Ratkaisu: Vaatimus on, että muuttujat x ja t esiintyvät muodossa x-v t. On siis kirjoitettava,

Koko: px
Aloita esitys sivulta:

Download "Ratkaisu: Vaatimus on, että muuttujat x ja t esiintyvät muodossa x-v t. On siis kirjoitettava,"

Transkriptio

1 8 Ratkaisu: Vaatimus on, että muuttujat x ja t esiintyvät muodossa x-v t. On siis kirjoitettava 3 3 y = =, ( x- vt) + 1 ( x- t) + 1 missä siis v = m/s. Tulos on SI-yksiköissä, joten x ja y ovat metreinä ja aika t on sekunteina. Jos yksiköt kirjoitetaan näkyviin, niin edellä esitetty tulos on muotoa 3 3 m y =. m ( x- t) + 1 m Ohessa Mathematica-ohjelmalla piirretyt kuvaajat vaadituilla ajanhetkillä t = 0 ja t = 1 s. Kuvaajassa vaaka-akseli (x-akseli) ja pystyakseli (poikkeama- eli y-akseli) ovat metreinä. s Kuvaajista nähdään, että yhden sekunnin aikana pulssi on todellakin edennyt metriä ja vielä siten, että sen muoto säilyy.

2 9 1.3 HARMONINEN AALTO Mielenkiintoinen ja tärkeä erikoistapaus aallosta on ns. harmoninen aalto, joka on muotoa = sin [ ( ±v )] tai y Acos [ k( x t) ] y A k x t = ±v. (1.3.1) Näissä A ja k ovat vakioita, joiden arvoja voidaan muutella aallon silti menettämättä harmonisuuttaan. Nyt sina = cos( a - p / ), joten siniä ja kosinia erottaa toisistaan vain p /:n radiaanin vaihesiirto. Jatkossa riittää siis tarkastella vain jompaa kumpaa näistä harmonisista funktioista. Valitaan sini: [ ] y= Asin k( x±v t). (1.3.) Harmoninen aalto on kahden muuttujan (x ja t) funktio. Seuraavassa tarkastelemme kahta tavallisimpaa harmonisen aallon esitystapaa: (a) Olkoon t = vakio Kuvassa l on aallon aallonpituus ja A amplitudi. Pisteissä x ja x + l aallolla on sama poikkeama (siis y), joten [ - v ] = [ + l -v ] = Asin [ k( x- t) + kl] Asin kx ( t) Asin kx ( t) Koska sinin periodi on tunnetusti p, saadaan v.

3 10 p kl = p Þ k =. (1.3.3) l Tässä k on ns. etenemisvakio eli ns. aaltoluku. (b) Olkoon x = vakio Kuvassa T on aallon periodi eli jakson aika ja A on amplitudi. Hetkillä t ja t+ T aallolla on sama poikkeama, joten [ - v ] = [ - v + ] = Asin [ k( x- t) -k T] Asin kx ( t) Asin kx ( ( t T)) v v. Nyt saadaan p p l kvt = p Þ v = = = = l f, (1.3.4) kt ( p / l) T T missä 1 f = (1.3.5) T on aallon taajuus. Usein taajuutta merkitään myös symbolilla n, jota käytetään varsinkin optiikassa. Kulmataajuus w määritellään yhtälöllä w = p f. (1.3.6)

4 11 Edellä esille tulleita suureita käyttäen harmoninen aalto voidaan esittää mm. seuraavissa muodoissa: [ ] [ ] y= Asin k( x±v t), y= Asin kx±wt, é æ x t öù y = Asinêpç ± l T ú ë è ø. û Kaikissa tapauksissa sinifunktion argumenttia, joka riippuu siis paikasta ja ajasta, sanotaan aallon vaiheeksi j (vaihekulma). Esimerkiksi j = k( x± v t) = kx± wt. (1.3.7) Usein vaiheessa tarvitaan myös vakio-osa, jolloin kirjoitetaan j = kx± wt+ j, (1.3.8) missä j 0 on muuttujista x ja t riippumaton ns. vaihevakio. Monesti kokonaisvaihe kirjoitetaan myös järjestyksessä 0 j = wt ± kx + j. (1.3.9) Näin voidaan tehdä, mutta on muistettava, että valittua järjestystä ei kannata muuttaa kesken kaiken. Tässä kurssissa käytämme pääasiassa järjestystä (1.3.8). Kun x ja t muuttuvat siten, että vaihe j pysyy vakiona, poikkeama y= Asinj säilyy myös vakiona. Vakiovaiheisuus kuvaa aallon tietyn pisteen liikettä; pisteen nopeus on sama kuin aallon nopeus. Aallon tämä ns. vaihenopeus saadaan siis laskemalla (ks. sivu 7) josta dj = k( dx ± v dt) = 0, dx dt = mv. 0

5 1 Esimerkki: Etenevää aaltoa kuvaa SI-yksiköissä funktio ( p p p ) y( x, t) = 0.35sin 3 x- 10 t+ / 4. Määritä aallon amplitudi, aaltoluku, aallonpituus, kulmataajuus, taajuus ja vauhti sekä etenemissuunta. Laske lisäksi kohdassa x = 0.10 m olevan väliainehiukkasen poikkeama ajanhetkellä t = 0. Ratkaisu: - amplitudi A = 0,35m (Huom! Yksiköt kirjoitettava näkyviin) - aaltoluku k = 3p (1/m) p - aallonpituus l = = m k 3 - kulmataajuus w = 10p (1/s) w - taajuus f = = 5Hz (Huom! 1/s = Hz = Hertsi) p 1 - vauhti v = l f = m5 = 3.33m/s 3 s - etenee positiivisen x-akselin suuntaan. Vauhti saadaan myös vaiheesta j = 3p x- 10 pt+ p /4 differentioimalla dj = 3p dx - 10p dt = 0, josta dx 10p v= = =+ 3.33m/s. dt 3p Aalto etenee positiivisen x-akselin suuntaan. Poikkeama paikassa x = 0.10 m hetkellä t = 0. y(0.10,0) 0.35sin( 3p p 0 p / 4) ( p p ) ( p ) = - +, = 0.35sin 3 /10 + / 4 = 0.35sin 11 / 0 = = m.

6 Kompleksiesitys: Harmoninen aalto esitetään usein kompleksimuodossa 13 i( kx-w t) %, y = Ae joka Eulerin kaavalla avautuu muotoon y% = Acos( kx- wt) + iasin( kx-wt). Kompleksiesitys sisältää siis sekä sini- että kosiniaallon. Erilaisia ilmiöitä tarkasteltaessa on usein laskennollisesti kätevämpää operoida kompleksiesityksellä kuin todellisella sini- tai kosinimuodolla. Monesti kirjoitetaan y x t i( kx-w t) (, ) Re{ Ae } =, jonka reaaliosa siis esittää todellista (reaalista) aaltoa (kosinimuodossa). On myös tavallista, että aallossa reaaliosan ottamista tarkoittava symboli Re jätetään kirjoittamatta. Tällöin on syytä olla varovainen. Jos aaltoon kohdistuvat laskuoperaatiot ovat lineaarisia (yhteenlasku, vakiolla kertominen,...), niin reaaliosa voidaan ottaa vasta lopputuloksesta ja näin saadaan oikea tulos. Mutta, jos laskutoimitukset eivät ole lineaarisia (neliöjuuri, toiseen korottaminen,...) reaaliosa on otettava ennen operaation suorittamista. Tästä on yksi tärkeä poikkeus. Jos lasketaan neliöllisen lausekkeen aikakeskiarvoa, riittää kun reaaliosa otetaan vasta lopputuloksesta. Esimerkki: Kirjoita aallon y( x, t) = Asin( kx- wt+ j ) kompleksiesitys siten, että yxt (,) on kompleksiesityksen reaaliosa. 0 Ratkaisu: ij Koska y( x, t) = Re{ Ae } = Acosj = Asin( j + p / ), kompleksiesityksen on oltava muotoa y% = Ae i( kx wt j0 p /)

7 AALLON NOPEUS Fysikaaliset suureet, jotka määräävät poikittaisen aallon etenemisnopeuden köydessä ovat köyden jännitysvoima (tension) ja köyden massa pituusyksikköä kohti. Jälkimmäista sanotaan myös lineaariseksi massatiheydeksi. Jännitysvoimalla puolestaan tarkoitetaan sitä voimaa, joka tarvittaisiin pitämään köyden osia edelleen yhdessä, jos köysi leikattaisiin poikki. Jännityksen lisääminen kasvattaa palauttavaa voimaa, joka pyrkii oikaisemaan köyden häiriön edetessä siinä. On helppo kuvitella, että jännityksen lisääminen kasvattaa aallon nopeutta. On myös helppo arvata, että massan kasvattaminen hidastaa nopeutta, koska köyden liikkeet tulevat jähmeämmiksi. Johdetaan seuraavassa aallon nopeudelle kaava, ja katsotaan siitä sattuivatko arvauksemme kohdalleen. Seuraavassa kuvassa tarkastellaan täysin notkeaa köyttä, jonka massa pituusyksikköä kohti on m (kg/m) ja johon tasapainoasemassa kohdistuu jännitysvoima F. Oletetaan lisäksi, että köysi on painoton, joten se kuvassa (a) on täsmälleen suorassa.

8 15 Hetkellä t = 0 köyden päähän kohdistetaan lisävoima F y ylöspäin, jolloin köysi lähtee nousemaan. Köysi on painoton, joten noustessaan se muodostaa kuvan (b) mukaisen kolmion, missä piste P erottaa liikkuvan osan vielä liikkumattomasta. Köyden liike on nyt se häiriö (pulssi, aalto), jonka jo aikaisemmin olemme todenneet etenevän vakionopeudella. Nyt siis piste P liikkuu vakionopeudella v. Vakiovoima F y ei tässä tapauksessa johda kiihtyvään liikkeeseen, koska massa, johon voima kohdistuu, kasvaa koko ajan. Siis pisteen P vasemmalla puolella oleva köyden osa liikkuu ylöspäin vakionopeudella v y. Jos liike olisi kiihtyvä, piste P etenisi myös kiihtyvällä nopeudella ja syntyisi ristiriita. Hetkellä t köyden pää on noussut matkan v y t ja piste P edennyt matkan v t (kuvan b tilanne). Voimien ja köyden muodostamista kolmioista voimme kirjoittaa F F y yt = v v t Þ Fy y = F v v. Seuraavaksi sovellamme mekaniikasta tuttua impulssiteoreemaa. Voiman F y impulssi Ft, y joka on kehittynyt aikavälillä 0 t, menee liikkuvan köydenosan liikemäärän muutokseksi mv y - 0. Tulee F t = mv. Tässä m= mv t on liikkuvan köydenosan massa. On siis y y v v = mvv y F t t ja kun tästä ratkaistaan v, saadaan y, F v =. (1.4.1) m

9 16 Intuitiivinen pohdiskelumme alussa johti siis oikeaan tulokseen. Aallon nopeus kasvaa, kun jännitysvoima ( F ) kasvaa ja pienenee, kun massa pituusyksikköä kohti (m ) kasvaa. Kaavan neliöjuurta emme intuitiivisesti keksineet, mutta se paljastuu helposti yksikkötarkastelulla. Tuloksessa (1.4.1) jännitysvoima F edustaa väliaineen (köyden) kimmoisuutta ja lineaarinen massatiheys m sen hitautta. Yleisesti pätee kaikille systeemeille kimmoisuus v = (1.4.) hitaus Esimerkki: Kolme L:n pituista köyttä yhdistetään, jolloin kokonaispituudeksi tulee 3L. Ensimmäisen osan lineaarinen massatiheys on m 1, toisen m = 4m1 ja kolmannen m3 = m1/4. Yhdistettyyn köyteen kohdistetaan jännitysvoima F. a) Mikä jännitysvoima vaikuttaa osaköysissä? b) Kuinka kauan pulssilta kestää kulkea köyden läpi? Ratkaisu: Huomaa, että jännitysvoima F vaikuttaa köyden molemmissa päissä. Jos se vaikuttaisi vain toisessa, köysi joutuisi kiihtyvään liikkeeseen (muistele mekaniikkaa). a) Jokaisessa osaköydessä vaikuttaa sama jännitysvoima F. Jos esimerkiksi ensimmäisen ja toisen osaköyden liitoskohdassa

10 17 ensimmäiseen osaan vaikuttaisi jokin muu voima (esim. F /3), niin ensimmäinen osaköysi joutuisi kiihtyvään liikkeeseen, koska sen toisessa päässä vaikuttaa F. b) Pulssin kulkuaika köyden läpi on L L L æ 1 3 tkok = t1 + t + t3 = + + = L m m m ö ç + + v1 v v3 è F F F ø æ 1ö m1 7 m1 = Lç 1+ + = L. è ø F F 1.5 AALLON ENERGIA Tarkastellaan taas köydessä positiivisen x-akselin suuntaan etenevää poikittaista aaltoa. Viereisessä kuvassa on esitetty hyvin pieni osa värähtelevästä köydestä pisteen a ympäristöstä. Pisteeseen a kohdistuu jännitysvoima F sekä pystysuorassa suunnassa liikkeen aiheuttava voima F y. Tämä voima F y on juuri se voima, jonka tekemä työ siirtyy köyttä pitkin eteenpäin oikealle. Köyden vasemmassa päässä tämä voima synnytetään käden liikkeellä, ks. kuva sivulla 14.

11 18 Köyden suunnassa (kulmakerroin y/ x) kokonaisvoima syntyy kahdesta komponentista, kuva (b), ja kuvan perusteella yxt (,) Fy(,) x t =-F, (1.5.1) x missä negatiivinen merkki on tarpeen, koska suhde Fy / F on negatiivinen silloin kun köyden kulmakerroin (slope) y/ x on positiivinen. Kun piste a liikkuu y-suunnassa, voima Pxt (,) = F(,) xtv (,) xt =-F y y F y tekee työtä. Teho on yxt (,) yxt (,). (1.5.) x t Tämä on hetkellinen teho, jolla pisteen a vasemmalla puolella oleva köyden osa siirtää energiaa pisteeseen a. Kaava siis kertoo millä teholla energiaa virtaa köyttä pitkin oikealle. Kaava on voimassa kaikenlaisille köydessä eteneville aalloille. Sinimuotoisten eli harmonisten aaltojen tapauksessa aaltofunktio on y( x, t) = Asin( kx- wt), josta ja hetkelliseksi tehoksi tulee yxt (,) = kacos( kx-wt), x yxt (,) =-wacos( kx-wt), t P( x, t) = FkwA cos ( kx- wt). (1.5.3) Kun vielä käytetään relaatioita w =v k ja v = F / m, saadaan P( x, t) = mfw A cos ( kx- wt). (1.5.4) Tästä näemme, että energia ei koskaan virtaa aallon etenemissuuntaa vastaan (teho aina positiivinen).

12 19 Funktion cos ( kx- wt) keskimääräinen arvo on 1/, joten keskimääräiseksi tehoksi saamme 1 Pav = mfw A. (1.5.5) Energian siirtymisnopeus on siis verrannollinen amplitudin neliöön ja taajuuden neliöön. Yleistys: P av 1 (hitaus) (kimmoisuus) = w A (1.5.6) - Esimerkki: Köyttä ( m = kg/m) jännitetään 80.0 N:n voimalla. Millä keskimääräisellä teholla köyteen on syötettävä energiaa, jos siihen halutaan synnyttää harmoninen aalto, jonka taajuus on 60 Hz ja amplitudi 6.00 cm? Ratkaisu: Sovelletaan tulosta (1.5.5) - m = kg/m F = 80.0 N (1 N = 1 kg m/s ) w= p f = p 60 1/s - A = m 1 Pav = mfw A = kg m» 51W. s s ækg m Nm J ö ç = = = W 3 s s s è ø

13 0 Esimerkki: Jännitetyssä langassa, jonka lineaarinen massatiheys on kg/m, etenee harmoninen aalto éë ùû. 1 1 y( x, t) =.30mm cos (6.98 m - ) x-(74 s - ) t Millä keskimääräisellä teholla aalto kuljettaa energiaa? Ratkaisu: Keskimääräinen teho yhtälöstä (1.5.5) w Pav = mfw A = mv w A = m A, k missä ensin on käytetty tulosta (1.4.1) p w w v = ln = =. k p k Aaltofunktiosta luemme: amplitudi -3 A = m kulmataajuus w = 74 s -1 aaltoluku k = 6.98 m -1, ja lineaarinen massatiheys on m F = mv ja sitten -3 = kg/m. Lopulta tulee P av = kgm 3 m ms = W. kg m kgm m Nm J Yksikkötarkastelu: m = = = = W. 3 m s s s s s

14 1 AALTOLIIKKEIDEN YHDISTÄMINEN Kun aalto osuu väliaineen rajapintaan, se heijastuu siitä takaisin joko osittain tai kokonaan. Esimerkiksi äänen osuessa talon seinään se palaa takaisin kaikuna. Missä määrin ja miten takaisinheijastuminen tapahtuu riippuu rajapinnan ominaisuuksista. Väliaineen reunaa kohti etenevä aalto ja jo aikaisemmin väliaineen reunasta takaisin heijastunut aalto voivat esiintyä yhtä aikaa samassa tilassa. Tästä seuraa ilmiöitä, joita sanotaan interferenssiksi. Se miten kaksi (tai useampi) samanaikaista aaltoa poikkeuttaa väliaineen osasia määräytyy ns. superpositioperiaatteesta. Kun systeemissä on kaksi rajapintaa, kuten esimerkiksi molemmista päistään kiinnitetyssä kitaran kielessä, syntyy toistuvia heijastuksia ja osoittautuu, että systeemissä voi edetä vain tietyn taajuiset aallot. Näitä erityisiä taajuuksia ja niihin liittyviä aaltojen muotoja sanotaan systeemin normaalivärähdysmuodoiksi. Nyt tutkimme edellämainittuja ilmiöitä mekaanisten aaltojen tapauksessa. Interferenssi-ilmiöt ovat tärkeitä myös ei-mekaanisilla aalloilla ja valon tapaukseen palaamme tarkemmin myöhemmin..1 HEIJASTUMINEN JA LÄPÄISY Tutkitaan aallon heijastumista kahden väliaineen rajapinnasta käyttäen esimerkkinä köydessä etenevää poikittaista aaltoa. Tarkastellaan kahta erilaista tapausta. Kuvassa vasemmalla köyden pää on kiinnitetty, eikä se pääse liikkumaan aallon osuessa siihen. Kuvassa oikealla köyden pää on vapaa ja se pääsee liikkumaan aallon vaikutuksesta ylös-alas-suunnassa.

15 Se ehto miten köysi on kiinnitetty on ns. rajapintaehto (rajaehto, reunaehto, boundary condition). Köyden rajapintaan (seinään, köyden päähän) saapuva pulssi heijastuu (kimpoaa takaisin). Jos pää on kiinnitetty, pulssi palaa takaisin ylösalaisin kääntyneenä. Tämä johtuu seinän köyteen kohdistamasta reaktiovoimasta, joka on yhtä suuri, mutta vastakkaissuuntainen kuin saapuvan pulssin seinään kohdistama voima. Pulssin ylösalaisin kääntyminen vastaa vaiheen siirtymistä 180 (puhutaan p :n vaihe-siirrosta). Jos köyden pää on vapaa liikkumaan, siihen ei kohdistu ulkoisia voimia ja heijastunut pulssi ei käänny. Vaihesiirtoa ei siis tapahdu. Kun aalto kohtaa absoluuttisen jäykän seinän, kaikki aallon energia heijastuu takaisin. Yleensä rajapinnat eivät kuitenkaan ole absoluuttisen jäykkiä ja osa aallon energiasta pääsee rajapinnan toiselle puolelle. Osa aallosta siis läpäisee rajapinnan. Viereisessä kuvassa kaksi erivahvuista köyttä on liitetty toisiinsa. Köysien liitoskohta edustaa nyt rajapintaa, jota kohti pulssi saapuu kuvassa (a). Rajapinnassa osa pulssista heijastuu takaisin ja osa menee läpi. Mitä raskaampi jälkimmäinen köysi on sitä vähemmän menee läpi ja

16 3 äärettömän raskaan köyden tapauksessa tilanne vastaa jo edellisen esimerkin seinää. Periodisen aallon tapauksessa läpäisseen aallon - taajuus f ei muutu (helppo ymmärtää) - nopeus v muuttuu, koska m muuttuu - aallonpituus muuttuu yhtälön l =v / f mukaisesti. Kuvassa (yllä) aalto saapuu "kevyemmästä" väliaineesta "raskaampaan", jolloin heijastuneessa aallossa havaitaan p :n vaihesiirto (vrt. köysi kiinnitetty seinään). Jos aalto saapuu raskaammasta väliaineesta kevyempään, vaihesiirtoa ei havaita. Läpimennyt aalto ei koskaan koe vaihesiirtoa. Esimerkki: Köydessä etenee siniaalto y( x, t) = Asin( kx- wt). Aaltoon aiheutetaan (tavalla tai toisella) yht äkkinen 180 asteen vaihesiirto. Osoita, että aalto kääntyy ylösalaisin. Ratkaisu: Vaihesiirto D f0 tarkoittaa: y( x, t) = Asin( kx- wt+d f0 ). Tässä D f0 = p eli 180 ja koska sin( a + b) = sinacos b + cosasin b saadaan y( x, t) = Asin( kx- wt)cos( p) + Acos( kx- wt)sin( p), mistä y( x, t) =-Asin( kx- wt) eli kääntynyt ylösalaisin alkuperäiseen verrattuna. Kuva piirretty ajanhetkellä t = 0:

Kompleksiesitys: Harmoninen aalto esitetään usein kompleksimuodossa

Kompleksiesitys: Harmoninen aalto esitetään usein kompleksimuodossa Kompleksiesitys: Harmoninen aalto esitetään usein kompleksimuodossa 13 i( kx-w t) %, y = Ae joka Eulerin kaavalla avautuu muotoon y% = Acos( kx- wt) + iasin( kx-wt). Kompleksiesitys sisältää siis sekä

Lisätiedot

1 PERUSKÄSITTEITÄ 1.1 AALTOJEN TYYPIT

1 PERUSKÄSITTEITÄ 1.1 AALTOJEN TYYPIT 1 1 PERUSKÄSITTEITÄ Luonto on täynnä aaltoja. Aaltoliikettä voi syntyä kimmoisissa systeemeissä, jotka poikkeutettuna tasapainotilastaan pyrkivät palaamaan siihen takaisin. Aalto etenee, kun poikkeama

Lisätiedot

YLEINEN AALTOLIIKEOPPI

YLEINEN AALTOLIIKEOPPI YLEINEN AALTOLIIKEOPPI KEVÄT 2017 1 Saana-Maija Huttula (saana.huttula@oulu.fi) Maanantai Tiistai Keskiviikko Torstai Perjantai Vk 8 Luento 1 Mekaaniset aallot 1 Luento 2 Mekaaniset aallot 2 Ääni ja kuuleminen

Lisätiedot

2 AALTOLIIKKEIDEN YHDISTÄMINEN

2 AALTOLIIKKEIDEN YHDISTÄMINEN 1 AALTOLIIKKEIDEN YHDISTÄMINEN Kun aalto osuu väliaineen rajapintaan, se heijastuu siitä takaisin joko osittain tai kokonaan. Esimerkiksi äänen osuessa talon seinään se palaa takaisin kaikuna. Missä määrin

Lisätiedot

- 3 välikoetta, jokaisessa 4 tehtävää, yht. 12 teht. - 6 pistettä yhdestä tehtävästä - max pisteet 72 (+ lisät harjoituksista)

- 3 välikoetta, jokaisessa 4 tehtävää, yht. 12 teht. - 6 pistettä yhdestä tehtävästä - max pisteet 72 (+ lisät harjoituksista) 1/2 KURSSIN ARVOSTELU - 3 välikoetta, jokaisessa 4 tehtävää, yht. 12 teht. - 6 pistettä yhdestä tehtävästä - max pisteet 72 (+ lisät harjoituksista) pisteet arvosana 00,00 35,25-35,50 41,25 1 1/2 maksimista

Lisätiedot

Luento 15: Mekaaniset aallot

Luento 15: Mekaaniset aallot Luento 15: Mekaaniset aallot Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot Ajankohtaista Luennon sisältö Mekaaniset aallot Eteneminen Aallon nopeus

Lisätiedot

766329A Aaltoliike ja optiikka

766329A Aaltoliike ja optiikka 76639A Aaltoliike ja optiikka Seppo Alanko Oulun yliopisto Fysiikan laitos Kevät 5 Perustuu oppikirjoihin: H. D. Young and R. A. Freedman University Physics, Addison-Wesley th ed., and th ed., 4 F. L.

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys12 Kevät 21 Jukka Maalampi LUENTO 11 Mekaaninen aaltoliike alto = avaruudessa etenevä järjestäytynyt häiriö. alto altoja on kahdenlaisia: Poikittainen aalto - poikkeamat kohtisuorassa

Lisätiedot

Luento 15: Mekaaniset aallot. Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot

Luento 15: Mekaaniset aallot. Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot Luento 15: Mekaaniset aallot Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot 1 / 40 Luennon sisältö Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa

Lisätiedot

SEISOVA AALTOLIIKE 1. TEORIAA

SEISOVA AALTOLIIKE 1. TEORIAA 1 SEISOVA AALTOLIIKE MOTIVOINTI Työssä tutkitaan poikittaista ja pitkittäistä aaltoliikettä pitkässä langassa ja jousessa. Tarkastellaan seisovaa aaltoliikettä. Määritetään aaltoliikkeen etenemisnopeus

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan

Lisätiedot

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina 31.5.2012. T 6.1 (pakollinen): Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä.

Lisätiedot

9 VALOAALTOJEN SUPERPOSITIO

9 VALOAALTOJEN SUPERPOSITIO 09 9 VALOAALTOJEN SUPERPOSITIO Edellisissä kappaleissa olemme tutkineet valon heijastumista peileissä ja taittumista linsseissä geometrisen optiikan approksimaation avulla Approksimaatiossa valon aaltoluonnetta

Lisätiedot

Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori!

Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! 6.1 Työ Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! Siirtymä s = r 2 r 1 Kun voiman kohteena olevaa kappaletta voidaan kuvata

Lisätiedot

= 0.175m, 0.525m, 0.875m,...

= 0.175m, 0.525m, 0.875m,... 9 (a) Esitä seisovan aallon aaltofunktio. (b) Paikallista ne köyden pisteet, jotka eivät liiku ollenkaan. (c) Paikallista ne köyden pisteet, jotka liikkuvat eniten ja laske vastaavat maksimipoikkeamat,

Lisätiedot

Nopeus, kiihtyvyys ja liikemäärä Vektorit

Nopeus, kiihtyvyys ja liikemäärä Vektorit Nopeus, kiihtyvyys ja liikemäärä Vektorit Luento 2 https://geom.mathstat.helsinki.fi/moodle/course/view.php?id=360 Luennon tavoitteet: Vektorit tutuiksi Koordinaatiston valinta Vauhdin ja nopeuden ero

Lisätiedot

TEHTÄVIEN RATKAISUT. b) 105-kiloisella puolustajalla on yhtä suuri liikemäärä, jos nopeus on kgm 712 p m 105 kg

TEHTÄVIEN RATKAISUT. b) 105-kiloisella puolustajalla on yhtä suuri liikemäärä, jos nopeus on kgm 712 p m 105 kg TEHTÄVIEN RATKAISUT 15-1. a) Hyökkääjän liikemäärä on p = mv = 89 kg 8,0 m/s = 71 kgm/s. b) 105-kiloisella puolustajalla on yhtä suuri liikemäärä, jos nopeus on kgm 71 p v = = s 6,8 m/s. m 105 kg 15-.

Lisätiedot

Luento 15: Ääniaallot, osa 2

Luento 15: Ääniaallot, osa 2 Luento 15: Ääniaallot, osa 2 Aaltojen interferenssi Doppler Laskettuja esimerkkejä Luennon sisältö Aaltojen interferenssi Doppler Laskettuja esimerkkejä Aaltojen interferenssi Samassa pisteessä vaikuttaa

Lisätiedot

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77 Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty.5.07 Kertaus K. a) sin 0 = 0,77 b) cos ( 0 ) = cos 0 = 0,6 c) sin 50 = sin (80 50 ) = sin 0 = 0,77 d) tan 0 = tan (0 80 ) = tan 0 =,9 e)

Lisätiedot

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen)

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen) Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen Vapaaseen hiukkaseen ei vaikuta voimia, joten U(x = 0. Vapaan hiukkasen energia on sen liike-energia eli E=p /m. Koska hiukkasella on määrätty energia,

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 6 Yksinkertainen harmoninen liike yhteys ympyräliikkeeseen energia dynamiikka Värähdysliike Knight Ch 14 Heilahtelut pystysuunnassa ja gravitaation

Lisätiedot

Luvun 8 laskuesimerkit

Luvun 8 laskuesimerkit Luvun 8 laskuesimerkit Esimerkki 8.1 Heität pallon, jonka massa on 0.40 kg seinään. Pallo osuu seinään horisontaalisella nopeudella 30 m/s ja kimpoaa takaisin niin ikään horisontaalisesti nopeudella 20

Lisätiedot

3.1 PITKITTÄISEN AALLON NOPEUS JA ENERGIA

3.1 PITKITTÄISEN AALLON NOPEUS JA ENERGIA 37 3 ÄÄNI Yksi ihmisen kannalta tärkeimmistä luonnossa esiintyvistä aaltoilmiöistä muodostuu ilmassa etenevistä pitkittäisistä aalloista eli ääniaalloista (sound waves) Tarkastelemme nyt ääntä lähinnä

Lisätiedot

2 Mekaaninen aalto. Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium).

2 Mekaaninen aalto. Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium). 2 Mekaaninen aalto Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium). 1 Mekaanisten aaltojen vastakohtana ovat sähkömagneettiset allot, jotka kulkevat

Lisätiedot

Aaltoliike ajan suhteen:

Aaltoliike ajan suhteen: Aaltoliike Aaltoliike on etenevää värähtelyä Värähdysliikkeen jaksonaika T on yhteen värähdykseen kuluva aika Värähtelyn taajuus on sekunnissa tapahtuvien värähdysten lukumäärä Taajuuden ƒ yksikkö Hz (hertsi,

Lisätiedot

Sinin muotoinen signaali

Sinin muotoinen signaali Sinin muotoinen signaali Pekka Rantala.. Sini syntyy tasaisesta pyörimisestä Sini-signaali syntyy vakio-nopeudella pyörivän osoittimen y-suuntaisesta projektiosta. y u û α positiivinen pyörimissuunta x

Lisätiedot

BM30A0240, Fysiikka L osa 4

BM30A0240, Fysiikka L osa 4 BM30A0240, Fysiikka L osa 4 Luennot: Heikki Pitkänen 1 Oppikirja: Young & Freedman: University Physics Luku 14 - Periodic motion Luku 15 - Mechanical waves Luku 16 - Sound and hearing Muuta - Diffraktio,

Lisätiedot

dl = F k dl. dw = F dl = F cos. Kun voima vaikuttaa kaarevalla polulla P 1 P 2, polku voidaan jakaa infinitesimaalisen pieniin siirtymiin dl

dl = F k dl. dw = F dl = F cos. Kun voima vaikuttaa kaarevalla polulla P 1 P 2, polku voidaan jakaa infinitesimaalisen pieniin siirtymiin dl Kun voima vaikuttaa kaarevalla polulla P 2, polku voidaan jakaa infinitesimaalisen pieniin siirtymiin dl Kukin siirtymä dl voidaan approksimoida suoraviivaiseksi, jolloin vastaava työn elementti voidaan

Lisätiedot

Sovelletun fysiikan pääsykoe

Sovelletun fysiikan pääsykoe Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Meaniian jatourssi Fys10 Sysy 009 Jua Maalampi LUENTO 6 Harmonisen värähdysliieen energia Jousen potentiaalienergia on U ( x missä on jousivaio ja Dx on poieama tasapainosta. Valitaan origo tasapainopisteeseen,

Lisätiedot

FYS03: Aaltoliike. kurssin muistiinpanot. Rami Nuotio

FYS03: Aaltoliike. kurssin muistiinpanot. Rami Nuotio FYS03: Aaltoliike kurssin muistiinpanot Rami Nuotio päivitetty 24.1.2010 Sisältö 1. Mekaaninen aaltoliike 2 1.1. Harmoninen voima 2 1.2. Harmoninen värähdysliike 2 1.3. Mekaaninen aalto 3 1.4. Mekaanisen

Lisätiedot

Luento 11: Periodinen liike

Luento 11: Periodinen liike Luento 11: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r Konseptitesti 1 Tehtävänanto Kuvassa on jouseen kytketyn massan sijainti ajan funktiona. Kuvaile

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 15.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinematiikka: asema, nopeus ja kiihtyvyys (Kirjan luvut 12.1-12.5, 16.1 ja 16.2) Osaamistavoitteet Ymmärtää

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus värähtelytiheyden. 1 Funktiot ja aallot Aiemmin käsiteltiin funktioita ja miten niiden avulla voidaan kuvata fysiikan

Lisätiedot

Luento 13: Periodinen liike

Luento 13: Periodinen liike Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos Ajankohtaista

Lisätiedot

3.4 Liike-energiasta ja potentiaalienergiasta

3.4 Liike-energiasta ja potentiaalienergiasta Työperiaatteeksi (the work-energy theorem) kutsutaan sitä että suljetun systeemin liike-energian muutos Δ on voiman systeemille tekemä työ W Tämä on yksi konservatiivisen voiman erityistapaus Työperiaate

Lisätiedot

ja siis myös n= nk ( ). Tällöin dk l l

ja siis myös n= nk ( ). Tällöin dk l l Tästä havaitaan, että jos nopeus ei riipu aallonpituudesta, ts. ei ole dispersiota, vg = v p. Tilanne on tällainen esimerkiksi tyhjiössä, missä vg = v p = c. Dispersiivisessä väliaineessa v p = c/ n, missä

Lisätiedot

d+tv 1 S l x 2 x 1 x 3 MEI Mallintamisen perusteet Harjoitus 6, kevät 2015 Tuomas Kovanen

d+tv 1 S l x 2 x 1 x 3 MEI Mallintamisen perusteet Harjoitus 6, kevät 2015 Tuomas Kovanen MEI-55100 Mallintamisen perusteet Harjoitus 6, kevät 2015 Tuomas Kovanen Tehtävä 1: Tarkastellaan luentojen esimerkkiä, jossa johepalkki liikkuu kahen johelevyn välissä homogeenisessä magneettikentässä,

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

7.4 PERUSPISTEIDEN SIJAINTI

7.4 PERUSPISTEIDEN SIJAINTI 67 7.4 PERUSPISTEIDEN SIJAINTI Optisen systeemin peruspisteet saadaan systeemimatriisista. Käytetään seuraavan kuvan merkintöjä: Kuvassa sisäänmenotaso on ensimmäisen linssin ensimmäisessä pinnassa eli

Lisätiedot

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! 1. Vastaa, ovatko seuraavat väittämät oikein vai väärin. Perustelua ei tarvitse kirjoittaa. a) Atomi ei voi lähettää

Lisätiedot

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r Vuka HT 4 Tehtävä. Lyhyenä alustuksena tehtävään johdetaan keskeiskiihtyvyys tasaisessa pyörimisessä. Meillä on ympyräradalla liikkuva kappale joka pyörii vakiokulmanopeudella ω dϕ säteellä r origosta.

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Huom: luvun 4 kohdalla luennolla ei ollut laskuesimerkkejä, vaan koko luvun 5 voi nähdä kokoelmana sovellusesimerkkejä edellisen luvun asioihin! Esimerkki 5.1 Moottori roikkuu oheisen

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Esimerkki 5.1 Moottori roikkuu oheisen kuvan mukaisessa ripustuksessa. a) Mitkä ovat kahleiden jännitykset? b) Mikä kahleista uhkaa katketa ensimmäisenä? Piirretäänpä parit vapaakappalekuvat.

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Syksy 2016 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia Ajankohtaista Presemokyselyn poimintoja Millä odotuksilla aloitat

Lisätiedot

Luento 10: Työ, energia ja teho

Luento 10: Työ, energia ja teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho Ajankohtaista Konseptitesti 1 Kysymys Ajat pyörällä ylös jyrkkää mäkeä. Huipulle vie kaksi polkua, toinen kaksi kertaa pidempi kuin

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

Osallistumislomakkeen viimeinen palautuspäivä on maanantai

Osallistumislomakkeen viimeinen palautuspäivä on maanantai Jakso : Materiaalihiukkasten aaltoluonne. Teoriaa näihin tehtäviin löytyy Beiserin kirjasta kappaleesta 3 ja hyvin myös peruskurssitasoisista kirjoista. Seuraavat videot demonstroivat vaihe- ja ryhmänopeutta:

Lisätiedot

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1). H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika

Lisätiedot

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a) Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman

Lisätiedot

jonka peruslait tiivistyvät neljään ns. Maxwellin yhtälöön.

jonka peruslait tiivistyvät neljään ns. Maxwellin yhtälöön. 71 4. SÄHKÖMAGNEETTINEN AALTO Sähköön ja magnetismiin liittyvät havainnot yhdistettiin noin 1800luvun puolessa välissä yhtenäiseksi sähkömagnetismin teoriaksi, jonka peruslait tiivistyvät neljään ns. Maxwellin

Lisätiedot

Pietarsaaren lukio Vesa Maanselkä

Pietarsaaren lukio Vesa Maanselkä Fys 9 / Mekaniikan osio Liike ja sen kuvaaminen koordinaatistossa Newtonin lait Voimavektorit ja vapaakappalekuvat Työ, teho,työ-energiaperiaate ja energian säilymislaki Liikemäärä ja sen säilymislaki,

Lisätiedot

, tulee. Käyttämällä identiteettiä

, tulee. Käyttämällä identiteettiä 44 euraavaksi käytämme tilavuusmodulin B määritelmää (katso sivu 4) B =- dp /( dv / V ). Tässä dp on paineen muutos, joka nyt on pxt (,). aamme siten dv yxt (,) p(,) x t =- B =-B. (3.3.3) V x Kun tähän

Lisätiedot

Pakotettu vaimennettu harmoninen värähtelijä Resonanssi

Pakotettu vaimennettu harmoninen värähtelijä Resonanssi Pakotettu vaimennettu harmoninen värähtelijä Resonanssi Tällä luennolla tavoitteena Mikä on pakkovoiman aiheuttama vaikutus vaimennettuun harmoniseen värähtelijään? Mikä on resonanssi? Kertaus: energian

Lisätiedot

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen 3 VALON POLARISAATIO 3.1 Johdanto Mawellin htälöiden avulla voidaan johtaa aaltohtälö sähkömagneettisen säteiln etenemiselle väliaineessa. Mawellin htälöiden ratkaisusta seuraa aina, että valo on poikittaista

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle / MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,

Lisätiedot

Tietoliikennesignaalit & spektri

Tietoliikennesignaalit & spektri Tietoliikennesignaalit & spektri 1 Tietoliikenne = informaation siirtoa sähköisiä signaaleja käyttäen. Signaali = vaihteleva jännite (tms.), jonka vaihteluun on sisällytetty informaatiota. Signaalin ominaisuuksia

Lisätiedot

Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa

Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa Potentiaalikuoppa Luento 9 Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa U( x ) = U U( x ) = 0 0 kun x < 0 tai x > L, kun 0 x L. Kuopan kohdalla hiukkanen on vapaa,

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

L a = L l. rv a = Rv l v l = r R v a = v a 1, 5

L a = L l. rv a = Rv l v l = r R v a = v a 1, 5 Tehtävä a) Energia ja rataliikemäärämomentti säilyy. Maa on r = AU päässä auringosta. Mars on auringosta keskimäärin R =, 5AU päässä. Merkitään luotaimen massaa m(vaikka kuten tullaan huomaamaan sitä ei

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1 763306A JOHDATUS SUHTLLISUUSTORIAAN Ratkaisut 3 Kevät 07. Fuusioreaktio. Lähdetään suoraan annetuista yhtälöistä nergia on suoraan yhtälön ) mukaan + m ) p P ) m + p 3) M + P 4) + m 5) Ratkaistaan seuraavaksi

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Syksy 2009 Jukka Maalampi LUENTO 12 Aallot kahdessa ja kolmessa ulottuvuudessa Toistaiseksi on tarkasteltu aaltoja, jotka etenevät yhteen suuntaan. Yleisempiä tapauksia ovat

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen

Lisätiedot

Luento 11: Periodinen liike

Luento 11: Periodinen liike Luento 11: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä θ F t m g F r Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä Johdanto Tarkastellaan

Lisätiedot

3 Määrätty integraali

3 Määrätty integraali Määrätty integraali. a) Muodostuva alue on kolmio, jonka kanta on. Kolmion korkeus on funktion arvo kohdassa, eli f() = = 6. Lasketaan A() kolmion pintaalana. 6 A() 6 Vastaus: A() = 6 b) Muodostuva alue

Lisätiedot

Luku 8. Mekaanisen energian säilyminen. Konservatiiviset ja eikonservatiiviset. Potentiaalienergia Voima ja potentiaalienergia.

Luku 8. Mekaanisen energian säilyminen. Konservatiiviset ja eikonservatiiviset. Potentiaalienergia Voima ja potentiaalienergia. Luku 8 Mekaanisen energian säilyminen Konservatiiviset ja eikonservatiiviset voimat Potentiaalienergia Voima ja potentiaalienergia Mekaanisen energian säilyminen Teho Tavoitteet: Erottaa konservatiivinen

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista

Lisätiedot

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut Diplomi-insino o rien ja arkkitehtien yhteisalinta - dia-alinta 15 Insino o rialinnan fysiikan koe 7.5.15, malliratkaisut A1 Pallo (massa m = 1, kg, sa de r =, cm) nojaa kur an mukaisesti pystysuoraan

Lisätiedot

Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta

Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta 8 LIIKEMÄÄRÄ, IMPULSSI JA TÖRMÄYKSET Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta Tällöin dynamiikan peruslain F = ma käyttäminen ei ole helppoa tai edes mahdollista Newtonin

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

Useita oskillaattoreita yleinen tarkastelu

Useita oskillaattoreita yleinen tarkastelu Useita oskillaattoreita yleinen tarkastelu Useita riippumattomia vapausasteita q i, i =,..., n ja potentiaali vastaavasti U(q, q 2,..., q n). Tasapainoasema {q 0, q0 2,..., q0 n} q 0 Käytetään merkintää

Lisätiedot

5-2. a) Valitaan suunta alas positiiviseksi. 55 N / 6,5 N 8,7 m/s = =

5-2. a) Valitaan suunta alas positiiviseksi. 55 N / 6,5 N 8,7 m/s = = TEHTÄVIEN RATKAISUT 5-1. a) A. Valitaan suunta vasemmalle positiiviseksi. Alustan suuntainen kokonaisvoima on ΣF = 19 N + 17 N -- 16 N = 0 N vasemmalle. B. Valitaan suunta oikealle positiiviseksi. Alustan

Lisätiedot

Luento 2: Liikkeen kuvausta

Luento 2: Liikkeen kuvausta Luento 2: Liikkeen kuvausta Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Luennon sisältö Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Liikkeen ratkaisu kiihtyvyydestä

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Aalto köydessä Kohdassa x olevan ainehiukkasen poikkeama tasapainosta y ajan funktiona on y( x, t) Asin( kx t 0) Ketjusääntö: Ainehiukkasen

Lisätiedot

KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4

KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4 KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + ( 1) + 3 ( 1) 3 = 3 + 3 = 4 K. a) x 3x + 7x 5x = 4x + 4x b) 5x 3 (1 x ) = 5x 3 1 + x = 6x 4 c) (x + 3)(x 4) = x 3 4x + 3x 1 = x 3 + 3x 4x 1 Vastaus: a) 4x +

Lisätiedot

FYSA242 Statistinen fysiikka, Harjoitustentti

FYSA242 Statistinen fysiikka, Harjoitustentti FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella

Lisätiedot

Luku 7 Työ ja energia. Muuttuvan voiman tekemä työ Liike-energia

Luku 7 Työ ja energia. Muuttuvan voiman tekemä työ Liike-energia Luku 7 Työ ja energia Muuttuvan voiman tekemä työ Liike-energia Tavoitteet: Selittää työn käsite Mallittaa voiman tekemä työ Mallittaa liike-energian ja työn keskinäinen riippuvuus Esitiedot Newtonin lait

Lisätiedot

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t,

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, v)-koordinaatistossa ruutumenetelmällä. Tehtävä 4 (~YO-K97-1). Tekniikan

Lisätiedot

1 WKB-approksimaatio. Yleisiä ohjeita. S Harjoitus

1 WKB-approksimaatio. Yleisiä ohjeita. S Harjoitus S-114.1427 Harjoitus 3 29 Yleisiä ohjeita Ratkaise tehtävät MATLABia käyttäen. Kirjoita ratkaisut.m-tiedostoihin. Tee tuloksistasi lyhyt seloste, jossa esität laskemasi arvot sekä piirtämäsi kuvat (sekä

Lisätiedot

HARJOITUS 4 1. (E 5.29):

HARJOITUS 4 1. (E 5.29): HARJOITUS 4 1. (E 5.29): Työkalulaatikko, jonka massa on 45,0 kg, on levossa vaakasuoralla lattialla. Kohdistat laatikkoon asteittain kasvavan vaakasuoran työntövoiman ja havaitset, että laatikko alkaa

Lisätiedot

KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1

KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1 KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1 Tässä materiaalissa on ensin helpompia laskuja, joiden avulla voi kerrata perusasioita, ja sen jälkeen muutamia vaikeampia laskuja. Laskujen jälkeen

Lisätiedot

Funktion derivoituvuus pisteessä

Funktion derivoituvuus pisteessä Esimerkki A Esimerkki A Esimerkki B Esimerkki B Esimerkki C Esimerkki C Esimerkki 4.0 Ratkaisu (/) Ratkaisu (/) Mielikuva: Funktio f on derivoituva x = a, jos sen kuvaaja (xy-tasossa) pisteen (a, f(a))

Lisätiedot

Ohjeita fysiikan ylioppilaskirjoituksiin

Ohjeita fysiikan ylioppilaskirjoituksiin Ohjeita fysiikan ylioppilaskirjoituksiin Kari Eloranta 2016 Jyväskylän Lyseon lukio 11. tammikuuta 2016 Kokeen rakenne Fysiikan kokeessa on 13 tehtävää, joista vastataan kahdeksaan. Tehtävät 12 ja 13 ovat

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Mikro- ja nanotekniikan laitos Syksy 2016 1 / 21 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia

Lisätiedot

z 1+i (a) f (z) = 3z 4 5z 3 + 2z (b) f (z) = z 4z + 1 f (z) = 12z 3 15z 2 + 2

z 1+i (a) f (z) = 3z 4 5z 3 + 2z (b) f (z) = z 4z + 1 f (z) = 12z 3 15z 2 + 2 BM20A5700 - Integraauunnokset Harjoitus 2 1. Laske seuraavat raja-arvot. -kohta ratkeaa, kun pistät sekä yläkerran että alakerran muotoon (z z 1 )(z z 2 ), missä siis z 1 ja z 2 ovat näiden lausekkeiden

Lisätiedot

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike 1 / 29 Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat

Lisätiedot

11.1 MICHELSONIN INTERFEROMETRI

11.1 MICHELSONIN INTERFEROMETRI 47 11 INTERFEROMETRIA Edellisessä kappaleessa tarkastelimme interferenssiä. Instrumentti, joka on suunniteltu interferenssikuvion muodostamiseen ja sen tutkimiseen (mittaamiseen) on ns. interferometri.

Lisätiedot

Vedetään kiekkoa erisuuruisilla voimilla! havaitaan kiekon saaman kiihtyvyyden olevan suoraan verrannollinen käytetyn voiman suuruuteen

Vedetään kiekkoa erisuuruisilla voimilla! havaitaan kiekon saaman kiihtyvyyden olevan suoraan verrannollinen käytetyn voiman suuruuteen 4.3 Newtonin II laki Esim. jääkiekko märällä jäällä: pystysuuntaiset voimat kumoavat toisensa: jään kiekkoon kohdistama tukivoima n on yhtäsuuri, mutta vastakkaismerkkinen kuin kiekon paino w: n = w kitka

Lisätiedot

MS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM)

MS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM) MS-A17 Differentiaali- ja integraalilaskenta 1 CHEM) Laskuharjoitus 4lv, kevät 16 1. Tehtävä: Laske cos x dx a) osittaisintegroinnilla, b) soveltamalla sopivaa trigonometrian kaavaa. Ratkaisu: a) Osittaisintegroinnin

Lisätiedot

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x BM0A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 4, Kevät 017 Päivityksiä: 1. Ratkaise differentiaaliyhtälöt 3y + 4y = 0 ja 3y + 4y = e x.. Ratkaise DY (a) 3y 9y + 6y = e 10x (b) Mikä on edellisen

Lisätiedot

Lineaarinen yhtälöryhmä

Lineaarinen yhtälöryhmä Lineaarinen yhtälöryhmä 1 / 39 Lineaarinen yhtälö Määritelmä 1 Lineaarinen yhtälö on muotoa a 1 x 1 + a 2 x 2 + + a n x n = b, missä a i, b R, i = 1,..., n ovat tunnettuja ja x i R, i = 1,..., n ovat tuntemattomia.

Lisätiedot