Luento 9. Epälineaarisuus

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Luento 9. Epälineaarisuus"

Transkriptio

1 Lueno 9 Epälineaarisuus 9..7 Epälineaarisuus Tarkasellaan passiivisa epälineaarisa komponenia u() y() f( ) Taylor-sarjakehielmä 3 y f( x) + f '( x) ( x x) + f ''( x) ( x x) + f ''( x) ( x x) +...! 3! 4! 3 α + α x+ α x + α x Epälineaarisuuden läpi kulkenu signaali Kerolasku aikaasossa vasaa konvoluuioa aajuusasossa 9..7

2 Epälineaarisuus Tarkasellaan sini-muooisa heräeä Fourier-muunnos Epälineaarisuus.8 DC-komponeni cos(π ) cos (π ) harmooninen Epälineaarisuus Epälineaarisuus Signaalin aajuudella cos(π ) cos 3 (π ) Harmooninen aajuus

3 Epälineaarisuus Epälineaarisuude synnyävä harmoonisia aajuuksia Approksimoidaan epälineaarisuua Taylor-sarjan kolmella ensimmäisellä ermillä: Parillise poenssi synnyävä harmoonisia, joka voidaan poisaa suodaamalla Parioma poenssi aiheuava komponeneja myös signaalin aajuudelle cos(π ) /Σ k cos k (π ) 9..7 /3Σ k cos k (π ) Särö Yleinen epälineaarisuus 3 f( x) + f '( x) ( x x) + f ''( x) ( x x) + f ''( x) ( x x) +...! 3! 4! 3 α + α x+ α x + α x Kun ulosignaali on kosini u() x() Acos( π f) niin epälineaarisuuden lähösignaali y () f( x ()) a ( x ()) k k k voidaan kirjoiaa ulosignaalin harmoonisen yliaalojen avulla k ( π ) y () uk cos kf x f( ) y()

4 Särö Epälineaarisuuden vaikuusa signaaliin voidaan arkasella harmonisen särökeroimien (disorion) avulla n. aseen särökerroin: u d n n u n aseen särövaimennus: An log dn n,3,4, dn % Särö % Kokonaissärökerroin do d + d3 + d4 + d Särö Signaalin eho (Parsevalin eoreema) Py u + u + u + u3 + u4 + u5 +.. P + P+ P + P3 + P4 + P Signaalin kokonaissärö voidaan määriää kun unneaan lähösignaalin kokonaiseho P y, DCkomponenin eho P sekä perusaajuuden eho P do Py P P P

5 Särö Epälineaarisuuden ominaiskäyrä 3 4 yx ( ) a + ax + ax + ax 3 + ax Kosinin poenssikaava n n n n cos x cos ( ( n k) x) n + k k n n n n cos x cos ( n k ) x) n k k Sovelleaan summakaavoja lähösignaaliin y ( ) a + aa cos( π fx) + aa + cos( π fx) aa 3 cos( π f x ) + cos( π 3 f x ) aa 4 + cos( π f x ) + cos( π 4 f x ) aa 5 cos( π f x ) + cos( π 3f x ) + cos( π 5 f x ) Särö Ryhmiellään ermi uudelleen harmoonisen yliaalojen mukaan a + aa + a4a au+ a3u + a5a +... cos fx u u 4 + aa + a4a +... cos( π fx) u aa 3 + aa cos( π 3 f x ) 4 6 u au cos( π 4 fx) + a5u +... cos( π 5 fx) u4 ( π )

6 Särökeroimiksi saadaan Särö 4 3 aa a4a... aa a4a... u d u aa + aa 3 + a5a +... a+ aa 3 + a5a aa 3 aa 5... aa 3 aa 5... u d3 u aa + aa 3 + a5a +... a+ aa 3 + a5a a4a... a4a... u d4 u aa + aa 3 + aa a+ aa 3 + aa aa aa d aa + aa 3 + aa a+ aa 3 + aa Särö Jos A<< ai a n <<a, niin särökeroimeksi saadaan an n dn A n a ja särövaimennukseksi An log ( d ) n n a log a log + ( n ) 3, ( n ) log( u) n au a n n

7 y Esimerkki Sauraaio (esim. vahvisimen yliohjaus) y () f( x ()) f ( x ( )) anh( ax ( )) a 3 a 5 7a 7 f( x) ax x + x x π ax + ax + ax 3 + ax ax Tarkasellaan ulosignaalia x() Acos π f ( ) Särökeroime kun a ja A d n d d x an n dn A n a d7.54 d9.9 d db -37 db -5 db -33 db -4 db Esimerkki x() y()

8 Epälineaarisuus Epälineaarinen komponeni aiheuaa yleensä ehohukkaa kun ulosignaalin eho kasvaa suureksi. Epälineaarisuuden kuvaamiseen käyeyjä suureia Sauraaioaso (sauraion level) on suurin jäjeselmäsä saaava perusaajuisen komponenin lähöaso. db:n kompressio aso (db compression level) on se järjeselmän lähöaso, joka on db alempi kuin lähöaso ilman epälinearisuua. Kolmannen harmonisen leikkausaso on log-logkoordinaaisossa jakeujen perusaajuisen ampliudin ja kolmannen harmonisen leikkauspise db:n kompressio aso Esimerkki db vahvisin 5 4 Lineaarisen 9 db Vahvisimen lähöaso P ou (dbm) 3 Sauraaio aso db compressioaso 3 db 4.45 db db P in (dbm)

9 Kolmannen harmonisen leikkausaso P ou (dbm) 3 - Kanaaajuinen signaali Harmooninen P in (dbm) Epälineaarisuus Traveling Wave Tube TWT ehovahvisin Alkuperäinen signaali x () r ()cos c+ ( ω φ ) TWT-vahvisimen ulosulo y() A( r() ) cos ( ωc+ φ+φ( r() )) αar Ar ( ) + β r a α r Φ ( r) + φ βφr Oupu ampliude Phase error(rad) Sauraaio αa βa Inpu ampliude αφ.593. βφ Inpu ampliude Ampliudisa riippuva vaiheensiiro

10 Keskeismodulaaiosärö Keskeismodulaaiosäröä synyy epälineaarisessa järjeselmässä, kun ulosignaali on kahden ai useamman sinisignaalin summa. x() x() + x() Lähösignaali on muooa ( ) k ( ) y () f x () a x() + x() k k k ax k n n k () x () k n n k k k k n n k k k k k k n k n n ax () + ax () + ax () x () k x ja sen Sekoiunee signaali harmoonise yliaallo x ja sen harmoonise yliaallo Keskeismodulaaiosärö Tarkasellaan epälineaarisuua y () x() Tulosignaali x () A cos ω x () A cos ω ω > ω ( ) ( ) ( ) ( ) x () Acos ω + Acos ω Lähösignaali y ( ) A cos ω + A cos ω + AAcos ω cos ω ( ) ( ) ( ) ( ) cos cos cos cos ( φ) ( φ) ( ( φ+ φ) + ( φ φ) ) y ( ) A + A cos + A + A cos + A A cos + + AA ( ω ) ( ω ) (( ω ω ) ) cos( ( ω ω ) ) 9..7

11 Keskeismodulaaiosärö Tarkasellaan apausa, jossa A A A y ( ) A + A cos( ω) + A cos( ω) + A cos ω + ω + A cos ω ω Verraaan samanaseise harmonise yliaalojen ja keskeismodulaaioulosen ampliudeja A A (( ) ) (( ) ) keskinäismodulaaio komponeni ova vasaavia. keraluvun harmoonisia aajuksia suurempia 9..7 Keskeismodulaaiosärö x - x (x +x ) x +x x x x *x

12 Keskeismodulaaiosärö Kahden kosini-signaalin kulkiessa n. aseen epälineaarisuuden läpi synyy sekoiusaajuuksia f lf + mf xkeskeis x x fx fx l + m n Tulosignaalin x () aajuus Tulosignaalin x () aajuus Sovelluksia Useimmien säröllä arkoieaan ahaona ja ei niin haluua muuosa signaalissa, mua eriyisesi kiarisien keskuudessa säröllä arkoieaan efekiä, jolla muokaaan alkuperäisä puhdasa signaalia lisäämällä siihen uusia aajuuskomponeeja. Säröefekiä uoavaa laiea kusuaan usein äänensärkijäksi. Alkujaan säröefeki keksiiin 95-luvulla kun kiaravahvisina soieiin niin kovaa, eä vahvisin yliohjauui ja ääni säröyyi s() Signal Clipped signal

13 Malab esimerkki fs44; %Sampling frequency (Hz) s/fs; %Sampling ime (sec) f5; %Signal frequency (Hz) T5; %Signal lengh (sec) A.5; %Signal ampliude :s:t; %Time ya*cos(*pi*f*); za*cos(*pi**f*); disp('signal ') wavplay(y,fs) pause disp('clipped signal (Disorion)') ycmax(-.75*a,min(.75*a,y)); wavplay(yc,fs) pause disp('singal ') wavplay(z,fs) pause disp('clipped signal (Disorion)') zcmax(-.75*a,min(.75*a,z)); wavplay(z,fs) pause disp('singal + signal ') wavplay(.5*(y+z),fs) pause disp('wo signals (Inermodulaion disorion)') yzcmax(-.75*a,min(.75*a,.5*(y+z))); wavplay(zc,fs) pause Lineaarisen modulaaorin oeuaminen Haluaan oeuaa modulaaori piiri, joka saa syöeeksi kanoaallon ja moduloiavan signaalin x() x() A c () cos X(f) ( π f) c Σ ( ) z () Summain Neliöini Kaisanpääsö suodaus H(f) Z( f ) ( π ) y () Ax ()cos f c C(f) f c f c Y( f) f c f c f c f c f c f c

Luento 9. Epälineaarisuus

Luento 9. Epälineaarisuus Lueno 9 Epälineaarisuus 8..6 Epälineaarisuus Tarkasellaan passiivisa epälineaarisa komponenia u() y() f( ) Taylor-sarjakehielmä 3 y f( x) + f '( x) ( x x) + f ''( x) ( x x) + f ''( x) ( x x) +...! 3! 4!

Lisätiedot

Tietoliikennesignaalit

Tietoliikennesignaalit ieoliikennesignaali 1 ieoliikenne inormaaion siiroa sähköisiä signaaleja käyäen. Signaali vaiheleva jännie ms., jonka vaiheluun on sisällyey inormaaioa. Signaalin ominaisuuksia voi ukia a aikaasossa ime

Lisätiedot

Luento 9. tietoverkkotekniikan laitos

Luento 9. tietoverkkotekniikan laitos Luento 9 Luento 9 Jaksolliset signaalit epälineaarisissa muistittomissa järjestelmissä 9.1 Muistittomat epälineaariset komponentit Pruju Taylor-sarjakehitelmä ja konvoluutio taajuustasossa Särö Keskinäismodulaatio

Lisätiedot

Luento 5. tietoverkkotekniikan laitos

Luento 5. tietoverkkotekniikan laitos Luento 5 Luento 5 Jaksolliset signaalit epälineaarisissa muistittomissa järjestelmissä 5.1 Muistittomat epälineaariset komponentit Pruju Taylor-sarjakehitelmä ja konvoluutio taajuustasossa Särö Keskinäismodulaatio

Lisätiedot

S Signaalit ja järjestelmät Tentti

S Signaalit ja järjestelmät Tentti S-7. Signaali ja järjeselmä eni..6 Vasaa ehävään, ehävisä 7 oeaan huomioon neljä parhaien suorieua ehävää.. Vasaa lyhyesi seuraaviin osaehäviin, käyä arviaessa kuvaa. a) Mikä kaksi ehoa kanaunkioiden φ

Lisätiedot

Luento 4. Fourier-muunnos

Luento 4. Fourier-muunnos Lueno 4 Erikoissignaalien Fourier-muunnokse Näyeenoo 4..6 Fourier-muunnos Fourier-muunnos Kääneismuunnos Diricle n edo Fourier muunuvalle energiasignaalille I: Signaali on iseisesi inegroiuva v ( d< II:

Lisätiedot

Monisilmukkainen vaihtovirtapiiri

Monisilmukkainen vaihtovirtapiiri Monisilmukkainen vaihovirapiiri Oeaan arkaselun koheeksi RLC-vaihovirapiiri jossa on käämejä, vasuksia ja kondensaaoreia. Kykenä Tarkasellaan virapiiriä, jossa yksinkeraiseen RLC-piiriin on kodensaaorin

Lisätiedot

x v1 y v2, missä x ja y ovat kokonaislukuja.

x v1 y v2, missä x ja y ovat kokonaislukuja. Digiaalinen videonkäsiel Harjoius, vasaukse ehäviin 4-0 Tehävä 4. Emämariisi a: V A 0 V B 0 Hila saadaan kanavekorien (=emämariisin sarakkee) avulla. Kunkin piseen paikka hilassa on kokonaisluvulla kerroujen

Lisätiedot

Luento 8. Suodattimien käyttötarkoitus

Luento 8. Suodattimien käyttötarkoitus Luento 8 Lineaarinen suodatus Ideaaliset alipäästö, ylipäästö ja kaistanpäästösuodattimet Käytännölliset suodattimet 8..006 Suodattimien käyttötarkoitus Signaalikaistan ulkopuolisen kohinan ja häiriöiden

Lisätiedot

Taustaa KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT. Jukka Talvitie, Toni Levanen & Mikko Valkama TTY / Tietoliikennetekniikka

Taustaa KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT. Jukka Talvitie, Toni Levanen & Mikko Valkama TTY / Tietoliikennetekniikka IMA- Exurso: Kompleksluvu ja radosgnaal / KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT Tausaa IMA- Exurso: Kompleksluvu ja radosgnaal / Kakk langaon vesnä ja radoeolkenne (makapuhelme, WLAN, ylesrado

Lisätiedot

( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän:

( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän: ELEC-A700 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS 3 Sivu /8. arkasellaan oheisa järjeselmää bg x Yksikköviive + zbg z bg z d a) Määriä järjeselmän siirofunkio H Y = X b) Määriä järjeselmän

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 12 Stokastisista prosesseista

Rahoitusriskit ja johdannaiset Matti Estola. luento 12 Stokastisista prosesseista Rahoiusriski ja johdannaise Mai Esola lueno Sokasisisa prosesseisa . Markov ominaisuus Markov -prosessi on sokasinen prosessi, missä ainoasaan muuujan viimeinen havaino on relevani muuujan seuraavaa arvoa

Lisätiedot

Silloin voidaan suoraan kirjoittaa spektrin yhtälö käyttämällä hyväksi suorakulmaisen pulssin Fouriermuunnosta sekä viiveen vaikutusta: ( ) (

Silloin voidaan suoraan kirjoittaa spektrin yhtälö käyttämällä hyväksi suorakulmaisen pulssin Fouriermuunnosta sekä viiveen vaikutusta: ( ) ( TT/TV Inegraalimuunnokse Fourier-muunnos, ehäviä : Vasauksia Meropolia/. Koivumäki v(. Määriä oheisen signaalin Fourier-muunnos. Vinkki: Superposiio, viive. Voidaan sovelaa superposiioperiaaea, koska signaalin

Lisätiedot

Luento 11. Stationaariset prosessit

Luento 11. Stationaariset prosessit Lueno Soasisen prosessin ehosperi Signaalin suodaus Kaisarajoieu anava 5..6 Saionaarise prosessi Auoorrelaaio φ * * (, ) ( ), { } { } jos prosessi on saionaarinen auoorrelaaio ei riipu ajasa vaan ainoasaan

Lisätiedot

3 SIGNAALIN SUODATUS 3.1 SYSTEEMIN VASTE AIKATASOSSA

3 SIGNAALIN SUODATUS 3.1 SYSTEEMIN VASTE AIKATASOSSA S I G N A A L I T E O R I A, O S A I I I TL98Z SIGNAALITEORIA, OSA III 44 3 Signaalin suodaus...44 3. Sysmin vas aikaasossa... 44 3. Kausaalisuus a sabiilisuus... 46 3.3 Vas aauusasossa... 46 3.4 Ampliudivas

Lisätiedot

6.4 Variaatiolaskennan oletusten rajoitukset. 6.5 Eulerin yhtälön ratkaisuiden erikoistapauksia

6.4 Variaatiolaskennan oletusten rajoitukset. 6.5 Eulerin yhtälön ratkaisuiden erikoistapauksia 6.4 Variaaiolaskennan oleusen rajoiukse Sivu ss. 27 31 läheien Kirk, ss. 13 143] ja KS, Ch. 5] pohjala Lähökoha oli: jos J:llä on eksremaali (), niin J:n variaaio δj( (), δ()) ():ä pikin on nolla. 1. Välämäön

Lisätiedot

Luento 2. Jaksolliset signaalit

Luento 2. Jaksolliset signaalit Luento Jaksollisten signaalien Fourier-sarjat Viivaspektri S-.7. Signaalit ja järjestelmät 5 op KK ietoliikennelaboratorio Jaksollinen (periodinen) Jaksolliset signaalit Jaksonaika - / / Perusjakso Amplitudi

Lisätiedot

Luento 11. Stationaariset prosessit

Luento 11. Stationaariset prosessit Lueno Soasisen prosessin ehosperi Saunnaissignaalin suodaus 5..7 Saionaarise prosessi Auoorrelaaio φ * * (, ) ( ) ( ) ( ) ( ), { } { } jos prosessi on saionaarinen auoorrelaaio ei riipu ajasa vaan ainoasaan

Lisätiedot

1 db Compression point

1 db Compression point Spektrianalysaattori mittaukset 1. Työn tarkoitus Työssä tutustutaan vahvistimen ja mixerin perusmittauksiin ja spektrianalysaattorin toimintaan. 2. Teoriaa RF- vahvistimen ominaisuudet ja käyttäytyminen

Lisätiedot

KULMAMODULOITUJEN SIGNAALIEN ILMAISU DISKRIMINAATTORILLA

KULMAMODULOITUJEN SIGNAALIEN ILMAISU DISKRIMINAATTORILLA 1 KULMMOULOITUJEN SIGNLIEN ILMISU ISKRIMINTTORILL Millaisia keinoja on PM & FM -ilmaisuun? 51357 Tieoliikenneekniikka I Osa 17 Kai Käkkäinen Kevä 015 ISKRIMINTTORIN TOIMINTKÄYRÄ J -YHTÄLÖ FM-signaalin

Lisätiedot

Trigonometriset funk4ot

Trigonometriset funk4ot Trigonometriset funk4ot Suorakulmainen kolmio sin() = a c cos() = b c hypotenuusa c tan() = sin() cos() = a b kulma b katee= a katee= a = c sin() b = c cos() cot() = cos() sin() = b a Trigonometriset funk4ot

Lisätiedot

2. Tutki toteuttaako seuraava vapaassa tilassa oleva kenttä Maxwellin yhtälöt:

2. Tutki toteuttaako seuraava vapaassa tilassa oleva kenttä Maxwellin yhtälöt: 84 RDIOTKNIIKN PRUSTT aois. Las a gadini f, n f,, b divgnssi, n c oooi, n on n b- ohdassa.. Ti oaao saava vapaassa ilassa olva nä Mawllin hälö:.. Oloon vapaassa ilassa sähönä oplsivoina sinä. Määiä a aallon

Lisätiedot

Esitä koherentin QAM-ilmaisimen lohkokaavio, ja osoita matemaattisesti, että ilmaisimen lähdöstä saadaan kantataajuiset I- ja Q-signaalit ulos.

Esitä koherentin QAM-ilmaisimen lohkokaavio, ja osoita matemaattisesti, että ilmaisimen lähdöstä saadaan kantataajuiset I- ja Q-signaalit ulos. Sgnaalt ja järjestelmät Laskuharjotukset Svu /9. Ampltudmodulaato (AM) Spektranalysaattorlla mtattn 50 ohmn järjestelmässä ampltudmodulaattorn (AM) lähtöä, jollon havattn 3 mpulssa spektrssä taajuukslla

Lisätiedot

YKSISIVUKAISTAMODULAATIO (SSB)

YKSISIVUKAISTAMODULAATIO (SSB) YKSISIVUKAISTAODULAATIO SSB ien kaisaa voi sääsää verrauna DSB- a A-modulaaioihin? ikä on Hilber-munnin? 5357A Tieoliikenneekniikka I Osa 9 Kari Kärkkäinen Kevä 05 YKSISIVUKAISTAODULAATION IDEA DSB & A-inormaaio

Lisätiedot

Ene-59.4130, Kuivatus- ja haihdutusprosessit teollisuudessa, Laskuharjoitus 5, syksy 2015

Ene-59.4130, Kuivatus- ja haihdutusprosessit teollisuudessa, Laskuharjoitus 5, syksy 2015 Ene-59.4130, Kuivaus- ja haihduusprosessi eollisuudessa, asuharjoius 5, sysy 2015 Tehävä 4 on ähiehävä Tehävä 1. eijuerrosilassa poleaan rinnain uora ja urvea. Kuoren oseus on 54% ja uiva-aineen ehollinen

Lisätiedot

MAT-02450 Fourier n menetelmät. Merja Laaksonen, TTY 2014

MAT-02450 Fourier n menetelmät. Merja Laaksonen, TTY 2014 MAT-45 Fourier n meneelmä Merja Laaksonen, TTY 4..4 Sisälö Johano 3. Peruskäsieiä................................... 4.. Parillinen ja parion funkio....................... 7.. Heavisien funkio............................

Lisätiedot

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3 4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5

Lisätiedot

Luento 2. S Signaalit ja järjestelmät 5 op TKK Tietoliikenne Laboratorio 1. Jean Baptiste Joseph Fourier ( )

Luento 2. S Signaalit ja järjestelmät 5 op TKK Tietoliikenne Laboratorio 1. Jean Baptiste Joseph Fourier ( ) Luento Jasollisten signaalien Fourier-sarjat Viivaspetri S-.7. Signaalit ja järjestelmät 5 op KK ietoliienne Laboratorio Jean Baptiste Joseph Fourier (768-83) Ransalainen matemaatio ja fyysio. Esitti Fourier-sarjat

Lisätiedot

S-55.1100 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S-55.1100 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.1100 SÄHKÖTKNIIKKA JA KTONIIKKA 2. välikoe 5.5.2008. Saa vasaa vain neljään ehävään! Kimmo Silven 1. aske vira. = 1 kω, = 2 kω, 3 = 4 kω, = 10 V. Diodin ominaiskayra, aseikko 0... 4 ma + 3 Teh. 2.

Lisätiedot

SIGNAALITEORIAN KERTAUSTA OSA 1

SIGNAALITEORIAN KERTAUSTA OSA 1 1 SIGNAALITEORIAN KERTAUSTA OSA 1 Millainen on signaalin spektri ja miten se lasketaan? SIGNAALIEN JA SPEKTRIN PERUSKÄSITTEITÄ 2 Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka graafinen

Lisätiedot

Tasaantumisilmiöt eli transientit

Tasaantumisilmiöt eli transientit uku 12 Tasaanumisilmiö eli ransieni 12.1 Kelan kykeminen asajännieeseen Kappaleessa 11.2 kykeiin reaalinen kela asajännieeseen ja ukiiin energian varasoiumisa kelan magneeikenään. Tilanne on esiey uudelleen

Lisätiedot

Funktion määrittely (1/2)

Funktion määrittely (1/2) Funktion määrittely (1/2) Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon a täsmälleen yhden B:n alkion b. Merkitään b = f (a). Tässä A = M f on f :n määrittelyjoukko, B on f :n maalijoukko.

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia 8/ VÄRÄHTELYMEKANIIKKA SESSIO 8: Yhen vapausaseen paovärähely, ransieniuormiusia JOHDANTO c m x () Kuva. Syseemi. Transieniuormiusella aroieaan uormiusheräeä, joa aiheuaa syseemiin lyhyaiaisen liieilan.

Lisätiedot

SIGNAALITEORIAN KERTAUSTA 2. Tietoliikennetekniikka I A Kari Kärkkäinen Osa 3

SIGNAALITEORIAN KERTAUSTA 2. Tietoliikennetekniikka I A Kari Kärkkäinen Osa 3 SIGNAALITEORIAN KERTAUSTA 2 Tieoliikenneekniikka I 521359A Kari Kärkkäinen Osa 3 Konvoluuio ja kerolasku ajassa ja aajuudessa Kanaaajuussignaali baseband sanomasignaali sellaisenaan ilman modulaaioa Kaisanpääsösignaali

Lisätiedot

Suomen kalamarkkinoiden analyysi yhteisintegraatiomenetelmällä

Suomen kalamarkkinoiden analyysi yhteisintegraatiomenetelmällä KALA- JA RIISTARAPORTTEJA nro 374 Jukka Laiinen Jari Seälä Kaija Saarni Suomen kalamarkkinoiden analyysi yheisinegraaiomeneelmällä Helsinki 006 Julkaisija Riisa- ja kalaalouden ukimuslaios KUVAILULEHTI

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto Kojemeeorologia Sami Haapaala syksy 03 Fysiika laios, Ilmakehäieeide osaso Mialaieide dyaamise omiaisuude Dyaamise uusluvu määriävä mie mialaie käyäyyy syöeide muuuessa Apua käyeää differeiaaliyhälöiä,

Lisätiedot

ANALOGISEN VÄRITELEVISION RAKENNE JA TOIMINTA

ANALOGISEN VÄRITELEVISION RAKENNE JA TOIMINTA ANALOGISEN VÄRITELEVISION RAKENNE JA TOIMINTA Tieoliikenneekniikka I 521359A Kari Kärkkäinen Osa 8 1 23 Videosignaalin VSB-odulaaio analogisessa TV-järj. Värielevision videosignaalin siirrossa käyeään

Lisätiedot

Mittaustekniikan perusteet, piirianalyysin kertausta

Mittaustekniikan perusteet, piirianalyysin kertausta Miausekniikan perusee, piirianalyysin kerausa. Ohmin laki: =, ai = Z ( = ännie, = resisanssi, Z = impedanssi, = vira). Kompleksiluvu Kompleksilukua arviaan elekroniikassa analysoiaessa piireä, oka sisälävä

Lisätiedot

Luento 2. Järjestelmät aika-alueessa Konvoluutio-integraali. tietoverkkotekniikan laitos

Luento 2. Järjestelmät aika-alueessa Konvoluutio-integraali. tietoverkkotekniikan laitos Lueno 2 Järjeselmä aika-alueessa Konvoluuio-inegraali Lueno 2 Lueno 2 Järjeselmä aika alueessa; Konvoluuio inegraali 2.1 Järjeselmien perusominaisuude Oppenheim 1.5. 1.6 Muisillise ja muisioma järjeselmä

Lisätiedot

12. Luento. Modulaatio

12. Luento. Modulaatio Analoginen modulaaio Digiaalinen modulaaio. Lueno..7 Modulaaio Modulaaiossa siirreään moduloivan signaalin spekri kanoaallon aajuusalueelle, joko sien eä spekrin muoo säilyy lineaarisessa modulaaiossa,

Lisätiedot

BINÄÄRINEN SYNKRONINEN TIEDONSIIRTO KAISTARAJOITTAMATTOMILLA MIELIVALTAISILLA PULSSIMUODOILLA SOVITETTU SUODATIN JA SEN SUORITUSKYKY AWGN-KANAVASSA

BINÄÄRINEN SYNKRONINEN TIEDONSIIRTO KAISTARAJOITTAMATTOMILLA MIELIVALTAISILLA PULSSIMUODOILLA SOVITETTU SUODATIN JA SEN SUORITUSKYKY AWGN-KANAVASSA BINÄÄRINN SYNKRONINN IDONSIIRO KAISARAJOIAMAOMILLA MILIVALAISILLA PULSSIMUODOILLA SOVIU SUODAIN JA SN SUORIUSKYKY AWGN-KANAVASSA Millaiia aalomuooja perupuleja yypilliei käyeään? 536A ieoliikenneekniikka

Lisätiedot

Jaksollisen signaalin spektri

Jaksollisen signaalin spektri Jaksollisen signaalin spektri LuK-tutkielma Topi Suviaro 2257699 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 215 Sisältö Johdanto 2 1 Jaksollisuudesta 2 2 Spektristä 3 2.1 Symmetrian vaikutuksesta

Lisätiedot

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö S-108-2110 OPTIIKKA 1/10 POLARISAATIO Laboratoriotyö S-108-2110 OPTIIKKA 2/10 SISÄLLYSLUETTELO 1 Polarisaatio...3 2 Työn suoritus...6 2.1 Työvälineet...6 2.2 Mittaukset...6 2.2.1 Malus:in laki...6 2.2.2

Lisätiedot

Trigonometrian kaavat 1/6 Sisältö ESITIEDOT: trigonometriset funktiot

Trigonometrian kaavat 1/6 Sisältö ESITIEDOT: trigonometriset funktiot Trigonometrian kaavat 1/6 Sisältö Ulkoa muistettavat peruskaavat Trigonometrisia funktioita koskevia kaavoja on paljon. Seuraavassa esitetään tärkeimmät ja lyhyet ohjeet niiden muistamiseen. Varsinaisesti

Lisätiedot

2. Laskuharjoitus 2. siis. Tasasähköllä Z k vaipan resistanssi. Muilla taajuuksilla esim. umpinaiselle koaksiaalivaipalle saadaan = =

2. Laskuharjoitus 2. siis. Tasasähköllä Z k vaipan resistanssi. Muilla taajuuksilla esim. umpinaiselle koaksiaalivaipalle saadaan = = 2 Lasuarjoitus 2 21 Kytentäimpedanssin asenta Mitä taroittaa ytentäimpedanssi? 5 ma:n suuruinen äiriövirta oasiaaiaapein vaipassa (uojoto) aieuttaa 1 mv:n suuruisen äiriöjännitteen 1 m:n mataa Miä on ytentäimpedanssin

Lisätiedot

Systeemimallit: sisältö

Systeemimallit: sisältö Syseemimalli: sisälö Malliyypi ja muuuja Inpu-oupu -kuvaus ja ilayhälömalli, ila Linearisoini Jakuva-aikaisen lineaarisen järjeselmän siirofunkio, sabiilisuus Laplace-muunnos Diskreeiaikaisen lineaarisen

Lisätiedot

KULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN

KULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN KULMMODULOITUJEN SIGNLIEN SPEKTRIN LSKEMINEN 1 (3) (3) Spekri laskeie siisaoalle Kulaoduloidu sigaali spekri johaie o yöläsä epälieaarisuudesa johue (epälieaarise aalyysi ova yleesä hakalia). Se voidaa

Lisätiedot

Testaa taitosi 1. 2. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on

Testaa taitosi 1. 2. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on Testaa taitosi. Laske lausekkeen 60 cos80 sin arvo. Päättele sinin ja kosinin arvot yksikköympyrästä. y x. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on y y. x x. Määritä

Lisätiedot

More care. Buil in. COMPACT/ MINIKAIVUKONEET MUKAVAAJA TUOTTAVAA KAIVUUTA. Vain yksi seikka on odella rakaiseva: aeriaalin siiräinen ahdollisian nopeasi ja ehokkaasi. Ja kuen uukin Volvon kopaki konee,

Lisätiedot

Dynamiikan hallinta Lähde: Zölzer. Digital audio signal processing. Wiley & Sons, 2008. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons, 2002.

Dynamiikan hallinta Lähde: Zölzer. Digital audio signal processing. Wiley & Sons, 2008. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons, 2002. Dynamiikan hallinta Lähde: Zölzer. Digital audio signal processing. Wiley & Sons, 2008. Zölzer (ed. DAFX Digital Audio Effects. Wiley & Sons, 2002. Sisältö:! Johdanto!! Ajallinen käyttäytyminen! oteutus!

Lisätiedot

1 Excel-sovelluksen ohje

1 Excel-sovelluksen ohje 1 (11) 1 Excel-sovelluksen ohje Seuraavassa kuvaaan jakeluverkonhalijan kohuullisen konrolloiavien operaiivisen kusannusen (SKOPEX 1 ) arvioimiseen arkoieun Excel-sovelluksen oimina, mukaan lukien sovelluksen

Lisätiedot

YO Fysiikka. Heikki Lehto Raimo Havukainen Jukka Maalampi Janna Leskinen. Sanoma Pro Oy Helsinki

YO Fysiikka. Heikki Lehto Raimo Havukainen Jukka Maalampi Janna Leskinen. Sanoma Pro Oy Helsinki YO Fysiikka Heikki Leho Raimo Havukainen Jukka Maalampi Janna Leskinen Sanoma Pro Oy Helsinki Sisällys Opeajalle ja opiskelijalle 4 1 Kohi fysiikan ylioppilaskoea 5 Yleisä fysiikan ylioppilaskokeesa 6

Lisätiedot

TKK Tietoliikennelaboratorio Seppo Saastamoinen Sivu 1/5 Konvoluution laskeminen vaihe vaiheelta

TKK Tietoliikennelaboratorio Seppo Saastamoinen Sivu 1/5 Konvoluution laskeminen vaihe vaiheelta KK ieoliikennelaboraorio 7.2.27 Seppo Saasamoinen Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali, kun ulosignaali ja järjeselmän

Lisätiedot

M2A.1000. Suomenkielinen käyttöohje. www.macrom.it

M2A.1000. Suomenkielinen käyttöohje. www.macrom.it M2A.000 Suomenkielinen käyttöohje www.macrom.it Vahvistimen säätimet ja liitännät 2 3 4 5 6 7 8 9 0 2 3 4 5 6 7 8 2 Ω 2 3 4 5 6 7 8 9 0 2 3 4 5 7 6 8 RCA-tuloliitäntä matalatasoiselle signaalille Kaiutintasoinen

Lisätiedot

KARTIOHAMMASPYÖRÄT. Tekniset tiedot OIKEA ASENNUSMITTA LIIAN PIENI ASENNUSMITTA LIIAN SUURI ASENNUSMITTA 1:26

KARTIOHAMMASPYÖRÄT. Tekniset tiedot OIKEA ASENNUSMITTA LIIAN PIENI ASENNUSMITTA LIIAN SUURI ASENNUSMITTA 1:26 KRTIOMMSPYÖRÄT Tekniset tieot Kartiohammasvaihe on vaihe, jossa on pituussuuntaiset ristiakselit. Tämä eellyttää useimmissa tapauksissa vapaasti kantavaa laakerointia. isäksi on käytettävä melko järeitä

Lisätiedot

S-108.180 Elektroniset mittaukset ja elektroniikan häiriökysymykset. Vanhoja tenttitehtäviä

S-108.180 Elektroniset mittaukset ja elektroniikan häiriökysymykset. Vanhoja tenttitehtäviä S-18.18 Elektroniset mittaukset ja elektroniikan häiriökysymykset 1. Vastaa lyhyesti: a) Mitä on kohina (yleisesti)? b) Miten määritellään kohinaluku? c) Miten / missä syntyy raekohinaa? Vanhoja tenttitehtäviä

Lisätiedot

1. Murtoluvut, murtolausekkeet, murtopotenssit ja itseisarvo

1. Murtoluvut, murtolausekkeet, murtopotenssit ja itseisarvo 1. Murtoluvut, murtolausekkeet, murtopotenssit ja itseisarvo Olkoot a, b, c mielivaltaisesti valittuja reaalilukuja eli reaaliakselin pisteitä. Ne toteuttavat seuraavat laskulait (ns. kunta-aksioomat):

Lisätiedot

AKKREDITOITU KALIBROINTILABORATORIO ACCREDITED CALIBRATION LABORATORY SGS FIMKO OY

AKKREDITOITU KALIBROINTILABORATORIO ACCREDITED CALIBRATION LABORATORY SGS FIMKO OY K001/M12/2015 Liite 1 / Appendix 1 Sivu / Page 1(17) AKKREDITOITU KALIBROINTILABORATORIO ACCREDITED CALIBRATION LABORATORY SGS FIMKO OY Tunnus Code Laboratorio Laboratory Osoite Address Puh./fax/e-mail/www

Lisätiedot

A-osio. Ei laskinta! Valitse seuraavista kolmesta tehtävästä vain kaksi joihin vastaat!

A-osio. Ei laskinta! Valitse seuraavista kolmesta tehtävästä vain kaksi joihin vastaat! MAA Koe 7..03 A-osio. Ei laskina! Valise seuraavisa kolmesa ehäväsä vain kaksi joihin vasaa! A. a) Mikä on funkion f(x) määrieljoukko, jos f( x) x b) Muua ulomuooon: 4a 8a 4 A. a) Rakaise hälö: x 4x b)

Lisätiedot

4 YHDEN VAPAUSASTEEN HARMONINEN PAKKOVÄ- RÄHTELY

4 YHDEN VAPAUSASTEEN HARMONINEN PAKKOVÄ- RÄHTELY Väähelyekaiikka 4. 4 YHDEN VAPAUSASTEEN HARMONINEN PAKKOVÄ- RÄHTELY 4. Johdao Mekaaise syseei ulkoisisa kuoiuksisa aiheuuvaa väähelyä saoaa akkoväähelyksi. Jos syseeissä o vaieusa, o kyseessä vaieeva akkoväähely,

Lisätiedot

Luento 4 Jaksollisten signaalien Fourier-sarjaesitys 4.1 Fourier-sarja 4.2 Viivaspektri, tehospektri

Luento 4 Jaksollisten signaalien Fourier-sarjaesitys 4.1 Fourier-sarja 4.2 Viivaspektri, tehospektri Luento 4 Luento 4 Jaksollisten signaalien Fourier-sarjaesitys 9 Oppenheim 3.3, 3.4 4.1 Fourier-sarja Kompleksi F-sarja F-sinisarja Sinc-funktio 4. Viivaspektri, tehospektri Viivaspektri Parsevalin teoreema

Lisätiedot

BM20A5810 Differentiaalilaskenta ja sovellukset Harjoitus 5, Syksy 2016

BM20A5810 Differentiaalilaskenta ja sovellukset Harjoitus 5, Syksy 2016 BM20A5810 Differentiaalilaskenta ja sovellukset Harjoitus 5, Syksy 2016 1. (a) Anna likiarvo lineaarisen approksimaation avulla sille mitä on T (100.5), kun T (100) = 45 ja T (100) = 10. (b) Käyttäen lineaarista

Lisätiedot

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät:

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät: MAA3 Geometria Koe 5.2.2016 Jussi Tyni Lue ohjeet ja tee tehtävät huolellisesti! Tee tarvittavat välivaiheet, vaikka laskimesta voikin ottaa tuloksia. Välivaiheet perustelevat vastauksesi. Tee pisteytysruudukko

Lisätiedot

3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta.

3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta. 3 Ääni ja kuulo 1 Mekaanisista aalloista ääni on ihmisen kannalta tärkein. Ääni on pitkittäistä aaltoliikettä, eli ilman (tai muun väliaineen) hiukkaset värähtelevät suuntaan joka on sama kuin aallon etenemissuunta.

Lisätiedot

a) Ortogonaalinen, koska kantafunktioiden energia 1

a) Ortogonaalinen, koska kantafunktioiden energia 1 S-7.060 Signaali ja järjeselmä Teni 14.5.001 1. Vasaa lyhyesi seuraaviin saehäviin, käyä arviaessa kuvaa. a) Mikä minaisuuksisa rgnaalinen ja rnrmaalinen kuvaa paremmin Furier-sarjaa ja miksi? b) Esiä

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 4, ratkaisuehdotukset

DEE Lineaariset järjestelmät Harjoitus 4, ratkaisuehdotukset D-00 ineaarise järjeselmä Harjoius 4, rakaisuehdoukse nnen kuin mennään ämän harjoiuksen aihepiireihin, käydään läpi yksi huomionarvoinen juu. Piirianalyysin juuri suorianee opiskelija saaava ihmeellä,

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

Analogiapiirit III. Tentti 15.1.1999

Analogiapiirit III. Tentti 15.1.1999 Oulun yliopisto Elektroniikan laboratorio nalogiapiirit III Tentti 15.1.1999 1. Piirrä MOS-differentiaalipari ja johda lauseke differentiaaliselle lähtövirralle käyttäen MOS-transistorin virtayhtälöä (huom.

Lisätiedot

FDPa. Rei itetty seinään asennettava poistoilmalaite

FDPa. Rei itetty seinään asennettava poistoilmalaite Rei iey seinään asenneava poisoilmalaie Lyhyesi Säädeävä Kiineä miausyhde Suuri poisoehokkuus Helposi puhdiseava Eri värivaihoehoja Pikavalinaaulukko I L M A V I R T A Ä Ä N I T A S O l/s Koko db(a) db(a)

Lisätiedot

a b c d + + + + + + + + +

a b c d + + + + + + + + + 28. 10. 2010!"$#&%(')'+*(#-,.*/1032/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + + + 2. 3. 4. 5. 6. + + + + + + + + + + P1. Valitaan kannaksi sivu, jonka pituus on 4. Koska toinen jäljelle jäävistä sivuista

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 14: Yhden vapausasteen vaimeneva pakkovärähtely, harmoninen kuormitusheräte

VÄRÄHTELYMEKANIIKKA SESSIO 14: Yhden vapausasteen vaimeneva pakkovärähtely, harmoninen kuormitusheräte 4/ VÄRÄHTELYMEKANIIKKA SESSIO 4: Yhden vaausaseen vaieneva akkvärähely, harninen kuriusheräe LIIKEYHTÄLÖN JOHTO JA RATKAISU Kuvassa n esiey visksisi vaienneun yhden vaausaseen harnisen akkvärähelijän erusalli.

Lisätiedot

Yleisen antennin säteily k enttien ratk aisem isen v aih eet:

Yleisen antennin säteily k enttien ratk aisem isen v aih eet: Sä te ily k e n ttie n ra tk a ise m in e n Yleisen antennin säteily k enttien ratk aisem isen v aih eet: 1. E tsi A integ roim alla y h tälö A = µ e jβr 4π r V Je j βˆr r dv, (40 ) 2. L ask e E E = jωa

Lisätiedot

Myytävät puhelinnumerot otsikoittain

Myytävät puhelinnumerot otsikoittain Kirjaimet vastaavat standardi matkapuhelinnäppäimien numeroita. Välilyönnit, väliviivat, pisteet, sulut, yhtäsuuruusmerkit yms eivät tässä kuitenkaan vastaa mitään numeroita. Hintoja ei toistaiseksi ole

Lisätiedot

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai MATP15 Approbatur 1B Ohjaus Keskiviikko 4.11. torstai 5.11.015 1. (Opiskeluteht. 6 s. 0.) Määritä sellainen vakio a, että polynomilla x + (a 1)x 4x a on juurena luku x = 1. Mitkä ovat tällöin muut juuret?.

Lisätiedot

SIGNAALITEORIAN KERTAUSTA 1

SIGNAALITEORIAN KERTAUSTA 1 SIGNAALITEORIAN KERTAUSTA 1 1 (26) Fourier-muunnos ja jatkuva spektri Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka esittäminen graafisesti edellyttää 3D-kuvaajan piirtämisen. Yleensä

Lisätiedot

Luento 11. tietoverkkotekniikan laitos

Luento 11. tietoverkkotekniikan laitos Lueno Lueno Sokasise signaali ja prosessi II. Sokasise prosessi Pruju Saionaarisuus, ergodisuus Auo ja risikorrelaaio ehospekri.3 Kohinan suodaaminen Sokasinen raja arvo ja derivaaa Winer Khinchin eoreema.3

Lisätiedot

X(t) = X 0 + tx 1 + t 2 X 2 + t 3 X ,

X(t) = X 0 + tx 1 + t 2 X 2 + t 3 X , Ma-1.1332 Mariisiksponnifunkio, KP3-II, syksy 2007 Pkka Alsalo Johdano. Tämä monis sisälää kurssilla arviava ido mariisiksponnifunkiosa. Mariisiksponnifunkio. Suraavassa A on raalinn n n-mariisi, jonka

Lisätiedot

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä 1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 9 Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa

Lisätiedot

VAIHELUKKOTEKNIIKKA JA TAKAISINKYTKETYT DEMODULAATTORIT KULMAMODULAATION ILMAISUSSA

VAIHELUKKOTEKNIIKKA JA TAKAISINKYTKETYT DEMODULAATTORIT KULMAMODULAATION ILMAISUSSA VIHELUOTENII J TISINYTETYT DEMODULTTORIT ULMMODULTION ILMISUSS Vaihohoinn ilmaisumnlmä kulmamoulaaioill? 5357 Tioliiknnkniikka I Osa 9 ari ärkkäinn ä 05 VIHELUO PLL FM & PM -ILMISINPIIRINÄ Ellä on arkaslu

Lisätiedot

1 Diskreettiaikainen näytteistys. 1.1 Laskostuminen. Laskostuminen

1 Diskreettiaikainen näytteistys. 1.1 Laskostuminen. Laskostuminen AD/DA muunnos Lähteet: Pohlman. (1995). Principles of digital audio (3rd ed). Zölzer. (008). Digital audio signal processing (nd ed). Reiss. (008), Understanding sigma-delta modulation: The solved and

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 13 Black-Scholes malli optioiden hinnoille

Rahoitusriskit ja johdannaiset Matti Estola. luento 13 Black-Scholes malli optioiden hinnoille Rahoiusriski ja johannaise Mai Esola lueno 3 Black-choles malli opioien hinnoille . Ion lemma Japanilainen maemaaikko Kiyoshi Iō oisi seuraavana esieävän lemman vuonna 95 arikkelissaan: On sochasic ifferenial

Lisätiedot

Yleistä. Digitaalisen äänenkäsittelyn perusteet. Tentit. Kurssin hyväksytty suoritus = Harjoitustyö 2(2) Harjoitustyö 1(2)

Yleistä. Digitaalisen äänenkäsittelyn perusteet. Tentit. Kurssin hyväksytty suoritus = Harjoitustyö 2(2) Harjoitustyö 1(2) Yleistä Digitaalisen äänenkäsittelyn perusteet Jouni Smed jouni.smed@utu.fi syksy 2006 laajuus: 5 op. (3 ov.) esitiedot: Java-ohjelmoinnin perusteet luennot: keskiviikkoisin 10 12 12 salissa β perjantaisin

Lisätiedot

Pienimmän Neliösumman Sovitus (PNS)

Pienimmän Neliösumman Sovitus (PNS) Pienimmän Neliösumman Sovitus (PNS) n = Havaintojen määrä (Kuvan n = 4 punaista palloa) x i = Havaintojen ajat/paikat/... (i = 1,..., n) y i = y(x i) = Havaintojen arvot (i = 1,..., n) σ i = Havaintojen

Lisätiedot

Radioamatöörikurssi 2015

Radioamatöörikurssi 2015 Radioamatöörikurssi 2015 Polyteknikkojen Radiokerho Radiotekniikka 5.11.2015 Tatu Peltola, OH2EAT 1 / 25 Vahvistimet Vahvistin ottaa signaalin sisään ja antaa sen ulos suurempitehoisena Tehovahvistus,

Lisätiedot

10. Toisen kertaluvun lineaariset differentiaaliyhtälöt

10. Toisen kertaluvun lineaariset differentiaaliyhtälöt 37. Toisen kertaluvun lineaariset differentiaalihtälöt Tarkastelemme muotoa () ( x) + a( x) ( x) + a( x) ( x) = b( x) olevia htälöitä, missä kerroinfunktiot ja oikea puoli ovat välillä I jatkuvia. Edellisen

Lisätiedot

Käyttöohje TUBE CONDENSER MICROPHONE T-47. Vacuum Tube Condenser Microphone

Käyttöohje TUBE CONDENSER MICROPHONE T-47. Vacuum Tube Condenser Microphone Käyttöohje TUBE CONDENSER MICROPHONE T-47 Vacuum Tube Condenser Microphone 2 TUBE CONDENSER MICROPHONE T-47 Käyttöohje Tärkeitä turvallisuusohjeita Varoitus Symbolilla merkityissä päätteissä sähkövirran

Lisätiedot

TL5231, Signaaliteoria (S2004) Matlab-harjoituksia

TL5231, Signaaliteoria (S2004) Matlab-harjoituksia 1. a) Muodosta Matlab-ohjelmistossa kosinisignaali x(t) = Acos(2πft+θ), jonka amplitudi on 1V, taajuus hertseinä sama kuin ikäsi vuosina (esim. 2 v = 2 Hz) ja vaihekulma +π/2. Piirrä signaali ja tarkista

Lisätiedot

Konvoluution laskeminen vaihe vaiheelta Sivu 1/5

Konvoluution laskeminen vaihe vaiheelta Sivu 1/5 S-72. Signaali ja järjeselmä Laskuharjoiukse, syksy 28 Konvoluuion laskeminen vaihe vaiheela Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali,

Lisätiedot

Tuotannon suhdannekuvaajan menetelmäkuvaus

Tuotannon suhdannekuvaajan menetelmäkuvaus 1(15) Tuoannon suhdannekuvaajan meneelmäkuvaus Luku 1 Luku 2 Luku 3 Luku 4 Tuoannon suhdannekuvaajan yleiskuvaus Tuoannon suhdannekuvaajan julkaisuaikaaulu, revisoinikäyännö ja jakelu Tuoannon suhdannekuvaajan

Lisätiedot

VAIHEKOHERENTIT BINÄÄRISET KANTOAALTOMODULAATIOT JA NIIDEN VIRHETODENNÄKÖISYYDET

VAIHEKOHERENTIT BINÄÄRISET KANTOAALTOMODULAATIOT JA NIIDEN VIRHETODENNÄKÖISYYDET 1 VAIHEKOHERENTIT BINÄÄRISET KANTOAALTOMODULAATIOT JA NIIDEN VIRHETODENNÄKÖISYYDET Millaiset aaltomuodot s 1 (t) ja s (t) valitaan erilaisten kantoaatomodulaatioiden toteuttamiseksi? SYMBOLIAALTOMUODOT

Lisätiedot

Matriisialgebra harjoitukset, syksy 2016

Matriisialgebra harjoitukset, syksy 2016 MATRIISIALGEBRA, s, Ratkaisuja/ MHamina & M Peltola 7 Onko kuvaus F : R R, F(x 1,x = (x 1 +x,5x 1, x 1 +6x lineaarinen kuvaus? Jos on, niin määrää sen matriisi luonnollisen kannan suhteen Jos ei ole, niin

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteet o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

>LTI-järjestelmä. >vaihespektri. >ryhmäviive

>LTI-järjestelmä. >vaihespektri. >ryhmäviive TL53, Signaalioria (J. Laiinn) 9..4 TTESN, TTESN5X, TTESN5Z Väliko, rakaisu Täydnnä ohisn kuvaan > - ai < -mrkiy kohda. Miä arkoiaan idonsiirokanavan kvalisoinnilla? Esiä lausk kvalisaaorin siirofunkioll,

Lisätiedot

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0007 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 26.10.2015 Reaalinen

Lisätiedot

5. Vakiokertoiminen lineaarinen normaaliryhmä

5. Vakiokertoiminen lineaarinen normaaliryhmä 1 MAT-145 LAAJA MATEMATIIKKA 5 Tampereen eknillinen yliopiso Riso Silvennoinen Kevä 21 5. Vakiokeroiminen lineaarinen normaaliryhmä Todeaan ensin ilman odisuksia (ulos on syvällinen) rakaisujen olemassaoloa

Lisätiedot

Radioastronomian käsitteitä

Radioastronomian käsitteitä Radioastronomian käsitteitä allonpituusalue ~ 100 m - 1 mm MHz 300 GHz Leveä aallonpituusalue: erilaisia antenneja, monenlaista tekniikkaa Ei (suoraan) kuvia Signaali yleensä

Lisätiedot

F {f(t)} ˆf(ω) = 1. F { f (n)} = (iω) n F {f}. (11) BM20A5700 - INTEGRAALIMUUNNOKSET Harjoitus 10, viikko 46/2015. Fourier-integraali:

F {f(t)} ˆf(ω) = 1. F { f (n)} = (iω) n F {f}. (11) BM20A5700 - INTEGRAALIMUUNNOKSET Harjoitus 10, viikko 46/2015. Fourier-integraali: BMA57 - INTEGRAALIMUUNNOKSET Harjoitus, viikko 46/5 Fourier-integraali: f(x) A() π B() π [A() cos x + B() sin x]d, () Fourier-muunnos ja käänteismuunnos: f(t) cos tdt, () f(t) sin tdt. (3) F {f(t)} ˆf()

Lisätiedot

RAKENNUSAKUSTIIKKA - ILMAÄÄNENERISTÄVYYS

RAKENNUSAKUSTIIKKA - ILMAÄÄNENERISTÄVYYS 466111S Rakennusfysiikka, 5 op. RAKENNUSAKUSTIIKKA - ILMAÄÄNENERISTÄVYYS Opettaja: Raimo Hannila Luentomateriaali: Professori Mikko Malaska Oulun yliopisto LÄHDEKIRJALLISUUTTA Suomen rakentamismääräyskokoelma,

Lisätiedot

S-55.1100 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S-55.1100 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.00 SÄHKÖKNKKA A KONKKA. välikoe 2..2008. Saat vastata vain neljään tehtävään!. aske jännite U. = 4 Ω, 2 = Ω, = Ω, = 2, 2 =, = A, 2 = U 2 2 2 2. ännitelähde tuottaa hetkestä t = t < 0 alkaen kaksiportaisen

Lisätiedot

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen 3 VALON POLARISAATIO 3.1 Johdanto Mawellin htälöiden avulla voidaan johtaa aaltohtälö sähkömagneettisen säteiln etenemiselle väliaineessa. Mawellin htälöiden ratkaisusta seuraa aina, että valo on poikittaista

Lisätiedot