Suomen kalamarkkinoiden analyysi yhteisintegraatiomenetelmällä

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Suomen kalamarkkinoiden analyysi yhteisintegraatiomenetelmällä"

Transkriptio

1 KALA- JA RIISTARAPORTTEJA nro 374 Jukka Laiinen Jari Seälä Kaija Saarni Suomen kalamarkkinoiden analyysi yheisinegraaiomeneelmällä Helsinki 006

2 Julkaisija Riisa- ja kalaalouden ukimuslaios KUVAILULEHTI Julkaisuaika Tammikuu 006 Tekijä() Jukka Laiinen, Jari Seälä ja Kaija Saarni Julkaisun nimi Suomen kalamarkkinoiden analyysi yheisinegraaiomeneelmällä Julkaisun laji Tukimusrapori Toimeksianaja Toimeksianopäivämäärä Projekin nimi ja numero Villin kalan markkina (3 05) Tiiviselmä Tukimuksessa esiellään yheisinegraaioanalyysimeneelmä ja sovelleaan siä suomalaisen kalamarkkinoiden ukimukseen. Yheisinegraaiomeneelmän käyö markkinoiden analysoiniin perusuu Siglerin ja Sherwinin määrielmään markkinoisa. Sen mukaan kahden uoeen voidaan kasoa olevan samoilla markkinoilla ja näin ollen läheisiä subsiuueja, jos niiden hinojen suhde pysyy ajan kuluessa vakaana. Tukimuksen empiirisessä osassa esaaan kalaseun lohen, aimenen, siian, ahvenen, kuhan, hauen, lahnan ja muikun hinojen välisä yheisinegraaioa. Tesi on suorieu koko havainojaksolle , sekä mahdollisen rakennemuuoksen vuoksi myös kahdelle lyhyemmälle jaksolle ennen ja jälkeen EUjäsenyyä. Yksikköjuura esaaan laajenneulla Dickeyn ja Fullerin esillä ja yheisinegraaioa Johansenin meneelmällä. Rajoieuilla yheisinegraaioeseillä esaaan lisäksi yhden hinnan lakia ja heikkoa eksogeenisuua. Tesien selkeimpänä uloksena voidaan piää lohen ja aimenen yheisinegraaioa. Niillä on myös yhden hinnan laki voimassa, joen niiä voidaan piää eriäin läheisinä subsiuueina. Myös valkolihaise laji siika, kuha ja ahven näyäisivä kilpailevan jossain määrin keskenään. Asiasana yheisinegraaio, kala, markkina, Johansenin meneelmä Sarjan nimi ja numero ISBN ISSN Kala- ja riisaraporeja Sivumäärä Kieli Hina Luoamuksellisuus 50 s. Suomi Julkinen Jakelu Riisa- ja kalaalouden ukimuslaios Viikinkaari 4 PL 0079 Helsinki Puh Faksi hp://www.rkl.fi/ukimuslaios/julkaisu (pdf) Kusanaja Riisa- ja kalaalouden ukimuslaios Viikinkaari 4 PL 0079 Helsinki Puh Faksi

3 Sisällys YHTEENVETO.... JOHDANTO...3. TEOREETTINEN TAUSTA...5. Markkina ja niiden rajaaminen...5. Markkinoiden inegroiuneisuus ja yhden hinnan laki Yhden hinnan laki ja yhdiselmähyödyke-eoreema METODIT Aikasarjoisa ja niiden luoneesa Yksikköjuuriesi Yksikköjuuriprosessi Dickeyn ja Fullerin esi Laajenneu Dickeyn ja Fullerin esi Kausiaisuus yksikköjuuren esaamisessa Rakennemuuos ja yksikköjuuren esaus Yheisinegraaio ja sen esaaminen Yheisinegraaio Englen ja Grangerin meneelmä Johansenin meneelmä Rajoiusen esaaminen Lyhyen aikavälin mallinnus Yheisinegraaioanalyysin sovelaminen SUOMEN KALAMARKKINAT Johdaus Suomen kalamarkkinoihin Tarkaselu kalalajeiain Lohi Taimen Siika Ahven Kuha Hauki Lahna Muikku Yheenveo lajikohaisesa arkaselusa TILASTOLLISET TESTIT Meneelmä ja aineiso Yksikköjuuriesi Yheisinegraaioesi Heikko eksogeenisuus ja yhden hinnan laki Pikän ja lyhyen aikavälin mallien esimoidu yhälö TULOSTEN TARKASTELU...46 LÄHTEET...49

4 Yheenveo Epäsaionaarisen muuujien analysoini perineisellä regressioanalyysilla anaa usein virheellisiä uloksia. Eräs epäsaionaarisuuden aiheuama haia on näennäisregressio (spurious regression). Tällöin regressioanalyysisa saaava ulokse saaava ilmaisa kahden muuujan välille ilasollisesi merkisevää suhdea, joa ei oikeasi ole. Epäsaionaarisia muuujia voidaan kuienkin analysoida yheisinegraaioanalyysilla. Tämän ukimuksen arkoiuksena on esiellä yheisinegraaioanalyysia meneelmänä ja sovelaa siä suomalaisen kalamarkkinoiden karoiukseen. Tukimuksessa analysoidaan kalalajien välisen hina-aikasarjojen riippuvuussuheia. Tulosen peruseella pyriään selviämään löyyykö Suomen kalamarkkinoila eri lajien välisiä subsiuuiosuheia ja mikä laji näin ollen kilpaileva keskenään markkinoilla. Yheisinegraaioanalyysin käyö markkinoiden analysoiniin perusuu Siglerin ja Sherwinin (985) määrielmään markkinoisa. Sen mukaan kahden uoeen voidaan kasoa olevan samoilla markkinoilla ja näin ollen läheisiä subsiuueja, jos niiden hinojen suhde pysyy ajan kuluessa vakaana. Tämä määrielmä on myös läheisessä yheydessä yhden hinnan lakiin. Yhden hinnan lain vahva versio on voimassa jos uoeiden hinna ova äsmällisesi sama. Yhden hinnan lain heikossa versiossa uoeiden suheellise hinna pysyvä vakiona. Deerminisisessä muodossaan yhden hinnan laki on myös läheisessä yheydessä yhdiselmähyödykeeoreemaan, jonka mukaan kaha ai useampaa hyödykeä voidaan piää yhenä uoeena, jos niiden hinojen suhde pysyy vakiona ajan kuluessa. Tukimuksessa käyeävä meneelmä pohjauuva aikasarjaekonomeriaan. Tärkeä aikasarjoihin liiyvä ominaisuus on saionaarisuus. Aikasarja on saionaarinen jos sen odousarvo, varianssi ja kaikki auokovarianssi pysyvä vakioina ajankohdasa riippumaa. Epäsaionaarise muuuja on mahdollisa saada saionaariseksi differoimalla ne kerran ai useammin. Jos aikasarja äyyy differoida d keraa, se on inegroiunu aseella d. Aikasarjojen saionaarisuua voidaan esaa yksikköjuurieseillä. Jos aikasarjalla on yksikköjuuri, on kyseessä epäsaionaarinen aikasarja. Yleisimmin yksikköjuuren olemassaoloa esaaan Dickeyn ja Fullerin esillä (DF-esi) ai laajenneulla Dickeyn ja Fullerin esillä (ADF-esi), jossa virheermin auokorrelaaio eliminoidaan lisäämällä malliin viiväseyjä differenssiermejä. Jos aikasarja ova epäsaionaarisia ja inegroiunee samaa asea d, voidaan niiä esaa yheisinegraaioanalyysillä. Saionaarisia muuujia voidaan analysoida perineisellä regressioanalyysillä. Kahden ai useamman epäsaionaarisen muuujan lineaarikombinaaio ova usein epäsaionaarisia. Jos kuienkin epäsaionaarisen muuujien välillä on löydeävissä saionaarinen lineaarikombinaaio, sanoaan muuujien olevan yheisinegroiuneia. Käyännössä ämä arkoiaa, eä yheisinegroiunee muuuja eivä ajan kuluessa ajaudu kovin kauaksi oisisaan ja niiden välillä vallisee pikän aikavälin asapainosuhde. Yheisinegraaion esaamiseen on kaksi keskeisä meneelmää. Englen ja Grangerin meneelmässä selvieään ovako residuaali saionaarisia. Johansenin meneelmä sovelaa suurimman uskoavuuden (maximum likelihood) meneelmää vekoriauoregressiiviseen (VAR) malliin. Sen avulla voidaan eliminoida Englen ja Grangerin meneelmässä sovelleava kaksivaiheinen meneely sekä useampia yheisinegraaiovekoreia voidaan esimoida ja esaa yhä aikaa. Lisäksi voidaan esaa myös yheisinegraaiovekoreille aseeuja rajoiuksia sekä sopeuumisparamereja. Lyhyen aikavälin dynamiikasa saadaan ieoa esimoimalla malli virheenkorjausmuodossa. Tukimuksessa sovelleaan yheisinegraaioanalyysia suomalaiseen kalamarkkinaaineisoon. 990-luvulla apahunu kalakaupan vapauuminen ja kansainvälisyminen vaikuiva merkiäväsi Suomen kalamarkkinoihin. Kaupan vapauuminen ei koskenu pelkäsään muia EU-maia vaan myös uoni Norjasa vapauui. Norjasa uodun

5 lohikalan osuus kasvoi nopeasi ja ämä laski voimakkaasi myös koimaisen lohikalojen hinoja. Mahdollisen rakennemuuoksen vuoksi esi on suorieu paisi koko havainojaksolle , myös kahdelle lyhyemmälle jaksolle ennen ja jälkeen EUjäsenyyden alkamisen. Tesaavina lajeina ova lohi, aimen, siika, ahven, kuha, hauki, lahna ja muikku. Tesien peruseella loogisimmala uloksela vaikuaa lohen ja aimenen hinnalla valliseva selkeä pikän aikavälin asapainoila. Myös kuha ja siika mahdollisesi kilpaileva jossain määrin oisensa kanssa. Lisäksi näyäisi olevan jonkinlaisia viieiä kuhan ja ahvenen välisesä yheydesä. Tämän esin peruseella ja aiempiin ukimuksiin viiaen voidaan odea, eä punalihaise kala muodosava oman segmeninsä ja niiden hina määräyyy pikäli maailmanmarkkinoilla. Valkolihaisen lajien osala on vaikeampi veää yhä selkeiä johopääöksiä. Tämän ukimuksen peruseella saadaan ieoa suomalaisen kalamarkkinoiden kilpailuaseelmisa. Vaikka äsmällisä ieoa subsiuuisuheiden voimakkuuksisa ei ämän ukimuksen avulla saadakaan, voidaan uloksia hyödynää ennakkohypoeeseja aseeaessa mahdollisissa jakoukimuksissa.

6 . Johdano Viime vuosien aikana yheisinegraaioanalyysisa on ullu suosiu meneelmä aikasarjoja analysoiaessa, sillä sen avulla pysyään analysoimaan epäsaionaarisia aikasarjoja ilman perineisillä regressiomeneelmillä ilmeneviä ongelmia. Yheisinegraaioanalyysi on suheellisen uore meneelmä. Siä on kuienkin jo ehdiy sovelaa moniin erilaisiin ukimusalueisiin, ja lisää sovelamisaloja synyy jakuvasi. Yheisinegraaioanalyysin avulla on esau esimerkiksi markkinoiden ehokkuushypoeesia, osovoimaparieeia ja lukuisia muia pikän aikavälin aloudellisia riippuvuussuheia. Kalamarkkinoiden apauksessa siä on käyey esimerkiksi markkinoiden inegroiuneisuuden ukimiseen joko maanieeellisesä ai lajien välisesä näkökulmasa. Tämän ukimuksen arkoiuksena on esiellä yheisinegraaioanalyysia meneelmänä ja sovelaa siä suomalaisen kalamarkkinoiden karoiukseen. Tukimuksessa analysoidaan kalalajien välisen hina-aikasarjojen riippuvuussuheia. Empiirisen ulosen peruseella pyriään selviämään löyyykö Suomen kalamarkkinoila eri lajien välisiä subsiuuiosuheia ja mikä laji näin ollen kilpaileva keskenään markkinoilla. Tulosen ulkina perusuu Siglerin ja Sherwinin (985) määrielmään markkinoisa. Sen mukaan kahden uoeen voidaan kasoa olevan samoilla markkinoilla ja näin ollen läheisiä subsiuueja, jos niiden hinojen suhde pysyy ajan kuluessa vakaana. Tukimuksen pääpaino ulee olemaan meneelmäosiossa, sillä ukimus pohjauuu pääosin yheisinegraaioanalyysiin. Ennen yheisinegraaioanalyysia on kuienkin ukiava aikasarjojen saionaarisuua, koska yheisinegraaioanalyysin edellyyksenä on, eä analysoiava aikasarja ova epäsaionaarisia ja inegroiunee samanaseisesi. Aikasarja on saionaarinen jos sen odousarvo, varianssi ja kaikki auokovarianssi pysyvä vakioina ajankohdasa riippumaa. Aikasarjojen saionaarisuua voidaan esaa yksikköjuurieseillä. Jos aikasarjalla on yksikköjuuri, on kyseessä epäsaionaarinen aikasarja. Yleisimmin yksikköjuuren olemassaoloa esaaan Dickeyn ja Fullerin esillä (DF-esi) ai laajenneulla Dickeyn ja Fullerin esillä (ADF-esi), jossa virheermin auokorrelaaio eliminoidaan lisäämällä malliin viiväseyjä differenssiermejä. Jos aikasarjojen odeaan olevan epäsaionaarisia ja inegroiuneen samanaseisesi, voidaan niiä esaa yheisinegraaioanalyysilla. Kahden ai useamman epäsaionaarisen muuujan sanoaan olevan yheisinegroiuneia jos niiden välillä on löydeävissä saionaarinen lineaarikombinaaio. Käyännössä ämä arkoiaa, eä yheisinegroiunee muuuja eivä ajan kuluessa ajaudu kovin kauaksi oisisaan ja niiden välillä vallisee pikän aikavälin asapainosuhde. Yheisinegraaion esaamiseen on kaksi keskeisä meneelmää. Englen ja Grangerin meneelmässä selvieään ovako residuaali saionaarisia. Johansenin meneelmä sovelaa suurimman uskoavuuden (maximum likelihood) meneelmää vekoriauoregressiiviseen (VAR) malliin. Sen avulla voidaan eliminoida Englen ja Grangerin meneelmässä sovelleava kaksivaiheinen meneely sekä useampia yheisinegraaiovekoreia voidaan esimoida ja esaa yhä aikaa. Lisäksi voidaan esaa yheisinegraaiovekoreille aseeuja erilaisia rajoiuksia. Sekä Englen ja Grangerin eä Johansenin meneelmässä on mahdollisa saada ieoa myös lyhyen aikavälin dynamiikasa esimoimalla malli virheenkorjausmuodossa. Tukimuksessa sovelleaan yheisinegraaioanalyysia suomalaiseen kalamarkkinaaineisoon. Yksikköjuuren olemassaoloa ukiaan ADF-esillä ja yheisinegraaioesi ehdään Johansenin meneelmällä. Rajoieuilla yheisinegraaioeseillä ukiaan yhden hinnan lain ja heikon eksogeenisuuden voimassaoloa. Lyhyen aikavälin dynamiikasa saadaan ieoa esimoimalla malli virheenkorjausmuodossa. 990-luvulla apahunu kalakaupan vapauuminen ja kansainvälisyminen vaikuiva merkiäväsi Suomen kalamarkkinoihin. Mahdollisen rakennemuuoksen vuoksi esi on suorieu paisi koko havainojaksolle , myös kahdelle lyhyemmälle jaksolle ennen 3

7 ja jälkeen EU-jäsenyyden alkamisen. Tesaavina lajeina ova lohi, aimen, siika, ahven, kuha, hauki, lahna ja muikku. Teseihin on valiu laji, joisa on saaavilla kaava hina-aikasarja. Tukimuksen rakenne on seuraava. Johdannossa esiellään ukimuksen aihe ja sen avoiee. Seuraavana käsiellään ukimuksen eoreeinen perusa, jossa perusellaan yheisinegraaioanalyysin käyö markkinoiden analysoinnissa. Tämän jälkeen esiellään käyeävä meneelmä. Seuraavaksi käsiellään Suomen kalamarkkinoia yleisellä asolla ja kuvaaan lajikohaise hina- ja saalisaineiso. Tämän jälkeen suorieaan empiirise esi. Tesiuloksien peruseella ehdään ulkinna ja johopääökse. Lopussa on vielä yheenveo. 4

8 . Teoreeinen ausa. Markkina ja niiden rajaaminen Markkina ova paikka, jossa osaja ja myyjä kohaava. Hyödykkeiden hinna määräyyvä osajien ja myyjien käymän kaupan peruseella. Täysin kilpailluilla markkinoilla osajia ja myyjiä on niin mona, eä yksiäinen oimija ei pääse merkiseväsi vaikuamaan hinaan. Markkina voiva olla myös ei-kilpailullise, jolloin joku yksiäinen yriys ai yriykse voiva vaikuaa hinaan (Pindyck & Rubinfeld 998b, 9-). Markkinoiden määrielyssä unniseaan, kekä osaja ja myyjä ulisi sisällyää kuuluviksi ieyille markkinoille. Markkinoiden määrielyyn liiyy markkinoiden rajaaminen jollakin krieerillä. Rajaamisen krieerinä voidaan käyää maanieeellisiä peruseia ai rajaus voidaan suoriaa uoevalikoiman peruseella. Markkinoiden määrielylle on lukuisia syiä. Yriysen ulisi esimerkiksi iedosaa, kekä ova sen odellisia ai poeniaalisia kilpailijoia ja mikä uoee kilpaileva keskenään ällä hekellä ja ulevaisuudessa. Yriysen ulisi lisäksi osaa rajaa markkinansa, joa se kykenisi ekemään pääöksiä uoeidensa hinnoielusa, markkinoiniin käyeävisä resursseisa ja invesoinipääöksisä. Markkinoiden määriely on ärkeää myös julkisen alouden näkökulmasa. Kilpailuviranomaise jouuva ekemään pääöksiä yriysosojen ja fuusioiden hyväksymisesä. Pääökseen vaikuava yriysoson ai fuusion aikaansaama vaikuukse ulevaisuuden hinoihin ja kilpailuilaneeseen (Pindyck & Rubinfeld 998b, - ). Lisäksi markkinoiden laajuuden määriely on oleellisa ukiaessa kaupan kansainvälisymisä sekä kauppapoliiisen pääösen vaikuuksia (Seälä ym. 00, ). Tuoeiden hinasuheisiin perusuvia markkinoiden määrielmiä on useia. Siglerin määrielmän mukaan markkina ova alue, jolla saman hyödykkeen hinnalla on aipumus yheneväisyyeen kuljeuskusannusen ja laauerojen vaikuukse huomioiden. Sigler perusaa määrielmänsä Marshallin määrielmään. Marshallin mukaan markkina ova siä äydellisemmä miä enemmän ilmenee aipumusa maksaa samasa hyödykkeesä yhdenmukainen hina markkinoiden kaikissa osissa jakelukusannusen vaikuus pois lukien (Sigler 969, 55-56). Edellisissä määrielmissä markkinoia on ajaelu maanieeellisen ulouvuuden näkökulmasa. Sigler on kuienkin yhdessä Sherwinin kanssa laajenanu määrielmänsä koskemaan myös uoevalikoiman näkökulmaa. Tämän määrielmän mukaan kahden uoeen voidaan kasoa olevan samoilla markkinoilla ja näin ollen läheisiä subsiuueja eli korvikkeia, jos niiden hinojen suhde pysyy ajan kuluessa vakaana. Siglerin ja Sherwinin mukaan määrielmä on selvässä yheydessä yleisemmin käyeyyn subsiuuien määrielykeinoon kysynnän risijousoon, koska korkea risijouso kerova suheellisissa hinnoissa apahuvien muuosen aiheuavan suuria muuoksia suheellisissa osomäärissä (Sigler & Sherwin 985, 566). Myös Moshcandreasin mukaan markkina voidaan rajaa uoeiden korvaavuuden peruseella. Jos kuluaja piävä uoeia hyvin samanlaisina, uoeiden korvaavuus on hyvin suuri ja yriyksen mahdollisuus vaikuaa uoeen hinaan on hyvin rajoieu. Hinnan nousu saa ässä apauksessa kuluaja vaihamaan osokoheekseen korvaavan uoeen. Näin ollen läheise subsiuui ulisi luokiella kuuluviksi samoille markkinoille (Moscandreas 994, 3). Subsiuuisuheen voimakkuua on perineisesi miau kysynnän risijousolla. Kysynnän risijouso ilmoiaa kuinka voimak- Alfred Marshall on esiäny määrielmänsä kirjassa Principles of Economics (90). 5

9 kaasi hyödykkeen Y kysynä reagoi hyödykkeen X hinnan muuokseen. Maemaaisesi ämä kysynnän risijouso ( η ) voidaan ilmoiaa seuraavasi Y,P X () η Y, PX = ΔQ ΔP Y X / Q / P Y X = ΔQ ΔP Y X P Q X Y Määrielmän mukaan risijouso on siis uoeen Y kysyyn määrän prosenimuuos jaeuna uoeen X hinnan prosenimuuoksella oleaen, eä kuluajan ulo ja preferenssi pysyvä ennallaan. Jos uoeiden X ja Y risijouso on posiiivinen, ova kyseise uoee subsiuueja. Tällöin uoeen X hinnan nousu nosaa uoeen Y kysynää. Miä suurempia posiiivisia arvoja kysynnän risijouso saava, siä läheisimmisä subsiuueisa on kyse. Negaiivinen risijouson arvo on aas merkki siiä, eä uoee ova komplemeneja eli oisiaan äydenäviä uoeia. Tällöin uoeen X hinnan nousu alenaa uoeen Y kysynää. Jos kysynnän risijouso on nolla, uoeiden kysynnä ova oisensa hinnoisa riippumaomia (Dobson ym. 989, 47).. Markkinoiden inegroiuneisuus ja yhden hinnan laki Hinojen välise suhee ova ollee mielenkiinnon koheena lukuisissa ukimuksissa. Usea näisä ukimuksisa pohjauuva Siglerin arbiraasipohjaiseen määrielmään markkinoisa, jonka mukaan läheisen subsiuuien hinna käyäyyvä yhdenmukaisesi: oisin sanoen arbiraasi varmisaa, eä yhden hinnan laki oimii (Asche ym. 997, 40). Arbiraasilla arkoieaan ilannea, jossa hyödykeä voidaan osaa halvemmalla ja myydä riskiömäsi osohinaa kalliimmalla hinnalla. Hyvin oimivilla markkinoilla ällaise riskiömän voion mahdollisuude eliminoiuva nopeasi (Varian 999, 0). Jos yhden hinnan laki on voimassa, sanoaan markkinoiden olevan inegroiuneia ja markkinoia voidaan piää äysin kilpailullisina. Jos yhden hinnan laki ei ole voimassa, markkina ova segmenoiunee eiväkä näin ollen äysin kilpailullise. Tällaisessa ilaneessa eri markkinoilla oimiva osaja jouuva järjeselmällisesi maksamaan eri hinaa samasa uoeesa (Vaaja 00, 0 ). Yhälömuodossa yhden hinnan laki voidaan esiää seuraavasi () ln p = B + ln p jossa p ja p ova hyödykkeiden ja hinna. Jos B = 0, kyseise hinna ova yhä suuria, jolloin kyseessä vahva versio yhden hinnan laisa. Jos B 0, hinna ova suheellisessa yheydessä, mua niiden aso poikkeava oisisaan johuen esimerkiksi kuljeuskusannuksisa ai uoeiden laaueroisa. Tää apausa sanoaan yhden hinnan lain heikoksi versioksi (Asche ym. 999, 570). Aiemmin, kun ei olu ieoisia epäsaionaarisuuden aiheuamisa ongelmisa, yhden hinnan lakia oli apana esaa regressioyhälöllä (3) ln p = B + Aln p + ε 6

10 Jos nollahypoeesi A = on voimassa, voidaan yhälö (3) esiää samassa muodossa kuin yhälö (). Myöhemmin on havaiu, eä epäsaionaarisen hina-aikasarjojen apauksessa yhden hinnan lain esaaminen perineisellä regressiomeneelmä uoaa paramereille väärisyneiä arvoja (Asche ym. 999, 570). Siemmin ongelma on rakaisu yheisinegraaioanalyysilla, jolla voidaan analysoida luoeavasi epäsaionaarisia aikasarjoja. Jos kahden ai useamman epäsaionaarisen muuujan välillä on saionaarinen lineaarikombinaaio, ova ne yheisinegroiunee. Tällöin muuujien välillä on pikän aikavälin asapainosuhde, vaikka lyhyemmällä aikavälillä ne voiva väliaikaisesi poikea asapainosa (Maddala & Kim 998, 6). Markkinoiden analysoini yheisinegraaiomeneelmällä sisälää muiakin euja kuin epäsaionaarisuusongelman rakaisemisen. Perineisessä kysynäanalyysissa uoeiden välisiä riippuvuussuheia ukiaan laskemalla kysynnän risijousoja, jolloin arviaan sekä hina- eä määräaineiso. Yheisinegraaiomeneelmässä aineisovaaimukse ova pienemmä: hina-aikasarja riiävä eikä ieoja määrisä ai uloisa arvia. Näin ollen aineison hankkiminen helpouu ja analyysi voidaan suoriaa pienemmällä havainomäärällä, koska malli ova yksinkeraisempia. Kyseisen meneelmän huonona puolena aas on, eä sen avulla ei saada äsmällisä ieoa subsiuuisuheiden voimakkuuksisa (Asche ym. 00, 309). Asche ym. (997, 40 49) ova yhdenmukaisella aineisolla veraillee yheisinegraaioon pohjauuvaa analyysimeneelmää sekä perineisempää kysynämalliin pohjauuvaa meneelmää. Heidän ulosensa mukaan meneelmä anava samansuunaisia uloksia ja meneelmiä voidaan piää oisiaan äydenävinä..3 Yhden hinnan laki ja yhdiselmähyödyke-eoreema Asche ym. (999, 570) ova osoianee, eä deerminisisessä muodossaan yhden hinnan laki on hyvin läheisessä yheydessä yhdiselmähyödykeeoreemaan (Composie Commodiy Theorem, CCT), jonka luojina pideään Hicksiä ja Leoniefiä. CCT:n mukaan kaha ai useampaa uoea voidaan piää yhenä uoeena, jos niiden hinojen suhee pysyvä vakiona ajan kuluessa (Deaon & Muellbauer 980, 0 ). Perineisen CCT:n mukaan samaan ryhmään kuuluvien uoeiden hinasuhde pysyy äysin vakiona koko ajan. Lewbelin luoma yleisey CCT (generalized composie commodiy heory, GCCT) ei ole yhä ehdoon hinasuheen vakioisuudelle vaan sallii siinä vaihelua (Lewbel 996, 538). CTT voidaan havainnollisaa kahden hyödykkeen apauksena. CCT on voimassa jos näiden kahden hyödykkeen hina-aikasarja voidaan kuvaa yheisellä ekijällä θ : (4) p = θ p ja 0 p = θ p 0 Alaindeksi nolla viiaa saunnaisesi valiuun alkuajankohaan. Muuuja θ voi vaihdella ajan kuluessa mua se on yheinen molemmille hinnoille, jolloin hinojen suhde p / p pysyy vakiona eli samana kuin p 0 / p0. Näin ollen muuujaa θ voidaan ajaella hinana näiden kahden uoeen uudelle yhdiselmäuoeelle. Tämän yhdiselmähyödykkeen määrä ilmoieaan indeksilukuna, joka on yksiäisen uoeiden määrien summa painoeuna niiden hinnoilla. Näin ollen määrän indeksiluku voidaan esiää muodossa Q = p0q + p0 q. Kahden hyödykkeen apaus voidaan laajenaa suoraviivaisesi koskemaan useampaakin hyödykeä (Asche ym. 999, 570). 7

11 CCT:n mukaan hinojen suhde pysyy siis vakiona. Näin ollen hinojen välinen yheys voidaan ilmaisa myös muodossa (5) p = bp jossa b = p 0 / p0. Olennaisa on huomaa, eä yhälö (5) logarimimuodossa on sama kuin yhälö (). Näin ollen yhden hinnan laki ja CCT ova hyvin vahvasi sidoksissa oisiinsa, koska oisen näisä ollessa voimassa, oisenkin äyyy olla voimassa. Täen yheisinegraaioanalyysin avulla voidaan saada ieoa sekä markkinoiden inegraaiosa eä uoeiden aggregoinnisa. Tuoeiden aggregoinia voi hyödynää esimerkiksi kysynämalleissa uoeiden kysynää analysoiaessa (Asche ym. 999, 570). Tuoeiden aggregoini voi ulla kyseeseen esimerkiksi silloin, kun uoeen kansallise markkina ova inegroiunee osaksi kansainvälisiä markkinoia. Tällöin pelkäsään kansallisella aineisolla suorieava analyysi voi osoiauua riiämäömäksi (Nielsen 003). 8

12 3. Meodi 3. Aikasarjoisa ja niiden luoneesa Teoreeisesa näkökulmasa aikasarjalla arkoieaan ajassa järjesäyyneiden saunnaismuuujien sarjaa { y }. Tällaisa saunnaismuuujien joukkoa kusuaan myös sokasiseksi prosessiksi. Jos kyseessä on jakuva muuuja, merkiään siä avallisesi y (). Diskreeiä muuujaa on aas apana merkiä y (Maddala & Kim 998, 8). Tärkeä aikasarjoihin liiyvä ominaisuus on saionaarisuus. Saionaarisuuden kaksi eri yyppiä ova heikko ja vahva saionaarisuus. Heikkoa saionaarisuua kusuaan myös kovarianssisaionaarisuudeksi ai oisen aseen saionaarisuudeksi. Aikasarja on kovarianssisaionaarinen, jos sen odousarvo, varianssi ja kaikki auokovarianssi ova ajasa riippumaomia. Auokovarianssi riippuu ainoasaan aikaerosa s, ei ajankohdasa. Muodollisesi sokasisen prosessin on sanou olevan kovarianssisaionaarinen, jos kaikille ajankohdille ja -s, i. E y ) = E( ) = μ ( y s E ( y μ ) = E ( y s μ) = σ y ii. [ ] [ ] E ( y μ )( y μ) = E ( y μ)( y μ = γ iii. [ s ] [ j j s ] s ) jossa odousarvo (μ), varianssi ( σ y ) ja kaikki auokovarianssi ( γ s ) ova vakioia. Lisäksi odousarvo ja varianssi oleeaan äärellisiksi. Vahvan saionaarisuuden apauksessa odousarvon ja/ai varianssin ei arvise olla äärellisiä. Aikasarjojen mallinnuksessa heikko saionaarisuus on yleisin käyey saionaarisuuden muoo. Tämä johuu osaksi siiä eä normaalijakauman apauksessa heikosi saionaarinen prosessi äyää myös vahvan saionaarisuuden ehdo (Enders 995, 69). Jos arkaselava aikasarja ei äyä saionaarisuuden ehoja, on kyseessä epäsaionaarinen aikasarja. Epäsaionaarisen muuujan käyäminen perineisessä regressioanalyysissa anaa usein virheellisiä uloksia. Eräs epäsaionaarisuuden aiheuama haia on näennäisregressio (spurious regression). Tällöin regressioanalyysisa saaava ulokse saaava ilmaisa kahden muuujan välille ilasollisesi merkisevää suhdea, joa ei oikeasi ole (Harris 995, 4). Epäsaionaarise muuuja on mahdollisa saada saionaariseksi differoimalla ne kerran ai useammin. Differoinnissa muuujasa y vähenneään edellisen ajankohdan havaino y. Differoinimeneelyn ongelmana on kuienkin, eä samalla saaeaan meneää arkaselavaan aikasarjaan liiyvää informaaioa. Kun epäsaionaarinen aikasarja saadaan saionaariseksi differoimalla se kerran, sanoaan sen olevan inegroiunu aseella. Tällaisa aikasarjaa merkiään I (). Jos alkuperäinen aikasarja äyyy differoida kaksi keraa, joa siiä ulee saionaarinen, sanoaan sen olevan inegroiunu aseella, joa merkiään I (). Yleisesi ilmaisen, jos aikasarja äyyy differoida d keraa, se on inegroiunu aseella d eli I (d). Näin ollen aikasarja, joka on inegroiunu yhdellä ai useammalla aseella, on epäsaionaarinen. Jos d = 0, kyseessä on 9

13 saionaarinen prosessi I (0) (Gujarai 995, 78-79). Tukimuksen loppuosassa ermejä saionaarinen prosessi ja I(0) -prosessi käyeään oisensa synonyymeina. 3. Yksikköjuuriesi Ekonomerisessa mallinnuksessa saaaa ilmeä ongelmia, jos regressioanalyysi ehdään epäsaionaarisille muuujille. Tämän ongelman rakaisemiseksi äyyy ensin unnisaa kyseisen aikasarjojen inegroiuvuusase. Boxin ja Jenkinsin meneelyssä saionaarisuuden asea ukiaan visuaalisesi korrelogrammia arkaselemalla. Uudempi meneely saionaarisuuden esaamiseksi on yksikköjuuriesi. Se on muodollinen ilasoieeellinen esi ja vasine korrelogrammin visuaaliselle arkaselulle (Maddala & Kim 998, 47). 3.. Yksikköjuuriprosessi Ennen yksikköjuuriesien esielemisä käydään läpi yksikköjuuriprosessin käsie. Yksikköjuuriprosessia voidaan helpoien havainnollisaa ensimmäisen aseen auoregressiivisellä mallilla eli AR()-mallilla: (6) y ρ y + u = jossa virheermi u oleeaan olevan valkoisen kohinan prosessi. Valkoisen kohinan oleuksiin kuuluu, eä sen odousarvo ja varianssi ova vakioa, eikä auokorrelaaioa esiinny. Jos edellisen yhälön kerroin ρ =, kohaamme niin sanoun yksikköjuuriongelman. Tällöin sokasisella muuujalla y sanoaan olevan yksikköjuuri. Yksikköjuuren omaavaa aikasarjaa kusuaan myös saunnaiskulun (random walk) malliksi, joka on esimerkki epäsaionaarisesa aikasarjasa (Gujarai 995, 78). Saunnaiskulkumallin epäsaionaarisuus voidaan odisaa esimerkiksi sien, eä kirjoieaan yhälö (6) muodossa y = y + u (koska ρ = ). Muuujan y arvo hekellä koosuu siis muuujan arvosa hekellä sekä saunnaisesa shokisa u. Oleeaan eä haluaan ennusaa saunnaiskulun mallilla periodin + arvoa. Tällöin ^ (7) y = y + E( u+ = y + ) Vasaavasi periodin + ennuse on ^ + = ( (8) y E y u ) = ( y + u+ + u+ ) E = y Yhäläisesi, ennuseen arvo l:n periodin päähän on myös y. Vaikka ennuseen y + l arvo pysyy vakiona aikajakson l piuudesa riippumaa, ennusevirheen varianssi kasvaa l:n kasvaessa. Ensimmäisen periodin ennusevirhe voidaan esiää seuraavasi ^ 0

14 (9) e = y + y + ^ = y + u+ y = u+ jonka varianssi on E ( u = σ u + ). Toisen periodin ennusevirhe on (0) e = y + y + ^ = y + u+ + u+ y = u+ + u+ jonka varianssi on () E [ u u ) ] = E( u ) + E( u ) E( u u ) ( Koska virheermi u + ja u + ova riippumaomia oisisaan, kolmas ermi yhälössä () on nolla ja ennusevirheen varianssi on näin ollen σ u. Vasaavasi periodin l ennusevirheen varianssi on lσ u. Virheermin varianssi on siis riippuvainen ajasa eli saunnaiskulun malli on epäsaionaarinen prosessi (Pindyck ja Rubinfeld 998a, ). Saunnaiskulkumalli on siis esimerkki epäsaionaarisesa prosessisa. Voidaan kuienkin osoiaa, eä saunnaiskulkumallin ensimmäise differenssi eli eroukse muodosava saionaarisen prosessin. Sen odisamiseksi esieään yhälö (6) seuraavassa muodossa: () Δy = (ρ ) y + u = γ Y + u jossa γ = ( ρ ) ja Δ on niin sanou differenssioperaori eli Δy = y y ). ( Jos kyseessä on saunnaiskulun malli, niin ρ = eli γ = 0, jolloin yhälö () voidaan kirjoiaa (3) Δy = ( y y ) = u Yhälösä (3) huomaaan, eä saunnaiskulun prosessin ensimmäise differenssi u muodosava saionaarisen aikasarjan, koska u oleeaan äysin saunnaiseksi (Gujarai 995, ).

15 3.. Dickeyn ja Fullerin esi Yksikköjuuren esaamiseen on olemassa monia eri esejä. Yksi yleisimmisä eseisä on Dickeyn ja Fullerin esi (DF-esi). DF-esin nollahypoeesina on, eä aikasarja sisälää yksikköjuuren eli on epäsaionaarinen. Vasahypoeesina on siis, eä aikasarja on saionaarinen. Yksinkeraisimmassa muodossaan DF-esissä esimoidaan yhälöä: (4) y = ρ y + u joka voidaan esiää myös muodossa (5) Δy = (ρ ) y + u Jos merkiään ( ρ ) = γ, niin yhälö (5) voidaan esiää myös seuraavasi (6) Δy = γ y + u Kussakin yhälössä virheermin u oleeaan olevan riippumaomasi ja idenisesi jakauunu (independenly and idenically disribued, IID), jonka odousarvo ja varianssi ova vakioia. Kumpi ahansa yhälöisä (4) ai (5) on sovelleavissa esaamiseen nollahypoeesilla H 0 : ρ = ja vasahypoeesilla H : ρ <. Jälkimmäisen yhälön (6) euna on, eä sillä voidaan esaa nollahypoeesia H 0 : ( ρ ) = γ = 0, jonka vasahypoeesi on H : γ < 0. Sen käyäminen myös yksinkeraisaa esaamisa jos kyseessä on monimukaisempi AR(p)-prosessi (Harris 995, 8 9). Tavallisesi hypoeeseja esaaan normaalilla -esillä. Epäsaionaarisuuden apauksessa esiarvo eivä kuienkaan noudaa perineisä -esijakaumaa. Tämän vuoksi Dickey ja Fuller ova luonee Mone Carlo -simulaaioekniikalla kriiise DFesiarvo, joka oava huomioon yksikköjuuren olemassa olon (Harris 995, 9). Dickeyn ja Fullerin aulukoimia kriiisiä esiarvoja on myöhemmin arkenanu myöhemmin muun muassa MacKinnon (MacKinnon 99, 67-76). Useimmissa ekonomerisissa ohjelmissa nämä kriiise esiarvo arjoaan valmiina eikä niiä arvise erikseen arkisaa aulukoisa (Harris 995, 3). Tesaaessa yksikköjuura yhälöllä (6) on oleuksena, eä esaavan aikasarjan odousarvo on nolla eikä siihen kuulu deerminisisiä komponeneja. Malliin voidaan kuienkin lisää esimerkiksi vakio (7) ai vakio ja lineaarinen aikarendi (8). (7) Δy = α + γy + u (8) Δy = α + δ + γy + u Edellä esieyillä kolmella regressioyhälöllä on erona ainoasaan deerminisise elemeni α ja δ. Ensimmäinen yhälö (6) on puhdas saunnaiskulun malli, oisessa (7) on lisänä vakioermi ja kolmannessa (8) on mukana sekä vakioermi eä lineaarinen aikarendi. Kaikissa kolmessa yllämainiussa regressioyhälössä on mielenkiin-

16 non koheena parameri γ. Jos γ = 0, aikasarjalla on yksikköjuuri eli se on epäsaionaarinen. Meodologia on äsmälleen sama riippumaa miä yllä olevisa kolmesa yhälösä esimoidaan. Täyyy kuienkin oaa huomioon, eä DF-esien kriiise arvo ova riippuvaisia onko mukana vakioermi ja/ai aikarendi. Kuen useimmissa eseissä, kriiise DF-esiarvo pienevä ososkoon kasvaessa. Yksikköjuuren, vakion ja rendin kerroinen yheismerkisevyyä voidaan esaa F-esillä. Myös F-esin kriiise arvo noudaava DF-jakaumaa (Enders 995, 3). Tesaavan mallin ulisi sisälää sama deerminisise komponeni, joka oleeaan daan generoineen prosessinkin sisälävän. Jos mallisa puuuu siihen kuuluvia komponeneja, esien eho kärsii. Toisaala myös malliin kuulumaomien komponenien sisällyäminen saaaa väärisää uloksia. Deerminisisen komponenien valinnassa voi käyää hyväksi aikasarjan visuaalisa arkaselua ai eoreeisen ausaan pohjauuvaa harkinakykyä (Enders 995, 58). Sopivan mallin valinaan on kehiey myös erilaisia esiapoja. Esimerkiksi Perron (998) on kehiäny jaksoaisen esiavan, joka perusuu urhien paramerien eliminoinnille. Esimoini aloieaan yleisimmäsä mallisa (8). Jos nollahypoeesia ei voida hylää yleisimmällä mallilla, jakeaan esausa rajoieummalla mallilla. Tesaus lopeeaan, kun nollahypoeesi epäsaionaarisuudesa voidaan hylää (Harris 995, 3) Laajenneu Dickeyn ja Fullerin esi Tavallisessa DF-esissä oleeaan, eä esaava muuuja y on peräisin yksinkeraisesa AR()-prosessisa. Jos esaavan muuujan y ausalla onkin odellisuudessa monimukaisempi AR(p)-prosessi, on malli väärin spesifioiu. Tällöin mallin virheermi ova auokorreloiuneia eiväkä normaalin DF-jakauman kriiise arvo ole enää käypiä. Tavallisen DF-esin pohjala on kehiey laajenneu Dickeyn ja Fullerin esi (Augmened Dickey-Fuller-es, ADF-esi), jossa virheermin auokorrelaaio eliminoidaan lisäämällä malliin viiväseyjä differenssiermejä. ADF-esi voidaan johaa arkaselemalla p:nnen aseen auoregressiivisä prosessia, joa voidaan merkiä seuraavasi (9) y ψ y + ψ y ψ p y p + u = Sama yhälö voidaan esiää myös muodossa * * * * (0) Δ y = ψ y + ψ Δy + ψ Δy ψ p Δy p+ + u p = + * ψ i= y ψ Δy + u * i * jossa ψ = ( ψ + ψ ψ p ). Jos nollahypoeesi ψ * = 0 on voimassa, sisälää aikasarja y yksikköjuuren. Nollahypoeesia esaaan avallisen DF-esin apaan eli ADF-esisä laskeua -arvoa verraaan DF-esijakauman kriiisiin arvoihin (Harris Perron, P. (998) Trends and Random Walks in Macroeconomic Time Series: Furher Evidence from a New Approach, Journal of Economic Dynamics and Conrol,,

17 995, 33). Myös ADF-esissä malliin voidaan sisällyää deerminisiä komponeneja. Tällöin malli voidaan esiää seuraavasi p + μ + γ + () * * Δy = ψ y + ψ i Δy i= u Viiväseyjen differenssiermien lukumäärä määräyyy usein empiirisesi. Käyeävä viivepiuus ulisi olla riiävän suuri, joa virheermin auokorrelaaio saadaan poiseuksi. Toisaala viivepiuus ulisi valia sääseliääsi, koska liian suuri viivepiuus vähenää esin ehoa. Viivepiuuden valinnassa voidaan käyää esimerkiksi Akaiken informaaiokrieeriä (AIC) ai Schwarzin bayesilaisa informaaiokrieeriä (BIC). Hall 3 (994) on ehdoanu viivepiuuden valinaan kaha eri meneelmää: joko aloiaa suuresa viivepiuudesa ja vähenää viivepiuua järjeselmällisesi, kunnes viivepiuus on ilasollisesi merkiävä ai aloiaa pienesä viivepiuudesa ja siiryy järjeselmällisesi suurempiin viivepiuuksiin, kunnes viivepiuus ei enää ole ilasollisesi merkisevä (Maddala & Kim 998, 77-78). Ng ja Perron 4 (995) ova Mone Carlo-simulaaioihin perusuvissa eseissään veraillee eri viivepiuuden valinameneelmiä. Tukimuksensa peruseella he suosieleva käyämään Hallin meneelmää, jossa aloieaan suuresa viivepiuudesa siiryen pienempään (Maddala & Kim 998, 77). Aloieava viivepiuus on aina apauskohainen mua apuna viivepiuuden valinnassa voi käyää esimerkiksi Schwerin kehiämää kaavaa: / d () k = In{ c( T /00) } jossa k on valiava viivepiuus, T havainojen kokonaismäärä Schwer suosielee käyeäväksi vakioia c = ja d = 4 (Schwer 998, 5) Kausiaisuus yksikköjuuren esaamisessa Monissa aloueen liiyvissä aikasarjoissa ilmenee kausiaisa vaihelua. Empiriassa käyeävä aikasarja-aineiso voiva olla kausipuhdiseuja ai kausipuhdisamaomia. Useimmien suosiellaan käyeäväksi kausivaikuuksesa puhdisamaomia aikasarjoja, sillä kausipuhdisukseen käyeävä meneelmä saaava aiheuaa väärisymiä aineison ominaisuuksiin. Kausipuhdiseun aineison käyö saaaa eriyisesi aiheuaa nollahypoeesina olevan epäsaionaarisuuden hylkäämisen harvemmin kuin odellisuudessa piäisi (Harris 995, 4). Joidenkin muuujien kohdalla voimakas kausiainen vaihelu aiheuaa suurimman osan daan kokonaisvaihelusa, joen on ärkeää oaa ämä kausiainen vaihelu huomioon mallinamisessa. Kausiainen vaihelu voi olla peräisin saionaarisisa kausiaisisa prosesseisa. Tällöin mallinamisessa käyeään yleensä kausiaisia dummymuuujia, joka salliva jonkinaseisa vaihelua kausikäyäyymisessä. Kausiainen 3 Hall, A. (994) Tesing for a Uni Roo in Time Series wih Prees Daa-Based Model Selecion. Journal of Business and Economic Saisics,, Ng, S. Perron, P. (995) Uni Roo Tess in ARMA Models Wih Daa-Dependen Mehods for he Selecion of he Truncaion Lag. Journal of American Saisical Associaion, 90,

18 vaihelu saaaa olla myös epäsaionaarisa. Tällöin kausiainen käyäyyminen muuuu ja vaihelee jakuvasi ajan kuluessa. Tässä apauksessa mallinamisessa ei voida käyää kausiaisia dummy-muuujia, vaan kyseiselle aikasarjalle äyyy suoriaa kausiainen differoini saionaarisuuden saavuamiseksi. Kausiaiseen differoiniin urvauuminen hankaloiaa analysoinia huomaavasi, sillä esimerkiksi neljännesvuosiaisella aineisolla kausiaisella prosessilla on mahdollisa olla neljä eri yksikköjuura. Tämän havainnollisamiseksi arkasellaan kausiaisesi differoiavaa neljännesvuosiaisa daaa: Δ 4 4 = ( L ) y = y y 4 y. 4 Edellisessä yhälössä oleva ekijä ( L ) voidaan jakaa vielä ekijöihin seuraavasi: 4 3 ( L ) = ( L)( + L + L + L ) = ( L )( + L)( + L ) = ( L)( + L)( il)( + il) jossa kukin yksikköjuuri kohdisuu ieylle kausiaisuuden jaksolle (Harris 995, 4). Edellisissä yhälöissä merkinä L viiaa viiveoperaaoriin, joka määriellään seuraavasi: L y y i (Enders 995, 45). i Osbornen briannialaisella aineisolla ekemän ukimuksen mukaan ainoasaan viisi kappalea kolmesakymmenesä makroaloueen liiyväsä aikasarja-aineisosa vaai kausiaisen differoinnin saionaarisuuden saavuamiseksi. Toisin sanoen ainakaan makroaloudellisen aikasarjojen kohdalla ei kausiaisa yksikköjuura ilmene kovin usein (Osborn 993, 300) Rakennemuuos ja yksikköjuuren esaus Yksikköjuuriesauksessa on myös oeava huomioon mahdollise rakennemuuokse. Rakennemuuoksella arkoieaan muuujan pysyväluoneisa asomuuosa ai muuosa deerminisisen rendin suheen. Rakennemuuoksen huomioimaa jääminen heikenää yksikköjuuriesien luoeavuua, jolloin esien peruseella saaeaan pääyä virheellisesi yksikköjuuren hyväksymiseen, vaikka odellisuudessa kyseessä olisikin saionaarinen prosessi (Harris 995, 40). Rakennemuuoksen aiheuaman ongelman rakaisemiseksi on ehdoeu monenlaisia rakaisuja riippuen osin siiä, onko rakennemuuoksen ajankoha eukäeen arkkaan selvillä vai ei. Jos ajankoha on eukäeen selvillä, voidaan ongelma rakaisa esimerkiksi sisällyämällä dummy-muuujia ADF-esiin (Harris 995, 40). Toinen yksinkerainen meneelmä yksikköjuuriesaukseen on jakaa aineiso kaheen eri osaan ja suoriaa yksikköjuuren esaus normaalisi kummallekin osiolle. Tämän meneelmän ongelmana on käyeävien vapausaseiden väheneminen (Enders 995, 45). Yleisemmälläkin asolla empiirisen aineison pienuus luonnollisesi heikenää yksikköjuuriesien luoeavuua (Harris 995, 39). Aina rakennemuuoksen ajankoha ei kuienkaan ole iedossa eukäeen. Tällaisen apausen varalle on olemassa laaja joukko erilaisia esejä, joisa mone pohjauuva rekursiiviseen ai jaksoiaiseen lähesymisapaan. Rekursiivisissa eseissä esiarvo laskeaan alaooksille (subsample) =,..., m, jossa m = m0,..., T. Jälkimmäisessä yhälössä m 0 on aloiusarvo ja T koko ajanjakson ooskoko. Alaooksen kokoa siis kasvaeaan yksi havaino kerrallaan, kunnes koko oos on käyössä. Jaksoiaisessa lähesymisavassa käyeään koko oosa, mua mahdollisa rakennemuuoksen ajan- 5

19 kohaa yrieään esiä siirämällä dummy-muuujien alkamisajankohaa (Maddala & Kim 998, 40). Rakennemuuoksen ajankohdan esiminen rekursiivisella ai jaksoaisella avalla on usein melko yöläsä. Useimmien rakennemuuoksen aiheuajasa on olemassa jonkinlaisa ennakkoieoa. Rakennemuuoksen ausalla voi olla esimerkiksi merkiävä poliiinen pääös ai muu huomaava apahuma. Tällainen ennakkoieo rakennemuuoksen ajankohdasa kannaaa hyödynää, sillä ällöin rakennemuuoksen esimiseen ei arvise käyää koko ajanjaksoa (Maddala & Kim 998, 398). 3.3 Yheisinegraaio ja sen esaaminen 3.3. Yheisinegraaio Kahden ai useamman epäsaionaarisen muuujan lineaarikombinaaio ova usein epäsaionaarisia. Jos kuienkin epäsaionaarisen muuujien välillä on löydeävissä saionaarinen lineaarikombinaaio, sanoaan muuujien olevan yheisinegroiuneia. Ajaellaan kaha muuujaa y ja x, joka molemma ova I (d). Yleensä mikä ahansa näiden kahden muuujan lineaarise yhdiselmä ova myös I (d). Jos on kuienkin olemassa sellainen vekori β, eä regression virheermi ( u = y βx ) on inegroiunu alempaa asea, I( d b), jossa b > 0, sanoaan y :n ja x :n olevan yheisinegroiuneia. Tää merkiään CI ( d, b). Jos esimerkiksi y ja x ova molemma I () ja u ~ I(0), ova nämä kaksi muuujaa yheisinegroiunee aseella CI (, ) (Engle & Granger 987, 53-54). Käyännössä ämä arkoiaa, eä x ja y eivä ajan kuluessa ajaudu kovin kauaksi oisisaan. Näin ollen niiden välillä vallisee pikän aikavälin asapainosuhde. Jos x ja y eivä ole yheisinegroiuneia eli y β x = u on I (), niin ne käyäyyvä ajan kuluessa oisisaan riippumaomasi. Tällöin muuujien x ja y regressio uoaa virheellisiä uloksia. Edellä on käsiely ainoasaan kahden muuujan apausa. Yheisinegraaioa voi kuienkin ilmeä myös useamman kuin kahden muuujan kesken (Maddala & Kim 998, 6). Yheisinegraaion voidaan ulkia siis olevan muuujien välinen pikän aikavälin asapainosuhde. Lyhyellä aikavälillä muuuja voiva väliaikaisesi poikea äsä asapainosa. Virheermi u voidaan ulkia poikkeamaksi asapainoilasa hekellä. Yheisinegraaioa lähellä oleva käsie on virheenkorjausmekanismi (error correcion mechanism, ECM). Sen avulla voidaan arkasella yheisinegroiuneiden muuujien lyhyen aikavälin dynamiikkaa (Harris 995, - 4). On olemassa erilaisia näkemyksiä siiä, piäisikö yheisinegraaioesi suoriaa pareiain vai monimuuujamallina useamman muuujan kesken. Joidenkin näkemysen mukaan (esim. Asche ym. 999, 57) esi voidaan ehdä pareiain. Tämän näkökulman mukaan muuujien äyyy yheisinegroiua myös pareiain jos ne yheisinegroiuva ollessaan osana monimuuujamallia. Toisen näkökulman mukaan (esim. Maddala & Kim 998, 34) pareiaisia esejä ei piäisi ehdä jos muuujia on useampia, sillä pois jäey muuuja saaava väärisää yheisinegraaioesin uloksia. Yheisinegraaion esaamiseen on kaksi keskeisä meneelmää. Englen ja Grangerin meodologiassa selvieään ovako residuaali saionaarisia. Johansenin meneelmä sovelaa suurimman uskoavuuden (maximum likelihood) meneelmää vekoriauoregressiiviseen (VAR) malliin. 6

20 3.3. Englen ja Grangerin meneelmä Engle ja Granger ova esiänee suoraviivaisen meneelyavan, jolla voidaan ukia ovako kaksi I() muuujaa yheisinegroiunee. Määrielmän mukaan yheisinegroiuvuus edellyää, eä muuujien inegroiuneisuuden aseiden piää olla sama. Näin ollen ensimmäisessä vaiheessa äyyy ukia muuujien inegroiuneisuuden asea. Tämä voidaan suoriaa esimerkiksi edellä kuvaulla ADF-esillä. Mikäli muuuja ova saionaarisia, on arpeeona edelä pidemmälle, koska näihin sarjoihin voidaan sovelaa perineisiä aikasarjameneelmiä. Jos aas aikasarjojen inegraaioasee ova erisuure, voidaan pääellä, eä aikasarja eivä ole yheisinegroiunee (Enders 995, ). Jos edellisen peruseella päädyään siihen, eä sekä y ~ I() ja z ~ I(), niin seuraavaksi esimoidaan pikän aikavälin asapainorelaaio (3) y = β 0 + βz + e Jos sarja ova yheisinegroiunee, niin pienimmän neliösumman esimoini (PNS) uoaa superarkenuvan esimaain yheisinegroiuvuusparamereille β 0 ja β. Superarkenuvuus arkoiaa, eä β 0 :n ja β :n esimaai konvergoiuva nopeammin kuin saionaarisen muuujien PNS-esimoinnissa. Merkiään edellisen regression residuaalisarjaa {ê}:llä. Jos nämä poikkeama pikän aikavälin asapainosa ova saionaarisia, niin y ja z ova yheisinegroiuneia asea (,). Saionaarisuuden esaamiseen voi jälleen käyää DF- ai ADF-esiä. Residuaalisarjan saionaarisuuden esaamiseen ei voida kuienkaan käyää normaalia DF-esijakaumaa, koska odellisa virheä e ei unnea vaan ainoasaan sen esimaai ê (Enders 995, ). Tesaamiseen voidaan käyää esimerkiksi MacKinnonin (99) luomia kriiisiä arvoja (Harris 995, 54). Jos muuuja ova yheisinegroiunee, niin regression residuaaleja voidaan käyää virheenkorjausmallin esimoinnissa. Jos y ja z ova CI(,), niin muuujilla on virheenkorjausesiys: ^ α ( i) Δz i + i= i= (4) Δy = α + α y ( y β z ) + α( i) Δy i + ε y ^ α ( i) Δz i + i= i= (5) Δz = α + α z ( y β z ) + α ( i) Δy i + ε z joissa β on normalisoidun yheisinegroiuvuusvekorin parameri, ε y ja ε z ova valkoisen kohinan virheermejä (joka voiva olla keskenään korreloiuneia) ja α, α, α y, α z, α ( i ), α ( i), α ( i) ja α ( i) ova paramereja (Enders 995, ). Lopuksi Englen ja Grangerin meneelmässä ulee arvioida mallin riiävyys. Mallin riiävyyden arvioiniin on useia vaihoehoisia meneelyapoja. Ensinnäkin on ukiava arkasi, ovako virheenkorjausmallin residuaali valkoisa kohinaa. Mikäli residuaali ova auokorreloiuneia, viivepiuude voiva olla liian lyhye. Toisekseen sopeuusparamereilla α y ja α z on eriyisä mielenkiinoa, koska niillä on mallin dynamiikkaan liiyviä ärkeiä implikaaioia. Jos esimerkiksi α z on nolla, z :n dynamiikka ei sopeudu lainkaan poikkeamaan pikän aikavälin asapainosa hekellä 7

21 ( ). Joa muuuja olisiva yheisinegroiuneia, α y :n ja/ai α z :n ulisi olla nollasa poikkeava (Enders 995, ). Englen ja Grangerin meneelmä on helposi sovelleavissa mua se sisälää kuienkin muuamia huomaavia rajoiuksia. Pikän aikavälin asapainorelaaion esimoinnissa edellyeään, eä yksi muuujisa valiaan yhälön vasemmalle puolelle selieäväksi ja muu muuuja ova yhälön oikealla puolella seliäjinä. Käyännössä ämä johaa usein ilaneeseen, jossa yhden muuujan ollessa vasemmalla puolella yheisinegroiuneisuus odeaan, mua muuujien järjesysä muueaessa yheisinegroiuvuus hyläään. Tällainen ominaisuus ei luonnollisesi ole oivoavaa. Toinen meneelmän rajoius perusuu siihen, eä esimoinnissa urvauduaan kaksivaiheiseen meneelmään. Ensimmäisessä vaiheessa generoidaan virhesarja { e } ja oisessa vaiheessa ää sarjaa käyeään esimoiaessa virhesarjan differenssien mallia Δ ê = a ê - +. Täen kaikki ensimmäisessä vaiheessa ehdy virhee periyyvä myös oiseen vaiheeseen (Enders 995, 385) Johansenin meneelmä Johansen (988) 5 on kehiäny meneelmän, joka pysyy välämään edellä mainiu Englen ja Grangerin meneelmän heikkoude. Johansenin meneelmä sovelaa suurimman uskoavuuden (maximum likelihood) meneelmää vekoriauoregressiiviseen (VAR) malliin. Sen avulla voidaan eliminoida kaksivaiheinen meneely sekä useampia yheisinegraaiovekoreia voidaan esimoida ja esaa yhä aikaa. Lisäksi voidaan esaa myös yheisinegraaiovekoreille aseeuja rajoiuksia sekä sopeuumisparamereja (Enders 995, 385). Johansenin meneelmään uusumiseksi määriellään aluksi vekori z, joka koosuu n kappaleesa endogeenisia muuujia. Tällöin z voidaan mallinaa rajoiamaomaksi VAR-malliksi, joka koosuu z :n viiväseyisä arvoisa viivepiuueen k saakka (Harris 995, 77). Yheisinegraaioesien yheydessä viivepiuuden valinnasa ei ole käyy yhä vilkasa keskuselua kuin ADF-esien osala. Viivepiuuden valinnassa voidaan kuienkin noudaaa samoja käyänöjä kuin ADF-esien yheydessä (Maddala & Kim 998, 64). Johansenin meneelmän ausalla valliseva VAR-malli voidaan esiää yhälömuodossa seuraavasi: (6) z = A z Ak z k + u jossa z on endogeenisisa muuujisa koosuva (n x )-mariisi, kukin A i on paramereisa koosuva (n x n)-mariisi, ja k on viivepiuus. Tämän yyppisä VAR-mallia on yypillisesi käyey esimoimaan yheisesi endogeenisen (joinly endogenous) muuujien dynaamisia riippuvuuksia ilman ennala aseeuja rajoiuksia. Näillä rajoiuksia arkoieaan esimerkiksi ieyjä rakeneellisia riippuvuussuheia ja/ai ieyjen joidenkin muuujien eksogeenisuua (Harris 995, 77). Malliin voidaan sisällyää myös deerminisisiä komponeneja, kuen vakiomuuujia ja kausimuuujia (Johansen 995, ). Kun malliin (6) lisäään vakioermi ( A 0 ) ja dummy-muuuja D ), voidaan yhälöä ilmaisa seuraavasi ( 5 Johansen, S. (988) Saisical Analysis of Coinegraion Vecors. Journal of Economic Dynamics and Conrol,,

22 (7) z = A + A z Ak z k + ΨD + u 0 Muunamalla yhälöä (7) saadaan se vekorivirheenkorjausmuooon (vecor errorcorrecion model, VECM): (8) Δz = Γ Δz Γk Δz k + + Πz k + u jossa Γ i = ( Ι A... Ai ), ( i =,..., k ), ja Π = ( Ι A... Ak ). Määrielemällä malli edellä esieyssä VECM-muodossa saadaan Γ i :n ja Π :n esimaaien avulla ieoa sekä lyhyen eä pikän aikavälin sopeuumisesa suheessa z :ssa apahuviin muuoksiin. Yhälössä (8) esiinyvä parameri Π voidaan esiää myös muodossa Π = αβ (Harris 995, 77). Sekä α eä β ova (n x r)-uloeisia mariiseja, joissa r on mariisin Π ase. Mariisi α koosuu niisä painouksisa, joilla kukin yheisinegroiuvuusvekori vaikuaa VAR-mallin yhälöihin. Näin ollen α :n voidaan kasoa olevan sopeuumisnopeuden paramereisa koosuva mariisi (Enders 995, 394). Mariisi β koosuu pikän aikavälin keroimisa sien, eä yhälössä (8) esiinyvä ermi β z k edusaa eninään ( n ) yheisinegraaiosuhdea monimuuujamallissa, joka varmisaa eä z konvergoiuu kohi pikän aikavälin asapainoilaa (Harris 995, 79). Oleeaan vekorin z koosuu epäsaionaarisisa I() -muuujisa. Tällöin yhälön (8) ermi, joka sisälävä ekijän Δ z k, ova saionaarisia I(0) -muuujia. Lisäksi ermin Π z k äyyy olla saionaarinen, joa virheermi u ~ I(0) olisi valkoisen kohinan prosessi. On olemassa kolme eri apausa, jolloin vaaimus ermin Π z k saionaarisuudesa oeuuu. Ensimmäinen mahdollisuus on, eä vekorin z kaikki muuuja ovakin saionaarisia. Tässä yheydessä ää apausa ei voi piää eriyisen kiinnosavana, sillä ällöin näennäisregression ongelmaa ei esiinny ja mallinamiseen voidaan käyää perineisä VAR-mallia asomuuujilla. Toinen mahdollinen apaus on, eä yheisinegraaioa ei ilmene ollenkaan. Tällöin ei ole olemassa z :n lineaarikombinaaioia, joka ova I (0). Täsä johuen Π on ällöin (n x n)-uloeinen nollamariisi. Tässä apauksessa mallinaminen voidaan suoriaa käyämällä muuujien ensimmäisiä differenssejä VAR-malliin, jolloin malli ei sisällä pikän aikavälin elemenejä. Kolmas mahdollinen apaus, jolloin Π z k ~ I(0), esiinyy kun β z k ~ 0. Tässä apauksessa β :ssa on r ( n ) yheisinegroiuneisuusvekoria (eli r lineaarisesi riippumaona sarakea) ja ( n r) epäsaionaarisa vekoria. Ainoasaan β :n yheisinegroiuvuusvekori ova merkiseviä, sillä muuoin Π z k ei olisi I(0), Käyännössä ämä merkisee, eä lopu ( n r) α :n sarakkeisa on merkiykseömän pieniä eli käyännössä nollia. Mariisin β sisälämien yheisinegroiuvuusvekorien lukumäärän selviäminen on siis ekvivaleni mariisin α nollasarakkeiden esaamiselle. Täsä johuen yheisinegraaion esaaminen perusuu mariisin Π :n aseen arkaselulle (Harris 995, 79). Tiivisäen, jos mariisilla Π on äysi aseluku (full rank) eli r = n lineaarisesi riippumaona sarakea, niin vekorin z kaikki muuuja ova I (0). Jos aas Π :n aseluku on nolla, yheisinegraaiosuheia ei ole. Useasi Π :lla voi olla alenneu aseluku (reduced rank), jolloin on olemassa r ( n ) yheisinegraaiovekoria (Harris 995, 79). Johansenin meneelmässä yheisinegraaiovekoreiden lukumäärän esaamiseksi on kehiey kaksi erilaisa ilasollisa esiä, joka perusuva suurimman uskoavuuden (maximum likelihood) lähesymisapaan. Trace-esissä hypoeesina on, eä yheisinegroiuvuusvekoreia on eninään r kappalea. Trace-esisuure saadaan yhälösä: 9

23 (9) λ race ( r ) = T ln( λ i n i= r+ ^ ) Toinen esi on nimelään suurimman ominaisarvon (maximum eigenvalue) esi. Sen nollahypoeesina on, eä on olemassa r yheisinegroiuvuusvekoria. Vasahypoeesina on, eä yheisinegroiuvuusvekoreia löyyy r + kappalea. Suurimman ominaisarvon esisuure saadaan laskeua yhälösä: (30) λ ( r, r + ) = T ln( λ r ) max + ^ Kummassakin yhälössä T viiaa havainojen lukumäärään ja λ i (eigenvalue) on esimoiu ominaisarvo, joka on saau esimoidusa Π -mariisisa (Enders 995, 39) Johansen ja Juselius (990) 6 ova simuloinikokeillaan luonee kriiise arvo molemmille eseille. He ova ullee ulokseen, eä λ max -esi on parempi (Maddala & Kim, ). Johansenin meneelmä on nykyisin käyeyimpiä meneelmiä yheisinegraaioanalyysissä. Tässäkin meneelmässä on kuienkin puueia. Suurimpina ongelmina ova esien herkkyys viivepiuuden suheen sekä esiulosen väärisymä pienillä aineisoilla (Maddala & Kim 998, 0). Tämän lisäksi Gonzalon ja Leen mukaan Johansenin meneelmällä on aipumus löyää virheellisiä yheisinegraaiosuheia (spurious coinegraion) jos esaava muuuja ova frakionaalisesi inegroiunee eli ne ova I (d), jossa d ei ole kokonaisluku. Tällöin muuuja eivä ole äysin puhaia I() -muuujia, ja niiä on vaikea eroaa oikeisa I() -muuujisa perineisillä yksikköjuurieseillä (Gonzalo & Lee 000, 8-87). ^ Rajoiusen esaaminen Johansenin meneelmän eräänä euna on, eä sillä voidaan esaa paramereille α ja β aseeuja rajoiuksia. Paramerien rajoiuksilla on esau monenlaisia hypoeeseja, mua nyemmin on keskiey esaamaan pikän aikavälin heikkoa eksogeenisuua (Doornik & Hendry 000, 7). Muuujan sanoaan olevan heikosi eksogeeninen jos se vaikuaa muiden syseemissä olevien muuujien kehiykseen mua muu muuuja eivä vaikua siihen (Hendry & Juselius 00, ). Mariisi α sisälää ieoa sopeuumiskeroimisa, joen heikon eksogeenisuuden esaus perusuukin mariisin α esaamiseen. Jos ukiava muuuja koosuva hinaaikasarjoisa, ja haluaan ukia onko hina i heikosi eksogeeninen, äyyy esaa rajoiusa, jolla kaikki mariisin α vasaavaan sarakkeen parameri ova nollia. Esimerkiksi neljän yheisinegraaiovekorin apauksessa heikon eksogeenisuuden nollahypoeesi on H 0 : α i = α i = α i3 = α i4 = 0, kaikille i. Tesiarvoja verraaan χ -jakauman kriiisiin arvoihin. Jos nollahypoeesia ei voida hylää jollekin muuujalle i, niin kyseinen muuuja on heikosi eksogeeninen. Tällöin pikällä aikavälillä kyseinen muu- 6 Johansen, S. Juselius, K. (990) Maximum Likelihood Esimaion and Inference on Coinegraion wih Applicaion o he Demand for Money. Oxford Bullein of Economics and Saisics, 5,

Rahoitusriskit ja johdannaiset Matti Estola. luento 12 Stokastisista prosesseista

Rahoitusriskit ja johdannaiset Matti Estola. luento 12 Stokastisista prosesseista Rahoiusriski ja johdannaise Mai Esola lueno Sokasisisa prosesseisa . Markov ominaisuus Markov -prosessi on sokasinen prosessi, missä ainoasaan muuujan viimeinen havaino on relevani muuujan seuraavaa arvoa

Lisätiedot

Tuotannon suhdannekuvaajan menetelmäkuvaus

Tuotannon suhdannekuvaajan menetelmäkuvaus 1(15) Tuoannon suhdannekuvaajan meneelmäkuvaus Luku 1 Luku 2 Luku 3 Luku 4 Tuoannon suhdannekuvaajan yleiskuvaus Tuoannon suhdannekuvaajan julkaisuaikaaulu, revisoinikäyännö ja jakelu Tuoannon suhdannekuvaajan

Lisätiedot

RIL 256-2010 Suomen Rakennusinsinöörien Liitto RIL ry

RIL 256-2010 Suomen Rakennusinsinöörien Liitto RIL ry Suomen Rakennusinsinöörien Liio RIL ry Julkisen hankinojen kehiämismalli Tuoavuuden paranaminen TUKEFIN-meneelmällä 2 RIL 256-2010 RILin julkaisuilla on oma koisivu, joka löyyy osoieesa www.ril.fi Kirjakauppa

Lisätiedot

Työ 2: 1) Sähkönkulutuksen ennustaminen SARIMAX-mallin avulla 2) Sähkön hankinnan optimointi

Työ 2: 1) Sähkönkulutuksen ennustaminen SARIMAX-mallin avulla 2) Sähkön hankinnan optimointi Ma-2.3132 Syseemianalyysilaboraorio I Työ 2: 1) Sähkönkuluuksen ennusaminen SARIMAX-mallin avulla 2) Sähkön hankinnan opimoini 1 yö 2 Aikasarjamalli erään yriyksen sähkönkuluukselle SARIMAX-malli: kausivaihelu,

Lisätiedot

KOMISSION KERTOMUS. Suomi. Perussopimuksen 126 artiklan 3 kohdan nojalla laadittu kertomus

KOMISSION KERTOMUS. Suomi. Perussopimuksen 126 artiklan 3 kohdan nojalla laadittu kertomus EUROOPAN KOMISSIO Bryssel 27.2.205 COM(205) 4 final KOMISSION KERTOMUS Suomi Perussopimuksen 26 ariklan 3 kohdan nojalla laadiu keromus FI FI KOMISSION KERTOMUS Suomi Perussopimuksen 26 ariklan 3 kohdan

Lisätiedot

1 Excel-sovelluksen ohje

1 Excel-sovelluksen ohje 1 (11) 1 Excel-sovelluksen ohje Seuraavassa kuvaaan jakeluverkonhalijan kohuullisen konrolloiavien operaiivisen kusannusen (SKOPEX 1 ) arvioimiseen arkoieun Excel-sovelluksen oimina, mukaan lukien sovelluksen

Lisätiedot

Rakennusosien rakennusfysikaalinen toiminta Ralf Lindberg Professori, Tampereen teknillinen yliopisto ralf.lindberg@tut.fi

Rakennusosien rakennusfysikaalinen toiminta Ralf Lindberg Professori, Tampereen teknillinen yliopisto ralf.lindberg@tut.fi Rakennusosien rakennusfysikaalinen oimina Ralf Lindber Professori, Tampereen eknillinen yliopiso ralf.lindber@u.fi Rakenneosien rakennusfysikaalisen oiminnan ymmärämiseksi on välämäönä piirää kolme eri

Lisätiedot

Tietoliikennesignaalit

Tietoliikennesignaalit ieoliikennesignaali 1 ieoliikenne inormaaion siiroa sähköisiä signaaleja käyäen. Signaali vaiheleva jännie ms., jonka vaiheluun on sisällyey inormaaioa. Signaalin ominaisuuksia voi ukia a aikaasossa ime

Lisätiedot

Kokonaishedelmällisyyden sekä hedelmällisyyden keski-iän vaihtelu Suomessa vuosina 1776 2005

Kokonaishedelmällisyyden sekä hedelmällisyyden keski-iän vaihtelu Suomessa vuosina 1776 2005 Kokonaishedelmällisyyden sekä hedelmällisyyden keski-iän vaihelu Suomessa vuosina 1776 2005 Heli Elina Haapalainen (157 095) 26.11.2007 Joensuun Yliopiso Maemaais- luonnonieeiden iedekuna Tieojenkäsielyieeen

Lisätiedot

2. Taloudessa käytettyjä yksinkertaisia ennustemalleja. ja tarkasteltavaa muuttujan arvoa hetkellä t kirjaimella y t

2. Taloudessa käytettyjä yksinkertaisia ennustemalleja. ja tarkasteltavaa muuttujan arvoa hetkellä t kirjaimella y t Tilasollinen ennusaminen Seppo Pynnönen Tilasoieeen professori, Meneelmäieeiden laios, Vaasan yliopiso. Tausaa Tulevaisuuden ennusaminen on ehkä yksi luoneenomaisimpia piireiä ihmiselle. On ilmeisesi aina

Lisätiedot

Lyhyiden ja pitkien korkojen tilastollinen vaihtelu

Lyhyiden ja pitkien korkojen tilastollinen vaihtelu Lyhyiden ja pikien korkojen ilasollinen vaihelu Tomi Pekka Juhani Marikainen Joensuun Yliopiso Maemaais-luonnonieeellinen iedekuna / Tieojenkäsielyieeen ja ilasoieeen laios / Tilasoiede Pro Gradu -ukielma

Lisätiedot

Finanssipolitiikan tehokkuudesta Yleisen tasapainon tarkasteluja Aino-mallilla

Finanssipolitiikan tehokkuudesta Yleisen tasapainon tarkasteluja Aino-mallilla BoF Online 3 29 Finanssipoliiikan ehokkuudesa Yleisen asapainon arkaseluja Aino-mallilla Juha Kilponen Tässä julkaisussa esiey mielipiee ova kirjoiajan omia eiväkä välämää edusa Suomen Pankin kanaa. Suomen

Lisätiedot

Vuoden 2004 alkoholiverotuksen muutoksen kulutusvaikutuksen ennustaminen. Linden, Mikael. ISBN 952-458-441-7 ISSN 1458-686X no 13

Vuoden 2004 alkoholiverotuksen muutoksen kulutusvaikutuksen ennustaminen. Linden, Mikael. ISBN 952-458-441-7 ISSN 1458-686X no 13 Vuoden 004 alkoholiverouksen muuoksen kuluusvaikuuksen ennusaminen Linden, Mikael ISBN 95-458-441-7 ISSN 1458-686X no 13 VUODEN 004 ALKOHOLIVEROTUKSEN MUUTOKSEN KULUTUSVAIKUTUKSEN ENNUSTAMINEN Mika Linden

Lisätiedot

6.4 Variaatiolaskennan oletusten rajoitukset. 6.5 Eulerin yhtälön ratkaisuiden erikoistapauksia

6.4 Variaatiolaskennan oletusten rajoitukset. 6.5 Eulerin yhtälön ratkaisuiden erikoistapauksia 6.4 Variaaiolaskennan oleusen rajoiukse Sivu ss. 27 31 läheien Kirk, ss. 13 143] ja KS, Ch. 5] pohjala Lähökoha oli: jos J:llä on eksremaali (), niin J:n variaaio δj( (), δ()) ():ä pikin on nolla. 1. Välämäön

Lisätiedot

MÄNTTÄ-VILPPULAN KAUPUNKI. Mustalahden asemakaava Liikenneselvitys. Työ: E23641. Tampere 18.5.2010

MÄNTTÄ-VILPPULAN KAUPUNKI. Mustalahden asemakaava Liikenneselvitys. Työ: E23641. Tampere 18.5.2010 MÄNÄ-VLPPULAN KAUPUNK Musalahden asemakaava Liikenneselviys yö: E ampere 8..00 ARX Ympärisö Oy PL 0 ampere Puhelin 00 000 elefax 00 00 www.airix.fi oimiso: urku, ampere, Espoo ja Oulu Mänä-Vilppulan kaupunki,

Lisätiedot

Euroopan kehittyvien osakemarkkinoiden yhteisintegraatio

Euroopan kehittyvien osakemarkkinoiden yhteisintegraatio LAPPEENRANNAN TEKNILLINEN YLIOPISTO KAUPPATIETEIDEN OSASTO Laskenaoimen ja rahoiuksen laios Rahoius Euroopan kehiyvien osakemarkkinoiden yheisinegraaio ja kausalieei Aarne Björklund Rahoius 4 0239210 Sisällyslueelo

Lisätiedot

Dynaaminen optimointi ja ehdollisten vaateiden menetelmä

Dynaaminen optimointi ja ehdollisten vaateiden menetelmä Dynaaminen opimoini ja ehdollisen vaaeiden meneelmä Meneelmien keskinäinen yheys S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 1 Meneelmien yhäläisyyksiä

Lisätiedot

Luento 9. Epälineaarisuus

Luento 9. Epälineaarisuus Lueno 9 Epälineaarisuus 9..7 Epälineaarisuus Tarkasellaan passiivisa epälineaarisa komponenia u() y() f( ) Taylor-sarjakehielmä 3 y f( x) + f '( x) ( x x) + f ''( x) ( x x) + f ''( x) ( x x) +...! 3! 4!

Lisätiedot

VATT-KESKUSTELUALOITTEITA VATT DISCUSSION PAPERS. JULKISEN TALOUDEN PITKÄN AIKAVÄLIN LASKENTAMALLIT Katsaus kirjallisuuteen

VATT-KESKUSTELUALOITTEITA VATT DISCUSSION PAPERS. JULKISEN TALOUDEN PITKÄN AIKAVÄLIN LASKENTAMALLIT Katsaus kirjallisuuteen VATT-KESKUSTELUALOITTEITA VATT DISCUSSION PAPERS 445 JULKISEN TALOUDEN PITKÄN AIKAVÄLIN LASKENTAMALLIT Kasaus kirjallisuueen Juho Kosiainen Valion aloudellinen ukimuskeskus Governmen Insiue for Economic

Lisätiedot

VAASAN YLIOPISTO KAUPPATIETEELLINEN TIEDEKUNTA LASKENTATOIMI JA RAHOITUS

VAASAN YLIOPISTO KAUPPATIETEELLINEN TIEDEKUNTA LASKENTATOIMI JA RAHOITUS VAASAN YLIOPISTO KAUPPATIETEELLINEN TIEDEKUNTA LASKENTATOIMI JA RAHOITUS Markus Ylijoki HEDGE-RAHASTOJEN SUORITUSKYKY BRIC-MAISSA Laskenaoimi ja rahoius Laskenaoimen ja rahoiuksen yleinen linja Pro gradu

Lisätiedot

Öljyn hinnan ja Yhdysvaltojen dollarin riippuvuussuhde

Öljyn hinnan ja Yhdysvaltojen dollarin riippuvuussuhde Öljyn hinnan ja Yhdysvalojen dollarin riippuvuussuhde Kansanalousiede Pro gradu -ukielma Talousieeiden laios Tampereen yliopiso Toukokuu 2010 Jari Hännikäinen TIIVISTLMÄ Tampereen yliopiso Talousieeiden

Lisätiedot

Painevalukappaleen valettavuus

Painevalukappaleen valettavuus Painevalukappaleen valeavuus Miskolc Universiy Sefan Fredriksson Swecas AB Muokau ja lisäy käännös: Tuula Höök, Pekka Savolainen Tampereen eknillinen yliopiso Painevalukappale äyyy suunniella sien, eä

Lisätiedot

PK-YRITYKSEN ARVONMÄÄRITYS. KTT, DI TOIVO KOSKI elearning Community Ltd

PK-YRITYKSEN ARVONMÄÄRITYS. KTT, DI TOIVO KOSKI elearning Community Ltd PK-YRITYKSEN ARVONMÄÄRITYS KTT, DI TOIVO KOSKI elearning Communiy Ld Yriyksen arvonmääriys 1. Yriyksen ase- eli subsanssiarvo Arvioidaan yriyksen aseen vasaavaa puolella olevan omaisuuden käypäarvo, josa

Lisätiedot

Hoivapalvelut ja eläkemenot vuoteen 2050

Hoivapalvelut ja eläkemenot vuoteen 2050 VATT-TUTKIMUKSIA 94 VATT-RESEARCH REPORTS Pekka Parkkinen Hoivapalvelu ja eläkemeno vuoeen 25 Valion aloudellinen ukimuskeskus Governmen Insiue for Economic Research Helsinki 22 ISBN 951-561-425-2 ISSN

Lisätiedot

Lyhyt johdanto Taylorin sääntöön

Lyhyt johdanto Taylorin sääntöön K a n s a n a l o u d e l l i n e n a i k a k a u s k i r j a 1 0 6. v s k. 2 / 2 0 1 0 Lyhy johdano Taylorin säänöön Juha Tervala Johaja Aboa Cenre for Economics 1. Johdano Taylorin säänö on sen kehiäjän

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 13 Black-Scholes malli optioiden hinnoille

Rahoitusriskit ja johdannaiset Matti Estola. luento 13 Black-Scholes malli optioiden hinnoille Rahoiusriski ja johannaise Mai Esola lueno 3 Black-choles malli opioien hinnoille . Ion lemma Japanilainen maemaaikko Kiyoshi Iō oisi seuraavana esieävän lemman vuonna 95 arikkelissaan: On sochasic ifferenial

Lisätiedot

KEHITTYNEIDEN VALUUTTAMARKKINOIDEN TEHOKKUUS: USD INDEKSI

KEHITTYNEIDEN VALUUTTAMARKKINOIDEN TEHOKKUUS: USD INDEKSI Kauppaieeellinen iedekuna Talouden ja yriysjuridiikan laios Kandidaainukielma Rahoius KEHITTYNEIDEN VALUUTTAMARKKINOIDEN TEHOKKUUS: USD INDEKSI Currency Marke Efficiency of Developed Counries: USD Index

Lisätiedot

Suvi Kangasrääsiö MONETAARIMALLIT EUR/USD-VALUUTTAKURSSIN VAIHTELUN SELITTÄJÄNÄ: YHTEISINTEGROITUVUUSANALYYSI ARDL-MALLISSA

Suvi Kangasrääsiö MONETAARIMALLIT EUR/USD-VALUUTTAKURSSIN VAIHTELUN SELITTÄJÄNÄ: YHTEISINTEGROITUVUUSANALYYSI ARDL-MALLISSA OULUN YLIOPISTON KAUPPAKORKEAKOULU Suvi Kangasrääsiö MONETAARIMALLIT EUR/USD-VALUUTTAKURSSIN VAIHTELUN SELITTÄJÄNÄ: YHTEISINTEGROITUVUUSANALYYSI ARDL-MALLISSA Pro gradu -ukielma Talousiede Helmikuu 2016

Lisätiedot

Tekes tänään (ja huomenna?) Pekka Kahri Palvelujohtaja, Tekes Fortune seminaari 21.8.2013

Tekes tänään (ja huomenna?) Pekka Kahri Palvelujohtaja, Tekes Fortune seminaari 21.8.2013 Tekes änään (ja huomenna?) Pekka Kahri Palvelujohaja, Tekes Forune seminaari 21.8.2013 Rahoiamme sellaisen innovaaioiden kehiämisä, joka ähäävä kasvun ja uuden liikeoiminnan luomiseen Yriysen kehiysprojeki

Lisätiedot

Asuntojen huomiointi varallisuusportfolion valinnassa ja hinnoittelussa

Asuntojen huomiointi varallisuusportfolion valinnassa ja hinnoittelussa TAMPEREEN YLIOPISTO Johamiskorkeakoulu Asunojen huomioini varallisuusporfolion valinnassa ja hinnoielussa Kansanalousiede Pro gradu -ukielma Elokuu 2012 Ohjaaja: Hannu Laurila Tuomo Sola TIIVISTELMÄ Tampereen

Lisätiedot

Ene-59.4130, Kuivatus- ja haihdutusprosessit teollisuudessa, Laskuharjoitus 5, syksy 2015

Ene-59.4130, Kuivatus- ja haihdutusprosessit teollisuudessa, Laskuharjoitus 5, syksy 2015 Ene-59.4130, Kuivaus- ja haihduusprosessi eollisuudessa, asuharjoius 5, sysy 2015 Tehävä 4 on ähiehävä Tehävä 1. eijuerrosilassa poleaan rinnain uora ja urvea. Kuoren oseus on 54% ja uiva-aineen ehollinen

Lisätiedot

Sopimuksenteon dynamiikka: johdanto ja haitallinen valikoituminen

Sopimuksenteon dynamiikka: johdanto ja haitallinen valikoituminen Soimukseneon dynamiikka: johdano ja haiallinen valikoiuminen Ma-2.442 Oimoinioin seminaari Elise Kolola 8.4.2008 S yseemianalyysin Laboraorio Esielmä 4 Elise Kolola Oimoinioin seminaari - Kevä 2008 Esiyksen

Lisätiedot

TALOUSTIETEIDEN TIEDEKUNTA. Lauri Tenhunen KAIKKIALLA LÄSNÄ OLEVAN TIETOTEKNIIKAN TALOUSTIETEELLISTÄ ANALYYSIÄ

TALOUSTIETEIDEN TIEDEKUNTA. Lauri Tenhunen KAIKKIALLA LÄSNÄ OLEVAN TIETOTEKNIIKAN TALOUSTIETEELLISTÄ ANALYYSIÄ TLOUSTIETEIDEN TIEDEKUNT Lauri Tenhunen KIKKILL LÄSNÄ OLEVN TIETOTEKNIIKN TLOUSTIETEELLISTÄ NLYYSIÄ Pro gradu ukielma Yleinen alousiede Tammikuu 03 SISÄLLYS Sisällys Kuvio ja auluko JOHDNTO... 5 VERKOSTOTLOUSTIETEEN

Lisätiedot

Laskelmia verotuksen painopisteen muuttamisen vaikutuksista dynaamisessa yleisen tasapainon mallissa

Laskelmia verotuksen painopisteen muuttamisen vaikutuksista dynaamisessa yleisen tasapainon mallissa Laskelmia verouksen painopiseen muuamisen vaikuuksisa dynaamisessa yleisen asapainon mallissa Juha Kilponen ja Jouko Vilmunen TTässä arikkelissa esieään laskelmia siiä, mien verouksen painopiseen siiräminen

Lisätiedot

Tiedonhakumenetelmät Tiedonhakumenetelmät Helsingin yliopisto / TKTL. H.Laine 1. Todennäköisyyspohjainen rankkaus

Tiedonhakumenetelmät Tiedonhakumenetelmät Helsingin yliopisto / TKTL. H.Laine 1. Todennäköisyyspohjainen rankkaus Tieonhakumeneelmä Helsingin yliopiso / TKTL.4.04 Toennäköisyyeen perusuva rankkaus Tieonhakumeneelmä Toennäköisyyspohjainen rankkaus Dokumenien haussa ongelmana on löyää käyäjän kyselynä ilmaiseman ieoarpeen

Lisätiedot

Termiinikurssi tulevan spot-kurssin ennusteena

Termiinikurssi tulevan spot-kurssin ennusteena TAMPEREEN YLIOPISTO Talousieeiden laios Termiinikurssi ulevan spo-kurssin ennuseena Kansanalousiede Pro gradu-ukielma Talousieeiden laios Tampereen yliopiso 28.2.2006 Ville Kivelä 1 TIIVISTELMÄ Tampereen

Lisätiedot

5. Vakiokertoiminen lineaarinen normaaliryhmä

5. Vakiokertoiminen lineaarinen normaaliryhmä 1 MAT-145 LAAJA MATEMATIIKKA 5 Tampereen eknillinen yliopiso Riso Silvennoinen Kevä 21 5. Vakiokeroiminen lineaarinen normaaliryhmä Todeaan ensin ilman odisuksia (ulos on syvällinen) rakaisujen olemassaoloa

Lisätiedot

Sairastumisen taloudelliset seuraamukset 1

Sairastumisen taloudelliset seuraamukset 1 1 [D:\Kuopio2013yökykySairasuminen.doc] Vesa Kanniainen, Kansanalousieeen professori Helsingin yliopiso Sairasumisen aloudellise seuraamukse 1 ämän esielmän laaijasa: Rajoiukse: Perehyneisyys erveydenhuoloalaan:

Lisätiedot

3 SIGNAALIN SUODATUS 3.1 SYSTEEMIN VASTE AIKATASOSSA

3 SIGNAALIN SUODATUS 3.1 SYSTEEMIN VASTE AIKATASOSSA S I G N A A L I T E O R I A, O S A I I I TL98Z SIGNAALITEORIA, OSA III 44 3 Signaalin suodaus...44 3. Sysmin vas aikaasossa... 44 3. Kausaalisuus a sabiilisuus... 46 3.3 Vas aauusasossa... 46 3.4 Ampliudivas

Lisätiedot

ÅLANDSBANKEN DEBENTUURILAINA 2/2010 LOPULLISET EHDOT

ÅLANDSBANKEN DEBENTUURILAINA 2/2010 LOPULLISET EHDOT ÅLANDSBANKEN DEBENTUURILAINA 2/200 LOPULLISET EHDOT Ålandsbanken Debenuurilaina 2/200 (ISIN: FI400003875) lopullise ehdo on 9. heinäkuua 200 vahviseu seuraavasi: - Lainan pääoma 9 980 000 euroa Maarianhamina

Lisätiedot

OSINKOJEN JA PÄÄOMAVOITTOJEN VEROTUKSEN VAIKUTUKSET OSAKKEEN ARVOON

OSINKOJEN JA PÄÄOMAVOITTOJEN VEROTUKSEN VAIKUTUKSET OSAKKEEN ARVOON AMPN YLIOPISO Kauppaieeien laios OSINKOJN JA PÄÄOMAVOIOJN VOUKSN VAIKUUKS OSAKKN AVOON Laskenaoimi Seminaariukielma Helmikuu 2004 Ohjaaja: Ismo Vuorinen apani Höök 3 SISÄLLYS JOHDANO... 4. ukielman ausaa...4.2

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia 8/ VÄRÄHTELYMEKANIIKKA SESSIO 8: Yhen vapausaseen paovärähely, ransieniuormiusia JOHDANTO c m x () Kuva. Syseemi. Transieniuormiusella aroieaan uormiusheräeä, joa aiheuaa syseemiin lyhyaiaisen liieilan.

Lisätiedot

Micrologic elektroniset suojareleet 2.0 A, 5.0 A, 6.0 A ja 7.0 A Pienjännitetuotteet

Micrologic elektroniset suojareleet 2.0 A, 5.0 A, 6.0 A ja 7.0 A Pienjännitetuotteet Micrologic elekronise suojarelee.0, 5.0, 6.0 ja 7.0 Pienjännieuoee Käyäjän käsikirja We do more wih elecriciy. Micrologic elekronise sojarelee.0, 5.0, 6.0 ja 7.0 Elekronisen suojareleen käyö Suojareleen

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 4, ratkaisuehdotukset

DEE Lineaariset järjestelmät Harjoitus 4, ratkaisuehdotukset D-00 ineaarise järjeselmä Harjoius 4, rakaisuehdoukse nnen kuin mennään ämän harjoiuksen aihepiireihin, käydään läpi yksi huomionarvoinen juu. Piirianalyysin juuri suorianee opiskelija saaava ihmeellä,

Lisätiedot

BETONI-TERÄS LIITTORAKENTEIDEN SUUNNITTELU EUROKOODIEN MUKAAN (TTY 2009) Betonipäivät 2010

BETONI-TERÄS LIITTORAKENTEIDEN SUUNNITTELU EUROKOODIEN MUKAAN (TTY 2009) Betonipäivät 2010 DIPLOMITYÖ: BETONI-TERÄS LIITTORAKENTEIDEN SUUNNITTELU EUROKOODIEN MUKAAN (TTY 29) Beonipäivä 21 DIPLOMITYÖ prosessina Aie: yön eeäjän aloieesa Selviykse beonin, eräksen ja puun osala oli jo ey/käynnissä

Lisätiedot

JYVÄSKYLÄN YLIOPISTO Taloustieteiden tiedekunta TARJONTA SUOMEN ASUNTOMARKKINOILLA

JYVÄSKYLÄN YLIOPISTO Taloustieteiden tiedekunta TARJONTA SUOMEN ASUNTOMARKKINOILLA JYVÄSKYLÄN YLIOPISTO Talousieeiden iedekuna TARJONTA SUOMEN ASUNTOMARKKINOILLA Kansanalousiede Pro gradu -ukielma Helmikuu 2006 Laaia: Janne Lilavuori Ohaaa: Professori Kari Heimonen JYVÄSKYLÄN YLIOPISTO

Lisätiedot

KÄYTTÖOPAS. -järjestelmän sisäyksikkö HXHD125A8V1B

KÄYTTÖOPAS. -järjestelmän sisäyksikkö HXHD125A8V1B KÄYÖOPAS -järjeselmän sisäyksikkö SISÄLÖ 1. Määrielmä... 1 1.1. Merkkien ja varoiusen arkoiukse... 1 1.2. Käyeyjen ermien merkiys... 1 2. Yleise varooime... 2 3. Johdano... 2 3.1. Yleisä... 2 3.2. ämän

Lisätiedot

Kuukausi- ja kuunvaihdeanomalia Suomen osakemarkkinoilla vuosina 2005-2013

Kuukausi- ja kuunvaihdeanomalia Suomen osakemarkkinoilla vuosina 2005-2013 Kauppaieeellinen iedekuna Talousjohaminen Kandidaainukielma Kuukausi- ja kuunvaihdeanomalia Suomen osakemarkkinoilla vuosina 2005-2013 Monhly and Turn-of-he-Monh anomaly in he Finnish sock marke during

Lisätiedot

Parantaako rasiinkaato kuusipaperipuiden laatuar

Parantaako rasiinkaato kuusipaperipuiden laatuar METSXTEHON TIEDOITUKSIA. METSITEHO REPORT 43 SI\ILYTYS: 8 ARNO TUOVINEN ILMARI WÄRE Paranaako inkaao kuusipaperipuiden laauar (Does Summer Felling Improve he Qualiy of Spruce Pulpwood?) Pyriäessä paranamaan

Lisätiedot

KYNNYSILMIÖ JA SILTÄ VÄLTTYMINEN KYNNYKSEN SIIRTOA (LAAJENNUSTA) HYVÄKSI KÄYTTÄEN

KYNNYSILMIÖ JA SILTÄ VÄLTTYMINEN KYNNYKSEN SIIRTOA (LAAJENNUSTA) HYVÄKSI KÄYTTÄEN YYSILMIÖ J SILÄ VÄLYMIE YYSE SIIRO LJEUS HYVÄSI ÄYÄE ieoliikenneekniikka I 559 ari ärkkäinen Osa 5 4 MILLOI? Milloin ja missä kynnysilmiö esiinyy? un vasaanoimen ulon SR siis esi-ilmaisusuodaimen lähdössä

Lisätiedot

Systeemimallit: sisältö

Systeemimallit: sisältö Syseemimalli: sisälö Malliyypi ja muuuja Inpu-oupu -kuvaus ja ilayhälömalli, ila Linearisoini Jakuva-aikaisen lineaarisen järjeselmän siirofunkio, sabiilisuus Laplace-muunnos Diskreeiaikaisen lineaarisen

Lisätiedot

ANALOGISEN VÄRITELEVISION RAKENNE JA TOIMINTA

ANALOGISEN VÄRITELEVISION RAKENNE JA TOIMINTA ANALOGISEN VÄRITELEVISION RAKENNE JA TOIMINTA Tieoliikenneekniikka I 521359A Kari Kärkkäinen Osa 8 1 23 Videosignaalin VSB-odulaaio analogisessa TV-järj. Värielevision videosignaalin siirrossa käyeään

Lisätiedot

Working Paper Yrittäjyyden ja yritysten verokannustimet. ETLA Discussion Papers, The Research Institute of the Finnish Economy (ETLA), No.

Working Paper Yrittäjyyden ja yritysten verokannustimet. ETLA Discussion Papers, The Research Institute of the Finnish Economy (ETLA), No. econsor www.econsor.eu Der Open-Access-Publikaionsserver der ZBW Leibniz-Informaionszenrum Wirschaf The Open Access Publicaion Server of he ZBW Leibniz Informaion Cenre for Economics Kanniainen, Vesa Working

Lisätiedot

SUOMEN PANKIN KANSANTALOUSOSASTON TYÖPAPEREITA

SUOMEN PANKIN KANSANTALOUSOSASTON TYÖPAPEREITA SUOMEN PANKIN KANSANTALOUSOSASTON TYÖPAPEREITA 10.10.2004 1/2004 Hannes Kaadu Kuluajahinainflaaion miaaminen Yhdysvalloissa 2 Kuluajahinainflaaion miaaminen Yhdysvalloissa Kansanalousosason yöpapereia

Lisätiedot

Epäasiallista kohtelua voidaan työpaikalla ehkäistä etukäteen. s. 6

Epäasiallista kohtelua voidaan työpaikalla ehkäistä etukäteen. s. 6 Hyvä 4 2009 Työympärisö V a l i o n h a l l i n n o n Naureaanko eillä öissä? s. 18 y ö y m p ä r i s ö l e h i Henkinen väkivala yöpaikoilla s. 12 Nupin ei arvise mennä nurin s.16 Yliarkasaja Jenny Rinala,

Lisätiedot

Luento 7 Järjestelmien ylläpito

Luento 7 Järjestelmien ylläpito Luno 7 Järjslmin ylläpio Ahi Salo Tknillinn korkakoulu PL, 5 TKK Järjslmin ylläpidosa Priaallisia vaihohoja Uusiminn rplacmn Ennalahkäisvä huolo mainnanc Korjaaminn rpair ❶ Uusiminn Vioiun komponni korvaaan

Lisätiedot

2. Suoraviivainen liike

2. Suoraviivainen liike . Suoraviivainen liike . Siirymä, keskinopeus ja keskivauhi Aika: unnus, yksikkö: sekuni s Suoraviivaisessa liikkeessä kappaleen asema (paikka) ilmoieaan suoralla olevan piseen paikkakoordinaain (unnus

Lisätiedot

Huomaa, että aika tulee ilmoittaa SI-yksikössä, eli sekunteina (1 h = 3600 s).

Huomaa, että aika tulee ilmoittaa SI-yksikössä, eli sekunteina (1 h = 3600 s). DEE- Piirianalyysi Ykkösharkan ehävien rakaisuehdoukse. askeaan ensin, kuinka paljon äyeen ladaussa akussa on energiaa. Tämä saadaan laskeua ehäväpaperissa anneujen akun ieojen 8.4 V ja 7 mah avulla. 8.4

Lisätiedot

TKK Tietoliikennelaboratorio Seppo Saastamoinen Sivu 1/5 Konvoluution laskeminen vaihe vaiheelta

TKK Tietoliikennelaboratorio Seppo Saastamoinen Sivu 1/5 Konvoluution laskeminen vaihe vaiheelta KK ieoliikennelaboraorio 7.2.27 Seppo Saasamoinen Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali, kun ulosignaali ja järjeselmän

Lisätiedot

Kuntaeläkkeiden rahoitus ja kunnalliset palvelut

Kuntaeläkkeiden rahoitus ja kunnalliset palvelut Kunaeläkkeiden rahoius ja kunnallise palvelu I LA Rapori LA Repors 30.1.2013 No 4 Kunaeläkkeiden rahoius ja kunnallise palvelu Jukka Lassila * Niku Määänen ** armo Valkonen *** * LA linkeinoelämän ukimuslaios,

Lisätiedot

Monisilmukkainen vaihtovirtapiiri

Monisilmukkainen vaihtovirtapiiri Monisilmukkainen vaihovirapiiri Oeaan arkaselun koheeksi RLC-vaihovirapiiri jossa on käämejä, vasuksia ja kondensaaoreia. Kykenä Tarkasellaan virapiiriä, jossa yksinkeraiseen RLC-piiriin on kodensaaorin

Lisätiedot

ETERAN TyEL:n MUKAISEN VAKUUTUKSEN ERITYISPERUSTEET

ETERAN TyEL:n MUKAISEN VAKUUTUKSEN ERITYISPERUSTEET TRAN TyL:n MUKASN AKUUTUKSN RTYSPRUSTT Tässä peruseessa kaikki suuree koskea eraa, ellei oisin ole määriely. Tässä peruseessa käyey lyhenee: LL Lyhyaikaisissa yösuheissa oleien yönekijäin eläkelaki TaL

Lisätiedot

XII RADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA

XII RADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA II ADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA Laskenaaajuus akiivisuus Määrieäessä radioakiivisen näyeen akiivisuua (A) uloksena saadaan käyeyn miausyseemin anama laskenaaajuus (). = [II.I] jossa =

Lisätiedot

f x dx y dy t dt f x y t dx dy dt O , (4b) . (4c) f f x = ja x (4d)

f x dx y dy t dt f x y t dx dy dt O , (4b) . (4c) f f x = ja x (4d) Tehävä 1. Oleeaan, eä on käössä jakuva kuva, jossa (,, ) keroo harmaasävn arvon paikassa (, ) ajanhekenä. Dnaaminen kuva voidaan esiää Talor sarjana: d d d d d d O ( +, +, + ) = (,, ) + + + + ( ). (4a)

Lisätiedot

338 LASKELMIA YRITYS- JA PÄÄOMAVERO- UUDISTUKSESTA

338 LASKELMIA YRITYS- JA PÄÄOMAVERO- UUDISTUKSESTA VATT-KESKUSTELUALOITTEITA VATT DISCUSSION PAPERS 338 LASKELMIA YRITYS- JA PÄÄOMAVERO- UUDISTUKSESTA Harri Hieala Seppo Kari Timo Rauhanen Hanna Ulvinen Valion aloudellinen ukimuskeskus Governmen Insiue

Lisätiedot

käsitteitä Asiakirjaselvitys Vaatimuksenmukaisuustodistus/-vakuus Saateasiakirja Luomun merkinnät

käsitteitä Asiakirjaselvitys Vaatimuksenmukaisuustodistus/-vakuus Saateasiakirja Luomun merkinnät n u m o a u L akirj i as a j a a i p p u a k s i ä ö i i h Vä aikei amm käsieiä Asiakirjaselviys Vaaimuksenmukaisuusodisus/-vakuus Saaeasiakirja Luomun merkinnä Asiakirjaselviys Pakollinen asiakirja Tällä

Lisätiedot

W dt dt t J.

W dt dt t J. DEE-11 Piirianalyysi Harjoius 1 / viikko 3.1 RC-auon akku (8.4 V, 17 mah) on ladau äyeen. Kuinka suuri osa akun energiasa kuluu ensimmäisen 5 min aikana, kun oleeaan mooorin kuluavan vakiovirran 5 A? Oleeaan

Lisätiedot

Konvoluution laskeminen vaihe vaiheelta Sivu 1/5

Konvoluution laskeminen vaihe vaiheelta Sivu 1/5 S-72. Signaali ja järjeselmä Laskuharjoiukse, syksy 28 Konvoluuion laskeminen vaihe vaiheela Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali,

Lisätiedot

Taustaa KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT. Jukka Talvitie, Toni Levanen & Mikko Valkama TTY / Tietoliikennetekniikka

Taustaa KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT. Jukka Talvitie, Toni Levanen & Mikko Valkama TTY / Tietoliikennetekniikka IMA- Exurso: Kompleksluvu ja radosgnaal / KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT Tausaa IMA- Exurso: Kompleksluvu ja radosgnaal / Kakk langaon vesnä ja radoeolkenne (makapuhelme, WLAN, ylesrado

Lisätiedot

Mallivastaukset KA5-kurssin laskareihin, kevät 2009

Mallivastaukset KA5-kurssin laskareihin, kevät 2009 Mallivasaukse KA5-kurssin laskareihin, kevä 2009 Harjoiukse 2 (viikko 6) Tehävä 1 Sovelleaan luenokalvojen sivulla 46 anneua kaavaa: A A Y Y K α ( 1 α ) 0,025 0,5 0,03 0,5 0,01 0,005 K Siis kysyy Solowin

Lisätiedot

MAT-02450 Fourier n menetelmät. Merja Laaksonen, TTY 2014

MAT-02450 Fourier n menetelmät. Merja Laaksonen, TTY 2014 MAT-45 Fourier n meneelmä Merja Laaksonen, TTY 4..4 Sisälö Johano 3. Peruskäsieiä................................... 4.. Parillinen ja parion funkio....................... 7.. Heavisien funkio............................

Lisätiedot

x v1 y v2, missä x ja y ovat kokonaislukuja.

x v1 y v2, missä x ja y ovat kokonaislukuja. Digiaalinen videonkäsiel Harjoius, vasaukse ehäviin 4-0 Tehävä 4. Emämariisi a: V A 0 V B 0 Hila saadaan kanavekorien (=emämariisin sarakkee) avulla. Kunkin piseen paikka hilassa on kokonaisluvulla kerroujen

Lisätiedot

Aikasarja-analyysi I Syksy 2005 Tampereen yliopisto Arto Luoma

Aikasarja-analyysi I Syksy 2005 Tampereen yliopisto Arto Luoma Aikasara-aalyysi I Syksy 5 Tamperee yliopiso Aro Luoma Pääasiallise lähee: Brockwell, Davis: Iroducio o Time Series ad Forecasig Brockwell, Davis: Time Series: Theory ad Mehods (lyh. TSTM).. Johdao. Yleisä

Lisätiedot

Systeemidynamiikka ja liikkeenjohto

Systeemidynamiikka ja liikkeenjohto Syseemidynamiikka ja liikkeenjoho Opimoiniopin seminaari 21.2.2007 Ilkka Leppänen S yseemianalyysin Laboraorio Esielmä 11 Ilkka Leppänen Opimoiniopin seminaari - Kevä 2007 Sisälö Johdano dynaamisen pääökseneon

Lisätiedot

Toistoleuanvedon kilpailusäännöt

Toistoleuanvedon kilpailusäännöt 1.0 Yleisä Toisoleuanvedossa kilpailija suoriaa häjaksoisesi mahdollisimman mona leuanveoa omalla kehonpainollaan. Kilpailijalla on käössään ksi kilpailusuorius sekä asauloksen sauessa mahdollise uusinakierrokse

Lisätiedot

ZELIO Time Sarja RE7 Elektroniset aikareleet

ZELIO Time Sarja RE7 Elektroniset aikareleet Zelio Time -aikarelee ZELIO Time Sarja RE7 Elekronise aikarelee Valinaopas 00 Valinaopas 00 Zelio Time RE 7 -aikarelee Valinaopas Sovellukse Elekronise aikarelee mahdollisava yksinkeraisen auomaisoiujen

Lisätiedot

STOKASTISIA MALLEJA SÄHKÖN HINNOITTELUUN. Sanni Sieviläinen

STOKASTISIA MALLEJA SÄHKÖN HINNOITTELUUN. Sanni Sieviläinen HELSINGIN YLIOPISTO Maemaais-Luonnonieeellinen iedekuna Maemaiikan ja ilasoieeen laios STOKASTISIA MALLEJA SÄHKÖN HINNOITTELUUN Sanni Sieviläinen Pro Gradu-ukielma Ohjaaja: Dario Gasbarra 3. syyskuua 215

Lisätiedot

Mittaustekniikan perusteet, piirianalyysin kertausta

Mittaustekniikan perusteet, piirianalyysin kertausta Miausekniikan perusee, piirianalyysin kerausa. Ohmin laki: =, ai = Z ( = ännie, = resisanssi, Z = impedanssi, = vira). Kompleksiluvu Kompleksilukua arviaan elekroniikassa analysoiaessa piireä, oka sisälävä

Lisätiedot

LVM/LMA/jp 2013-03-27. Valtioneuvoston asetus. ajoneuvojen käytöstä tiellä annetun asetuksen muuttamisesta. Annettu Helsingissä päivänä kuuta 20

LVM/LMA/jp 2013-03-27. Valtioneuvoston asetus. ajoneuvojen käytöstä tiellä annetun asetuksen muuttamisesta. Annettu Helsingissä päivänä kuuta 20 LVM/LMA/jp 2013-03-27 Valioneuvoson aseus ajoneuvojen käyösä iellä anneun aseuksen uuaisesa Anneu Helsingissä päivänä kuua 20 Valioneuvoson pääöksen ukaisesi uueaan ajoneuvojen käyösä iellä anneun aseuksen

Lisätiedot

Tasaantumisilmiöt eli transientit

Tasaantumisilmiöt eli transientit uku 12 Tasaanumisilmiö eli ransieni 12.1 Kelan kykeminen asajännieeseen Kappaleessa 11.2 kykeiin reaalinen kela asajännieeseen ja ukiiin energian varasoiumisa kelan magneeikenään. Tilanne on esiey uudelleen

Lisätiedot

KÄYTTÖOPAS. Ilma vesilämpöpumppujärjestelmän sisäyksikkö ja lisävarusteet RECAIR OY EKHBRD011ADV1 EKHBRD014ADV1 EKHBRD016ADV1

KÄYTTÖOPAS. Ilma vesilämpöpumppujärjestelmän sisäyksikkö ja lisävarusteet RECAIR OY EKHBRD011ADV1 EKHBRD014ADV1 EKHBRD016ADV1 EKHBRD011ADV1 EKHBRD014ADV1 EKHBRD016ADV1 EKHBRD011ADY1 EKHBRD014ADY1 EKHBRD016ADY1 KÄYÖOPAS Ilma vesilämpöpumppujärjeselmän sisäyksikkö ja lisävarusee EKHBRD011ADV1+Y1 EKHBRD014ADV1+Y1 EKHBRD016ADV1+Y1

Lisätiedot

Sijoitusriskien ja rahoitustekniikan vaikutus TyEL-maksun kehitykseen

Sijoitusriskien ja rahoitustekniikan vaikutus TyEL-maksun kehitykseen Ismo Risku ja Kasimir Kaliva Sijoiusriskien ja rahoiusekniikan vaikuus TyEL-maksun kehiykseen Eläkeurvakeskuksen keskuselualoieia 009:6 Ismo Risku ja Kasimir Kaliva Sijoiusriskien ja rahoiusekniikan vaikuus

Lisätiedot

SÄHKÖN HINTA POHJOISMAISILLA SÄHKÖMARKKINOILLA

SÄHKÖN HINTA POHJOISMAISILLA SÄHKÖMARKKINOILLA TAMPEREEN YLIOPISTO Talousieeiden laios SÄHKÖN HINTA POHJOISMAISILLA SÄHKÖMARKKINOILLA Kansanalousiede Pro gradu -ukielma Tammikuu 2009 Ohjaaja: Hannu Laurila Tero Särkijärvi TIIVISTELMÄ Tampereen yliopiso

Lisätiedot

Seinämien risteyskohdat

Seinämien risteyskohdat CAE DS Painevalukappaleen suunnielu Sefan Fredriksson Seinämien riseyskohda Sefan Fredriksson SweCas Käännös: Pekka Savolainen ja Tuula Höök Tampereen eknillinen yliopiso Riseyskoha muodosuu kun kaksi

Lisätiedot

Flow shop, työnvaiheketju, joustava linja, läpivirtauspaja. Kahden koneen flow shop Johnsonin algoritmi

Flow shop, työnvaiheketju, joustava linja, läpivirtauspaja. Kahden koneen flow shop Johnsonin algoritmi Flow shop önvaheeju jousava lnja läpvrauspaja Flow shopssa önvaheden järjess on sama alla uoella Kosa vahea vo edelää jono vova ö olla vaheleva ja ö vova ohaa osensa äl ö evä oha osaan puhuaan permuaaoaaaulusa

Lisätiedot

I L M A I L U L A I T O S

I L M A I L U L A I T O S I L M A I L U L A I T O S 2005 Ympärisökasaus Lenoasemien ympärisölupahankkee sekä ympärisövaikuusen ja -vahinkoriskien selviäminen hallisiva Ilmailulaioksen ympärisöyöä koimaassa. Kansainvälisillä foorumeilla

Lisätiedot

b) Esitä kilpaileva myötöviivamekanismi a-kohdassa esittämällesi mekanismille ja vertaile näillä mekanismeilla määritettyjä kuormitettavuuksia (2p)

b) Esitä kilpaileva myötöviivamekanismi a-kohdassa esittämällesi mekanismille ja vertaile näillä mekanismeilla määritettyjä kuormitettavuuksia (2p) LUT / Teräsrakenee/Timo Björk BK80A30: Teräsrakenee II:.5.016 Oheismaeriaalin käyö EI salliua, laskimen käyö on salliua, lausekkeia ehäväosion lopussa Vasaukse laadiaan ehäväpaperille, joka palaueava,

Lisätiedot

Ohjelmistojen suunnittelumenetelmät ja -työkalut

Ohjelmistojen suunnittelumenetelmät ja -työkalut Ohjelmisojen suunnielumeneelmä ja -yökalu Seminaariyö esauksesa Annemari Auvinen (annauvi@s.jyu.i) Anu Niemi (anniemi@s.jyu.i) 0.6.00 Sisällyslueelo Tesaus osana ohjelmisoprosessia.... Tesivaihee.....

Lisätiedot

Ratkaisu. Virittäviä puita on kahdeksan erilaista, kun solmut pidetään nimettyinä. Esitetään aluksi verkko kaaviona:

Ratkaisu. Virittäviä puita on kahdeksan erilaista, kun solmut pidetään nimettyinä. Esitetään aluksi verkko kaaviona: Diskreei maemaiikka, sks 00 Harjoius 0, rakaisuisa. Esi viriävä puu suunaamaomalle verkolle G = (X, E, Ψ), kun X := {,,, }, E := { {, }, {, }, {, }, {, }, {, }}, ja Ψ on ieninen kuvaus. Rakaisu. Viriäviä

Lisätiedot

( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän:

( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän: ELEC-A700 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS 3 Sivu /8. arkasellaan oheisa järjeselmää bg x Yksikköviive + zbg z bg z d a) Määriä järjeselmän siirofunkio H Y = X b) Määriä järjeselmän

Lisätiedot

KUntotorni SAMKin liiketalouden opiskelijoiden toimittama julkaisu

KUntotorni SAMKin liiketalouden opiskelijoiden toimittama julkaisu KUnoorni SAMKin liikealouden opiskelijoiden oimiama julkaisu Juuja Kunoilun Maailmasa 1 OMISTAJAN SANAT.. SISALLYS Kunoorni on ollu ny paikallaan jo kuusi vuoa Ise uusuin ensikerran Kunoorniin vuonna 2008,

Lisätiedot

Seinämien risteyskohdat

Seinämien risteyskohdat CAE DS Painevalukappaleen suunnielu Seinämien riseyskohda Sefan Fredriksson - SweCas Käännös: Pekka Savolainen ja Tuula Höök - Tampereen eknillinen yliopiso Riseyskoha muodosuu kun kaksi kappaleen seinämää

Lisätiedot

LVM/LMA/jp 2012-12-17. Valtioneuvoston asetus. ajoneuvojen käytöstä tiellä annetun asetuksen muuttamisesta. Annettu Helsingissä päivänä kuuta 20

LVM/LMA/jp 2012-12-17. Valtioneuvoston asetus. ajoneuvojen käytöstä tiellä annetun asetuksen muuttamisesta. Annettu Helsingissä päivänä kuuta 20 LVM/LMA/jp 2012-12-17 Valioneuvoson aseus ajoneuvojen käyösä iellä anneun aseuksen uuaisesa Anneu Helsingissä päivänä kuua 20 Valioneuvoson pääöksen ukaisesi, joka on ehy liikenne- ja viesinäiniseriön

Lisätiedot

Rak-54.116 Rakenteiden mekaniikka C, RM C (4 ov) Tentti 30.8.2007

Rak-54.116 Rakenteiden mekaniikka C, RM C (4 ov) Tentti 30.8.2007 Rak-54.116 Rakeneden mekankka, RM (4 ov) Ten.8.7 Krjoa jokaeen koepapern elvä - koko nme, puhuelunm allevvauna - oao, vuokur, enn pävämäärä ekä enävä opnojako koodeneen - opkeljanumero, mukaan luken arkukrjan

Lisätiedot

Luento 4. Fourier-muunnos

Luento 4. Fourier-muunnos Lueno 4 Erikoissignaalien Fourier-muunnokse Näyeenoo 4..6 Fourier-muunnos Fourier-muunnos Kääneismuunnos Diricle n edo Fourier muunuvalle energiasignaalille I: Signaali on iseisesi inegroiuva v ( d< II:

Lisätiedot

ETLA ELINKEINOELÄMÄN TUTKIMUSLAITOS

ETLA ELINKEINOELÄMÄN TUTKIMUSLAITOS ETLA ELINKEINOELÄMÄN TUTKIMUSLAITOS THE RESEARCH INSTITUTE OF THE FINNISH ECONOMY Lönnroinkau 4 B 00120 Helsinki Finland Tel. 358-9-609 900 Telefax 358-9-601 753 World Wide Web: hp://www.ela.fi/ Keskuseluaiheia

Lisätiedot

Muuttuvan kokonaissensitiivisyyden mallinnus valvontaohjelman riskinarvioinnissa esimerkkinä munintaparvet

Muuttuvan kokonaissensitiivisyyden mallinnus valvontaohjelman riskinarvioinnissa esimerkkinä munintaparvet Muuuvan kokonaissnsiiivisyyn mallinnus valvonaohjlman riskinarvioinnissa simrkkinä muninaarv Tausa: Aimma salmonllarojki FooBUG rojki ja uusi malli muninaarvill 8. EFSA WG: salmonlla muninaarvissa. Samaa

Lisätiedot

KOMISSION VALMISTELUASIAKIRJA

KOMISSION VALMISTELUASIAKIRJA EUROOPAN UNIONIN NEUVOSTO Bryssel, 23. oukokuua 2007 (24.05) (OR. en) Toimielinen välinen asia: 2006/0039 (CNS) 9851/07 ADD 2 N 239 RESPR 5 CADREN 32 LISÄYS 2 I/A KOHTAA KOSKEVAAN ILMOITUKSEEN Läheäjä:

Lisätiedot

S-55.1100 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S-55.1100 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.1100 SÄHKÖTKNIIKKA JA KTONIIKKA 2. välikoe 5.5.2008. Saa vasaa vain neljään ehävään! Kimmo Silven 1. aske vira. = 1 kω, = 2 kω, 3 = 4 kω, = 10 V. Diodin ominaiskayra, aseikko 0... 4 ma + 3 Teh. 2.

Lisätiedot

JLP:n käyttämättömät mahdollisuudet. Juha Lappi

JLP:n käyttämättömät mahdollisuudet. Juha Lappi JLP:n äyämäömä mahdollisuude Juha Lappi LP ehävä p z = a x + b z 0 Max or Min (.) 0 0 = = subjec o he following consrains: c a x + b z C, =,, q p q K r (.2) = = m n i ij K (.3) i= j= ij x xw= 0, =,, p

Lisätiedot