Kurssitiedot. Luentorunko Käsitekarttatentti. Substraattiteoria. Substraattiteoria (ST) Yksilöoliot: substraatit ja substanssit
|
|
- Sami Jokinen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Luentorunko : ubtraatit ja ubtanit Eentiali ja amana pyynen Peroonallinen identiteetti Kuritiedot Luennot (18 h) oheimateriaali korvaa 4 op Tentti klo 9-12 (MaA211), uuintatentti klo 9-12 (MaA211) Oiot ja oheimateriaalit: 1 Ontologia: Luennot (3 h x 6 h = 18 h) = 2 op ja 2 Lammenranta: Tietote Pritchard: What I Thi Thing Called Knowledge? Morton: A Guide through the Theory of Knowledge = 2 op Käitekarttatentti Käitekarttatentti: 1 Laaditaan käitekartta annetuta aiheeta Käitekartta on hierarkinen Käitteiden väliet yhteydet tulee elittää 2 Kirjoitetaan lyhyt elotu laadinnata ja en iältätä ratkaiuita (½ ivua) (ST) Koka oliot kuitenkin muuttuvat, on oltava jokin, kä takaa olioiden amana pyyen muutokita huolimatta Olioia täytyy olla jotain muutakin kuin onaiuudet (EI) ei ole totta onaiuukien liäki täytyy olla jokin, kä takaa, että kaki kvalitatiivieti identtitä a voivat olla numeerieti erilliiä Kontituenttien taolla ama periaate kuin (EI), kontituenttien jakavien identiteetti (KI): Jo a:n kontituentit ovat amat ja ainoataan amat kuin b:n, a on b (KI) on toi periaate, toiin kuin (EI) Jo kontituentteja ovat vain onaiuudet, (KI) = (EI) Tämä ei voi pitää paikkana, koka (KI) on totta ja (EI) epätotta onaiuudet eivät voi olla ykilöolion ainoat kontituentit 1
2 vain Tet konkr 1löolioita n mukaan konkreettinen ykilöolio kootuu onaiuukita ja niiden kantajata, ubtraatita, johon onaiuudet kiinnittyvät = mutuu ileäkarvaiuu ketteryy viiruilmäiyy onaiuu n Subtraatti U ante U in onali Karu nonali Predikaattinonali Koneptuali Subtraatin tehtävät ja luonne Subtraatti on ontologinen liima, joka itoo yhteen ykilöolion onaiuudet Subtraatti takaa ajaa amana pyyvyyden onaiuukien muuttueta huolimatta Se erottaa kvalitatiivieti identtiet eri oliot Subtraattien ongelmat 2 Subtraatti on käitteenä epäkoherentti: Sillä, llä onaiuudet ovat, ei ole onaiuukia! Onko onaiuudettomuu onaiuu? 3 Kaikki muutoket allittuja antieentiali Subtraatin identtiyy määräytyy täyin erillieki onaiuukita! Sitä ei voi kuvailla Palja ykilöolio Onko antieentiali ongelma? Subtanin käite Subtanilla viitataan yleenä kolmenlaieen aiaan: 1) ubtani ainekena 2) ubtani ubtraattina 3) Aritotele: ουσια ( uuia ) käännettiin latinaki ubtaniki Aritotele tarkoitti illä ekä ykilölliyyttä että pyyvyyttä (muutokia) (Aritoteelinen) ubtanite (AST) Ykilöolion iäinen rakenne kootuu ontologieti ykinkertaiemta oita Ei ole onaiuukita erillitä ubtraattia, jolla onaiuudet ovat Onaiuukita riippuva ykilöolio ite toteuttaa tai otaa ne Subtanin identiteetti riippuu olemuketa, kä kootuu onaiuukita 2
3 Subtani = aine mutuu ileäkarvaiuu ketteryy viiruilmäiyy K i u u Satunnaiet onaiuudet Laji: olennaiet välttämättömät olemukelliet onaiuudet vain U ante U in onali Karu nonali Predikaattinonali Koneptuali Tet konkr 1löolioita Subtanite AST Lajiuniveraalit ovat ellaiia, että kun ne toteutuvat, yntyy uui olio Onaiuu toteutueaan ei ynnytä uutta oliota Lajit ovat ontologiia kakkuveitiä Onaiuudet vataavat kyymykeen llainen jokin on?, lajiuniveraali vataa kyymykeen kä jokin on? Lajiuniveraalit muodotavat hierarkioita, tärkeimmät ovat alimman hierarkian primaariubtanit (1löoliot), ekundaariubtanit ovat lajeja ja ukuja Subtani pyyvyytenä muutokea Lajiuniveraali tuottaa ykilöolion lajionaiuukien avulla Pyyvyy muutokita huolimatta riippuu Aritoteleella olemukelliita onaiuukita Satunnaiet onaiuudet ja aine voivat vaihtua Aine takaa ykilölliyyden Ei itouduta (EI):hin vain Kimppute Subtanite Ei rakennetta Ei tietoakannatuta Eentialin ongelma U ante U in onali Karu nonali Predikaattinonali Koneptuali Tet ykilöolioita ovat eri eltä pyyvyydetä: 1 ryvätea kaikki onaiuudet välttämättöä 2 ubtraattitea kään onaiuu ei ole välttämätön 3 ubtanitea oa onaiuukita välttämättöä Miten määritetään välttämättömät onaiuudet? 3
4 Subtaniten ongelmat Sorite-paradoki: Jo poitamme onaiuujoukota yhden kerrallaan, ä vaiheea olemu lakkaa olemata? Rajanveto atunnaiten ja välttämättöen välille on mahdotonta Perheyhtäläiyy? Mitkä lajikäitteet tuottavat ubtaneja kulttuuriet lajikäitteet? Olemuken tai tunnitaen umeu, identiteetin relatiiviuu? Subtaniten ongelmat Ykilöolion aineoa voi erottaa Mutta kä on ykilön aineoa? Theeuken laiva Konkreettiet olemuket? Jokin konkreettinen oa välttämätön? Entä aineettomat oliot (Sherlock Holme)? Mihin konkreettinen olemu voi perutua? Olemuken on oltava abtrakti Aineoa näyttäii rajautuvan uhteea yleieen olemukeen muodon ja iällön ongelma Antieentiali? Antieentiali tuli valtaan aritoteelien maailmankuvan yrjäytyen myötä Olemukia ei oikeati ole, vaan ne ovat meidän omaa kekintöämme (nonali) Miten olennot itten pyyvät amoina, kuten näyttävät pyyvän? Pelkällä konkreettiuudella vaikea perutella Antieentiali ja pyyvyy Ehkäpä oliot ovat ajalli-avaruudellieti neliulotteiia Olioilla olii konkreettiia ajalliia oia Oien päällekkäiyy takaa yhteneväiyyden? Vaikea määrittää Ketjuoliot (entia ucceiva)? Voimme havaita vain ketjuolioiden lenkkejä Mikä SINÄ olet (eniijaieti)? Mihin pyyvyytei kriteerit perutuvat? Miten pyyt amana inuna läpi elämän? Ruuieen (konkreettiiin oiin) vai eleen? Molempiin? Olemukeen? Kootuuko fyyiitäpyykkiitä molemta onaiuukita? 4
5 Mikä inä olet eni ijaa? 1 Eläinihnen (animalibiologi) 2 Alkeihiukkajoukkoja (fyikali) 3 Sielu( Software )? Peroonalliuu? (tranhumani) 4 Peroonia? Onko peroona primaarinen lajikäite? Nimeääkö e olemukelliet onaiuudet? Ruuieen? Ruuieen? Theeuken laivametabolia Minut iirretään teleportaatiolla Maata Vulkanukeen Oletetaan, että nua ei onnituta hävittämään Maaa iirtäjän epätoinnan vuoki Olenko Maaa vai Vulkanukea? Aivot: Lefty & Righty, ilikoniaivot Mieleen? Kentie jatkuvuuteni perutuu eleen (Locke) Muiti elittää: olen e ihnen, joka muitaa oman henkilöhitna Entä jo menetän muitini? Teleportaatiotapaukea on kaki eltä, joilla on ama muiti Kumpi nä olen? Vrt Lefty & Righty Mieleen? Oletetaan, että nut yritetään iirtää teleportaatiolla Vulkanu-planeetalle Siirtäjä reitaa taa, ja äilyn Maa-planeetalla mutta menetän muitini Vulkanukea nut kootaan vahingoa klingonin ruuieen, mutta muitini äilyy iinä ruuia Kuka olen? Peroonallinen identiteetti Mitkä ovat peroonan olemukelliet onaiuudet? Ruuilliet? Mitkä niitä? Pyykkiet? Tietoiuu: entä koomapotilaat? Itetietoiuu, iteäätelykyky: entä vatayntyneet? Onko peroonuu oiaalinen tatu? Mihin e perutuu? Voiko peroonallita identiteettiä elittää? Onko peroonalliella identiteetillä väliä? Mieleen ja ruuieen? Paul Ricoeur ja identiteetin monimerkitykelliyy: ruuillien numeerien identiteetin (idendentiteetti) liäki meillä on kokemukellinen perpektiivi iteyteemme (ipe-identiteetti) Molemmat ovat tärkeitä ja ne yhdityvät narratiiviea identiteetiä Kentie Mielen ja ruuin uhde ei ole vähempää ongelmallinen kuin muodon ja iällön uhde ( ) 5
Konkreettiset yksilöoliot. Luentorunko Teoriat konkreettisista yksilöolioista. Teoriat konkreettisista yksilöolioista
Luentorunko 27112007 1 Teoriat konkreettisista 2 3 Ryvästeoria 4 Substanssiteoria 5 Essentialismi ja ajassa pysyvyys Mieli ruumis -ongelma (04122007) Konkreettiset Konkreettiset : Konkreettinen = avaruus-ajallinen,
4.3 Liikemäärän säilyminen
Tämän kappaleen aihe liikemäärän äilyminen törmäykiä. Törmäy on uora ja kekeinen, jo törmäävät kappaleet liikkuvat maakekipiteitten kautta kulkevaa uoraa pitkin ja jo törmäykohta on tällä amalla uoralla.
Nominalismi: motivaatio. Luentorunko Karu nominalismi. Nominalismin muodot. Karu nominalismi: ominaisuustermit. Karu (strutsi-)nominalismi
Luentorunko 1542009 1 Nominalismi 2 Trooppiteoria 3 Teoriat Nominalismi: motivaatio Universaaleilla ei ole yhtä selviä identiteettikriteereitä kuin yksilöolioilla Realismi on ongelmallinen Nominalismi
POSITIIVISEN LINSSIN POLTTOVÄLI
S-108110 OPTIIKKA 1/6 POSITIIVISEN LINSSIN POLTTOVÄLI Laboratoriotyö S-108110 OPTIIKKA /6 SISÄLLYSLUETTELO 1 Poitiivien linin polttoväli 3 11 Teoria 3 1 Mittauken uoritu 5 LIITE 1 6 Mittaupöytäkirja 6
HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 4 Ratkaisuehdotuksia. Tehtäväsarja I
HY / Matematiikan ja tilatotieteen laito Tilatollinen päättely II, kevät 207 Harjoitu 4 Ratkaiuehdotukia Tehtäväarja I. (Kvantiili-kvantiili kuvion [engl. q q plot] idea.) Olkoon atunnaimuuttujalla X ellainen
Luku 16 Markkinatasapaino
68 Luku 16 Markkinataaaino 16.1 Markkinataaainon määrity Tarkatelemme kilailulliia markkinoita kaikki talouenitäjät hinnanottajia kaikki määrittävät arhaat ratkaiuna uhteea makimihintoihin talouenitäjien
PD-säädin PID PID-säädin
-äädin - äätö on ykinkertainen äätömuoto, jota voidaan kutua myö uhteuttavaki äädöki. Sinä lähtöignaali on uoraa uhteea tuloignaalin. -äätimen uhdealue kertoo kuinka paljon mittauuure aa muuttua ennen
Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat:
Mat-.090 Sovellettu todeäköiyylaku A 0. harjoituket Mat-.09 Sovellettu todeäköiyylaku 0. harjoituket / Ratkaiut Aiheet: Avaiaat: Tilatolliet tetit Aritmeettie kekiarvo, Beroulli-jakauma, F-jakauma, F-teti,
Intensiteettitaso ja Doplerin ilmiö
Inteniteettitao ja Doplerin ilmiö Tehtävä Erkki työkentelee airaalaa. Sairaalalta 6,0 km päää on tapahtunut tieliikenneonnettomuu ja onnettomuupaikalta lähteneen ambulanin ireenin ääni kuuluu Erkille 60,0
Y56 Laskuharjoitukset 3 palautus ma klo 16 mennessä
1 Y6 Lakuharjoituket 3 alautu ma 3.. klo 16 menneä Harjoitu 1. Lue enin Vihmo, Jouni (006) Alkoholijuomien hintajoutot uomea vuoina 199 00, Yhteikuntaolitiikka 71, 006/1 ivut 9 ja vataa itten kyymykiin.
12. laskuharjoituskierros, vko 16, ratkaisut
1. lakuharjoitukierro, vko 16, ratkaiut D1. Muuttujien x ja Y havaitut arvot ovat: x 1 3 4 6 8 9 11 14 Y 1 4 4 5 7 8 9 a) Määrää regreiomallin Y i = α +βx i +ǫ i regreiokertoimien PNS-etimaatit ja piirrä
Mat-2.090 Sovellettu todennäköisyyslasku A
Mat-.090 Sovellettu todeäköiyylaku A Mat-.090 Sovellettu todeäköiyylaku A / Ratkaiut Aiheet: Avaiaat: Tilatollite aieito keräämie ja mittaamie Tilatollite aieitoje kuvaamie Oto ja otojakaumat Aritmeettie
Kertausosa. 2. Kuvaan merkityt kulmat ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia, kulmat ovat yhtä suuria.
5. Veitoken tilavuu on V,00 m 1,00 m,00 m 6,00 m. Pienoimallin tilavuu on 1 V malli 6,00 m 0,06m. 100 Mittakaava k aadaan tälötä. 0,06 1 k 6,00 100 1 k 0,1544... 100 Mitat ovat. 1,00m 0,408...m 100 0,41
Luottamusmiehen / -valtuutetun valinta, asema ja oikeudet
YLEMMÄT TOIMIHENKILÖT YTN RY OHJE YRY+K -ryhmä / Mko 19.8.2009 1 (13) Luottamumiehen / -valtuutetun valinta, aema ja oikeudet Siällyluettelo: Yleitä... 2 Oikeu luottamumiehen valintaan... 2 Luottamumiehen
X 2 = k 21X 1 + U 2 s + k 02 + k 12. (s + k 02 + k 12 )U 1 + k 12 U 2. s 2 + (k 01 + k 21 + k 02 + k 12 ) s + k
Aalto-yliopiton Perutieteiden korkeakoulu Matematiikan ja yteemianalyyin laito Mat-49 Syteemien Identifiointi 0 harjoituken ratkaiut äytetään enin iirtofunktiomalli Tehdään Laplace-muunno: ẋ k 0 k x +
RATKAISUT: 17. Tasavirtapiirit
Phyica 9. paino 1(6) ATKAST 17. Taavirtapiirit ATKAST: 17. Taavirtapiirit 17.1 a) Napajännite on laitteen navoita mitattu jännite. b) Lähdejännite on kuormittamattoman pariton napajännite. c) Jännitehäviö
Pikaohje Verio 1.0 marrakuu 2002 www.behringer.com SUOMI TURVALLISUUSOHJEET VAROITUS: Älä poita kantta (tai takaoaa) ähkäikuvaaran vähentämieki. Siällä ei ole käyttäjän huollettavia oia; käänny huolloa
Nokian kaupungin tiedotuslehti Kolmenkulman yrityksille
Nokian kaupungin tiedotulehti Kolmenkulman yritykille Hyvä nykyinen ja tuleva kolmenkulmalainen U ui yrityalueemme alkoi yntyä Öljytien varteen ijaitee Nokian puolella. Tampereella iitä on yli 200 heh-
KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoski, professori. Lappeenrannan teknillinen yliopisto
KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoki, proeori Lappeenrannan teknillinen yliopito Näin uuden vuoden alkaea ueat meitä miettivät ijoitualkkuna kootumuta. Yki kekeiitä kyymykitä on päätö eri
Viikkotehtävät IV, ratkaisut
Viikkotehtävät IV, ratkaiut. 7,40 V (pariton napajännite) I 7 ma (lampun A ähkövirta rinnankytkennää) I 5 ma (lampun B ähkövirta rinnankytkennää) a) eitani on, joten lamppujen reitanit voidaan lakea tehtävää
= 0, = 0, = 0, = 0, = 0, = 0,
Liite 1 SU/Vakuutumatemaattinen ykikkö 18.9.2013 Kutannutenjakokertoimet vuodelle Soiaali- ja terveyminiteriön 23.12.2011 vahvitamia kutannutenjakoperuteia eiintyvien taaukertoimien arvot vuodelle = 0,419195
... MOVING AHEAD. Rexnord Laatuketjut. Rullaketjut Rotary-ketjut Levykimppuketjut
... MOVING HED Rexnord Laatuketjut Rullaketjut Rotary-ketjut Levykimuketjut Siällyluettelo Rexnord-laadun ominaiiirteet......................... 6 7 Huomioita ketjun valinnata...........................
Äänen nopeus pitkässä tangossa
IXPF24 Fyiikka, ryhälaboratoriotyö IST4S1 / E1 / A Okanen Janne, Vaitti Mikael, Vähäartti Pai Jyväkylän Aattikorkeakoulu, IT-intituutti IXPF24 Fyiikka, Kevät 2005, 6 ECTS Opettaja Pai Repo Äänen nopeu
10 Suoran vektorimuotoinen yhtälö
10 Suran vektrimutinen htälö J aluki tarkatellaan -tan kuuluvaa, rign kautta kulkevaa uraa, niin ura n täin määrätt, mikäli tunnetaan en uunta. Tavallieti tämä annetaan uuntakulman tangentin = kulmakertimen
S if b then S else S S s. (b) Muodosta (a)-kohdan kieliopin kanssa ekvivalentti, so. saman kielen tuottava yksiselitteinen.
T-79.148 yky 2003 Tietojenkäittelyteorian peruteet Harjoitu 7 Demontraatiotehtävien ratkaiut 4. Tehtävä: Ooita, että yhteydettömien kielten luokka on uljettu yhdite-, katenaatioja ulkeumaoperaatioiden
( ) ( ) 14 HARJOITUSTEHTÄVIÄ SÄHKÖISET PERUSSUUREET SÄHKÖVERKON PIIRIKOMPONENTIT
4 HAJOTUSTHTÄVÄ SÄHKÖST PUSSUUT -auton akku (84 V, 700 mah on ladattu täyteen Kuinka uuri oa akun energiata kuluu enimmäien viiden minuutin aikana, kun oletetaan moottorin ottavan vakiovirran 5 A? Oletetaan
NAANTALI KARJALUOTO - PIRTTILUOTO ASEMAKAAVALUONNOS 3.10.06
NAANTALI KARJALUOTO - PIRTTILUOTO ASEMAKAAVALUONNOS 3.0.06 Siniellä värillä on eitetty rakennuala/rakennualan oa, joka ijaitee kahden metrin korkeukäyrän alapuolella. Silta Epoon Suviaaritoa. Yleitä Aemakaavaonnoken
... 23 1.4.3. Eläkelaitoksessa vakuutettujen työnansioiden summa S
Eläketurakeku (89) Suunnitteluoato 2..2008 VASTUUNJAKOPERUSTEET Soiaali- ja tereminiteriö on ahitanut atuunjakoperuteet 20..2008. 5..2009 korjatut kirjoituirheet iuilla 62 ja 63 on päiitett etk.fi-iulle
Fy07 Koe Kuopion Lyseon lukio (KK) 1 / 5
y07 Koe 8.9.05 Kuopion yeon lukio (KK) / 5 Vataa kolmeen tehtävään. Vatuken reitani on 60, käämin induktani on 0,60 H ja reitani 8 ja kondenaattorin kapaitani on 80. Komponentit ovat arjaan kytkettyinä
Sosiaalihuollon kertomusmerkintä
Soiaalihuollon kertomumerkintä Kommentoitava materiaali Terveyden ja hyvinvoinnin laito (THL) L 30 (Mannerheimintie 166) 0071 Helinki Telephone: 09 54 6000 www.thl.fi Siällyluettelo Soiaalihuollon kertomumerkintä...
SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Harjoituksen 1 ratkaisuehdotukset
SMG-4200 Sähkömagneettiten järjetelmien lämmöniirto Harjoituken 1 ratkaiuehdotuket Vata 1800-luvun puoliväliä ymmärrettiin että lämpöenergia on atomien ja molekyylien atunnaieen liikkeeeen värähtelyyn
Ruokakauppa. Tavallista parempi HALPA HINTA. joka päivä. meillä ruokakorisi hinta on. tuntuvasti halvempi. Kermajuustot 900 g-1 kg (3,99-4,43 kg)
V 6LV/5, VLTUNNLLINEN Tavallita parempi Ruokakauppa meillä ruokakorii hinta on joka päivä HLP HINT tuntuvati halvempi LLE YMPILLÄ OO PERHEELLE ermajuutot 9 g- kg (3,-4,43 kg) 3-3-37 % Libero teippi- ja
S SÄHKÖTEKNIIKKA Kimmo Silvonen
S55.03 SÄHKÖTKNIIKKA 20.5.999 Kimmo Silvonen Tentti: tehtävät,3,5,8,9. välikoe: tehtävät,2,3,4,5 2. välikoe: tehtävät,7,8,9,0 Oletko muitanut täyttää palautekyelyn Teeenytja hauku amalla kokeet.. ake jännite
S-55.1220 Piirianalyysi 2 Tentti 4.1.2007
S-55.2 Piirianalyyi 2 Tentti 4..07. Piiriä yöttää kaki lähdettä, joilla on eri taajuudet. Kuinka uuri on lämmöki muuttuva teho P? Piiri on jatkuvuutilaa. J 2 00 Ω 5µH 0 pf 0/0 V J 2 00/0 ma f MHz f 2 2MHz.
LUKION FYSIIKKAKILPAILU 8.11.2005 avoimen sarjan vast AVOIN SARJA
LKION FYSIIKKAKILPAIL 8..5 avoien arjan vat AVOIN SARJA Kirjoita tektaten koepaperiin oa niei, kotiooitteei, ähköpotiooitteei, opettajai nii ekä koului nii. Kilpailuaikaa on inuuttia. Sekä tehtävä- että
METSÄSTYSPUHELIMET. www.zodiacfinland.fi
METSÄSTYSPUHELIMET www.zodiacfinland.fi Z O D I A C T E A M P R O WAT E R P R O O F ZODIAC Zodiac Team Pro Waterproof radiopuhelin on valintai, kun toiminnot ja uoritukyky ratkaievat. TAKUU 3 VUOTTA Open
7. PYÖRIVÄN SÄHKÖKONEEN SUUNNITTELUN ETENEMINEN JA KONEEN OMI- NAISUUDET
7.1 LTY Juha Pyhönen 7. PYÖRIVÄN SÄHKÖKONEEN SUUNNITTELUN ETENEMINEN JA KONEEN OMI- NAISUUDET Pyöivän ähkökoneen uunnittelua voidaan noudattaa eiekiki euaavanlaita työjäjetytä. Tää opii uoaan epätahtioottoeille,
7.lk matematiikka. Geometria 1. Janne Koponen versio 2.0
7.lk matematiikka 1 Janne Koponen verio 2.0 Tämä monite on tehty 7.lk. geometrian opetukeen ja olen käyttänyt itä ite Hatanpään koulua. Jo joku opettaja haluaa tätä kuitenkin käyttää omaa opetukeaan, on
S Fysiikka III (Est) Tentti
S-114137 Fyiikka III (Et) Tentti 9008 1 Vetyatomin elektronin kulmaliikemäärää kuvaa kvanttiluku l =3 Lake miä kaikia kulmia kulmaliikemäärävektori voi olla uhteea kulmaliikemäärän z-komponenttiin ( )
Suomen Akatemian tutkimusohjelma VALTA 2007 2010. Valta Suomessa
Suomen Akatemian tutkimuohjelma VALTA 2007 2010 Valta Suomea Valta Suomea 2007 2010 VALTA lyhyeti Suomalaien yhteikunnan valtajärjetelmä on ollut muutopaineiden kohteena viime vuoikymmeninä. Suomi on liittynyt
PT-36 Plasmarc-leikkausarvot
PT-36 Plamarc-leikkauarvot Leikkauarvojen opa (FI) 0558007661 Verion 8.1 releaed on 28Oct11 VARMISTA, ETTÄ KÄYTTÄJÄ SAA NÄMÄ TIEDOT. VOIT TILATA MYYJÄLTÄ LISÄÄ KOPIOITA. VARO OHJEET on tarkoitettu kokeneille
JÄÄMEREN RAUTATIE ROVANIEMI-KIRKKONIEMI WWW.ARCTICCORRIDOR.FI
JÄÄMEREN RAUTATIE ROVANIEMI-KIRKKONIEMI WWW.ARCTICCORRIDOR.FI KILPAILUKYKYÄ INVESTOIJILLE JA YRITYKSILLE Jäämeren rautatie parantaa yrityten ja invetoijien toimintamahdolliuukia arktiella alueella. Uuia
RATKAISUT: Kertaustehtäviä
Phyica 1 uuditettu paino OPETTAJAN OPAS 1(9) Kertautehtäiä RATKAISUT: Kertautehtäiä LUKU 3. Luua on a) 4 eriteää nueroa b) 3 eriteää nueroa c) 7 eriteää nueroa. 4. Selitetään erieen yhtälön olepien puolien
Mat Tilastollisen analyysin perusteet. Testit suhdeasteikollisille muuttujille. Avainsanat:
Mat-.04 Tilatollie aalyyi peruteet. harjoituket Mat-.04 Tilatollie aalyyi peruteet. harjoituket / Tehtävät Aiheet: Avaiaat: Tetit uhdeateikolliille muuttujille Hypoteei, Kahde riippumattoma otoke t-tetit,
Tilastotieteen jatkokurssi 8. laskuharjoitusten ratkaisuehdotukset (viikot 13 ja 14)
Tilatotietee jatkokuri 8. lakuharjoitute ratkaiuehdotuket (viikot 13 ja 14) 1) Perujoukko o aluee A aukkaat ja tutkittavaa omiaiuutea ovat tulot, Tiedämme, että perujouko tulot oudattaa ormaalijakaumaa,
LUKION FYSIIKKAKILPAILU 10.11.2009, ratkaisut PERUSSARJA
LUKION FYSIIKKAKILPAILU 0..009, ratkaiut PERUSSARJA Vataa huolellieti ja iititi! Kirjoita tektaten koepaperiin oa niei, kotiooitteei, ähköpotiooite, opettajai nii ekä koului nii. Kilpailuaikaa on 00 inuuttia.
Triathlon Training Programme 12-week Sprint Beginner
12 viikon kilpailuuunnitelma--kilpailumatka: printti Urheilijan tao: aloitteleva urheilija, 1 tai 2 vuoden kokemu printtitriathlonkilpailuita Tunteja viikoa: 5-6 Tätä harjoituuunnitelmaa käytetään Garminin
Materiaalien murtuminen
Määritelmä: Materiaalien murtuminen r Fracture i the eparation, or fragmentation, of a olid body into two or more part under the action of tre Murtumiproei voidaan jakaa kahteen oaan 4 Särön ydintyminen
Kahdeksansolmuinen levyelementti
Levy8 ja RS hm.. Kahdekanolminen levyelementti akatellaan kvan kahdekanolmita levyelementtiä. q 6 y (,y q 8 ( 8,y 8 8 q 7 q 6 (,y q 5 q q q 7 q q ( 7,y 7 v ( 6,y 6 P 5 ( 5,y 5 q 9 6 q 5 (,y q (,y q q q
1 LAMMIMUURIN RAKENNE JA OMINAISUUDET 2 2 KÄYTTÖKOHTEET 2 3 MUURITYYPIT 2 4 LASKENTAOTAKSUMAT 3 4.1 Materiaalien ominaisuudet 3 4.2 Maanpaine 3 4.
1 LAIUURIN RAKENNE JA OINAISUUDET KÄYTTÖKOHTEET 3 UURITYYPIT 4 LASKENTAOTAKSUAT 3 4.1 ateriaalien ominaiuudet 3 4. aanpaine 3 4.3 uurin ketävyy npaineelle 4 4.4 Kaatumi- ja liukumivarmuu 5 4.4.1. Kaatumivarmuu
Tarpeenmukainen ilmanvaihto
YLEISKUVAUS Tarpeenmukainen ilmanvaihto Huipputuotteet tarpeenmukaieen ilmanvaihtoon! www.wegon.com Tarpeenmukainen ilmanvaihto tarjoaa hyvän viihtyiyyden ja pienet käyttökutannuket Kun huone on käytöä,
Luotettavuusteknisten menetelmien soveltaminen urheiluhallin poistumisturvallisuuden laskentaan
ESPOO 00 VTT TIEDOTTEITA 8 Tuoma Palopoki, Jukka Myllymäki & Heny Weckman Luotettavuutekniten menetelmien oveltaminen uheiluhallin poitumituvalliuuden lakentaan VTT TIEDOTTEITA RESEARCH NOTES 8 Luotettavuutekniten
7. Pyörivät sähkökoneet
Pyörivät ähkökoneet 7-1 7. Pyörivät ähkökoneet Mekaanien energian muuntamieen ähköenergiaki ekä ähköenergian muuntamieen takaiin mekaanieki energiaki käytetään ähkökoneita. Koneita, jotka muuntavat mekaanien
S-55.1220 Piirianalyysi 2 Tentti 27.10.2011
S-55.220 Piirianalyyi 2 Tentti 27.0. j(t) u(t) -piiriin vaikuttaa lähdevirta j(t) = A ĵ in(ωt)]. Lake piirin jännite u(t) ajan funktiona ja vatukea kuluva teho. Piiri on jatkuvuutilaa. ĵ = 0,5A = 2µF ω
DIGITAALISET PULSSIMODULAATIOT M JA PCM A Tietoliikennetekniikka I Osa 21 Kari Kärkkäinen Kevät 2015
1 DIGITAALISET PULSSIMODULAATIOT M JA PCM 521357A Tietoliikennetekniikka I Oa 21 Kari Kärkkäinen DELTAMODULAATIO M 2 M koodaa näytteen ± polariteetin omaavaki binääripuliki. Idea perutuu ignaalin m(t muutoken
1 Määrittele lyhyesti seuraavat käsitteet. a) Kvantisointivirhe. b) Näytetaajuuden interpolointi. c) Adaptiivinen suodatus.
TL536DSK-algoritmit (J. Laitinen) 6.4.5 Määrittele lyyeti euraavat käitteet a) Kvantiointivire. b) äytetaajuuden interpolointi. ) Adaptiivinen uodatu. a) Kvantiointivire yntyy, kun ignaalin ykittäinen
BINÄÄRINEN SYNKRONINEN TIEDONSIIRTO KAISTARAJOITTAMATTOMILLA MIELIVALTAISILLA PULSSIMUODOILLA SOVITETTU SUODATIN JA SEN SUORITUSKYKY AWGN-KANAVASSA
BINÄÄRINN SYNKRONINN IDONSIIRO KAISARAJOIAMAOMILLA MILIVALAISILLA PULSSIMUODOILLA SOVIU SUODAIN JA SN SUORIUSKYKY AWGN-KANAVASSA Millaiia aalomuooja perupuleja yypilliei käyeään? 536A ieoliikenneekniikka
Pelastustoimintaan osallistuvan vapaaehtois- ja sopimushenkilöstön koulutusjärjestelmän tarkistaminen
Pelatutoimintaan oallituvan vapaaehtoi- ja opimuhenkilötön koulutujärjetelmän tarkitaminen Palokuntakoulutuuudituken eminaari 7.5.2013 Vantaa Koulutupäällikkö Markku Savolainen Pelatulaki 379/2011 8 luku
Kuva 22: Fraktaalinen kukkakaali. pituus on siis 4 AB. On selvää, että käyrän pituus kasvaa n:n kasvaessa,
Tortai 6..999 = Geometria o hyvä tapa kuvata ykikertaiia kappaleita, mutta kappaleie tullea äärettömä moimutkaiiki, käy iie kuvaamie klaie geometria avulla mahottomaki. Eimerkiki rataviiva pituue määrittämie
KOHINAN JA VAIHEVIRHEEN VAIKUTUS VAIHEKOHERENTEILLA JÄRJESTELMILLÄ
KOHINAN JA VAIHVIRHN VAIKUTUS VAIHKOHRNTILLA JÄRJSTLMILLÄ Mie vaihee epävaruu vaikuaa kohereia ilaiua? Mikä o piloiigaali? 557A Tieoliikeeekiikka I Oa 6 Kari Kärkkäie Kevä 05 VAIHVIRHN YLINN ANALYYSI QSB
K Ä Y T T Ö S U U N N I T E L M A Y H D Y S K U N T A L A U T A K U N T A
K Ä Y T T Ö S U U N N I T E L M A 2 0 1 7 Y H D Y S K U N T A L A U T A K U N T A Forssan kaupunki Talousarvio ja -suunnitelma 2017-2019 / T O I M I A L A P A L V E L U 50 YHDYSKUNTAPALVELUT 5 0 0 T E
V A R K A U S HÄYRILÄN ETELÄOSA
V A R K A U S HÄYRILÄN ETELÄOSA RAKENTAMISTAPHJE 9-kaupunginoan, Häyrilän, korttelit 9, 9 ja 0 0 ja 0 Varkauden kaupunki Tekninen virato Maankäyttö / Kaavoitu YLEISTÄ Yleiuunnitteluohje täydentää Varkauden
S-55.1220/142 Piirianalyysi 2 1. Välikoe 10.3.2006
S-55.0/4 Piirianalyyi. Välioe 0.3.006 ae tehtävät 3 eri paperille in tehtävät 4 5. Mita irjoittaa joaieen paperiin elväti nimi, opielijanmero, rin nimi ja oodi. Tehtävät laetaan oaton oepaperille. Mita
Kahdeksansolmuinen levyelementti
Levy8 ja RS hm 7.. Kahdekanolminen levyelementti akatellaan kvan kahdekanolmita levyelementtiä. q 6 y (,y q 8 ( 8,y 8 8 q 7 q 6 (,y q 5 q q q 7 q q ( 7,y 7 v ( 6,y 6 P 5 ( 5,y 5 q 9 6 q 5 (,y q (,y q q
SUUNNITTELUPERUSTEET TURUN RAITIOTIEN YLEISSUUNNITELMAN TARKISTUS
TURUN RAITIOTIEN YLEISSUUNNITELMAN TARKISTUS 3.3.2017 Suunnitteluperuteiiin on koottu tärkeimmät tiedot raitiotien ja uperbuin linjauken yleiuunnittelua varten. Raitiotien oalta ohje perutuu akalaieen
r u u R Poistetut tehtavat, kunjännitestabiiliusja jännitteensäätö yhdistettiin:
oittut thtavat, kuäittaiiliua äittäätö yhitttii: Jäykkä vrkko, oka äit u TH o, pu yöttää oho kautta kuormaa. Johto olttaa häviöttömäki a raktai o, pu. Joho päähä liittää vakioritaikuorma r. iirrä oho a
1 x 2 1 x 2 C 1 D. 1 x 2 C 1. x 2 C 1 C x2 D x 2 C 1; x 0: x 2 C 1 C 1. x 2 x 4 C 1 ja. x 4 C 1 D.x4 1/.x 4 C 1/
Matematiikan ja tilatotieteen valintakoetehtävien 9 ratkaiut Sivu. a). / 6,
http://www.angelniemenankkuri.com/index.php?page=ilu/nuoret/ajankohtaista&select=3&head=nuori%20...
Sivu 1/28 " #%% ((%% ( * +, " -. / " - ("*0 "# % "# (( # # ( ( * # +,,-. /0,-,,2 3 #4 3 % % 5 5 * 4 % 3 6 4 4 44( ( % #"" #"#"# + 7. 4 %%2%%3 % 4 9#:200; 1 5242%% 1,1200/,/,/ (43%% 1 ("*01,01200/,202200/
Viivakuormituksen potentiaalienergia saadaan summaamalla viivan pituuden yli
hum.9. oiman potentiaalienergia Potentiaalienergiata puhutaan, kun kappaleeeen vaikuttaa jokin konervatiivinen voima. oima on konervatiivinen, jo en tekemä tö vaikutupieen iirteä tiettä paikata toieen
TL5362DSK-algoritmit (J. Laitinen) TTE2SN4X/4Z, TTE2SN5X/5Z Välikoe 1, ratkaisut
TL536DSK-algoritmit (J. Laitie) 4. - 5..4 TTESN4X/4Z, TTESN5X/5Z Välikoe, ratkaiut a) Maiite väitää kaki digitaalite FIR-uotimie etua verrattua IIR-uotimii. b) Mite Reme-meetelmällä uuitellu FIR-uotime
Tervahovin Siilot - elämyksellistä asumista Oulun huipulla
MYYNTIESITE 2 Tervahovin Siilot - elämykellitä aumita Oulun huipulla TERVAHOVIN UUSI TULEMINEN - ENSIMMÄISENÄ RAKENNAMME UNIIKKEJA SIILO-KOTEJA Tervahovi on oa Oulun kaupungin merelliintä kaupunginoaa
Valuma-aluetason kuormituksen hallintataulukon vaatimusmäärittely
Valuma-aluetaon kuormituken hallintataulukon vaatimumäärittely Verio 4.11.2011 1. Tavoitteet Veienhoidon äädöten toteutu edellyttää veitöihin kohdituvan kuormituken vähentämitä n, että veden laatu paranee
Kantatilatulkinta ja mitoituslaskelma , päivitetty % 50 % 75 % 100 % Tilan muunnet tu rv (m) Kantatil an todelline n rv.
Leppävirr taajam ja en ympäritön oayleikaava Ktatilatulkinta ja mitoitulakelma 1 (6) Rno Til nimi Rno Til nimi Til n rtaviiva Ktatil 25 % 50 % 75 % 100 % Til tu Ktatil Ktatil rak. Ktatilalle Jäljellä /
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-.4 Tilatollie aali peruteet, kevät 7 6. lueto: Johdatu regreioaalii Regreioaali idea Tavoitteea elittää elitettävä tekiä/muuttua havaittue arvoe vaihtelu elittävie tekiöide/muuttuie havaittue arvoe
VAP2012 KONTION VAPAA- AIKA. Laadukasta vapaa-aikaa ja korkeatasoista loma-asumista yksilöllisesti ja ekologisesti.
VAP2012 KONTION VAPAA- AIKA Laadukata vapaa-aikaa ja korataoita loma-aumita ykilöllieti ja ekologieti. PARASTA VAPAA-AIKAA. KATSO LISÄ- TIETOJA KONTIO.FI UUDEN AJAN LOMANVIETTOON Kontion Vapaa-aika -mallito
Käyttöohje Verio maalikuu 25 TÄRKEITÄ TURVALLISUUSOHJEITA YKSITYISKOHTAISET TURVALLISUUSOHJEET: ) Lue nämä ohjeet HUOMIO: VAROITUS: Sähköikulta välttyäkenne ei päällykantta (tai tautaekti kantta) tule
YDINSPEKTROMETRIA TENTTI mallivastaukset ja arvostelu max 30 p, pisterajat 15p 1, 18p 2, 21p 3, 24p 4, 27p - 5
5573-5 YDISPEKTROMETRIA TETTI 9.5.05 mallivatauket ja arvotelu max 30 p, piterajat 5p, 8p, p 3, 4p 4, 7p - 5. Mittautehokkuu ja iihen vaikuttavat aiat/ilmiöt gammapektrometriaa (yht. 6 p) Vatau: ilmaiimea
METSÄNTUTKIMUSLAITOS. tutkimusosasto. Metsäteknologian WÄRTSILA. Kenttäkoe. Tutkimusselostus
METSÄNTUTKIMUSLAITOS Metäteknologian Uniinkatu WÄRTSILA 40 A tutkimuoato Helinki TELESKOOPPIKUORMAIN AUTOKUORMAUKSESSA Kenttäkoe Tutkimuelotu Juhani Helinki Lukkari 97 7 Ainto Tutkimuken kenttäkoe Ruokolahdella.
Kertaustehtäviä. Luku 1. Physica 3 Opettajan OPAS
(4) Luku 57. a) Mekaaniea poikittaiea aaltoliikkeeä aineen rakenneoat värähtelevät eteneiuuntaan vataan kohtiuoraa uunnaa. Eierkkejä ovat uun uaa jouen poikittainen aaltoliike tai veden pinnan aaltoilu.
Kouvolan kaupunki. Tarjouspyyntö 28733/2015 Päiväys 23.03.2015
1/19 TARJOUSPYYNTÖ 28733/2015 Apteekkien koneellinen lääkepalvelu ja toimitupalvelu 1. Hankintaykikön perutiedot Hankintaykikkö: Heli Mäkinen Suomi puh. +358 206154012 Tarjouket lähetettävä: Tarjou tai
SUUNNITTELUPERUSTEET TAMPEREEN JA TURUN MODERNI RAITIOTIE 31.12.2013
TAMPEREEN JA TURUN MODERNI RAITIOTIE 31.12.2013 Suunnitteluperuteiiin on koottu tärkeimmät tiedot raitiotien linjauken yleiuunnittelua varten. Ohje perutuu Sakalaieen BOStrab ohjeeeen ja iältää tietoja
Kenguru 2015 Mini-Ecolier (2. ja 3. luokka) RATKAISUT
sivu 1 / 10 3 pistettä 1. Kuinka monta pilkkua kuvan leppäkertuilla on yhteensä? (A) 17 (B) 18 (C) 19 (D) 20 (E) 21 Ratkaisu: Pilkkuja on 1 + 1 + 1 + 2 + 2 + 1 + 3 + 2 + 3 + 3 = 19. 2. Miltä kuvan pyöreä
OPINTOJAKSO FYSIIKKA 1 OV OPINTOKOKONAISUUTEEN FYSIIKKA JA KEMIA 2 OV. Isto Jokinen 2012. 1. Mekaniikka 2
OPINTOJAKSO FYSIIKKA 1 OV OPINTOKOKONAISUUTEEN FYSIIKKA JA KEMIA OV Io Jokinen 01 SISÄLTÖ SIVU 1. Mekaniikka Nopeu Kekinopeu Kehänopeu 3 Kiihyvyy 3 Puoamikiihyvyy 4 Voima 5 Kika 6 Työ 7 Teho 8 Paine 9
Semanttisen tietämyksenhallinnan mahdollisuudet sosiaalityön tiedonmuodostuksessa
Semanttisen tietämyksenhallinnan mahdollisuudet sosiaalityön tiedonmuodostuksessa Sosiaalityön tutkimuksen päivät 15.2.2007 Antero Lehmuskoski erikoissuunnittelija, Stakes Tuloksellisuuden vaatimus Työn
Sosiaali- ja terveysministeriö on vahvistanut vastuunjakoperusteet 27.11.2006.
Eläketurkeku (83) Suunnittelu- j lkentoto 9..2006 VASTUUNJAKOPERUSTEET Soili- j tereminiteriö on hitnut tuunjkoperuteet 27..2006. Siällluettelo VASTUUNJAKOPERUSTEET...4 PERUSTEIDEN SOVELTAMINEN...4 Soeltmil...4
TEKNIIKKA JA LIIKENNE. Sähkötekniikka. Sähkövoimatekniikka INSINÖÖRITYÖ
TEKNIIKKA JA LIIKENNE Sähkötekniikka Sähkövoimatekniikka INSINÖÖRITYÖ KOSKETUSSUOJAN POIKKIPINNAN VAIKUTUS 60-400 kv SUURJÄNNITEKAAPELIN KUORMITETTAVUUTEEN Työn tekijä: Mika Suomi Työn valvoja: Jarno Varteva
Sosiaali- ja terveysministeriön vahvistamissa vastuunjakoperusteissa esiintyvien tasauskertoimien arvot vuodelle 2011 = 0, = 0,036947
Soili- j terveyminiteriön 25.11.2010 vhvitmi vtuunjkoperutei eiintyvien tukertoimien rvot vuodelle = 0,403097 = 0,036947 = 0,000569 TVR(j) = 0,008056 TVR(m) = 0,008051 TVR(y) = 0,008046 ELÄKETURVAKESKUS
Pinta-alan variaatio. Rakenteiden Mekaniikka Vol. 44, Nro 1, 2011, s Eero-Matti Salonen ja Mika Reivinen
Rakenteien Mekaniikka Vol. 44, Nro, 0,. 93-97 Pinta-alan variaatio Eero-Matti Salonen ja Mika Reivinen Tiivitelmä. Artikkelia tarkatellaan taoalueen pinta-alan variaation eittämitä vektorilakennan avulla.
S Piirianalyysi 2 2. välikoe
S-55.22 Piirianalyyi 2 2. välikoe 6.5.23 Lake tehtävät 2 eri paperille kuin tehtävät 3 5. Muita kirjoittaa jokaieen paperiin elväti nimi, opikelijanumero, kurin nimi ja koodi. Epäelvät vataupaperit voidaan
Satakunnan ammattikorkeakoulu. Harri Nuora SULJETTUJEN PUTKIVERKOSTOJEN MITOITUSPERUSTEIDEN TARKASTELU
Satakunnan aattikorkeakoulu Harri Nuora SULJETTUJEN PUTKIVERKOSTOJEN MITOITUSPERUSTEIDEN TARKASTELU Tekniikka Pori Energiatekniikan koulutuohjela 008 SULJETTUJEN PUTKIVERKOSTOJEN MITOITUSPERUSTEIDEN TARKASTELU
RATKAISUT: 7. Gravitaatiovoima ja heittoliike
Phyica 9. paino () 7. Gaitaatiooia ja heittoliike : 7. Gaitaatiooia ja heittoliike 7. a) Gaitaatiooia aikuttaa kaikkien kappaleiden älillä. Gaitaatiooian uuuu iippuu kappaleiden aoita ja niiden älietä
Aalto-yliopisto, Teknillisen fysiikan laitos PHYS-E0460 Reaktorifysiikan perusteet Harjoitus 3, mallivastaukset Syksy 2016
Aalto-yliopito, Teknillien fyiikan laito Sipilä/Heikinheimo PHYS-E0460 Reaktorifyiikan peruteet Harjoitu 3, mallivatauket Syky 2016 Tehtävä 3 on tämän harjoitukierroken taulutehtävä Valmitaudu eittelemään
FI3 Tiedon ja todellisuuden filosofia LOGIIKKA. 1.1 Logiikan ymmärtämiseksi on tärkeää osata erottaa muoto ja sisältö toisistaan:
LOGIIKKA 1 Mitä logiikka on? päättelyn tiede o oppi muodollisesti pätevästä päättelystä 1.1 Logiikan ymmärtämiseksi on tärkeää osata erottaa muoto ja sisältö toisistaan: sisältö, merkitys: onko jokin premissi
S-55.1220 Piirianalyysi 2 Tentti 1.9.2011
S-55.2 Piirianalyyi 2 Tentti.9.. e(t) L j(t) Lake vatukea lämmöki muuttuva teho P. = Ω L = mh = 2mF ω = 0 3 rad/ e = ê in(ωt) j = ĵ in(2ωt) ĵ = 0 A ê = 2 2 V. 2. u(t) k Kuvan mukainen taajännitelähteen
Hyppy Pekingiin 2008 Tapani Keränen (Kihu) ja Juhani Evilä (SUL)
Hyppy Pekingiin 2008 Tapani Keränen (Kih ja Jhani Evilä (SUL Harjoitvoden 2008 aikana totetettiin SUL:n ja Kihn yhteityöprojekti Hyppy Pekingiin 2008. Projektia Kihn vt. biomekaniikan ttkija oli pithyppääjien
RATKAISUT: 9. Pyörimisen peruslaki ja pyörimismäärä
Phyic 9. pino (9) 9. Pyöiien peulki j pyöiiäää : 9. Pyöiien peulki j pyöiiäää 9. ) Hituoentti on uue, jok kuv kppleen pyöiihitutt, toiin noen itä, iten vike kppleen pyöiitä on uutt. b) Syteein pyöiiäää