infoa tavoitteet E = p2 2m kr2 Klassisesti värähtelyn amplitudi määrää kokonaisenergian Klassisesti E = 1 2 mω2 A 2 E = 1 2 ka2 = 1 2 mω2 A 2
|
|
- Niina Rantanen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 infoa tavoitteet Huomenna keskiviikkona ei ole luentoa. Oppikirjan lukujen lisäksi kotisivulla laajennettu luentomateriaali itse opiskeltavaksi Laskarit pidetään normaalisti. Ymmärrät mitä ovat mikrotilat ja makrotilat Tiedät mitä on entropia ja kuinka se liittyy lämpötilaan Tiedät mitä on Boltzmann-jakauma ja osaat soveltaa sitä harmoninen värähtelijä 1 harmoninen värähtelijä 2 E = p2 2m kr2 Klassisesti värähtelyn amplitudi määrää kokonaisenergian E = 1 2 ka2 = 1 2 mω2 A 2 Kvanttimekaaniikan mukaan harmonisen värähtelijän energia voi saada vain diskreettejä arvoja Klassisesti E = 1 2 mω2 A 2 Kvanttimekaniikan mukaan E = hω ( n + 1, 2) E = hω(n ), missä h = h/(2π) ja n = 0, 1, 2,
2 harmoninen värähtelijä Harmonisen värähtelijän energia, joka pääsee värähtelemään kolmessa ulottuvuudessa: E = 1 2 mv kr2 = 1 (v 2 m 2 x + v 2 y + v 2 z ( 1 = 2 mv2 x + 1 ) 2 kx2 + = E x + E y + E z ) k (x 2 + y 2 + z 2) ( 1 2 mv2 y + 1 ) ( 1 2 ky2 + 2 mv2 z + 1 ) 2 kz2 Mikäli eri akseleiden suuntaiset värähtelyt ovat riippumattomia, vastaa 3D harmoninen värähtelijä kolmea riippumatonta HV:ää. gallup 3D harmoninen värähtelijä on perustilassa. Värähtelijää voidaan mallintaa kolmena riippumattomana HV:nä, joiden energiat ovat E x = hω(n x ) E y = hω(n y ) E z = hω(n z ) Perustilassa n x = n y = n z = 0. Värähtelijälle syötetään ylimääräistä energiaa 1 hω verran. Minkä akselin suunnassa värähtelijä tämän jälkeen värähtelee? a) x b) y c) z d) muu vastaus e) ei osaa sanoa Vast: d) mikä tahansa gallup 5 statistista fyssaa 6 Mallinnetaan kolmessa ulottuvuudessa tasapainoasemansa ympärillä värähtelevää atomia kolmena riippumattomana HV:nä. Atomille syötetään energiaa 4 hω. Kuinka monella erilaisella tavalla nämä 4 energiakvanttia voidaan jakaa kolmen harmonisen värähtelijän kesken? a) 3 b) 4 c) 12 d) 15 e) muu vast. f) ei osaa sanoa Statistisen fysiikan perusoletus on, että kaikki MAKROTILAN mahdolliset MIKROTILAT yhtä todennäköisiä. Näin ollen kaikki 15 erilaista konfiguraatiota (=mikrotilaa) yhtä todennäköisiä, kun makrotila on sellainen, että systeemissä on yhteensä 4 energiakvanttia. Vast d) 7 8
3 gallup yhdistetyt systeemit Tarkastellaan kahta tasapainoasemansa ympäri värähtelevää atomia. Kumpikin atomi mallinetaan kolmella HV:llä. Yhdistetään atomit yhdeksi, 3+3 HV:n systeemiksi ja atomeille siirretään yhteensä 4 hω:n verran energiaa, eli neljä kvanttia. Lasketaan kaikki mahdolliset kombinaatiot: Kuinka nämä neljä kvanttia jakautuvat kahden osasysteemin kesken? a) = 0 ja q 2 = 4 b) = 1 ja q 2 = 3 c) = 2 ja q 2 = 2 d) = 3 ja q 2 = 1 e) = 4 ja q 2 = 0 f) muu vastaus g) ei osaa q 2 kpl 1 kpl 2 kpl 1 kpl gallup 9 yhdistetyt systeemit mikrotilojen jakauma Millä tavalla 4 kvanttia on todennäköisimmin jakautunut systeemien kesken? a) 0+4 b) 1+3 c) 2+2 d) 3+1 e) 4+0 f) ei osaa q 2 kpl 1 kpl 2 kpl 1 kpl mikrotilojen lkm Vast: c)
4 kombinatoriikkaa Mikrotilojen lukumäärä Ω, kun q kvanttia jaetaan N:n harmonisen värähtelijän kesken saadaan kombinatoriikasta Ω = (q + N 1)! q!(n 1)! (Siis kuinka monella tavalla q punaista palloa voidaan laittaa N:ään lootaan?) kombinatoriikkaa 1e+27 8e+26 6e+26 4e+26 2e e e e e Havaintoja Kahden identtisen systeemin kesken energiakvanttien lukumäärä jakautuu kaikkein todennäköisimmin tasan. Todennäköisyys, ettei kvanttien lukumäärä jakaudu tasan pienenee voimakkaasti kun siirrytään pois todennäköisimmästä arvosta. Voidaan osoittaa (HT), että jakauman leveys jakauman korkeus 1 todenn. arvo Makroskooppisissa systeemeissä, missä HV:n ja kvanttien lukumäärät ovat suuruusluokkaa on jakauma suhteellisesti erittäin kapea. Näin ollen makroskooppisissa systeemeissä havaitaan poikkeuksetta vain jakauman todennäköisin arvo gallup Osasysteemissä 1 on 300 kpl HV ja 90 kvanttia. Osasysteemissä 2 on 200 kpl HV ja vain 10 kvanttia. Näistä muodostetaan yhdistetty systeemi. Miten yhteensä 100 kvanttia ovat tasapainossa jakautuneet kahden osasysteemin kesken? a) noin b) suunnilleen c) kutakuinkin d) muu vastaus e) ei osaa sanoa Vast: d) *todennäköisimmin* 60+40, mutta myös muita mahdollisia tiloja 14 16
5 Yhdistetyn systeemin mikrotilojen lukumäärän jakauma 7e+114 6e+114 5e+114 4e+114 3e+114 2e+114 entropia Mikrotilojen määrä Ω muuttuu tähtitieteellisen suureksi jo varsin pienillä systeemeillä. Järjellisempiin suuruuksiin päästään käsittelemällä mikrotilojen lukumäärän logaritmia. Apusuure ENTROPIA määritellään S = k B ln Ω missä k B on Boltzmannin vakio k B 1, J/K. 1e todennäköisyydet ja termodynamiikka 18 7e+114 6e+114 5e+114 4e+114 3e+114 2e+114 1e Mikrotilojen lkm k B 100k B Entropia Tarkastellaan vielä samaa HV:n systeemiä johon heitetään 100 kvanttia. Osa kvanteista (vaikkapa 90) on isomassa osasysteemissä ja pieni osa (10 kpl) on pienessä systeemissä. Osasysteemit vuorovaikuttavat keskenään siten, että ne voivat vapaasti vaihdella kvantteja keskenään. Esim. pienen systeemin eräs HV potkaisee ison systeemin jonkin HV:n liikkeelle itse pysähtyen. Näin yhden kvantin verran energiaa siirtyy pienestä suurempaan osasysteemiin. Jonkin ajan kuluttua kurkataan systeemin ja tehdään mittauksia kvanttien jakautumisesta. Tulokseksi saadaan, että useimmissa mittauksissa kvantit ovat jakautuneet osasysteemien koon suhteessa, 3:
6 todennäköisyydet ja termodynamiikka Miksi näin? Koska kvantteja osasysteemit voivat jakaa täysin vapaasti. Tämä tarkoittaa että kaikki mikrotilat ovat yhtä todennäköisiä. Se, että kaikki kvantit ovat isossa osasysteemissä on yhtä todennäköinen, kuin kaikki ne konfiguraatiot, jossa isolla on 60 ja pienellä 40 kvanttia. Mutta tuota edellistä makrotilaa vastaa vain 1 mikrotila, kun taas jälkimmäistä makrotilaa vastaa n erillaista mikrotilaa. Joten jos valitaan umpimähkään jokin mikrotila, niin lähes poikkeuksetta tulee valituksi mikrotila jota on paljon ja siksi myös tätä vastaava makrotila. todennäköisyydet ja termodynamiikka Siis ihan sama, kuinka kvantit ovat aluksi jakautuneet. Kvanttien vapaasti vaihtamisen takia systeemi hakeutuu makrotilaan, jossa osasysteemien kvanttien lkm. ovat jakautuneet suhteessa 3:2, koska tämä vastaa tilaa, jossa koko systeemin mikrotilojen lkm on kaikken suurimmillaan. Tämä tarkoittaa myös, että entropia on tässä makrotilassa kaikkein suurimmillaan. Systeemi siis näyttää luonnollisesti päätyvän sellaiseen makrotilaan, jossa entropia saa maksiminsa. Vertaa tätä termodynamiikan II pääsääntöön: (jonka eräs muoto sanoo) suljetun systeemin entropia kasvaa (tai pysyy vakiona). Mikrotilojen lukumäärän laskeminen 21 Entropia on additiivinen suure 22 Kombinatoriikasta osasysteemien lukumäärät saadaan mikrotilojen Ω = Ω 1 Ω 2 S = k B ln Ω = k B ln ( ) Ω 1 Ω 2 S = k B ln Ω 1 + k B ln Ω 2 S = S 1 + S 2 Ω 1 = ( + 299)!!299! Ω 2 = (q )! q 2!199! 200k B S tot S 1 missä + q 2 = 100. Koko systeemin mikrotilojen lukumäärä on 100k B S 2 Ω = Ω 1 Ω
7 tasapainoehto Todennäköisimmässä tilassa mikrotilojen lkm:llä maksimi, joten myös entropialla on maksimi ds = d (S 1 + S 2 ) = 0 d d ds 1 d = ds 2 d S tot tasapainoehto Koska kvanttien kokonaismäärä oli vakio + q 2 = 100 saadaan d = dq 2. Näin ollen kun systeemi on kaikkein todennäköisimmässä tilassa (S:n maksimi) on ds 1 d = ds 2 dq 2 200k B 100k B S 1 S 2 Kummankin osasysteemin derivaatta kvanttiensa lkm:n suhteen on yhtä suuri. gallup lämpötila 26 Mikä fysikaalinen suure olisi kahdella osasysteemillä yhtä suuri, kun niiden yhdistelmä saavuttaa tasapainotilan? Tällöin molemmissa systeemeissä kvanttien lkm / värähtelijä on kutakuinkin yhtä suuri. Lämpötila määritellään a) tiedämme (ja haluamme kertoa) b) tiedämme (mutta emme kerro) c) ei tietoa 1 T = ds de 27 28
8 todennäköisyydet ja termodynamiikka 2 todennäköisyydet ja termodynamiikka 2 Lämpötila siis näyttää mittaavan sitä, kuinka paljon systeemin entropia muuttuu, kun systeemin energiasisältöä muutetaan. 1 T = ds de Tilassa, jossa yhdistetyn systeemin entropia on suurimmillaan on välttämättä osasysteemien lämpötilat samat, sillä ds 1 = ds 2 de 1 de 2 Systeemin kaikki mikrotilat yhtä todennäköisiä Systeemi havaitaan makrotilassa, jota vastaavia mikrotiloja eniten Systeemin entropia suurimmillaan tässä makrotilassa Entropian maksimi edellyttää, että osasysteemien lämpötilat ovat yhtä suuria Osasysteemien lämpötilat tasoittuvat lämpötasapaino Huomaa, että tätä päättelyketjua voi kulkea kumpaan suuntaan tahansa: Mikrotilojen yhtenäinen todennäköisyys ennustaa, että lämpötilat pitäisi tasoittua tai lämpötilojen havaittu tasaantuminen kertoo siitä, että mikrotasolla kaikki mikrotilat yhtä todennäköisiä. energian jakauma lämpötasapainossa 29 Pieni = 3 HV, Iso = 97 HV, yhteensä 1000 kvanttia Iso systeemi on eristetty ympäristöstään ja sen lämpötila on T. Tarkastellaan pientä osasysteemiä. Miten energia jakautuu pienen ja suuren systeemin kesken? Entropia / k S 3 HV S 97 HV Stot S 97HV approksimaatio Stot approksimaatio Pienen systeemin kvanttien lkm 31 32
9 energiajakauma lämpötasapainossa energiajakauma lämpötasapainossa Idea: Ison systeemin (=lämpökylpy) entropia riippuu lineaarisesti pienen systeemin energiasta E, kun E 0. Systeemin entropiassa S tot = S pieni (E) + S iso (E tot E) voidaan ison systeemin entropia kehittää Taylorin sarjaksi S tot = S pieni (E) + S iso (E tot ) S iso E E S tot = S pieni (E) + S iso (E tot ) E }{{} T vakio Esittämällä entropiatermit mikrotilojen lukumäärän avulla k B ln Ω = k B ln Ω pieni (E) + k B ln Ω iso (E tot ) E }{{} T vakio ln Ω = ln (vakio ) Ω pieni (E)e E/k BT Boltzmannin jakauma Näin päädytään tulokseen, jonka mukaan todennäköisyys, että lämpötilassa T pienen systeemin energia on E on p(e) = C Ω(E)e E/k BT missä C on vakio. Monesti Ω(E) on likipitäen vakio tai jokin polynomifunktio (riippuu systeemistä). Eksponenttifunktion ja Ω:n tulolla on maksimi, tämä on energian todennäköisin arvo. Todennäköisyys sille, että pienen osasysteemin energia E on paljon suurempi kuin k B T on hyvin pieni, sillä eksponenttifunktio on tällöin hyvin pieni. e E/k BT 0 kun E k B T Pieni = 3 HV, Iso = 97 HV, yhteensä 1000 kvanttia Omega 1e Omega_tot Omega_tot approksimaatio Pienen systeemin kvanttien lkm 34 36
10 gallup Happimolekyylit (=HV) ovat termisessä tasapainossa luokkahuoneessa. Luokkahuoneen lämpötilassa k B T 25 mev. Happimolekyylin värähtelytilojen energiat ovat E vib = hω ( n + 1 2), missä hω 190 mev. Valitset satunnaisen happimolekyylin tutkit sen värähtelyä. Havaitset, että happimolekyyli a) ei värähtele b) värähtelee vähän c) värähtelee paljon d) ei osaa sanoa Vast: b). Boltzmannin todennäköisyyden avulla voidaan arvioida perus- ja ensimmäisen viritystilan suhteellinen todennäköisyys p(e 1 )/p(e 0 ) e (E 1 E 0 )/k B T e 190/
Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1
76628A Termofysiikka Harjoitus no. 4, ratkaisut (syyslukukausi 204). (a) Systeemi koostuu neljästä identtisestä spin- -hiukkasesta. Merkitään ylöspäin olevien spinien lukumäärää n:llä. Systeemin mahdolliset
Lisätiedotkertausta edellisestä seuraa, että todennäköisimmin systeemi löydetään sellaisesta mikrotilasta, jollaisia on
tavoitteet kertausta Tiedät mitä on Boltzmann-jakauma ja osaat soveltaa sitä Ymmärrät miten päädytään kaasumolekyylien nopeusjakaumaan Ymmärrät kuinka voidaan arvioida hiukkasen vapaa matka Kaikki mikrotilat,
Lisätiedotkertausta Boltzmannin jakauma infoa Ideaalikaasu kertausta Maxwellin ja Boltzmannin vauhtijakauma
infoa kertausta Boltzmannin jakauma Huomenna itsenäisyyspäivänä laitos on kiinni, ei luentoa, ei laskareita. Torstaina laboratoriossa assistentit neuvovat myös laskareissa. Ensi viikolla tiistaina vielä
Lisätiedot6. Yhteenvetoa kurssista
Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2016 6. Yhteenvetoa kurssista 1 Keskeisiä käsitteitä I Energia TD1, siirtyminen lämpönä
Lisätiedot1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta
766328A Termofysiikka Harjoitus no. 5, ratkaisut syyslukukausi 204). Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta E n n + ) ω, n 0,, 2,... 2 a) Oskillaattorin partitiofunktio
LisätiedotPHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 7: Ekvipartitioteoreema, partitiofunktio ja ideaalikaasu Ke 16.3.2016 1 KURSSIN
LisätiedotFYSA242 Statistinen fysiikka, Harjoitustentti
FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 1: Lämpötila ja Boltzmannin jakauma Ke 24.2.2016 1 YLEISTÄ KURSSISTA Esitietovaatimuksena
LisätiedotPotentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa
Potentiaalikuoppa Luento 9 Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa U( x ) = U U( x ) = 0 0 kun x < 0 tai x > L, kun 0 x L. Kuopan kohdalla hiukkanen on vapaa,
LisätiedotENY-C2001 Termodynamiikka ja lämmönsiirto Luento 8 /
ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 8 / 7.11.2016 v. 02 / T. Paloposki Tämän päivän ohjelma: Sisäenergia (kertaus) termodynamiikan 1. pääsääntö Entropia termodynamiikan 2. pääsääntö 1 Termodynamiikan
LisätiedotLuento 8 6.3.2015. Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit
Luento 8 6.3.2015 1 Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit Entrooppiset voimat 3 2 0 0 S k N ln VE S, S f ( N, m) 2 Makroskooppisia voimia, jotka syntyvät pyrkimyksestä
LisätiedotVoima ja potentiaalienergia II Energian kvantittuminen
Voima ja potentiaalienergia II Energian kvantittuminen Mene osoitteeseen presemo.helsinki.fi/kontro ja vastaa kysymyksiin Tavoitteena tällä luennolla Miten määritetään voima kun potentiaalienergia U(x,y,z)
LisätiedotLuento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r
Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic
Lisätiedot3. Statistista mekaniikkaa
Statistinen fysiikka, osa A (FYSA241) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2013 3. Statistista mekaniikkaa 1 Mikrotilojen laskenta Kvanttimekaniikka: diskreetit
LisätiedotBiofysiikka Luento Entropia, lämpötila ja vapaa energia. Shannonin entropia. Boltzmannin entropia. Lämpötila. Vapaa energia.
Biofysiikka Luento 7 1 6. Entropia, lämpötila ja vapaa energia Shannonin entropia Boltzmannin entropia M I NK P ln P S k B j1 ln j j Lämpötila Vapaa energia 2 Esimerkkiprobleemoita: Miten DNA-sekvenssistä
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 Emppu Salonen Lasse Laurson Toni Mäkelä Touko Herranen Luento 1: lämpötila, Boltzmannin jakauma Ke 22.2.2017 1 Richard Feynmanin miete If,
LisätiedotEkvipartitioteoreema. Entropia MB-jakaumassa. Entropia tilastollisessa mekaniikassa
Ekvipartitioteoreema lämpötilan ollessa riittävän korkea, kukin molekyylin liikkeen vapausaste tuo energian ½ kt sekä keskimääräiseen liike-energiaan ja kineettiseen energiaan energian lisäys ja riittävän
LisätiedotEkvipartitioteoreema
Ekvipartitioteoreema lämpötilan ollessa riittävän korkea, kukin molekyylin liikkeen vapausaste tuo energian ½ kt sekä keskimääräiseen liike-energiaan ja kineettiseen energiaan energian lisäys ja riittävän
Lisätiedot3. Statistista mekaniikkaa
FYSA241, kevät 2012 Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2012 3. Statistista mekaniikkaa 1 Mikrotilojen laskenta Muistelua johdanto-osasta: Kvanttimekaniikassa
Lisätiedot766328A Termofysiikka Harjoitus no. 10, ratkaisut (syyslukukausi 2014)
7668A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 4). Johdetaan yksiatomisen klassisen ideaalikaasun kemiallisen potentiaalin µ(t,, N) lauseke. (a) Luentojen yhtälön mukaan kemiallinen potentiaali
Lisätiedot1 Eksergia ja termodynaamiset potentiaalit
1 PHYS-C0220 Termodynamiikka ja statistinen fysiikka, kevät 2017 Emppu Salonen 1 Eksergia ja termodynaamiset potentiaalit 1.1 Suurin mahdollinen hyödyllinen työ Tähän mennessä olemme tarkastelleet sisäenergian
LisätiedotEntrooppiset voimat. Entrooppiset voimat Vapaan energian muunnoksen hyötysuhde Kahden tilan systeemit
Entrooppiset voimat Entrooppiset voimat Vapaan energian muunnoksen hyötysuhde Kahden tilan systeemit Entrooppiset voimat 3 2 0 0 S k N ln VE S, S f ( N, m) Makroskooppisia voimia, jotka syntyvät pyrkimyksestä
LisätiedotSuurkanoninen joukko
Suurkanoninen joukko Suurkanonisessa joukossa systeemi on kanonisen joukon tavoin yhdistettynä lämpökylpyyn, mutta nyt systeemin ja kylvyn väliset (kuvitellut) seinät läpäisevät energian lisäksi myös hiukkasia
LisätiedotFysiikan maailmankuva 2015 Luento 8. Aika ja ajan nuoli lisää pohdiskelua Termodynamiikka Miten aika ja termodynamiikka liittyvät toisiinsa?
Fysiikan maailmankuva 2015 Luento 8 Aika ja ajan nuoli lisää pohdiskelua Termodynamiikka Miten aika ja termodynamiikka liittyvät toisiinsa? Ajan nuoli Aika on mukana fysiikassa niinkuin jokapäiväisessä
Lisätiedot3. Statistista mekaniikkaa
Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2016 3. Statistista mekaniikkaa 1 Mikrotilojen laskenta Kvanttimekaniikka: diskreetit
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 4: Entropia Pe 4.3.2016 1 AIHEET 1. Klassisen termodynamiikan entropia 2. Entropian
Lisätiedot5.10. HIUKKANEN POTENTIAALIKUOPASSA
5.10. HIUKKANEN POTENTIAALIKUOPASSA eli miten reunaehdot ja normitus vaikuttavat aaltofunktioihin Yleensä Schrödingerin yhtälön ratkaiseminen matemaattisesti on hyvin työlästä ja edellyttää vahvaa matemaattista
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 Emppu Salonen Lasse Laurson Toni Mäkelä Touko Herranen Luento 4: entropia Pe 3.3.2017 1 Aiheet tänään 1. Klassisen termodynamiikan entropia
LisätiedotLämmityksen lämpökerroin: Jäähdytin ja lämmitin ovat itse asiassa sama laite, mutta niiden hyötytuote on eri, jäähdytyksessä QL ja lämmityksessä QH
Muita lämpökoneita Nämäkin vaativat työtä toimiakseen sillä termodynamiikan toinen pääsääntö Lämpökoneita ovat lämpövoimakoneiden lisäksi laitteet, jotka tekevät on Clausiuksen mukaan: Mikään laite ei
Lisätiedot6. Entropia, lämpötila ja vapaa energia
6. Entropia, lämpötila a vapaa energia 1 Luento 6 24.2.2017: Shannonin entropia M I NK P ln P 1 Boltzmannin entropia S k B ln Lämpötila Vapaa energia 2 Probleemoita: Miten DNA-sekvenssistä määräytyvän
LisätiedotMuita lämpökoneita. matalammasta lämpötilasta korkeampaan. Jäähdytyksen tehokerroin: Lämmityksen lämpökerroin:
Muita lämpökoneita Nämäkin vaativat ovat työtälämpövoimakoneiden toimiakseen sillä termodynamiikan pääsääntö Lämpökoneita lisäksi laitteet,toinen jotka tekevät on Clausiuksen mukaan: laiteilmalämpöpumppu
LisätiedotStatistinen fysiikka, osa A (FYSA241)
Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2016 1 Ajat, paikat 0. Käytännön asioita Ajan tasalla olevat tiedot kurssin kotisivulta
LisätiedotPHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 206 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 2: BE- ja FD-jakaumat, kvanttikaasut Pe 5.4.206 AIHEET. Kvanttimekaanisesta vaihtosymmetriasta
LisätiedotStatistinen fysiikka, osa A (FYSA241)
Statistinen fysiikka, osa A (FYSA241) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2013 0. Käytännön asioita 1 Ajat, paikat Ajan tasalla olevat tiedot kurssin kotisivulta
LisätiedotZ 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2
766328A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 24). Klassisen ideaalikaasun partitiofunktio on luentojen mukaan Z N! [Z (T, V )] N, (9.) missä yksihiukkaspartitiofunktio Z (T, V ) r e βɛr.
LisätiedotTILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH 5.1-5.3) Mikrotilat (kertausta Kvanttimekaniikan kurssilta)
TILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH 5.1-5.3) Mikrotilat (kertausta Kvanttimekaniikan kurssilta) Kvanttimekaniikassa yhden hiukkasen systeemin täydellisen kuvauksen antaa tilavektori, joka on
Lisätiedot1. Johdanto. FYSA241, kevät Tuomas Lappi kl Huone: FL249. Ei kiinteitä vastaanottoaikoja.
FYSA241, kevät 2012 Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2012 1. Johdanto 1 Ajat, paikat Luennot: 20h ma, ke klo 10.15, FYS1,, 9.1.-22.2 Demot: 10h, ke
LisätiedotVärähdysliikkeet. q + f (q, q, t) = 0. q + f (q, q) = F (t) missä nopeusriippuvuus kuvaa vaimenemista ja F (t) on ulkoinen pakkovoima.
Torstai 18.9.2014 1/17 Värähdysliikkeet Värähdysliikkeet ovat tyypillisiä fysiikassa: Häiriö oskillaatio Jaksollinen liike oskillaatio Yleisesti värähdysliikettä voidaan kuvata yhtälöllä q + f (q, q, t)
Lisätiedot= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]
766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan
LisätiedotPakotettu vaimennettu harmoninen värähtelijä Resonanssi
Pakotettu vaimennettu harmoninen värähtelijä Resonanssi Tällä luennolla tavoitteena Mikä on pakkovoiman aiheuttama vaikutus vaimennettuun harmoniseen värähtelijään? Mikä on resonanssi? Kertaus: energian
Lisätiedot7 Termodynaamiset potentiaalit
82 7 ermodynaamiset potentiaalit 7-1 Clausiuksen epäyhtälö Kappaleessa 4 tarkasteltiin Clausiuksen entropiaperiaatetta, joka määrää eristetyssä systeemissä (E, ja N vakioita) tapahtuvien prosessien suunnan.
LisätiedotBM30A0240, Fysiikka L osa 4
BM30A0240, Fysiikka L osa 4 Luennot: Heikki Pitkänen 1 Oppikirja: Young & Freedman: University Physics Luku 14 - Periodic motion Luku 15 - Mechanical waves Luku 16 - Sound and hearing Muuta - Diffraktio,
Lisätiedot8. Klassinen ideaalikaasu
Statistinen fysiikka, osa B (FYSA242) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL240. Ei kiinteitä vastaanottoaikoja. kl 2016 8. Klassinen ideaalikaasu 1 Fysikaalinen tilanne Muistetaan: kokeellisesti
LisätiedotTämän päivän ohjelma: ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 7 /
ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 7 / 30.10.2017 v. 03 / T. Paloposki Tämän päivän ohjelma: Entropia Termodynamiikan 2. pääsääntö Palautuvat ja palautumattomat prosessit 1 Entropia Otetaan
LisätiedotLuento 8. Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli. Sähkönjohtavuus Druden malli
Luento 8 Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli Sähkönjohtavuus Druden malli Klassiset C V -mallit Termodynamiikka kun Ei ennustetta arvosta! Klassinen
LisätiedotKemiallinen reaktio
Kemiallinen reaktio REAKTIOT JA ENERGIA, KE3 Johdantoa: Syömme elääksemme, emme elä syödäksemme! sanonta on totta. Kun elimistömme hyödyntää ravintoaineita metaboliassa eli aineenvaihduntareaktioissa,
Lisätiedotkertausta kertausta tavoitteet gallup
kertausta kertausta Kahden kappaleen keskeisliikkeessä havaittiin, että E = K + U ja L ovat vakioita. Yhdistämällä yo. säilyvät suureet ja muokkaamalla ongelma yksiulotteiseksi havaittiin, että ratakäyrä
LisätiedotSuurkanoninen joukko
Suurkanoninen joukko Suurkanonisessa joukossa systeemi on kanonisen joukon tavoin yhdistettynä lämpökylpyyn, mutta nyt systeemin ja kylvyn väliset (kuvitellut) seinät läpäisevät energian lisäksi myös hiukkasia
LisätiedotLuento 11: Periodinen liike
Luento 11: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r Konseptitesti 1 Tehtävänanto Kuvassa on jouseen kytketyn massan sijainti ajan funktiona. Kuvaile
LisätiedotLuento 13: Periodinen liike
Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos Ajankohtaista
LisätiedotKorkeammat derivaatat
Korkeammat derivaatat Jo kerran derivoitu funk6o voidaan derivoida uudelleen. d! df(x) $ dx " # dx % & = d2 f(x) = f''(x) = f (2) (x) dx 2 Yleisemmin merkitään: d n f(x) dx n = f (n) (x) Esimerkki: 2-
LisätiedotLuento 11: Periodinen liike
Luento 11: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä θ F t m g F r Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä Johdanto Tarkastellaan
LisätiedotWien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33:
1.2 T=12000 K 10 2 T=12000 K 1.0 Wien R-J 10 0 Wien R-J B λ (10 15 W/m 3 /sterad) 0.8 0.6 0.4 B λ (10 15 W/m 3 /sterad) 10-2 10-4 10-6 10-8 0.2 10-10 0.0 0 200 400 600 800 1000 nm 10-12 10 0 10 1 10 2
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 Emppu Salonen Lasse Laurson Toni Mäkelä Touko Herranen Luento 2: kineettistä kaasuteoriaa Pe 24.2.2017 1 Aiheet tänään 1. Maxwellin ja Boltzmannin
LisätiedotLuku 23. Esitiedot Työ, konservatiivinen voima ja mekaaninen potentiaalienergia Sähkökenttä
Luku 23 Tavoitteet: Määritellä potentiaalienergia potentiaali ja potentiaaliero ja selvittää, miten ne liittyvät toisiinsa Määrittää pistevarauksen potentiaali ja sen avulla mielivaltaisen varausjakauman
LisätiedotMustan kappaleen säteily
Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi
LisätiedotKerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten)
Noste Ympyräliike I Luennon tavoitteet Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten) Aloitetaan ympyräliikettä Keskeisvoiman
LisätiedotPHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 9: Fotonit ja relativistiset kaasut Ke 30.3.2016 1 AIHEET 1. Fotonikaasun termodynamiikkaa.
LisätiedotChapter 3. The Molecular Dance. Luento Terminen liike Kineettinen kaasuteoria Boltzmann-jakauma Satunnaiskävely
Chapter 3. The Molecular Dance 1 Luento 15.1.016 Terminen liike Kineettinen kaasuteoria Boltzmann-jakauma Satunnaiskävely Chapter 3. The Molecular Dance Solut: Korkeasti järjestyneitä systeemeitä Terminen
LisätiedotAikariippuva Schrödingerin yhtälö
Aineaaltodynamiikka Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit Aikariippuva Schrödingerin
LisätiedotPHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 8: Kemiallinen potentiaali, suurkanoninen ensemble Pe 18.3.2016 1 AIHEET 1. Kanoninen
Lisätiedotvetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen
DEE-5400 olttokennot ja vetyteknologia olttokennon termodynamiikkaa 1 DEE-5400 Risto Mikkonen ermodynamiikan ensimmäinen pääsääntö aseraja Ympäristö asetila Q W Suljettuun systeemiin tuotu lämpö + systeemiin
LisätiedotKorkeammat derivaatat
Korkeammat derivaatat Jo kerran derivoitu funk1o voidaan derivoida uudelleen. d df(x) dx dx = d2 f(x) dx 2 = f''(x) = f 2 (x) Yleisemmin merkitään: d n f(x) dx n = f n (x) Esimerkki: 2 atominen molekyyli
LisätiedotOikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö:
A1 Seppä karkaisee teräsesineen upottamalla sen lämpöeristettyyn astiaan, jossa on 118 g jäätä ja 352 g vettä termisessä tasapainossa Teräsesineen massa on 312 g ja sen lämpötila ennen upotusta on 808
LisätiedotEkvipartitioperiaatteen mukaisesti jokaiseen efektiiviseen vapausasteeseen liittyy (1 / 2)kT energiaa molekyyliä kohden.
. Hiilidioksidiolekyyli CO tiedetään lineaariseksi a) Mitkä ovat eteneisliikkeen, pyöriisliikkeen ja värähtelyn suuriat ekvipartitioperiaatteen ukaiset läpöenergiat olekyyliä kohden, kun kaikki vapausasteet
LisätiedotIX TOINEN PÄÄSÄÄNTÖ JA ENTROPIA...208
IX OINEN PÄÄSÄÄNÖ JA ENROPIA...08 9. ermodynaamisen systeemin pyrkimys tasapainoon... 08 9. ermodynamiikan toinen pääsääntö... 0 9.3 Entropia termodynamiikassa... 0 9.3. Entropian määritelmä... 0 9.3.
LisätiedotDifferentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle /
Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle / 16. 18.5. Lineaariset differentiaaliyhtälöt, homogeeniset differentiaaliyhtälöt Tehtävä 1: a) Määritä differentiaaliyhtälön y 3y = 14e 4x
LisätiedotH7 Malliratkaisut - Tehtävä 1
H7 Malliratkaisut - Tehtävä Eelis Mielonen 7. lokakuuta 07 a) Palautellaan muistiin Maclaurin sarjan määritelmä (Taylorin sarja origon ympäristössä): f n (0) f(x) = (x) n Nyt jos f(x) = ln( + x) saadaan
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän
Lisätiedot4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.
K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy
LisätiedotPHYS-A0120 Termodynamiikka syksy 2016
PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 4: Entropia Maanantai 21.11. ja tiistai 22.11. Ideaalikaasun isoterminen laajeneminen Kaasuun tuodaan määrä Q lämpöä......
LisätiedotLiikemäärän säilyminen Vuorovesivoimat Jousivoima
Liikemäärän säilyminen Vuorovesivoimat Jousivoima Tämän luennon tavoitteet Liikemäärän säilyminen Vuorovesivoimat ja binomiapproksimaatio gravitaatio jatkuu viime viikolta Jousivoima: mikä se on ja miten
LisätiedotEsimerkki 1 Ratkaise differentiaaliyhtälö
Esimerkki 1 Ratkaise differentiaaliyhtälö x 2 y xy =1/x. 1 / K. Tuominen kimmo.i.tuominen@helsinki.fi MApu II 1/20 20 Esimerkki 2 Ratkaise differentiaaliyhtälö x(ln y)y y ln x =0. 2 / K. Tuominen kimmo.i.tuominen@helsinki.fi
LisätiedotLuento 14: Periodinen liike, osa 2. Vaimennettu värähtely Pakkovärähtely Resonanssi F t F r
Luento 14: Periodinen liike, osa 2 Vaimennettu värähtely Pakkovärähtely Resonanssi θ F µ F t F r m g 1 / 20 Luennon sisältö Vaimennettu värähtely Pakkovärähtely Resonanssi 2 / 20 Vaimennettu värähtely
Lisätiedot811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2018-2019 7. Kombinatoriikka 7.1 Johdanto Kombinatoriikka tutkii seuraavan kaltaisia kysymyksiä: Kuinka monella tavalla jokin toiminto voidaan suorittaa? Kuinka monta tietynlaista
LisätiedotPHYS-A0120 Termodynamiikka syksy 2016
PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 6: Faasimuutokset Maanantai 5.12. Kurssin aiheet 1. Lämpötila ja lämpö 2. Työ ja termodynamiikan 1. pääsääntö 3. Lämpövoimakoneet
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 5: Termodynaamiset potentiaalit Ke 9.3.2016 1 AIHEET 1. Muut työn laadut sisäenergiassa
LisätiedotUseita oskillaattoreita yleinen tarkastelu
Useita oskillaattoreita yleinen tarkastelu Useita riippumattomia vapausasteita q i, i =,..., n ja potentiaali vastaavasti U(q, q 2,..., q n). Tasapainoasema {q 0, q0 2,..., q0 n} q 0 Käytetään merkintää
LisätiedotLämpöopin pääsäännöt. 0. pääsääntö. I pääsääntö. II pääsääntö
Lämpöopin pääsäännöt 0. pääsääntö Jos systeemit A ja C sekä B ja C ovat termisessä tasapainossa, niin silloin myös A ja B ovat tasapainossa. Eristetyssä systeemissä eri lämpöiset kappaleet asettuvat lopulta
Lisätiedot2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 208 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I. Satunnaismuuttuja U Exp(2) ja V = U/(3 + U). Laske f V käyttämällä muuttujanvaihtotekniikkaa.
LisätiedotNyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot
S-1146 Fysiikka V (ES) Tentti 165005 1 välikokeen alue 1 a) Rubiinilaserin emittoiman valon aallonpituus on 694, nm Olettaen että fotonin emissioon tällä aallonpituudella liittyy äärettömän potentiaalikuopan
Lisätiedot1. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden heittojen lukumäärä, joilla tuli 1, 2, 3 tai 4.
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 206 Kurssikoe 28.0.206 Ratkaisuehdotuksia. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden
LisätiedotIdeaalikaasulaki johdettuna mikroskooppisen tarkastelun perusteella! Lämpötila vaikuttaa / johtuu molekyylien kineettisestä energiasta
HYS-A00 Termodynamiikka (TFM), Luentomuistiinpanot Luennot 7-8, kertaus, mitkä olivat oppimistavoitteet? Kineettinen kaasuteoria Oletukset: - kaasun tiheys on riittävän suuri - molekyylin koko on paljon
Lisätiedot. Veden entropiamuutos lasketaan isobaariselle prosessille yhtälöstä
LH- Kilo vettä, jonka lämpötila on 0 0 asetetaan kosketukseen suuren 00 0 asteisen kappaleen kanssa Kun veden lämpötila on noussut 00 0, mitkä ovat veden, kappaleen ja universumin entropian muutokset?
LisätiedotEnergian varastointi ja uudet energialähteet
Energian varastointi ja uudet energialähteet Fossiiliset polttoaineet, entropia 1 Fossiilisten polttoaineiden jaottelu Raakaöljy Vedyn ja hiilen yhdisteet Öljyliuske Öljyhiekka Maakaasu Kivihiili 2 Öljyvarat
LisätiedotKorkeammat derivaatat
Korkeammat derivaatat Jo kerran derivoitu funk1o voidaan derivoida uudelleen. d dx! " # df(x) dx $ % & = d2 f(x) = f''(x) = f (2) (x) dx 2 Yleisemmin merkitään: d n f(x) dx n = f (n) (x) Esimerkki: 2-
LisätiedotTalousmatematiikan perusteet: Luento 13. Usean muuttujan funktiot Osittaisderivaatta ja gradientti Suhteellinen muutosnopeus ja osittaisjousto
Talousmatematiikan perusteet: Luento 13 Usean muuttujan funktiot Osittaisderivaatta ja gradientti Suhteellinen muutosnopeus ja osittaisjousto Aiemmilla luennoilla Tähän mennessä olemme tarkastelleet Erilaisia
LisätiedotPHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 10: Reaalikaasut Pe 1.4.2016 1 AIHEET 1. Malleja, joissa pyritään huomioimaan
LisätiedotSuoran yhtälöt. Suoran ratkaistu ja yleinen muoto: Suoran yhtälö ratkaistussa, eli eksplisiittisessä muodossa, on
Suoran htälöt Suoran ratkaistu ja leinen muoto: Suoran htälö ratkaistussa, eli eksplisiittisessä muodossa, on ANALYYTTINEN GEOMETRIA MAA5 = k + b, tai = a missä vakiotermi b ilmoittaa suoran ja -akselin
LisätiedotMAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen
MAT-25 Todennäköisyyslaskenta Tentti 12.4.216 / Kimmo Vattulainen Funktiolaskin sallittu. Palauta kaavakokoelma 1. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi
LisätiedotMekaniikan jatkokurssi Fys102
Meaniian jatourssi Fys10 Sysy 009 Jua Maalampi LUENTO 6 Harmonisen värähdysliieen energia Jousen potentiaalienergia on U ( x missä on jousivaio ja Dx on poieama tasapainosta. Valitaan origo tasapainopisteeseen,
LisätiedotSuotuisien tapahtumien lukumäärä Kaikki alkeistapahtumien lukumäärä
Todennäköisyys 1 Klassinen todennäköisyys: p = Suotuisien tapahtumien lukumäärä Kaikki alkeistapahtumien lukumäärä Esimerkkejä: Nopan heitto, kolikon heitto Satunnaismuuttuja Tilastollisesti vaihtelevaa
LisätiedotTASAPAINOJAKAUMAT KVANTTIMEKAANISISSA SYSTEEMEISSÄ (AH 5.4, 6.1, 6.4, 6.5) Mikrokanoninen joukko
1 TASAPAINOJAKAUMAT KVANTTIMEKAANISISSA SYSTEEMEISSÄ (AH 5.4, 6.1, 6.4, 6.5) Mikrokanoninen joukko Aivan kuten klassisessa tapauksessa, myös kvanttimekaanisille monihiukkassysteemeille voidaan määritellä
LisätiedotMiksi tarvitaan tilastollista fysiikkaa?
Miksi tarvitaan tilastollista fysiikkaa? cm 3 kaasua NTP ssä ~ 3 9 molekyyliä P, T? (paine ja lämpötila?) tarvitaan joitakin estimaatteja jokaisen hiukkasen dynaamisesta tilasta, todennäköisyysjakaumia
LisätiedotYLIOPISTO-OPISKELIJOIDEN KÄSITYKSET ENTROPIASTA JA TERMODYNAMIIKAN TOISESTA PÄÄSÄÄNNÖSTÄ
YLIOPISTO-OPISKELIJOIDEN KÄSITYKSET ENTROPIASTA JA TERMODYNAMIIKAN TOISESTA PÄÄSÄÄNNÖSTÄ Ville Pääkkönen Pro gradu -tutkielma Joulukuu 2013 Fysiikan ja matematiikan laitos Itä-Suomen yliopisto i Ville
LisätiedotLuku 20. Kertausta: Termodynamiikan 2. pääsääntö Lämpövoimakoneen hyötysuhde
Luku 20 Kertausta: Termodynamiikan 2. pääsääntö Lämpövoimakoneen hyötysuhde Uutta: Termodynamiikan 2. pääsääntö Jäähdytyskoneen hyötykerroin ja lämpöpumpun lämpökerroin Entropia Tilastollista termodynamiikkaa
LisätiedotS , Fysiikka III (Sf) tentti/välikoeuusinta
S-114.45, Fysiikka III (Sf) tentti/välikoeuusinta.11.4 1. välikokeen alue 1. Osoita, että hyvin alhaisissa lämpötiloissa elektronin FD systeemin energia on U = (3/ 5) ε F. Opastus: oleta, että kaikki tilat
LisätiedotSpontaanissa prosessissa Energian jakautuminen eri vapausasteiden kesken lisääntyy Energia ja materia tulevat epäjärjestyneemmäksi
KEMA221 2009 TERMODYNAMIIKAN 2. PÄÄSÄÄNTÖ ATKINS LUKU 3 1 1. TERMODYNAMIIKAN TOINEN PÄÄSÄÄNTÖ Lord Kelvin: Lämpöenergian täydellinen muuttaminen työksi ei ole mahdollista 2. pääsääntö kertoo systeemissä
Lisätiedotinfoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1
infoa Viikon aiheet Tentti ensi viikolla ma 23.0. klo 9.00-3.00 Huomaa, alkaa tasalta! D0 (Sukunimet A-) E204 (Sukunimet S-Ö) Mukaan kynä ja kumi. Ei muuta materiaalia. Tentissä kaavakokoelma valmiina.
Lisätiedot