoukko. 2. Derivaatan
Lisätiedot3. laskuharjoituskierros, vko 6, ratkaisut
Mat-.9 Sovellettu todennäköisyyslasku, kevät - eliövaara, Palo, Mellin. laskuharjoituskierros, vko 6, ratkaisut D. Uurnassa A on 4 valkoista ja 6 mustaa kuulaa ja uurnassa B on 6 valkoista ja 4 mustaa
Lisätiedot4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on
Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Otanta Poisson- Jakaumien tunnusluvut Diskreetit jakaumat Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen
Lisätiedot1. Jatketaan luentojen esimerkkiä 8.3. Oletetaan kuten esimerkissä X Y Bin(Y, θ) Y Poi(λ) λ y. f X (x) (λθ)x
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 017 Harjoitus 5 Ratkaisuehdotuksia Tehtäväsarja I 1. Jatketaan luentojen esimerkkiä 8.3. Oletetaan kuten esimerkissä X
LisätiedotMATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alustavat hyvän vastauksen piirteet on suuntaa-antava kuvaus kokeen tehtäviin odotetuista vastauksista ja tarkoitettu ensisijaisesti
LisätiedotSallitut apuvälineet: kirjoitusvälineet, laskin sekä käsinkirjoitettu, A4-kokoinen lunttilappu ja MAOL taulukkokirjaa
Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II. kurssikoe 18.1.15 Sallitut apuvälineet: kirjoitusvälineet, laskin sekä käsinkirjoitettu, A4-kokoinen lunttilappu ja MAOL taulukkokirjaa
Lisätiedot031021P Tilastomatematiikka (5 op) viikko 3
031021P Tilastomatematiikka (5 op) viikko 3 Jukka Kemppainen Mathematics Division Jakauman tunnusluvut Jakauman tärkeimmät tunnusluvut ovat odotusarvo ja varianssi. Odotusarvo ilmoittaa jakauman keskikohdan
LisätiedotBM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 7, Kevät 2018
BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 7, Kevät 2018 Tehtävä 8 on tällä kertaa pakollinen. Aloittakaapa siitä. 1. Kun tässä tehtävässä sanotaan sopii mahdollisimman hyvin, sillä tarkoitetaan
Lisätiedot2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet
Tilastotieteen jatkokurssi Sosiaalitieteiden laitos Harjoitus 5 (viikko 9) Ratkaisuehdotuksia (Laura Tuohilampi). Jatkoa HT 4.5:teen. Määrää E(X) ja D (X). E(X) = 5X p i x i =0.8 0+0.39 +0.4 +0.4 3+0.04
Lisätiedotr > y x z x = z y + y x z y + y x = r y x + y x = r
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Osoita, että avoin kuula on avoin joukko ja suljettu kuula on suljettu joukko. Ratkaisu.
Lisätiedot0 3 y4 dy = 3 y. 15x 2 ydx = 15. f Y (y) = 5y 4 1{0 y 1}.
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 18 Harjoitus Ratkaisuehdotuksia Tehtäväsar I 1. Satunnaismuuttujilla X Y on tkuva yhteiskauma yhteistiheysfunktiolla f
LisätiedotSatunnaisluvut, satunnaisvektorit ja niiden jakaumat
1A Satunnaisluvut, satunnaisvektorit ja niiden jakaumat Ensimmäisen harjoituksen tavoitteena on kerrata todennäköisyyden peruskäsitteitä, jotka ovat välttämättömiä stokastisten prosessien käsittelyssä.
Lisätiedot13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle
13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien
LisätiedotMatemaattinen Analyysi
Vaasan yliopisto, 009-010 / ORMS1010 Matemaattinen Analyysi 7 harjoitus 1 Määritä seuraavien potenssisarjojen suppenemissäteet a) k k x 5)k b) k=1 k x 5)k = k k 1) k ) 1) Suppenemissäteen R käänteisarvo
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 3. marraskuuta 2007 Antti Rasila () TodB 3. marraskuuta 2007 1 / 18 1 Varianssin luottamusväli, jatkoa 2 Bernoulli-jakauman odotusarvon luottamusväli 3
LisätiedotMS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
Lisätiedot8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa
8 Potenssisarjoista 8. Määritelmä Olkoot a 0, a, a 2,... reaalisia vakioita ja c R. Määritelmä 8.. Muotoa a 0 + a (x c) + a 2 (x c) 2 + olevaa sarjaa sanotaan c-keskiseksi potenssisarjaksi. Selvästi jokainen
LisätiedotH7 Malliratkaisut - Tehtävä 1
H7 Malliratkaisut - Tehtävä Eelis Mielonen 7. lokakuuta 07 a) Palautellaan muistiin Maclaurin sarjan määritelmä (Taylorin sarja origon ympäristössä): f n (0) f(x) = (x) n Nyt jos f(x) = ln( + x) saadaan
Lisätiedot1 Rajoittamaton optimointi
Taloustieteen matemaattiset menetelmät 7 materiaali 5 Rajoittamaton optimointi Yhden muuttujan tapaus f R! R Muistutetaan mieleen maksimin määritelmä. Funktiolla f on maksimi pisteessä x jos kaikille y
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 2 Lisää osamurtoja Tutkitaan jälleen rationaalifunktion P(x)/Q(x) integrointia. Aiemmin käsittelimme tapauksen, jossa nimittäjä voidaan esittää muodossa Q(x) = a(x x
LisätiedotMS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Normaaliapproksimaatio Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016
LisätiedotVastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:
. Koska F( ) on jokin funktion f ( ) integraalifunktio, niin a+ a f() t dt F( a+ t) F( a) ( a+ ) b( a b) Vastaus: Kertausharjoituksia. Lukujonot 87. + n + lim lim n n n n Vastaus: suppenee raja-arvona
LisätiedotYleistä tietoa kokeesta
Yleistä tietoa kokeesta Kurssikoe on pe 27.10. klo 12.00-14.30 (jossakin auditorioista). Huomaa tasatunti! Seuraava erilliskoe on ke 1.11 klo 16-20, johon ilmoittaudutaan Oodissa (ilmoittautumisaika erilliskokeeseen
LisätiedotMS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Satunnaismuuttujien summa ja keskihajonta Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
LisätiedotTodennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1
Todennäköisyyslaskun kertaus Vilkkumaa / Kuusinen 1 Satunnaismuuttujat ja todennäköisyysjakaumat Vilkkumaa / Kuusinen 2 Motivointi Kokeellisessa tutkimuksessa tutkittaviin ilmiöihin liittyvien havaintojen
LisätiedotKeskihajonta ja korrelaatio
Luku 4 Keskihajonta ja korrelaatio Lasse Leskelä Aalto-yliopisto 19. syyskuuta 2017 4.1 Jakauman varianssi ja keskihajonta Edellisessä luvussa opittiin, että satunnaismuuttujan odotusarvo on X:n jakauman
Lisätiedot4.1 Diskreetin satunnaismuuttujan odotusarvo
4 Odotusarvo Seuraavaksi kertaamme, miten satunnaismuuttujan odotusarvo (sv. väntevärde) määritellään diskreetissä ja jatkuvassa tapauksessa. Odotusarvolle käytetään englannikielisessä kirjallisuudessa
LisätiedotPoisson-prosessien ominaisuuksia ja esimerkkilaskuja
4B Poisson-prosessien ominaisuuksia ja esimerkkilaskuja Tuntitehtävät 4B1 Eksponentiaalisten odotusaikojen toistuva odottaminen. Satunnaisluvun X sanotaan noudattavan Gamma-jakaumaa parametrein k ja λ,
LisätiedotMat Sovellettu todennäköisyyslasku A
TKK / Systeemianalyysin laboratorio Nordlund Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 7 (vko 44/003) (Aihe: odotusarvon ja varianssin ominaisuuksia, satunnaismuuttujien lineaarikombinaatioita,
LisätiedotMatematiikan tukikurssi, kurssikerta 3
Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus
LisätiedotMatemaattisten tieteiden kandiohjelma / MTL Todennäköisyyslaskenta IIb Kurssikoe (kesto 2h 30 min)
Matemaattisten tieteiden kandiohjelma / MTL Todennäköisyyslaskenta IIb Kurssikoe 8..7 (kesto h 3 min) Sallitut apuvälineet: kirjoitusvälineet, laskin sekä käsinkirjoitettu, A4-kokoinen lunttilappu. Ei
LisätiedotWiener-prosessi: Tarkastellaan seuraavanlaista stokastista prosessia
Wiener-prosessi: Tarkastellaan seuraavanlaista stokastista prosessia { z(t k+1 ) = z(t k ) + ɛ(t k ) t t k+1 = t k + t, k = 0,..., N, missä ɛ(t i ), ɛ(t j ), i j ovat toisistaan riippumattomia siten, että
LisätiedotMat Sovellettu todennäköisyyslasku A
TKK / Systeemianalyysin laboratorio Nordlund Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 5 (vko 4/003) (Aihe: jatkuvia satunnaismuuttujia ja jakaumia, sekamalli, Laininen luvut 5.1 5.7, 6.1 6.3)
LisätiedotIlkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Moniulotteiset satunnaismuuttujat ja jakaumat
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Moniulotteiset satunnaismuuttujat ja jakaumat TKK (c) Ilkka Mellin (2006) 1 Moniulotteiset satunnaismuuttujat ja
Lisätiedot031021P Tilastomatematiikka (5 op) viikot 5 6
031021P Tilastomatematiikka (5 op) viikot 5 6 Jukka Kemppainen Mathematics Division Jakauman tunnusluvut Jakauman tärkeimmät tunnusluvut ovat odotusarvo ja varianssi. Odotusarvo ilmoittaa jakauman keskikohdan
Lisätiedot4.0.2 Kuinka hyvä ennuste on?
Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 9 Korkeamman asteen derivaatat Tutkitaan nyt funktiota f, jonka kaikki derivaatat on olemassa. Kuten tunnettua, funktion toista derivaattaa pisteessä x merkitään f (x).
LisätiedotKäytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella:
8.1 Satunnaismuuttuja Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: Esim. Nopanheitossa (d6) satunnaismuuttuja X kertoo silmäluvun arvon. a) listaa kaikki satunnaismuuttujan arvot b)
LisätiedotEpäyhtälöt ovat yksi matemaatikon voimakkaimmista
6 Epäyhtälöitä Epäyhtälöt ovat yksi matemaatikon voimakkaimmista työvälineistä. Yhtälö a = b kertoo sen, että kaksi ehkä näennäisesti erilaista asiaa ovat samoja. Epäyhtälö a b saattaa antaa keinon analysoida
Lisätiedot30A02000 Tilastotieteen perusteet
30A02000 Tilastotieteen perusteet Kertaus 1. välikokeeseen Lauri Viitasaari Tieto- ja palvelujohtamisen laitos Kauppatieteiden korkeakoulu Aalto-yliopisto Syksy 2019 Periodi I-II Sisältö Välikokeesta Joukko-oppi
Lisätiedot4. laskuharjoituskierros, vko 7, ratkaisut
4. laskuharjoituskierros, vko 7, ratkaisut D1. Kone valmistaa kuulalaakerin kuulia, joiden halkaisija vaihtelee satunnaisesti. Halkaisijan on oltava tiettyjen rajojen sisällä, jotta kuula olisi käyttökelpoinen.
LisätiedotV ar(m n ) = V ar(x i ).
Mat-.3 Stokastiset prosessit Syksy 007 Laskuharjoitustehtävät 6 Poropudas/Kokkala. Olkoon M n = X +... + X n martingaali ja M 0 = 0. Osoita, että V ar(m n ) = n V ar(x i ). i= Huomattavaa on, että muuttujia
LisätiedotTaylorin sarja ja Taylorin polynomi
Taylorin sarja ja 1 Potenssisarja c k (x a) k = f (x) määrittelee x:n funktion. Seuraavaksi toteamme mikä yhteys potenssisarjalla on sen määrittelemän funktion derivaattoihin f (a),f (a),f (a),f (3) (a),...
LisätiedotMS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi
LisätiedotMATP153 Approbatur 1B Harjoitus 5 Maanantai
MATP153 Approbatur 1B Harjoitus 5 Maanantai 30.11.015 1. (Opiskelutet. 0 s. 81.) Selvitä, miten lauseke sin(4x 3 + cos x ) muodostuu perusfunktioista (polynomeista, trigonometrisistä funktioista jne).
LisätiedotTodennäköisyyslaskun kertaus. Heliövaara 1
Todennäköisyyslaskun kertaus Heliövaara 1 Satunnaismuuttujat ja todennäköisyysjakaumat Heliövaara 2 Stunnaismuuttujat ja todennäköisyysjakaumat Jos satunnaisilmiötä halutaan mallintaa matemaattisesti,
LisätiedotJATKUVAT JAKAUMAT Laplace-muunnos (Laplace-Stieltjes-muunnos)
J. Virtamo 38.3143 Jonoteoria / Jatkuvat jakaumat 1 JATKUVAT JAKAUMAT Laplace-muunnos (Laplace-Stieltjes-muunnos) Määritelmä Ei-negatiivisen satunnaismuuttujan X 0, jonka tiheysfunktio on f(x), Laplace-muunnos
LisätiedotTilastollinen päättely II, kevät 2017 Harjoitus 1A
Tilastollinen päättely II, kevät 207 Harjoitus A Heikki Korpela 23. tammikuuta 207 Tehtävä. Kertausta todennäköisyyslaskennasta. Ilmoita satunnaismuuttujan Y jakauman nimi ja pistetodennäköisyys- tai tiheysfunktio
LisätiedotMATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai
MATP15 Approbatur 1B Ohjaus Keskiviikko 4.11. torstai 5.11.015 1. (Opiskeluteht. 6 s. 0.) Määritä sellainen vakio a, että polynomilla x + (a 1)x 4x a on juurena luku x = 1. Mitkä ovat tällöin muut juuret?.
Lisätiedotf(x 1, x 2 ) = x x 1 k 1 k 2 k 1, k 2 x 2 1, 0 1 f(1, 1)h 1 = h = h 2 1, 1 12 f(1, 1)h 1 h 2
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 7 Harjoitus 6 Ratkaisuehdotukset 6.. Olkoon f : G R, G = {(x, x ) R x > }, f(x, x ) = x x. Etsi differentiaalit d k f(, ), k =,,. Ratkaisu:
LisätiedotVI. TAYLORIN KAAVA JA SARJAT. VI.1. Taylorin polynomi ja Taylorin kaava
VI. TAYLORIN KAAVA JA SARJAT VI.. Taylorin polynomi ja Taylorin kaava Olkoon n N ja x, c, c, c 2,..., c n R. Tehtävä: Etsittävä sellainen R-kertoiminen polynomi P, että sen aste deg P n ja P (x ) = c,
LisätiedotIV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n
IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee
LisätiedotPerustehtävät. Kompleksitehtävät, 10/9/2005, sivu 1 / 10. Tehtävä 1. Sievennä 1.
Kompleksitehtävät, 10/9/2005, sivu 1 / 10 Perustehtävät Tehtävä 1. Sievennä 1. 2 5i 1+2i 2. ( 2 i 2) 150 Tehtävä 2. Olkoon P mielivaltainen reaalikertoiminen polynomi. Osoita, että jos luku z C toteuttaa
LisätiedotMatemaattinen Analyysi
Vaasan yliopisto, kevät 2015 / ORMS1010 Matemaattinen Analyysi 7. harjoitus, viikko 17 R1 ma 16 18 D115 (20.4.) R2 ke 12 14 B209 (22.4.) 1. Määritä funktiolle f (x) 1 + 0,1x Taylorin sarja kehityskeskuksena
LisätiedotMatematiikan ja tilastotieteen laitos Stokastiset differentiaaliyhtälöt Ratkaisuehdotelma Harjoitukseen 5
Matematiikan ja tilastotieteen laitos Stokastiset differentiaaliyhtälöt Ratkaisuehdotelma Harjoitukseen 5 1. Näytä, että X t := Bt 3 3tB t on martingaali Brownin liikkeen B historian suhteen. Ratkaisuehdotus:
LisätiedotTodennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 3. laskuharjoitus, ratkaisuehdotukset
Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 3. laskuharjoitus, ratkaisuehdotukset 1. Olkoon X satunnaismuuttuja, ja olkoot a R \ {0}, b R ja Y = ax + b. (a) Olkoon X diskreetti ja f sen pistetodennäköisyysfunktio.
LisätiedotMatemaattinen Analyysi
Vaasan yliopisto, syksy 2016 / ORMS1010 Matemaattinen Analyysi 8. harjoitus, viikko 49 R1 to 12 14 F453 (8.12.) R2 to 14 16 F345 (8.12.) R3 ke 8 10 F345 (7.11.) 1. Määritä funktion f (x) = 1 Taylorin sarja
LisätiedotSatunnaisluvut, satunnaisvektorit ja niiden jakaumat
1A Satunnaisluvut, satunnaisvektorit ja niiden jakaumat Ensimmäisen harjoituksen tavoitteena on kerrata todennäköisyyden peruskäsitteitä, jotka ovat välttämättömiä stokastisten prosessien käsittelyssä.
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 28. syyskuuta 2007 Antti Rasila () TodB 28. syyskuuta 2007 1 / 20 1 Jatkoa diskreeteille jakaumille Negatiivinen binomijakauma Poisson-jakauma Diskreettien
LisätiedotMATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M)
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus 7. 2. 2009 alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M) Luennoilla on nyt menossa vaihe, missä Hurri-Syrjäsen monistetta käyttäen tutustutaan
Lisätiedot3. Teoriaharjoitukset
3. Teoriaharjoitukset Demotehtävät 3.1 a Olkoot u ja v satunnaumuuttujia, joilla on seuraavat ominaisuudet: E(u = E(v = 0 Var(u = Var(v = σ 2 Cov(u, v = E(uv = 0 Näytä että deterministinen prosessi. x
LisätiedotTilastollinen päättely II, kevät 2017 Harjoitus 2A
Tilastollinen päättely II, kevät 07 Harjoitus A Heikki Korpela 3. tammikuuta 07 Tehtävä. (Monisteen tehtävä.3 Olkoot Y,..., Y n Exp(λ. Kirjoita vastaava tilastollisen mallin lauseke (ytf. Muodosta sitten
Lisätiedotinfoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1
infoa Viikon aiheet Tentti ensi viikolla ma 23.0. klo 9.00-3.00 Huomaa, alkaa tasalta! D0 (Sukunimet A-) E204 (Sukunimet S-Ö) Mukaan kynä ja kumi. Ei muuta materiaalia. Tentissä kaavakokoelma valmiina.
Lisätiedot, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä
Pitkä matematiikka 8.9.0, ratkaisut:. a) ( x + x ) = ( + x + x ) 6x + 6x = + 6x + 6x x = x =. b) Jos x > 0, on x = + x x = + x. Tällä ei ole ratkaisua. Jos x 0, on x = + x x = + x x =. c) x = x ( x) =
LisätiedotHarjoitus 2: Matlab - Statistical Toolbox
Harjoitus 2: Matlab - Statistical Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen tavoitteet Satunnaismuuttujat ja todennäköisyysjakaumat
LisätiedotH5 Malliratkaisut - Tehtävä 1
H5 Malliratkaisut - Tehtävä Eelis Mielonen 30. syyskuuta 07 a) 3a (ax + b)3/ + C b) a cos(ax + b) + C a) Tässä tehtävässä päästään harjoittelemaan lukiosta tuttua integrointimenetelmää. Ensimmäisessä kohdassa
LisätiedotMatematiikan tukikurssi: kurssikerta 12
Matematiikan tukikurssi: kurssikerta 2 Tenttiin valmentavia harjoituksia Huomio. Tähän tulee lisää ratkaisuja sitä mukaan kun ehin niitä kirjoittaa. Kurssilla käyään läpi tehtävistä niin monta kuin mahollista.
LisätiedotKertausluento. Tilastollinen päättely II - 2. kurssikoe
Kertausluento Tilastollinen päättely II - 2. kurssikoe Yleistä tietoa TP II -2. kurssikokeesta 2. kurssikoe maanantaina 6.5.2019 klo 12.00-14.30 jossakin Exactumin auditoriossa Kurssikokeeseen ilmoittaudutaan
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 18. lokakuuta 2007 Antti Rasila () TodB 18. lokakuuta 2007 1 / 19 1 Tilastollinen aineisto 2 Tilastollinen malli Yksinkertainen satunnaisotos 3 Otostunnusluvut
LisätiedotF(x) = 1. x x 0 + F(x) = F(x 0) kaikilla x 0 R.
Luku 5 Jatkuvat jakaumat Sellaiset suureet kuten esimerkiksi aika, lämpötila, pituus ja paino ajatellaan tavallisesti jatkuviksi muuttujiksi, ts. muuttujiksi, jotka voivat saada mitä tahansa reaaliarvoja
LisätiedotDiskreetin satunnaismuuttujan odotusarvo, keskihajonta ja varianssi
TOD.NÄK JA TILASTOT, MAA0 Diskreetin satunnaismuuttujan odotusarvo, keskihajonta ja varianssi Kuten tilastojakaumia voitiin esittää tunnuslukujen (keskiarvo, moodi, mediaani, jne.) avulla, niin vastaavasti
LisätiedotD ( ) E( ) E( ) 2.917
Mat-2.091 Sovellettu todennäköisyyslasku 4. harjoitukset/ratkaisut Aiheet: Diskreetit jakaumat Avainsanat: Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen jakauma, Kertymäfunktio,
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kertausta 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat: 1. Potenssisarjojen suppenemissäe, suppenemisväli ja suppenemisjoukko. 2. Derivaatan laskeminen
LisätiedotSekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä
Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja
LisätiedotMat Sovellettu todennäköisyyslasku A
TKK / Systeemianalyysin laboratorio Nordlund Mat-.9 Sovellettu todennäköisyyslasku A Harjoitus 3 (vko 4/3) (Aihe: tasainen todennäköisyysmalli, pistetodennäköisyysfunktio, tiheysfunktio, kertymäfunktio,
LisätiedotIlkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio TKK (c) Ilkka Mellin (2007) 1 Kertymäfunktio >> Kertymäfunktio: Määritelmä Diskreettien jakaumien
LisätiedotMAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen
MAT-5 Todennäköisyyslaskenta Tentti.. / Kimmo Vattulainen Vastaa jokainen tehtävä eri paperille. Funktiolaskin sallittu.. a) P A). ja P A B).6. Mitä on P A B), kun A ja B ovat riippumattomia b) Satunnaismuuttujan
LisätiedotMATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ
1 YLIOPPILASTUTKINTO- LAUTAKUNTA 25.9.2017 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän
Lisätiedot