Kahdeksansolmuinen levyelementti

Koko: px
Aloita esitys sivulta:

Download "Kahdeksansolmuinen levyelementti"

Transkriptio

1 Levy8 ja RS hm 7.. Kahdekanolminen levyelementti akatellaan kvan kahdekanolmita levyelementtiä. q 6 y (,y q 8 ( 8,y 8 8 q 7 q 6 (,y q 5 q q q 7 q q ( 7,y 7 v ( 6,y 6 P 5 ( 5,y 5 q 9 6 q 5 (,y q (,y q q q Piteen P koodinaatit voidaan laa emokoodinaattien ja avlla, jotka ovat nomeeatt välille,,,,,, 8 8,,,,, y y y y y 8 8 ( miä fnktiot,,,, 5, 6, 7 ja 8 ovat levyelementin kvadaattiet motofnktiot, jotka kootvat nkkafnktioita (, ( (, ( (, ( (, ( ( ja ivfnktioita

2 Levy8 ja RS hm 7.. 5(, 5 6(, 6 7(, 7 8(, 8 ( Alla on nkkafnktioiden kvaajat ja itten ivfnktioiden 5, 6, 7 ja 8 kvaajat

3 Levy8 ja RS hm Helpoti homaat, että edellä olevilla fnktioilla on taakin ominai, että niiden avo omalla olmlla on ja milla olmilla. Liäki kaikkien motofnktioiden mma elementin aleella on. Vataavati elementin aleella iitymäkenttä lataan olmiitymien avlla,,,, q q q 8 5,,,, v q q q 8 6 ( Lähdetään itten etimään venymän laeketta elementin aleella. ätä vaten deivoidaan iitymän laeke emokoodinaattien hteen y, y y, y (5 joka voidaan laa matiiimodoa

4 Levy8 ja RS hm 7..,, y,,, y J,,,, y, y (6 miä matiii J on kvaken Jacobin matiii. Kahdekanolmien levyelementin tapakea 8 8 8,, i i, i i, i i i i i y y y, y y, y i i, i i, i i i i i joten Jacobin matiii kahdekanolmielle levyelementille on (7 8 8 i, i i, yi i i J (8 8 8 i, i i, yi i i Matiii ei ole vakio elementin aleella. Vataavati iitymille ja v aadaan, ,,,, 8, q,,,, 8, q v q, 8 v,,, 8, v,,, 8, q q q (9 joten iitymien deivaatat emokoodinaattien hteen voidaan kijoittaa,,,, 8,,,,, 8, qgq v,,, 8, v,,, 8, ( koka iitymän deivaatta koodinaattien ja y hteen on, J J,,, 8,, y J J J,,, 8, q (

5 Levy8 ja RS hm 7.. miä J on Jacobin matiiin deteminantti ja vataavati iitymän v deivaatta koodinaattien ja y hteen v, J J,, 8, v, y J J J,, q 8, ( Lakemalla edellä olevat matiiitlot aadaan,,,, 8, q, y, y, y, y 8, y ( ja v,,, 8, v q, y, y, y 8, y ( joten venymäkomponentit elementin aleella aadaan edellä eitetyn peteella motoon,,,, 8, y v, y, y, y 8, yqbq v y, y,, y,, y,, y 8, y 8, (5 Matiiia B kttaan elementin kinemaattieki matiiiki, jonka avlla aadaan piteen P venymäkomponentit kn elementin olmiitymät tnnetaan. Homaa myö, että edellä oleva eity poikkeaa Chandpatlan kijan mkaieta eityketä. ämä joht iitä, etten heti kekinyt, miten kijan notaatio opii otaatioymmetieen tapakeen. Jäykkyymatiii Lineaaieti kimmoien kappaleen, joa on yleinen jännitytila, kimmoenegia aadaan laekkeeta σ ε U U dv dv V V Jo piteen P jännitykomponentit voidaan laa E y σ Dε DBq Bq y (6 (7 5

6 Levy8 ja RS hm 7.. niin aadaan elementin kimmoenegia latta modoa U qbdbqdv qt da t J dd BDB q q BDB q (8 V joten elementin jäykkyymatiii (6. 6 on A ke t B DB J d d (9 miä t on elementin vakioki oletett pak. Jäykkyymatiii laketaan nmeeieti käyttäen yleenä Gain integointia ja piteen näytteenottoa. Ekvivalenttiet olmkomitket ilavkomitken aihettama ekvivalenttinen olmkomit Laketaan enin tilavkomitken f aihettama ekvivalenttinen olmkomit. ätä vaten lataan tilavkomitken potentiaali WP fdv t fda V A ( miä t on elementin vakiopak. Siitymä elementin aleella voidaan laa q q q, 8 q v, q 8 q5 q6 q 6 joten tilavkomitken potentiaali ( 6

7 Levy8 ja RS hm 7.. f fy V f A A y f 8 f f y f WP q t f da q t da q t J d d q f 8 f f 8 8 y ( Ekvivalenttinen olmkomit laketaan nmeeieti käyttäen Gain integointia ja tavallieti piteen näytteenottoa. aaien enapaineen aihettama ekvivalenttinen olmkomit akatellaan elementin enaa olmlta olmlle. Mt enat menevät vataavalla tavalla. 7 q 6 (,y q 5 p q ( 6,y 6 y 8 q 5 6 (,y q q q q p p p. Elementille kohdit enapaine, jonka komponentit globaalia koodinaatitoa ovat Paine voidaan mttaa viivakomitkeki ketomalla elementin pakdella t. Komitken potentiaali on y WP pt d d q d ( miä integointi lotetaan enaviivan 6 yli. Koka iittää kn intepolointi kokee vain enaviivaa, niin ovitetaan viivalle ykilotteinen intepolointi. 7

8 Levy8 ja RS hm 7.. q q q 5 v q ( 6 q q q miä ykilotteiet kvadaattiet motofnktiot ovat (5 Renaviivan piteet intepoloidaan 6 i i i 6 i i i y y y y y diffeentioimalla aadaan,,, 6 i, i i d d d d d J d,,, 6 i, i y i dy y d y d y d y d J d koka d d dy, niin d J J d y y y WP q t J J d (6 8

9 Levy8 ja RS hm 7.. joten taaien enapaineen aihettama ekvivalenttinen olmkomitvektoi aadaan y p f t J Jy d (7 y y jonka komponentit laketaan yleenä nmeeieti kahden tai kolmen piteen näytteenotolla. Komitken voimakomponentit ijoittelmmataan enaviivan 6 tapakea elementin vapaateita q q q q q q vataaville globaalivapaateille. 5 6 Rotaatioymmetinen elementti Jo lakettavan kappaleen moto on pyöähdyymmetinen ja myö iihen kohditva lkoinen komit on pyöähdyymmetinen, niin käyttämällä otaatioymmetiiä elementtejä, äätetään lakentamallia homattavati aitoon kolmilotteieen lakentamalliin veattna. Kten kvata homataan, on akeli nyt kovatt akelilla ja y akeli akelilla. akatellaan itten pyöähdyymmetien mallin venymäkomponenttien määitytä. 9

10 Levy8 ja RS hm 7.. w + w, P P' w +, Kvaa yhtenäiellä viivalla on mekitty oakaidetta, jonka pit on komittamattomana ja koke on. Ulkoien komitken vaiktketa piteen P iitymä on (,w. Venymän määitelmän nojalla,, ww, w w, (8 Koka käytetään pienten venymien teoiaa, jolloin tan, niin leikkamodonmto aadaan aadaan lakemalla yhteen alla olevan kvan klmat ja, joten, P P' w w, w,, w,, (9 Venymäkomponentit ovat täyin amat kin taotapakea, mtta vielä pitää homioida kehän ntainen venymä. Kvan peteella

11 Levy8 ja RS hm 7.. (+ +, ( Homataan, että kehän ntainen venymäkomponentti aa epämäääien modon oigoa. Yhditämällä edellä olevat komponentit aadaan ne ladottna ε, w /,, w, ( Joiain elementtimenetelmän kijoia latomijäjety on eilainen eli kaki viimeitä komponenttia on vaihtant paikkaa. Piteen P jännitykomponentit aadaan nyt yhteydetä E σ Dε ε ( miä kimmomatiii D aadaan kolmilotteieta kimmomatiiita poitamalla kaki iviä ja kaki aaketta ekä vaihtamalla leikkajännityken ja kehäjännityken paikkaa. Käitellään tää neliolmien otaatioymmetien levyelementin laekkeet. Kahdekanolmien elementin vataavat laekkeet on helppo johtaa vetaamalla ja 8 olmien taoelementin laekkeita.

12 Levy8 ja RS hm 7.. eliolminen pyöähdyymmetinen levyelementti akatellaan kvan neliolmita pyöähdyymmetitä levyelementtiä. q 6 q 8 q 7 q 5 (, P (, P q w (, q (, q q Piteen P koodinaatit voidaan laa emokoodinaattien ja avlla,,,,,,,,,, ( miä fnktiot,, ja ovat levyelementin bi lineaaiet motofnktiot (, (, (, (, ( Vataavati elementin aleella iitymäkenttä lataan olmiitymien avlla,,,,, q q q q 5 7,,,,, w q q q q 6 8 (5

13 Levy8 ja RS hm 7.. Lähdetään itten etimään venymän laeketta elementin aleella. ätä vaten deivoidaan iitymän laeke emokoodinaattien hteen,, (6 Deivaatat voidaan laa matiiimodoa,,,,, J (7,,,,, miä matiii J on kvaken Jacobin matiii J (8 Matiii on ama kin taotapakea knhan kovataan äteellä ja y kokedella. Vataavati iitymille ja w aadaan, q q q q 5 7,,,,, q,,,,, q w q q q q, 6 8 w,,,,, w,,,,, q q q q (9 koka iitymän deivaatta koodinaattien ja hteen on,,,,,, J J q (,,,,,, niin lakemalla matiiitlo aadaan,,,,, q (,,,,,

14 Levy8 ja RS hm 7.. miä J on Jacobin matiiin deteminantti ja vataavati iitymän w deivaatta koodinaattien ja hteen w q (,,,,, w,,,,, joten venymäkomponentit elementin aleella aadaan edellä eitetyn peteella motoon,,,,, w,,,,, qbq (, w,,,,,,,,, / / / / / Matiiia B kttaan elementin kinemaattieki matiiiki, jonka avlla aadaan piteen P venymäkomponentit kn elementin olmiitymät tnnetaan. Kinemaattien matiiin viimeiellä ivillä oleva on piteen P koodinaatti, joka laketaan intepoloimalla, Jäykkyymatiii Lineaaieti kimmoien kappaleen, joa on yleinen jännitytila, kimmoenegia aadaan laekkeeta σ ε U U dv dv V V ja jo piteen P jännitykomponentit voidaan laa ( E σ Dε DBq Bq (5 niin aadaan elementin kimmoenegia latta modoa U q B DBqdV q da J dd B DB q q B DB q (6 V A

15 Levy8 ja RS hm 7.. joten elementin jäykkyymatiii on k B DB Jdd (7 e Jäykkyymatiii laketaan nmeeieti käyttäen yleenä Gain integointia ja piteen näytteenottoa. Ekvivalenttiet olmkomitket ilavkomitken aihettama ekvivalenttinen olmkomit Laketaan enin tilavkomitken f aihettama ekvivalenttinen olmkomit. ätä vaten lataan tilavkomitken potentiaali WP dv da V f f (8 A Siitymä elementin aleella voidaan laa q q q, q w, q (9 q5 q6 q 7 q 8 joten tilavkomitken potentiaali f f f f f V WP q da da f q J d d f q q f (5 A A f f f f 5

16 Levy8 ja RS hm 7.. Ekvivalenttinen olmkomit laketaan nmeeieti käyttäen Gain integointia ja piteen näytteenottoa. aaien enapaineen aihettama ekvivalenttinen olmkomit akatellaan elementin enaa olmlta olmlle. Mt enat menevät vataavalla tavalla. q 6 (, p q 8 (, q 7 q (, q 5 (, q q q q (, q da d d d l d q q (, p p p. Elementille kohdit enapaine, jonka komponentit globaalia koodinaatitoa ovat Komitken potentiaali on WP da d A p q p (5 miä integointi lotetaan enaviivan yli, joka ii pyöähtää akelin ympäi. Koka iittää kn intepolointi kokee vain tätä enaviivaa, niin ovitetaan viivalle ykilotteinen intepolointi. q w q q q q (5 miä 6

17 Levy8 ja RS hm 7.. Renaviivan pit on l, joten d l d ja potentiaali (5 p p WP q l d p q f (5 joten taaien enapaineen aihettama ekvivalenttinen olmkomitvektoi aadaan l p p p p p f (55 Komitken voimakomponentit ijoittelmmataan enaviivan tapakea elementin vapaateita q q q q vataaville globaalivapaateille. 7

CST-elementti hum

CST-elementti hum CS-lmntti hm 4..3 CS-lmntti arkatllaan kan kolmiolmita kolmiolmnttiä, jota kttaan akionmän kolmiolmntiki (Contant Strain riangl). q 6 3 q 5 ( 3, 3 ) (, ) q 4 q 3 P q (, ) q O Pitn P koordinaatit oidaan

Lisätiedot

SAVUN JA KOSTEUDEN VAIKUTUS ELEKTRONIIKKAPIIREIHIN

SAVUN JA KOSTEUDEN VAIKUTUS ELEKTRONIIKKAPIIREIHIN SAVUN JA KOSTEUDEN VAIKUTUS ELEKTRONIIKKAPIIREIHIN TIIVISTELMÄ Johan Mang & Olavi Keki-Rahkonen VTT Rakenn- ja yhdykntatekniikka PL 803, 02044 VTT Savn, koteden ekä näiden yhteitä äkillitä vaiktta elektroniikkapiireihin

Lisätiedot

Hyppy Pekingiin 2008 Tapani Keränen (Kihu) ja Juhani Evilä (SUL)

Hyppy Pekingiin 2008 Tapani Keränen (Kihu) ja Juhani Evilä (SUL) Hyppy Pekingiin 2008 Tapani Keränen (Kih ja Jhani Evilä (SUL Harjoitvoden 2008 aikana totetettiin SUL:n ja Kihn yhteityöprojekti Hyppy Pekingiin 2008. Projektia Kihn vt. biomekaniikan ttkija oli pithyppääjien

Lisätiedot

4.3 Liikemäärän säilyminen

4.3 Liikemäärän säilyminen Tämän kappaleen aihe liikemäärän äilyminen törmäykiä. Törmäy on uora ja kekeinen, jo törmäävät kappaleet liikkuvat maakekipiteitten kautta kulkevaa uoraa pitkin ja jo törmäykohta on tällä amalla uoralla.

Lisätiedot

S-55.1220/142 Piirianalyysi 2 1. Välikoe 10.3.2006

S-55.1220/142 Piirianalyysi 2 1. Välikoe 10.3.2006 S-55.0/4 Piirianalyyi. Välioe 0.3.006 ae tehtävät 3 eri paperille in tehtävät 4 5. Mita irjoittaa joaieen paperiin elväti nimi, opielijanmero, rin nimi ja oodi. Tehtävät laetaan oaton oepaperille. Mita

Lisätiedot

X 2 = k 21X 1 + U 2 s + k 02 + k 12. (s + k 02 + k 12 )U 1 + k 12 U 2. s 2 + (k 01 + k 21 + k 02 + k 12 ) s + k

X 2 = k 21X 1 + U 2 s + k 02 + k 12. (s + k 02 + k 12 )U 1 + k 12 U 2. s 2 + (k 01 + k 21 + k 02 + k 12 ) s + k Aalto-yliopiton Perutieteiden korkeakoulu Matematiikan ja yteemianalyyin laito Mat-49 Syteemien Identifiointi 0 harjoituken ratkaiut äytetään enin iirtofunktiomalli Tehdään Laplace-muunno: ẋ k 0 k x +

Lisätiedot

= r, s. Jokaisella diedriryhmällä on vastaavanlainen esitys ryhmän O(2) < GL 2 (R) aliryhmänä. r 2 (C) r 2 (B) r 2 (A) s s

= r, s. Jokaisella diedriryhmällä on vastaavanlainen esitys ryhmän O(2) < GL 2 (R) aliryhmänä. r 2 (C) r 2 (B) r 2 (A) s s 6. Symmetinen yhmä Ääellien n alkiota kootuvan joukon { 2...n} pemutaatioyhmää kututaan ymmetieki yhmäki S n.hajoitutehtävän5nojallaminkätahanan alkion joukon pemutaatioyhmä on iomofinen yhmän S n kana.

Lisätiedot

12. laskuharjoituskierros, vko 16, ratkaisut

12. laskuharjoituskierros, vko 16, ratkaisut 1. lakuharjoitukierro, vko 16, ratkaiut D1. Muuttujien x ja Y havaitut arvot ovat: x 1 3 4 6 8 9 11 14 Y 1 4 4 5 7 8 9 a) Määrää regreiomallin Y i = α +βx i +ǫ i regreiokertoimien PNS-etimaatit ja piirrä

Lisätiedot

PD-säädin PID PID-säädin

PD-säädin PID PID-säädin -äädin - äätö on ykinkertainen äätömuoto, jota voidaan kutua myö uhteuttavaki äädöki. Sinä lähtöignaali on uoraa uhteea tuloignaalin. -äätimen uhdealue kertoo kuinka paljon mittauuure aa muuttua ennen

Lisätiedot

S-55.1220 Piirianalyysi 2 Tentti 27.10.2011

S-55.1220 Piirianalyysi 2 Tentti 27.10.2011 S-55.220 Piirianalyyi 2 Tentti 27.0. j(t) u(t) -piiriin vaikuttaa lähdevirta j(t) = A ĵ in(ωt)]. Lake piirin jännite u(t) ajan funktiona ja vatukea kuluva teho. Piiri on jatkuvuutilaa. ĵ = 0,5A = 2µF ω

Lisätiedot

Viivakuormituksen potentiaalienergia saadaan summaamalla viivan pituuden yli

Viivakuormituksen potentiaalienergia saadaan summaamalla viivan pituuden yli hum.9. oiman potentiaalienergia Potentiaalienergiata puhutaan, kun kappaleeeen vaikuttaa jokin konervatiivinen voima. oima on konervatiivinen, jo en tekemä tö vaikutupieen iirteä tiettä paikata toieen

Lisätiedot

Tilastotieteen jatkokurssi 8. laskuharjoitusten ratkaisuehdotukset (viikot 13 ja 14)

Tilastotieteen jatkokurssi 8. laskuharjoitusten ratkaisuehdotukset (viikot 13 ja 14) Tilatotietee jatkokuri 8. lakuharjoitute ratkaiuehdotuket (viikot 13 ja 14) 1) Perujoukko o aluee A aukkaat ja tutkittavaa omiaiuutea ovat tulot, Tiedämme, että perujouko tulot oudattaa ormaalijakaumaa,

Lisätiedot

KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoski, professori. Lappeenrannan teknillinen yliopisto

KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoski, professori. Lappeenrannan teknillinen yliopisto KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoki, proeori Lappeenrannan teknillinen yliopito Näin uuden vuoden alkaea ueat meitä miettivät ijoitualkkuna kootumuta. Yki kekeiitä kyymykitä on päätö eri

Lisätiedot

Valtion eläkemaksun laskuperusteet

Valtion eläkemaksun laskuperusteet VALTIOKONTTORI PÄÄTÖS Dnro 62/30/2005 Valtion eläkemakn lakperteet Valtiokonttori on 2262005 hyäkynyt nämä lakperteet nodatettaaki lakettaea Valtion eläkerahatolaia tarkoitettja työnantajan eläkemakja

Lisätiedot

Y56 Laskuharjoitukset 3 palautus ma klo 16 mennessä

Y56 Laskuharjoitukset 3 palautus ma klo 16 mennessä 1 Y6 Lakuharjoituket 3 alautu ma 3.. klo 16 menneä Harjoitu 1. Lue enin Vihmo, Jouni (006) Alkoholijuomien hintajoutot uomea vuoina 199 00, Yhteikuntaolitiikka 71, 006/1 ivut 9 ja vataa itten kyymykiin.

Lisätiedot

S Piirianalyysi 2 2. välikoe

S Piirianalyysi 2 2. välikoe S-55.22 Piirianalyyi 2 2. välikoe 6.5.23 Lake tehtävät 2 eri paperille kuin tehtävät 3 5. Muita kirjoittaa jokaieen paperiin elväti nimi, opikelijanumero, kurin nimi ja koodi. Epäelvät vataupaperit voidaan

Lisätiedot

POSITIIVISEN LINSSIN POLTTOVÄLI

POSITIIVISEN LINSSIN POLTTOVÄLI S-108110 OPTIIKKA 1/6 POSITIIVISEN LINSSIN POLTTOVÄLI Laboratoriotyö S-108110 OPTIIKKA /6 SISÄLLYSLUETTELO 1 Poitiivien linin polttoväli 3 11 Teoria 3 1 Mittauken uoritu 5 LIITE 1 6 Mittaupöytäkirja 6

Lisätiedot

12. ARKISIA SOVELLUKSIA

12. ARKISIA SOVELLUKSIA MAA. Arkiia ovellukia. ARKISIA SOVELLUKSIA Oleeaan, eä kappale liikkuu ykiuloeia raaa, eimerkiki -akelia pikin. Kappaleen nopeuden vekoriluonne riiää oaa vauhdin eumerkin avulla huomioon, ja on ehkä arkoiukenmukaiina

Lisätiedot

RATKAISUT: 17. Tasavirtapiirit

RATKAISUT: 17. Tasavirtapiirit Phyica 9. paino 1(6) ATKAST 17. Taavirtapiirit ATKAST: 17. Taavirtapiirit 17.1 a) Napajännite on laitteen navoita mitattu jännite. b) Lähdejännite on kuormittamattoman pariton napajännite. c) Jännitehäviö

Lisätiedot

Viikkotehtävät IV, ratkaisut

Viikkotehtävät IV, ratkaisut Viikkotehtävät IV, ratkaiut. 7,40 V (pariton napajännite) I 7 ma (lampun A ähkövirta rinnankytkennää) I 5 ma (lampun B ähkövirta rinnankytkennää) a) eitani on, joten lamppujen reitanit voidaan lakea tehtävää

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2004

MAOL-Pisteitysohjeet Fysiikka kevät 2004 MAOL-Piteityohjeet Fyiikka kevät 004 Tyypilliten virheiden aiheuttaia piteenetykiä (6 piteen kaalaa): - pieni lakuvirhe -1/3 p - lakuvirhe, epäielekä tulo, vähintään - - vataukea yki erkitevä nuero liikaa

Lisätiedot

Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat:

Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat: Mat-.090 Sovellettu todeäköiyylaku A 0. harjoituket Mat-.09 Sovellettu todeäköiyylaku 0. harjoituket / Ratkaiut Aiheet: Avaiaat: Tilatolliet tetit Aritmeettie kekiarvo, Beroulli-jakauma, F-jakauma, F-teti,

Lisätiedot

järjestelmät Jatkuva-aikaiset järjestelmät muunnostason ratkaisu Lineaariset järjestelmät Risto Mikkonen

järjestelmät Jatkuva-aikaiset järjestelmät muunnostason ratkaisu Lineaariset järjestelmät Risto Mikkonen DEE- Lineiet jäjetelmät Jtkuv-ikiet jäjetelmät muunnoton tkiu Lineiet jäjetelmät Rito Mikkonen Lplce-muunno Aikton DY Aikton tkiu Lplcemuunno Käänteimuunno Rtkiu -to 2 Lineiet jäjetelmät Rito Mikkonen

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.4 Tilatollie aali peruteet, kevät 7 6. lueto: Johdatu regreioaalii Regreioaali idea Tavoitteea elittää elitettävä tekiä/muuttua havaittue arvoe vaihtelu elittävie tekiöide/muuttuie havaittue arvoe

Lisätiedot

S-55.1220 Piirianalyysi 2 Tentti 1.9.2011

S-55.1220 Piirianalyysi 2 Tentti 1.9.2011 S-55.2 Piirianalyyi 2 Tentti.9.. e(t) L j(t) Lake vatukea lämmöki muuttuva teho P. = Ω L = mh = 2mF ω = 0 3 rad/ e = ê in(ωt) j = ĵ in(2ωt) ĵ = 0 A ê = 2 2 V. 2. u(t) k Kuvan mukainen taajännitelähteen

Lisätiedot

gallup gallup potentiaali ja voima potentiaali ja voima potentiaali ja voima potentiaali ja voima

gallup gallup potentiaali ja voima potentiaali ja voima potentiaali ja voima potentiaali ja voima aup Kuinka pajon käytät kurikirjaa (tai jotain muuta oppikirjaa)? a) Tututun aiheeeen ennen uentoja b) Luen kirjaa uentojen jäkeen c) Luen oppikirjaa ähinnä akareita tehdeä d) n koke oppikirjaan aup Kappae

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 10: Avaruusristikon sauvaelementti.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 10: Avaruusristikon sauvaelementti. / EEMEIMEEEMÄ PERSEE SESSIO : Avasistion savalmntti. AVARSRISIKO EEMEIVERKKO Avasistion taaan ataisn päästään ättämällä lmnttivoa jona solmt ovat istion nivlin ohdilla in istion sava on lmntti. Kvassa

Lisätiedot

Sauvaelementti hum

Sauvaelementti hum Sauvalmntti hum.9. Yhdn solmuvapausastn sauvalmntti akastllaan kuvan mukaista sauvalmnttiä. Sauvan vasmmassa päässä on sauvan lokaalisolmu numo, jonka -koodinaatti on ja vastaavasti oikassa päässä lokaalisolmu

Lisätiedot

METSÄNTUTKIMUSLAITOS. tutkimusosasto. Metsäteknologian WÄRTSILA. Kenttäkoe. Tutkimusselostus

METSÄNTUTKIMUSLAITOS. tutkimusosasto. Metsäteknologian WÄRTSILA. Kenttäkoe. Tutkimusselostus METSÄNTUTKIMUSLAITOS Metäteknologian Uniinkatu WÄRTSILA 40 A tutkimuoato Helinki TELESKOOPPIKUORMAIN AUTOKUORMAUKSESSA Kenttäkoe Tutkimuelotu Juhani Helinki Lukkari 97 7 Ainto Tutkimuken kenttäkoe Ruokolahdella.

Lisätiedot

METSÄSTYSPUHELIMET. www.zodiacfinland.fi

METSÄSTYSPUHELIMET. www.zodiacfinland.fi METSÄSTYSPUHELIMET www.zodiacfinland.fi Z O D I A C T E A M P R O WAT E R P R O O F ZODIAC Zodiac Team Pro Waterproof radiopuhelin on valintai, kun toiminnot ja uoritukyky ratkaievat. TAKUU 3 VUOTTA Open

Lisätiedot

Luotettavuusteknisten menetelmien soveltaminen urheiluhallin poistumisturvallisuuden laskentaan

Luotettavuusteknisten menetelmien soveltaminen urheiluhallin poistumisturvallisuuden laskentaan ESPOO 00 VTT TIEDOTTEITA 8 Tuoma Palopoki, Jukka Myllymäki & Heny Weckman Luotettavuutekniten menetelmien oveltaminen uheiluhallin poitumituvalliuuden lakentaan VTT TIEDOTTEITA RESEARCH NOTES 8 Luotettavuutekniten

Lisätiedot

10 Suoran vektorimuotoinen yhtälö

10 Suoran vektorimuotoinen yhtälö 10 Suran vektrimutinen htälö J aluki tarkatellaan -tan kuuluvaa, rign kautta kulkevaa uraa, niin ura n täin määrätt, mikäli tunnetaan en uunta. Tavallieti tämä annetaan uuntakulman tangentin = kulmakertimen

Lisätiedot

7. Pyörivät sähkökoneet

7. Pyörivät sähkökoneet Pyörivät ähkökoneet 7-1 7. Pyörivät ähkökoneet Mekaanien energian muuntamieen ähköenergiaki ekä ähköenergian muuntamieen takaiin mekaanieki energiaki käytetään ähkökoneita. Koneita, jotka muuntavat mekaanien

Lisätiedot

4. Derivointi useammassa ulottuvuudessa

4. Derivointi useammassa ulottuvuudessa 6 VEKTORIANALYYSI Lento 3 4. Derivointi seammassa lottvdessa Osittaisderivaatta. Kerrataan alksi osittaisderivaatan käsite. Fnktio f f ( r) f ( x, y, z) on kolmen mttjan fnktio, jonka arvo yleensä mtt,

Lisätiedot

RATKAISUT: 3. Voimakuvio ja liikeyhtälö

RATKAISUT: 3. Voimakuvio ja liikeyhtälö Phyica 9. paino (8) 3. Voiakuvio ja liikeyhtälö : 3. Voiakuvio ja liikeyhtälö 3. a) Newtonin I laki on nieltään jatkavuuden laki. Kappale jatkaa liikettään uoraviivaieti uuttuattoalla nopeudella tai pyyy

Lisätiedot

Äänen nopeus pitkässä tangossa

Äänen nopeus pitkässä tangossa IXPF24 Fyiikka, ryhälaboratoriotyö IST4S1 / E1 / A Okanen Janne, Vaitti Mikael, Vähäartti Pai Jyväkylän Aattikorkeakoulu, IT-intituutti IXPF24 Fyiikka, Kevät 2005, 6 ECTS Opettaja Pai Repo Äänen nopeu

Lisätiedot

= + + = 4. Derivointi useammassa ulottuvuudessa

= + + = 4. Derivointi useammassa ulottuvuudessa 30 VEKTORIANALYYSI Lento 4 4. Derivointi seammassa lottvdessa Osittaisderivaatta. Kerrataan alksi osittaisderivaatan käsite. Fnktio f= f( r) = f( xyz,, ) on kolmen mttjan fnktio, jonka arvo yleensä mtt,

Lisätiedot

1 LAMMIMUURIN RAKENNE JA OMINAISUUDET 2 2 KÄYTTÖKOHTEET 2 3 MUURITYYPIT 2 4 LASKENTAOTAKSUMAT 3 4.1 Materiaalien ominaisuudet 3 4.2 Maanpaine 3 4.

1 LAMMIMUURIN RAKENNE JA OMINAISUUDET 2 2 KÄYTTÖKOHTEET 2 3 MUURITYYPIT 2 4 LASKENTAOTAKSUMAT 3 4.1 Materiaalien ominaisuudet 3 4.2 Maanpaine 3 4. 1 LAIUURIN RAKENNE JA OINAISUUDET KÄYTTÖKOHTEET 3 UURITYYPIT 4 LASKENTAOTAKSUAT 3 4.1 ateriaalien ominaiuudet 3 4. aanpaine 3 4.3 uurin ketävyy npaineelle 4 4.4 Kaatumi- ja liukumivarmuu 5 4.4.1. Kaatumivarmuu

Lisätiedot

RATKAISUT: 8. Momentti ja tasapaino

RATKAISUT: 8. Momentti ja tasapaino Phyica 9. paino (7) : 8. Voian vari r on voian vaikutuuoran etäiyy pyöriiakelita. Pyöriiakeli on todellinen tai kuviteltu akeli, jonka ypäri kappale pyörii. Voian oentti M kuvaa voian vääntövaikututa tietyn

Lisätiedot

Intensiteettitaso ja Doplerin ilmiö

Intensiteettitaso ja Doplerin ilmiö Inteniteettitao ja Doplerin ilmiö Tehtävä Erkki työkentelee airaalaa. Sairaalalta 6,0 km päää on tapahtunut tieliikenneonnettomuu ja onnettomuupaikalta lähteneen ambulanin ireenin ääni kuuluu Erkille 60,0

Lisätiedot

Fy07 Koe Kuopion Lyseon lukio (KK) 1 / 5

Fy07 Koe Kuopion Lyseon lukio (KK) 1 / 5 y07 Koe 8.9.05 Kuopion yeon lukio (KK) / 5 Vataa kolmeen tehtävään. Vatuken reitani on 60, käämin induktani on 0,60 H ja reitani 8 ja kondenaattorin kapaitani on 80. Komponentit ovat arjaan kytkettyinä

Lisätiedot

S Fysiikka III (Est) Tentti

S Fysiikka III (Est) Tentti S-114137 Fyiikka III (Et) Tentti 9008 1 Vetyatomin elektronin kulmaliikemäärää kuvaa kvanttiluku l =3 Lake miä kaikia kulmia kulmaliikemäärävektori voi olla uhteea kulmaliikemäärän z-komponenttiin ( )

Lisätiedot

LUKION FYSIIKKAKILPAILU 8.11.2005 avoimen sarjan vast AVOIN SARJA

LUKION FYSIIKKAKILPAILU 8.11.2005 avoimen sarjan vast AVOIN SARJA LKION FYSIIKKAKILPAIL 8..5 avoien arjan vat AVOIN SARJA Kirjoita tektaten koepaperiin oa niei, kotiooitteei, ähköpotiooitteei, opettajai nii ekä koului nii. Kilpailuaikaa on inuuttia. Sekä tehtävä- että

Lisätiedot

RATKAISUT: 7. Gravitaatiovoima ja heittoliike

RATKAISUT: 7. Gravitaatiovoima ja heittoliike Phyica 9. paino () 7. Gaitaatiooia ja heittoliike : 7. Gaitaatiooia ja heittoliike 7. a) Gaitaatiooia aikuttaa kaikkien kappaleiden älillä. Gaitaatiooian uuuu iippuu kappaleiden aoita ja niiden älietä

Lisätiedot

SOSIAALIPÄIVYSTYKSEN KEHITTÄMISEN VUODET KESKI-SUOMESSA

SOSIAALIPÄIVYSTYKSEN KEHITTÄMISEN VUODET KESKI-SUOMESSA 0..0 () SOSIAALIPÄIVYSTYKSEN KEHITTÄMISEN VUODET KESKI-SUOMESSA Soiaalipäivytyke kehittämiellä o maakaamme eide voie jatkmo. Alkyäyke ille atoi vode valtioevoto periaatepäätö, joa aetettii tavoitteeki

Lisätiedot

763105P JOHDATUS SUHTEELLISUUSTEORIAAN 1 Ratkaisut 5 Kevät 2016

763105P JOHDATUS SUHTEELLISUUSTEORIAAN 1 Ratkaisut 5 Kevät 2016 7635P JOHDATUS SUHTEELLISUUSTEORIAAN Ratkaist 5 Kevät 26. Aberraatio shteellissteoriassa a) Tlkoon valo kten tehtävän kvassa (x, y)-tason x, y > neljänneksestä: x ˆx + y ŷ c cos θ ˆx c sin θ ŷ. () Lorenz

Lisätiedot

Kuorielementti hum

Kuorielementti hum Kuorelementt hum.. ämä estys e kuulu kurssvaatmuksn, vaan se on tarkottu asasta knnostunelle. arkastellaan tässä yhteydessä eaarsta -solmusta AIZ (Ahmad, Irons ja Zenkewcz, 970) kuorelementtä, jonka knematkka

Lisätiedot

Kuva 22: Fraktaalinen kukkakaali. pituus on siis 4 AB. On selvää, että käyrän pituus kasvaa n:n kasvaessa,

Kuva 22: Fraktaalinen kukkakaali. pituus on siis 4 AB. On selvää, että käyrän pituus kasvaa n:n kasvaessa, Tortai 6..999 = Geometria o hyvä tapa kuvata ykikertaiia kappaleita, mutta kappaleie tullea äärettömä moimutkaiiki, käy iie kuvaamie klaie geometria avulla mahottomaki. Eimerkiki rataviiva pituue määrittämie

Lisätiedot

Kaukolämpöjohtojen optimaalisen eristyspaksuuden tarkastelu

Kaukolämpöjohtojen optimaalisen eristyspaksuuden tarkastelu Lappeenannan teknillinen yliopito Teknillinen tiedekunta, Enegiatekniikka Kaukolämpöjohtojen optimaalien eitypakuuden takatelu Rapotti 4.9.009 Lappeenannan teknillinen yliopito Teknillinen tiedekunta.

Lisätiedot

Mat-2.090 Sovellettu todennäköisyyslasku A

Mat-2.090 Sovellettu todennäköisyyslasku A Mat-.090 Sovellettu todeäköiyylaku A Mat-.090 Sovellettu todeäköiyylaku A / Ratkaiut Aiheet: Avaiaat: Tilatollite aieito keräämie ja mittaamie Tilatollite aieitoje kuvaamie Oto ja otojakaumat Aritmeettie

Lisätiedot

S if b then S else S S s. (b) Muodosta (a)-kohdan kieliopin kanssa ekvivalentti, so. saman kielen tuottava yksiselitteinen.

S if b then S else S S s. (b) Muodosta (a)-kohdan kieliopin kanssa ekvivalentti, so. saman kielen tuottava yksiselitteinen. T-79.148 yky 2003 Tietojenkäittelyteorian peruteet Harjoitu 7 Demontraatiotehtävien ratkaiut 4. Tehtävä: Ooita, että yhteydettömien kielten luokka on uljettu yhdite-, katenaatioja ulkeumaoperaatioiden

Lisätiedot

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa 1 SISÄLTÖ 1. Siirtymä 2 1 2.1 MUODONMUUTOS Muodonmuutos (deformaatio) Tapahtuu, kun kappaleeseen vaikuttaa voima/voimia

Lisätiedot

( ) ( ) 14 HARJOITUSTEHTÄVIÄ SÄHKÖISET PERUSSUUREET SÄHKÖVERKON PIIRIKOMPONENTIT

( ) ( ) 14 HARJOITUSTEHTÄVIÄ SÄHKÖISET PERUSSUUREET SÄHKÖVERKON PIIRIKOMPONENTIT 4 HAJOTUSTHTÄVÄ SÄHKÖST PUSSUUT -auton akku (84 V, 700 mah on ladattu täyteen Kuinka uuri oa akun energiata kuluu enimmäien viiden minuutin aikana, kun oletetaan moottorin ottavan vakiovirran 5 A? Oletetaan

Lisätiedot

Tehtävä 1. Vaihtoehtotehtävät.

Tehtävä 1. Vaihtoehtotehtävät. Kem-9.7 Proeiautomaation peruteet Perutehtävät Tentti 9.. Tehtävä. Vaihtoehtotehtävät. Oikea vatau,p, väärä vatau -,p ja ei vatauta p Makimi,p ja minimi p TÄMÄ PAPERI TÄYTYY EHDOTTOMASTI PALAUTTAA TENTIN

Lisätiedot

Väliestimointi. Väliestimointi. Väliestimointi: Mitä opimme? 2/3. Väliestimointi: Mitä opimme? 1/3. Väliestimointi: Mitä opimme?

Väliestimointi. Väliestimointi. Väliestimointi: Mitä opimme? 2/3. Väliestimointi: Mitä opimme? 1/3. Väliestimointi: Mitä opimme? TKK (c) Ilkka Melli (004) Välietimoiti Todeäköiyyjakaumie parametrie etimoiti Normaalijakauma variai luottamuväli Beroulli-jakauma odotuarvo luottamuväli Johdatu tilatotieteeee Välietimoiti TKK (c) Ilkka

Lisätiedot

SYNKRONIKONEET RELUKTANS- SIKONEET RM RM RM + >>L q. L d >>L q. Harjalliset -pyörivä PMSM upotetu magneetit

SYNKRONIKONEET RELUKTANS- SIKONEET RM RM RM + >>L q. L d >>L q. Harjalliset -pyörivä PMSM upotetu magneetit 7.48 TY Juha Pyrhönen 7. Tahtikone Tahtikoneet muootavat kokonaien ähkökoneperheen. Päätyyppejä ovat vieramagnetoiut tahtikoneet, ynkroniet reluktanikoneet ja ketomagneettitahtikoneet. Vieramagnetoiut

Lisätiedot

S-55.1220 Piirianalyysi 2 Tentti 4.1.2007

S-55.1220 Piirianalyysi 2 Tentti 4.1.2007 S-55.2 Piirianalyyi 2 Tentti 4..07. Piiriä yöttää kaki lähdettä, joilla on eri taajuudet. Kuinka uuri on lämmöki muuttuva teho P? Piiri on jatkuvuutilaa. J 2 00 Ω 5µH 0 pf 0/0 V J 2 00/0 ma f MHz f 2 2MHz.

Lisätiedot

Luku 16 Markkinatasapaino

Luku 16 Markkinatasapaino 68 Luku 16 Markkinataaaino 16.1 Markkinataaainon määrity Tarkatelemme kilailulliia markkinoita kaikki talouenitäjät hinnanottajia kaikki määrittävät arhaat ratkaiuna uhteea makimihintoihin talouenitäjien

Lisätiedot

Paatds. Pdivdmaard 14.4.2016

Paatds. Pdivdmaard 14.4.2016 #'tolt Il LorrNAr-uoMl 1.9 Paatd Pdivdmaard 1 (5) urun Moottorieura ry / kilpailun johtaja Anttila Henry anha-hameentie 105 20540 Turku u teiden ulkemieki Uuikaupunkiralli -nopeukilpailun ajaki Haettu

Lisätiedot

Lujuusopin jatkokurssi IV.1 IV. KUORIEN KALVOTEORIAA

Lujuusopin jatkokurssi IV.1 IV. KUORIEN KALVOTEORIAA Lujuusoin jatkokussi IV. IV. KUORIE KALVOTEORIAA Kuoien kalvoteoiaa Lujuusoin jatkokussi IV. JOHDATO Kuoiakenteen keskiinta on jo ennen muoonmuutoksia kaaeva inta. Kaaevasta muoosta seuaa että keskiinnan

Lisätiedot

Pinta-alan variaatio. Rakenteiden Mekaniikka Vol. 44, Nro 1, 2011, s Eero-Matti Salonen ja Mika Reivinen

Pinta-alan variaatio. Rakenteiden Mekaniikka Vol. 44, Nro 1, 2011, s Eero-Matti Salonen ja Mika Reivinen Rakenteien Mekaniikka Vol. 44, Nro, 0,. 93-97 Pinta-alan variaatio Eero-Matti Salonen ja Mika Reivinen Tiivitelmä. Artikkelia tarkatellaan taoalueen pinta-alan variaation eittämitä vektorilakennan avulla.

Lisätiedot

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Harjoituksen 1 ratkaisuehdotukset

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Harjoituksen 1 ratkaisuehdotukset SMG-4200 Sähkömagneettiten järjetelmien lämmöniirto Harjoituken 1 ratkaiuehdotuket Vata 1800-luvun puoliväliä ymmärrettiin että lämpöenergia on atomien ja molekyylien atunnaieen liikkeeeen värähtelyyn

Lisätiedot

DIGITAALISET PULSSIMODULAATIOT M JA PCM A Tietoliikennetekniikka I Osa 21 Kari Kärkkäinen Kevät 2015

DIGITAALISET PULSSIMODULAATIOT M JA PCM A Tietoliikennetekniikka I Osa 21 Kari Kärkkäinen Kevät 2015 1 DIGITAALISET PULSSIMODULAATIOT M JA PCM 521357A Tietoliikennetekniikka I Oa 21 Kari Kärkkäinen DELTAMODULAATIO M 2 M koodaa näytteen ± polariteetin omaavaki binääripuliki. Idea perutuu ignaalin m(t muutoken

Lisätiedot

Kertausosa. 2. Kuvaan merkityt kulmat ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia, kulmat ovat yhtä suuria.

Kertausosa. 2. Kuvaan merkityt kulmat ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia, kulmat ovat yhtä suuria. 5. Veitoken tilavuu on V,00 m 1,00 m,00 m 6,00 m. Pienoimallin tilavuu on 1 V malli 6,00 m 0,06m. 100 Mittakaava k aadaan tälötä. 0,06 1 k 6,00 100 1 k 0,1544... 100 Mitat ovat. 1,00m 0,408...m 100 0,41

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015

Lisätiedot

Pikaohje Verio 1.0 marrakuu 2002 www.behringer.com SUOMI TURVALLISUUSOHJEET VAROITUS: Älä poita kantta (tai takaoaa) ähkäikuvaaran vähentämieki. Siällä ei ole käyttäjän huollettavia oia; käänny huolloa

Lisätiedot

020* 23 8,7 0,4 0,6 780 1400 397 355 510 645 95 0,20 2000 130 025 23 17 0,8 1,4 800 1450 488 434 540 690 110 0,25 3500 225

020* 23 8,7 0,4 0,6 780 1400 397 355 510 645 95 0,20 2000 130 025 23 17 0,8 1,4 800 1450 488 434 540 690 110 0,25 3500 225 Standard lkuperäinen Standardikouran tupla ylinterit* antaa matalan ja taaien akelikuormituken, joka tarkoittaa pienempää kulumita. Kärkien uunnittelu ja muotoilu mahdollitaa kouran pehmeän ja nopean täytön,

Lisätiedot

Physica 9 1. painos 1(8) 20. Varattu hiukkanen sähkö- ja magneettikentässä

Physica 9 1. painos 1(8) 20. Varattu hiukkanen sähkö- ja magneettikentässä Phyica 9 aino (8) 0 Varattu hiukkann ähkö- ja agnttikntää : 0 Varattu hiukkann ähkö- ja agnttikntää 0 a) Sähköknttä aikuttaa arattuun hiukkan oialla F = QE Poitiiiti aratull hiukkall oian uunta on ähkökntän

Lisätiedot

Omakotitalon energiaratkaisu Pieni askel omavaraisuuteen.

Omakotitalon energiaratkaisu Pieni askel omavaraisuuteen. Omakotitalon energiaratkais Pieni askel omavaraisteen. www.arime.fi Phdasta energiaa lonnosta Arinko on meidän kakien elämään vattava ehtymätön energianlähde ja se tottaa välillisesti srimman osan ihmisten

Lisätiedot

7. PYÖRIVÄN SÄHKÖKONEEN SUUNNITTELUN ETENEMINEN JA KONEEN OMI- NAISUUDET

7. PYÖRIVÄN SÄHKÖKONEEN SUUNNITTELUN ETENEMINEN JA KONEEN OMI- NAISUUDET 7.1 LTY Juha Pyhönen 7. PYÖRIVÄN SÄHKÖKONEEN SUUNNITTELUN ETENEMINEN JA KONEEN OMI- NAISUUDET Pyöivän ähkökoneen uunnittelua voidaan noudattaa eiekiki euaavanlaita työjäjetytä. Tää opii uoaan epätahtioottoeille,

Lisätiedot

SATE1120 Staattinen kenttäteoria kevät / 5 Laskuharjoitus 6 / Virta, virtatiheys ja johteet

SATE1120 Staattinen kenttäteoria kevät / 5 Laskuharjoitus 6 / Virta, virtatiheys ja johteet ATE0 taattie kettäteoria kevät 07 / 5 Tehtävä. Pitkä pyöreä a-säteise laga johtavuus o ja se päällystetää ateriaalilla, joka johtavuus o 0,4. a) uika paksu kerros päällystävää ateriaalia tarvitaa, jotta

Lisätiedot

Differentiaaliyhtälöt, Syksy 2015 Harjoitus 2, Ratkaisut Ratkaise separoituvat differentiaaliyhtälöt. a) y = y

Differentiaaliyhtälöt, Syksy 2015 Harjoitus 2, Ratkaisut Ratkaise separoituvat differentiaaliyhtälöt. a) y = y Diffrntiaaliyhtälöt, Syksy 215 Harjoitus 2, Ratkaisut 1.11.215 1. Ratkais sparoituvat diffrntiaaliyhtälöt a) y = y 3, b) y = 1 + y 2 y 2. y Ratkaisu. a): Yhtälö y = 3 on hyvin määritlty kun 3. Lisäksi

Lisätiedot

ELEC-C4120 Piirianalyysi II 2. välikoe

ELEC-C4120 Piirianalyysi II 2. välikoe LC-C4 Piirianalyyi II 2. välikoe 8.4.4 Vataa KOLMN tehtävään.. e (t) R C Oheiea piiriä vaikuttaa taajännitelähde = V ekä e (t) = ê in(ω 0 t)+ê 2 in(2ω 0 t). Lake vatukea kuluva pätöteho P. ê = 2 V ê 2

Lisätiedot

SMG-1100: PIIRIANALYYSI I

SMG-1100: PIIRIANALYYSI I SMG-1100: PIIRIANALYYSI I Vahtosähkön teho hetkellnen teho p(t) pätöteho P losteho Q näennästeho S kompleksnen teho S HETKELLINEN TEHO Kn veresen kvan mpedanssn Z jännte ja vrta (tehollsarvon osottmet)

Lisätiedot

Moottoroidut auto-iiris-zoomobjektiivit

Moottoroidut auto-iiris-zoomobjektiivit Video Moottoroidt ato-iiris-zoomobjektiivit Moottoroidt ato-iiris-zoomobjektiivit www.boschsecrity.fi Laadkas optiikka Lotettava ja kestävä rakenne 1/3 tmainen malli DC-iiris-ohjaksella 1/2 tmainen malli

Lisätiedot

TL5362DSK-algoritmit (J. Laitinen) TTE2SN4X/4Z, TTE2SN5X/5Z Välikoe 1, ratkaisut

TL5362DSK-algoritmit (J. Laitinen) TTE2SN4X/4Z, TTE2SN5X/5Z Välikoe 1, ratkaisut TL536DSK-algoritmit (J. Laitie) 4. - 5..4 TTESN4X/4Z, TTESN5X/5Z Välikoe, ratkaiut a) Maiite väitää kaki digitaalite FIR-uotimie etua verrattua IIR-uotimii. b) Mite Reme-meetelmällä uuitellu FIR-uotime

Lisätiedot

40 LUKU 3. GAUSSIN LAKI

40 LUKU 3. GAUSSIN LAKI Luku 3 Gaussin laki 3.1 Coulombin laista Gaussin lakiin Takastellaan pistemäisen vaauksen q aiheuttamaa sähkökenttää, joka noudattaa yhtälöä (1.1). Tämän sähkökentän vuo etäisyydellä olevan pienen pintaelementin

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.00 SÄHKÖTKNKKA A KTONKKA. välkoe 9.3.2007. Saat vatata van neljään tehtävään!. ake pteden A ja B välnen potentaalero el jännte AB. =4Ω, 2 =2Ω, =0 V, 2 =4V, =2A, =3A A + 2 2 B + 2. Kytkn ljetaan hetkellä.

Lisätiedot

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 5

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 5 5384A RADIOTEKNIIKAN PERUSTEET Haroitu 5. Häviötön 5 Ω:n aaltoohto on päätetty tuntemattomaan impedaniin. Aaltoohdolla olevaki ännitteen eiovan aallon uhteeki aadaan 3 a enimmäinen minimi havaitaan 5 cm:n

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 215 1 / 2 Moninkertaisten

Lisätiedot

Shakkilinna

Shakkilinna k Shakkilinna www.shakkilinna.fi info@shakkilinna.fi Kningatar on shakkipelin liikkvin nappla. Se liikk kin tornin ja lähen yhdistelmä. Siis jokaiseen sntaan, ja niin pitkälle kin mahdollista. eitä katselee,

Lisätiedot

Luottamusmiehen / -valtuutetun valinta, asema ja oikeudet

Luottamusmiehen / -valtuutetun valinta, asema ja oikeudet YLEMMÄT TOIMIHENKILÖT YTN RY OHJE YRY+K -ryhmä / Mko 19.8.2009 1 (13) Luottamumiehen / -valtuutetun valinta, aema ja oikeudet Siällyluettelo: Yleitä... 2 Oikeu luottamumiehen valintaan... 2 Luottamumiehen

Lisätiedot

Telecommunication engineering I A Exercise 3

Telecommunication engineering I A Exercise 3 Teleouao egeerg I 5359A xere 3 Proble elaodulaaor lohkokaavo o eey oppkrja kuvaa 3.63. Pulodulaaor ääuloa o aoagaal ja reeregaal erou d. Tää gaal kerroaa pulgeeraaor gaallla rajouke, el erouke erk elväe,

Lisätiedot

Fysiikkakilpailu 6.11.2007, avoimen sarjan vastaukset AVOIN SARJA

Fysiikkakilpailu 6.11.2007, avoimen sarjan vastaukset AVOIN SARJA Fyiikkakilpailu 6.11.007, avoimen ajan vatauket AVOIN SARJA Kijoita tektaten koepapeiin oma nimei, kotiooitteei, ähköpotiooitteei, opettajai nimi ekä koului nimi. Kilpailuaikaa on 100 minuuttia. Sekä tehtävä-

Lisätiedot

KANTRI 2007 KONTIO KANTRI. www.kontio.fi Osoitelähde: Kontiotuote Oy:n asiakasrekisteri.

KANTRI 2007 KONTIO KANTRI. www.kontio.fi Osoitelähde: Kontiotuote Oy:n asiakasrekisteri. KANTRI 2007 KONTIO KANTRI Kontio Kantri - uomalaiille tehty uui huvilamallito, joa on ripau Amerikan herkkuja. www.kontio.fi Ooitelähde: Kontiotuote Oy:n aiakarekiteri. KANTRI ON KONTION UUS Kontion uui

Lisätiedot

YDINSPEKTROMETRIA TENTTI mallivastaukset ja arvostelu max 30 p, pisterajat 15p 1, 18p 2, 21p 3, 24p 4, 27p - 5

YDINSPEKTROMETRIA TENTTI mallivastaukset ja arvostelu max 30 p, pisterajat 15p 1, 18p 2, 21p 3, 24p 4, 27p - 5 5573-5 YDISPEKTROMETRIA TETTI 9.5.05 mallivatauket ja arvotelu max 30 p, piterajat 5p, 8p, p 3, 4p 4, 7p - 5. Mittautehokkuu ja iihen vaikuttavat aiat/ilmiöt gammapektrometriaa (yht. 6 p) Vatau: ilmaiimea

Lisätiedot

Täydellistä harmoniaa.

Täydellistä harmoniaa. Geberit Oy Tahkotie 1 01530 VANTAA puh. 09 867 8450 fax. 09 867 84577 myynti.fi@geberit.com www.geberit.fi Täydellitä harmoniaa. Geberit huuhtelupainikkeet FI/01.2015/1817925 Geberit Geberit piilohuuhteluäiliöiä

Lisätiedot

Materiaalien murtuminen

Materiaalien murtuminen Määritelmä: Materiaalien murtuminen r Fracture i the eparation, or fragmentation, of a olid body into two or more part under the action of tre Murtumiproei voidaan jakaa kahteen oaan 4 Särön ydintyminen

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

DIGITAALISET PULSSIMODULAATIOT M JA PCM

DIGITAALISET PULSSIMODULAATIOT M JA PCM DIGITAALISET PULSSIMODULAATIOT M JA PCM 1 (10) Deltamodulaatio ( M) M koodaa informaation ± polariteetin omaavaki binääriiki impuleiki. Menetelmä on ykinkertainen. Idea perutuu ignaalin m(t) muutoken binäärieen

Lisätiedot

Yliopistonkatu 4 peruskorjaus allianssimallilla Helsingin yliopisto, Tila- ja kiinteistökeskus

Yliopistonkatu 4 peruskorjaus allianssimallilla Helsingin yliopisto, Tila- ja kiinteistökeskus Yliopitonkatu 4 perukorjau allianimallilla 4.8.017 Henri Jyrkkäranta Helingin yliopito, Tila- ja kiinteitökeku Hankkeen perutiedot: Helingin yliopiton rahatot n.1 600brm ja n.44 500m 3 11, joita 6 maan

Lisätiedot

JÄÄMEREN RAUTATIE ROVANIEMI-KIRKKONIEMI WWW.ARCTICCORRIDOR.FI

JÄÄMEREN RAUTATIE ROVANIEMI-KIRKKONIEMI WWW.ARCTICCORRIDOR.FI JÄÄMEREN RAUTATIE ROVANIEMI-KIRKKONIEMI WWW.ARCTICCORRIDOR.FI KILPAILUKYKYÄ INVESTOIJILLE JA YRITYKSILLE Jäämeren rautatie parantaa yrityten ja invetoijien toimintamahdolliuukia arktiella alueella. Uuia

Lisätiedot

PARTIKKELIN KINETIIKKA

PARTIKKELIN KINETIIKKA PTKKELN KNETKK Newonin laki ma m& - on paikkeliin aikuaien oimien eulani - m on paikkelin maa - a & on paikkelin aboluuinen kiih Suoaiiaien liikkeen liikehälö (liikeuuna : m a 0 z 0 Taoliikkeen liikehälö

Lisätiedot

Vantaan Rahtikeskus Oy. Oy Göran Hagelberg Ab

Vantaan Rahtikeskus Oy. Oy Göran Hagelberg Ab 1/5 TARJOUSTEN VERTAILUTAULUKKO 120186 / palveluiden hankinta (Piteyty kohderyhmittäin) Saapuneita tarjoukia yhteenä: 14 Kelvolliia tarjoukia yhteenä: 14 Ryhmien yhteiet kriteerit KULJETUS ML- Göran Max

Lisätiedot

suomeksi eduskunta 2013

suomeksi eduskunta 2013 d 213 Ed vd y 4. 213. Ed v d E H (d.) j v P Rv (.). T v j A J (.). Vd 213 vv vj v 5., j v 212 v v d S Nö v vv. Vv v y 12. 213 j. K Jy K (.) jj T S (.) j J S (.) db. Ojj vv v - - j vyv-d,, d d d. K j db,

Lisätiedot

Mat Koesuunnittelu ja tilastolliset mallit

Mat Koesuunnittelu ja tilastolliset mallit Mat-.03 Koeuuittelu ja tilatolliet mallit Mat-.03 Koeuuittelu ja tilatolliet mallit / Ratkaiut Aiheet: Avaiaat: Tilatolliet tetit Tetit uhdeateikolliille muuttujille Tetit laatueroateikolliille muuttujille

Lisätiedot

10. Jännitysten ja muodonmuutosten yhteys; vaurioteoriat

10. Jännitysten ja muodonmuutosten yhteys; vaurioteoriat TAVOITTEET Esitetään vastaavalla tavalla kuin jännitystilan yhteydessä venymätilan muunnosyhtälöt Kehitetään materiaaliparametrien yhteyksiä; yleistetty Hooken laki Esitetään vaurioteoriat, joilla normaali-

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 19 Esimerkki Olkoon F : R 3 R 3 vakiofunktio

Lisätiedot

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Suhteellisen liikkeen nopeuden ja kiihtyvyyden yhtälöt. Jäykän kappaleen partikkelin liike. Jäykän

Lisätiedot

Raision aikuiskoulutuskeskus TIMALI

Raision aikuiskoulutuskeskus TIMALI Ammattisuomi Palvelualalle 16.11.2015 8:00 16.11.2015 3:00 NL Kokit Ammattisuomi Palvelualalle 17.11.2015 8:00 17.11.2015 12:00 ES Kokit Ammattisuomi Palvelualalle 17.11.2015 12:00 17.11.2015 3:00 NL Kassat

Lisätiedot