Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina

Koko: px
Aloita esitys sivulta:

Download "Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina"

Transkriptio

1 Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina T 6.1 (pakollinen): Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä. Massaan kiinnitetty kynä piirtää käyrää, joka esittää poikkeamaa ajan funktiona kuten videossa Tuloksena saadaan alla olevat kuvat. Määritä a) liikkeen amplitudi (sama jokaisessa kolmessa kuvassa), b) liikkeen periodi (sama jokaisessa kolmessa kuvassa), c) liikkeen kulmataajuus (sama jokaisessa kolmessa kuvassa), d) liikkeen vaihekulma (eri jokaisessa kuvassa). e) Kirjoita alimmalle liikkeelle yhtälö x = Asin(ωt +φ), johon sijoitat vakioiden arvot. Oleta, että liike on vaimentumatonta.

2

3 T 6.2 (pakollinen): Harmonisen värähtelijän yhtälö on x = (0,10 m) sin 2 (rad/s) t + /4. a) Mikä on suurin poikkeama tasapainoasemasta? b) Montako edestakaista värähdystä tapahtuu sekunnissa? c) Mikä on liikkeen taajuus? d) Mikä on poikkeama ajanhetkellä t = 0? T 6.3 (pakollinen): Harmonisen värähtelijän liikettä kuvataan yhtälöllä x = Asin( t + ). Määritä harmonisen värähtelijän nopeus ajan funktiona ja kiihtyvyys ajan funktiona. T 6.4: Kappale, jonka massa on 3,0 kg, on kiinnitetty jouseen, jonka jousivakio on 22 N/m. Kappaletta poikkeutetaan 320 mm tasapainoasemastaan (jossa x = 0) eräällä ajanhetkellä t = 0 ja vapautetaan levosta. a) Mikä on liikkeen periodi? b) Mikä on syntyvän harmonisen liikkeen maksimikiihtyvyys? T 6.5: Harmonisen värähtelijän yhtälö on x = (0,10 m) sin 2 (rad/s) t + /4. a) Mikä on kappaleen poikkeama, kun t = 0,125 s? b) Mikä on kappaleen nopeus, kun t = 0,125 s? c) Mikä on kappaleen kiihtyvyys, kun t = 0,125 s? T 6.6: Harmonisen värähtelijän yhtälö on x = (0,10 m) sin 2 (rad/s) t + /4. a) Milloin poikkeama on nolla? b) Milloin nopeus on nolla? c) Milloin kiihtyvyys on nolla? T 6.7: Kappale, jonka massa on 0,20 kg, liikkuu nopeudella 5,0 m/s pitkin vaakasuoraa kitkatonta pintaa kohti massatonta vaakasuoraa jousta, joka on tasapainoasemassaan. Massa tarttuu kiinni jouseen, joka puristuu kokoon 0,50 m. a) Mikä on jousivakio k? b) Millä taajuudella jousi alkaa värähdellä? c) Mikä on massa-jousisysteemin kokonaisenergia? T 6.8: Yksinkertaista eli matemaattista heiluria (langan pituus 0,240 m) poikkeutetaan tasapainoasemasta 3,50 o ja sen jälkeen vapautetaan. a) Mikä on syntyvän heilahdusliikkeen jaksonaika? b) Mikä on syntyvän heilahdusliikkeen taajuus? c) Jos tätä samaa heiluria poikkeutetaan aluksi 1,75 o, mikä on nyt syntyvän heilahdusliikkeen jaksonaika? T 6.9 (pakollinen): Kappale, jonka massa on m, liikkuu harmonisen voiman F = - kx vaikutuksen alaisena. a) Kirjoita differentiaaliyhtälö, josta saa ratkaisuna kappaleen poikkeaman tasapainoasemasta ajan funktiona: x = A sin(ωt + φ). Yhtälöä ei tarvitse ratkaista, mutta selvitä pääpiirteittäin (esimerkiksi Fysiikan matematiikan kurssilla oppimasi perusteella), miten kyseinen differentiaaliyhtälö ratkaistaan. b) Mitä yllä olevassa lausekkeessa tarkoittavat A, ω ja φ? c) Miten lasketaan värähdysliikkeen periodi? d) Mikä on kyseisen värähtelijän hetkellinen potentiaalienergia ja kokonaisenergia.

4 T 6.10 (pakollinen): Kappale, jonka massa on m, liikkuu harmonisen voiman F = - kx vaikutuksen alaisena. Lisätään systeemiin liikettä hidastava voima, joka riippuu kappaleen nopeudesta seuraavalla tavalla: F = - bv a) Kirjoita differentiaaliyhtälö, josta saa ratkaisuna kappaleen poikkeaman tasapainoasemasta ajan funktiona. Yhtälöä ei tarvitse ratkaista. b) Differentiaaliyhtälön ratkaisu on: x = Ae -(b/2m)t sin(ωt + φ) Mitä tässä yhtälössä tarkoittavat A, b, m, ω ja φ? c) Milloin vaimennettu värähtelijä on ylivaimennettu? Mitä se käytännössä tarkoittaa? d) Jos piirtäisit tehtävän vaimentumattoman ja vaimennetun värähtelijän kuvaajan, miten ne eroaisivat toisistaan? Oleta, että m, k ja φ ovat samoja molemmille värähtelijöille. T 6.11 (pakollinen): Koejärjestely on muuten samanlainen kuin tehtävässä T 6.1., mutta nyt kappaleeseen vaikuttaa hidastava voima. Kappale on esimerkiksi upotettu nesteeseen. Asiaa havainnollistaa videossa vasemmanpuoleisin kuva tai video Alla olevassa kuvassa on esitetty kappaleen poikkeama ajan funktiona. Määritä vakion b/2m arvo, jos liikettä kuvataan yhtälöllä x = Ae -(b/2m)t sin(ωt + φ).

5 T 6.12 (bonustehtävä): Vaimenemattoman värähtelijän jaksonaika on 12.0 s. Vaimenevan värähtelijän kulmataajuus on 97 % vaimenemattoman värähtelijän kulmataajuudesta. a) Mikä on peräkkäisten maksimien amplitudien suhde? b) Missä ajassa värähtelijän amplitudi pienenee puoleen? Jakso 6: Vastaukset T 6.4: a) 2,32 s, b) 2,35 m/s 2 T 6.5: a) 0,10 m, b) 0, c) -3,95 m/s 2 T 6.6: a) -0,125 s [+ (n/2)t] b) 0,125 s [+ (n/2)t] c) -0,125 s [+ (n/2)t] T 6.7: a) 20 N/m, b) 1,6 Hz, c) 2,5 J T 6.8: a) 0,983 s, b) 1,02 Hz, c) 0,983 s T 6.11: noin 0,05 s -1 HUOM! Vastausta muutettu. T 6.12: a) 0,21, b) 5,45 s

KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1

KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1 KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1 Tässä materiaalissa on ensin helpompia laskuja, joiden avulla voi kerrata perusasioita, ja sen jälkeen muutamia vaikeampia laskuja. Laskujen jälkeen

Lisätiedot

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic

Lisätiedot

BM30A0240, Fysiikka L osa 4

BM30A0240, Fysiikka L osa 4 BM30A0240, Fysiikka L osa 4 Luennot: Heikki Pitkänen 1 Oppikirja: Young & Freedman: University Physics Luku 14 - Periodic motion Luku 15 - Mechanical waves Luku 16 - Sound and hearing Muuta - Diffraktio,

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan

Lisätiedot

Luento 11: Periodinen liike

Luento 11: Periodinen liike Luento 11: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä θ F t m g F r Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä Johdanto Tarkastellaan

Lisätiedot

Luento 11: Periodinen liike

Luento 11: Periodinen liike Luento 11: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r Konseptitesti 1 Tehtävänanto Kuvassa on jouseen kytketyn massan sijainti ajan funktiona. Kuvaile

Lisätiedot

Luento 13: Periodinen liike

Luento 13: Periodinen liike Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos Ajankohtaista

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 6 Yksinkertainen harmoninen liike yhteys ympyräliikkeeseen energia dynamiikka Värähdysliike Knight Ch 14 Heilahtelut pystysuunnassa ja gravitaation

Lisätiedot

= vaimenevan värähdysliikkeen taajuus)

= vaimenevan värähdysliikkeen taajuus) Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 7: MEKAANINEN VÄRÄHTELIJÄ Teoriaa Vaimeneva värähdysliike y ŷ ŷ ŷ t T Kuva. Vaimeneva värähdysliike ajan funktiona.

Lisätiedot

Liikemäärän säilyminen Vuorovesivoimat Jousivoima

Liikemäärän säilyminen Vuorovesivoimat Jousivoima Liikemäärän säilyminen Vuorovesivoimat Jousivoima Tämän luennon tavoitteet Liikemäärän säilyminen Vuorovesivoimat ja binomiapproksimaatio gravitaatio jatkuu viime viikolta Jousivoima: mikä se on ja miten

Lisätiedot

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE Harmoninen voima on voima, jonka suuruus on suoraan verrannollinen poikkeamaan tasapainoasemasta

Lisätiedot

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1). H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika

Lisätiedot

- suurempi voima aiheuttaa nopeampaa liikettä kuin pieni voima - samanlainen voima aiheuttaa samalle kappaleelle aina samanlaisen vaikutuksen

- suurempi voima aiheuttaa nopeampaa liikettä kuin pieni voima - samanlainen voima aiheuttaa samalle kappaleelle aina samanlaisen vaikutuksen 3 Dynamiikka 3.1 Voima (force) - Jos työnnät jotain kevyttä kappaletta, se alkaa liikkua - jos työnnät sitä kovemmin, se liikkuu nopeammin Kyseinen suure on voima - suurempi voima aiheuttaa nopeampaa liikettä

Lisätiedot

BM30A0240, Fysiikka L osa 4. Värähtelyfysiikkaa. Luennot: Heikki Pitkänen

BM30A0240, Fysiikka L osa 4. Värähtelyfysiikkaa. Luennot: Heikki Pitkänen BM30A0240, Fysiikka L osa 4 Värähtelyfysiikkaa 1 Luennot: Heikki Pitkänen Oppikirja: Young & Freedman: University Physics Periodic motion Mechanical waves Sound and hearing Muuta - Diffraktio, interferenssi,

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

Dissipatiiviset voimat

Dissipatiiviset voimat Dissipatiiviset voimat Luennon tavoitteena Mitä on energian dissipaatio? Ilmanvastus ja muita vastusvoimia, analyyttinen käsittely Toinen tärkeä differentiaaliyhtälö: eksponentiaalinen vaimeneminen Vaimennettu

Lisätiedot

SEISOVA AALTOLIIKE 1. TEORIAA

SEISOVA AALTOLIIKE 1. TEORIAA 1 SEISOVA AALTOLIIKE MOTIVOINTI Työssä tutkitaan poikittaista ja pitkittäistä aaltoliikettä pitkässä langassa ja jousessa. Tarkastellaan seisovaa aaltoliikettä. Määritetään aaltoliikkeen etenemisnopeus

Lisätiedot

Luku 8. Mekaanisen energian säilyminen. Konservatiiviset ja eikonservatiiviset. Potentiaalienergia Voima ja potentiaalienergia.

Luku 8. Mekaanisen energian säilyminen. Konservatiiviset ja eikonservatiiviset. Potentiaalienergia Voima ja potentiaalienergia. Luku 8 Mekaanisen energian säilyminen Konservatiiviset ja eikonservatiiviset voimat Potentiaalienergia Voima ja potentiaalienergia Mekaanisen energian säilyminen Teho Tavoitteet: Erottaa konservatiivinen

Lisätiedot

Pakotettu vaimennettu harmoninen värähtelijä Resonanssi

Pakotettu vaimennettu harmoninen värähtelijä Resonanssi Pakotettu vaimennettu harmoninen värähtelijä Resonanssi Tällä luennolla tavoitteena Mikä on pakkovoiman aiheuttama vaikutus vaimennettuun harmoniseen värähtelijään? Mikä on resonanssi? Kertaus: energian

Lisätiedot

Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten)

Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten) Noste Ympyräliike I Luennon tavoitteet Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten) Aloitetaan ympyräliikettä Keskeisvoiman

Lisätiedot

Värähdysliikkeet. q + f (q, q, t) = 0. q + f (q, q) = F (t) missä nopeusriippuvuus kuvaa vaimenemista ja F (t) on ulkoinen pakkovoima.

Värähdysliikkeet. q + f (q, q, t) = 0. q + f (q, q) = F (t) missä nopeusriippuvuus kuvaa vaimenemista ja F (t) on ulkoinen pakkovoima. Torstai 18.9.2014 1/17 Värähdysliikkeet Värähdysliikkeet ovat tyypillisiä fysiikassa: Häiriö oskillaatio Jaksollinen liike oskillaatio Yleisesti värähdysliikettä voidaan kuvata yhtälöllä q + f (q, q, t)

Lisätiedot

Epähomogeenisen yhtälön ratkaisu

Epähomogeenisen yhtälön ratkaisu Epähomogeenisen yhtälön ratkaisu Lause Olkoot a = a(x), b = b(x) ja f = f(x) jatkuvia funktioita välillä I R ja olkoot y 1 = y 1 (x) ja y 2 = y 2 (x) eräs homogeeniyhtälön y + a(x)y + b(x)y = 0 ratkaisujen

Lisätiedot

Esimerkki 1 Ratkaise differentiaaliyhtälö

Esimerkki 1 Ratkaise differentiaaliyhtälö Esimerkki 1 Ratkaise differentiaaliyhtälö x 2 y xy =1/x. 1 / K. Tuominen kimmo.i.tuominen@helsinki.fi MApu II 1/20 20 Esimerkki 2 Ratkaise differentiaaliyhtälö x(ln y)y y ln x =0. 2 / K. Tuominen kimmo.i.tuominen@helsinki.fi

Lisätiedot

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r Vuka HT 4 Tehtävä. Lyhyenä alustuksena tehtävään johdetaan keskeiskiihtyvyys tasaisessa pyörimisessä. Meillä on ympyräradalla liikkuva kappale joka pyörii vakiokulmanopeudella ω dϕ säteellä r origosta.

Lisätiedot

FYSA220/K2 (FYS222/K2) Vaimeneva värähtely

FYSA220/K2 (FYS222/K2) Vaimeneva värähtely FYSA/K (FYS/K) Vaimeneva värähtely Työssä tutkitaan vaimenevaa sähköistä värähysliikettä. Erityisesti pyritään havainnollistamaan kelan inuktanssin, konensaattorin kapasitanssin ja ohmisen vastuksen suuruuksien

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Meaniian jatourssi Fys10 Sysy 009 Jua Maalampi LUENTO 6 Harmonisen värähdysliieen energia Jousen potentiaalienergia on U ( x missä on jousivaio ja Dx on poieama tasapainosta. Valitaan origo tasapainopisteeseen,

Lisätiedot

Luku 7 Työ ja energia. Muuttuvan voiman tekemä työ Liike-energia

Luku 7 Työ ja energia. Muuttuvan voiman tekemä työ Liike-energia Luku 7 Työ ja energia Muuttuvan voiman tekemä työ Liike-energia Tavoitteet: Selittää työn käsite Mallittaa voiman tekemä työ Mallittaa liike-energian ja työn keskinäinen riippuvuus Esitiedot Newtonin lait

Lisätiedot

Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa

Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa Potentiaalikuoppa Luento 9 Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa U( x ) = U U( x ) = 0 0 kun x < 0 tai x > L, kun 0 x L. Kuopan kohdalla hiukkanen on vapaa,

Lisätiedot

Luento 14: Periodinen liike, osa 2. Vaimennettu värähtely Pakkovärähtely Resonanssi F t F r

Luento 14: Periodinen liike, osa 2. Vaimennettu värähtely Pakkovärähtely Resonanssi F t F r Luento 14: Periodinen liike, osa 2 Vaimennettu värähtely Pakkovärähtely Resonanssi θ F µ F t F r m g 1 / 20 Luennon sisältö Vaimennettu värähtely Pakkovärähtely Resonanssi 2 / 20 Vaimennettu värähtely

Lisätiedot

Aaltoliike ajan suhteen:

Aaltoliike ajan suhteen: Aaltoliike Aaltoliike on etenevää värähtelyä Värähdysliikkeen jaksonaika T on yhteen värähdykseen kuluva aika Värähtelyn taajuus on sekunnissa tapahtuvien värähdysten lukumäärä Taajuuden ƒ yksikkö Hz (hertsi,

Lisätiedot

Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä

Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä Tekijä: Mikko Laine Tekijän sähköpostiosoite: miklaine@student.oulu.fi Koulutusohjelma: Fysiikka Mittausten suorituspäivä: 04.02.2013 Työn

Lisätiedot

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE Harmoninen voima on voima, jonka suuruus on suoraan verrannollinen poikkeamaan tasapainoasemasta

Lisätiedot

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4 766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4 0. MUISTA: Tenttitehtävä tulevassa päätekokeessa: Fysiikan säilymislait ja symmetria. (Tästä tehtävästä voi saada tentissä kolme ylimääräistä pistettä. Nämä

Lisätiedot

Luento 15: Mekaaniset aallot. Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot

Luento 15: Mekaaniset aallot. Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot Luento 15: Mekaaniset aallot Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot 1 / 40 Luennon sisältö Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa

Lisätiedot

Värähtelevä jousisysteemi

Värähtelevä jousisysteemi Mathematican version 8 mukainen. (5.10.01 SKK) Värähtelevä jousisysteemi Jousen puristumista ja venymistä voidaan kuvata varsin yksinkertaisella matemaattisella mallilla m d x k x, d t missä x on jousen

Lisätiedot

Theory Finnish (Finland)

Theory Finnish (Finland) Q1-1 Kaksi tehtävää mekaniikasta (10 pistettä) Lue yleisohjeet ennen tehtävien aloittamista. Osa A: Piilotettu kiekko (3,5 pistettä) Tässä tehtävässä käsitellään umpinaista puista sylinteriä, jonka säde

Lisätiedot

Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori!

Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! 6.1 Työ Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! Siirtymä s = r 2 r 1 Kun voiman kohteena olevaa kappaletta voidaan kuvata

Lisätiedot

Sinin muotoinen signaali

Sinin muotoinen signaali Sinin muotoinen signaali Pekka Rantala.. Sini syntyy tasaisesta pyörimisestä Sini-signaali syntyy vakio-nopeudella pyörivän osoittimen y-suuntaisesta projektiosta. y u û α positiivinen pyörimissuunta x

Lisätiedot

Jakso 3: Dynamiikan perusteet Näiden tehtävien viimeinen palautus- tai näyttöpäivä on keskiviikko 5.8.2015.

Jakso 3: Dynamiikan perusteet Näiden tehtävien viimeinen palautus- tai näyttöpäivä on keskiviikko 5.8.2015. Jakso 3: Dynamiikan perusteet Näiden tehtävien viimeinen palautus- tai näyttöpäivä on keskiviikko 5.8.2015. Tässä jaksossa harjoittelemme Newtonin toisen lain soveltamista. Newtonin toinen laki on yhtälön

Lisätiedot

5.10. HIUKKANEN POTENTIAALIKUOPASSA

5.10. HIUKKANEN POTENTIAALIKUOPASSA 5.10. HIUKKANEN POTENTIAALIKUOPASSA eli miten reunaehdot ja normitus vaikuttavat aaltofunktioihin Yleensä Schrödingerin yhtälön ratkaiseminen matemaattisesti on hyvin työlästä ja edellyttää vahvaa matemaattista

Lisätiedot

YLEINEN AALTOLIIKEOPPI

YLEINEN AALTOLIIKEOPPI YLEINEN AALTOLIIKEOPPI KEVÄT 2017 1 Saana-Maija Huttula (saana.huttula@oulu.fi) Maanantai Tiistai Keskiviikko Torstai Perjantai Vk 8 Luento 1 Mekaaniset aallot 1 Luento 2 Mekaaniset aallot 2 Ääni ja kuuleminen

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle / Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle / 16. 18.5. Lineaariset differentiaaliyhtälöt, homogeeniset differentiaaliyhtälöt Tehtävä 1: a) Määritä differentiaaliyhtälön y 3y = 14e 4x

Lisätiedot

Fysiikan olympiavalmennus, perussarja Palautus mennessä

Fysiikan olympiavalmennus, perussarja Palautus mennessä Fysiikan olympiavalmennus, perussarja Kirje 1 Palautus 31.1.2012 mennessä Olet menestynyt hyvin MAOL:n fysiikkakilpailussa, ja sinut on valittu mukaan fysiikan olympiavalmennukseen. Valmennuskirjeitä on

Lisätiedot

Luento 15: Mekaaniset aallot

Luento 15: Mekaaniset aallot Luento 15: Mekaaniset aallot Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot Ajankohtaista Luennon sisältö Mekaaniset aallot Eteneminen Aallon nopeus

Lisätiedot

Kiihtyvyys a on paikan x toinen aikaderivaatta 2

Kiihtyvyys a on paikan x toinen aikaderivaatta 2 . HARMONINEN VÄRÄHDYSLIIKE 9. HARMONISEN LIIKKEEN TEORIAA Jos kappaleeseen (massapisteeseen m) vaikuttava voima (F ) on suoraan verrannollinen kappaleen poikkeamaan (x) tasapainoasemasta ( x 0), voima

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

Luento 9: Potentiaalienergia

Luento 9: Potentiaalienergia Luento 9: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Laskettuja esimerkkejä Luennon sisältö Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta

Lisätiedot

W el = W = 1 2 kx2 1

W el = W = 1 2 kx2 1 7.2 Elastinen potentiaalienergia Paitsi gravitaatioon, myös materiaalien deformaatioon (muodonmuutoksiin) liittyy systeemin rakenneosasten keskinäisiin paikkoihin liittyvää potentiaalienergiaa Elastinen

Lisätiedot

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa

Lisätiedot

HARJOITUS 4 1. (E 5.29):

HARJOITUS 4 1. (E 5.29): HARJOITUS 4 1. (E 5.29): Työkalulaatikko, jonka massa on 45,0 kg, on levossa vaakasuoralla lattialla. Kohdistat laatikkoon asteittain kasvavan vaakasuoran työntövoiman ja havaitset, että laatikko alkaa

Lisätiedot

SMG-1100: PIIRIANALYYSI I. Verkkojen taajuusriippuvuus: suo(dat)timet

SMG-1100: PIIRIANALYYSI I. Verkkojen taajuusriippuvuus: suo(dat)timet SMG-00: PIIRIANALYYSI I Verkkojen taajuusriippuvuus: suo(dat)timet alipäästösuodin ylipäästösuodin kaistanpäästösuodin kaistanestosuodin jännitevahvistus rajataajuus kaistanleveys resonanssi Suotimet:

Lisätiedot

Johdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen

Johdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Johdatus vaihtosähköön, sinimuotoiset suureet 1 Vaihtovirta vs tasavirta Sähkömagneettinen induktio tuottaa kaikissa pyörivissä generaattoreissa vaihtojännitettä. Vaihtosähköä on

Lisätiedot

MS-A Differentiaali- ja integraalilaskenta 1 (CHEM) Harjoitus 6 loppuviikko

MS-A Differentiaali- ja integraalilaskenta 1 (CHEM) Harjoitus 6 loppuviikko MS-A0107 - Differentiaali- integraalilaskenta 1 (CHEM) Harjoitus 6 loppuviikko 1 Tehtävä Etsi seuraavien yhtälöiden yleiset ratkaisut: Ratkaisu: a) y y 2y = 4x, b) y + 4y = sin 3x, c) y + 2y + 5y = e x

Lisätiedot

2 Mekaaninen aalto. Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium).

2 Mekaaninen aalto. Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium). 2 Mekaaninen aalto Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium). 1 Mekaanisten aaltojen vastakohtana ovat sähkömagneettiset allot, jotka kulkevat

Lisätiedot

KIERTOHEILURI JA HITAUSMOMENTTI

KIERTOHEILURI JA HITAUSMOMENTTI 1 KIERTOHEILURI JA HITAUSMOMENTTI MOTIVOINTI Tutustutaan kiertoheiluriin käytännössä. Mitataan hitausmomentin vaikutus värähtelyyn. Tutkitaan mitkä tekijät vaikuttavat järjestelmän hitausmomenttiin. Vahvistetaan

Lisätiedot

Luento 14: Periodinen liike, osa 2

Luento 14: Periodinen liike, osa 2 Luento 14: Periodinen liike, osa 2 Vaimennettu värähtely Pakkovärähtely Resonanssi F ~ µ ~F t F ~ d ~F r m~g Ajankohtaista Poimintoja palautekyselystä Oli mukava luento. Mukavaa että luennoitsija mahdollisti

Lisätiedot

Fysiikan olympiavalmennus, perussarja Palautus mennessä

Fysiikan olympiavalmennus, perussarja Palautus mennessä Fysiikan olympiavalmennus, perussarja Kirje 1 Palautus 31.1.2013 mennessä Olet menestynyt hyvin MAOL:n fysiikkakilpailussa, ja sinut on valittu mukaan fysiikan olympiavalmennukseen. Valmennuskirjeitä on

Lisätiedot

dt 2. Nämä voimat siis kumoavat toisensa, jolloin saadaan differentiaaliyhtälö

dt 2. Nämä voimat siis kumoavat toisensa, jolloin saadaan differentiaaliyhtälö Mathematican version 8 mukainen. (25.10.2012 SKK) Tavallinen heiluri Otetaan tarkastelun kohteeksi tavallinen yksinkertainen heiluri. Tämä koostuu kitkattomaan niveleen kiinnitetystä (massattomasta) varresta

Lisätiedot

Voima ja potentiaalienergia II Energian kvantittuminen

Voima ja potentiaalienergia II Energian kvantittuminen Voima ja potentiaalienergia II Energian kvantittuminen Mene osoitteeseen presemo.helsinki.fi/kontro ja vastaa kysymyksiin Tavoitteena tällä luennolla Miten määritetään voima kun potentiaalienergia U(x,y,z)

Lisätiedot

Mapu I Laskuharjoitus 2, tehtävä 1. Derivoidaan molemmat puolet, aloitetaan vasemmasta puolesta. Muistetaan että:

Mapu I Laskuharjoitus 2, tehtävä 1. Derivoidaan molemmat puolet, aloitetaan vasemmasta puolesta. Muistetaan että: Mapu I Laskuharjoitus 2, tehtävä 1 1. Eräs trigonometrinen ientiteetti on sin2x = 2sinxcosx Derivoimalla yhtälön molemmat puolet x:n suhteen, joha lauseke cos 2x:lle. Ratkaisu: Derivoiaan molemmat puolet,

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 014 Insinöörivalinnan fysiikan koe 8.5.014, malliratkaisut Kalle ja Anne tekivät fysikaalisia kokeita liukkaalla vaakasuoralla jäällä.

Lisätiedot

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus värähtelytiheyden. 1 Funktiot ja aallot Aiemmin käsiteltiin funktioita ja miten niiden avulla voidaan kuvata fysiikan

Lisätiedot

Luento 11: Potentiaalienergia. Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia

Luento 11: Potentiaalienergia. Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia Luento 11: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia 1 / 22 Luennon sisältö Potentiaalienergia Konservatiiviset voimat

Lisätiedot

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi Fysiikan perusteet Työ, energia ja energian säilyminen Antti Haarto 0.09.0 Voiman tekemä työ Voiman F tekemä työ W määritellään kuljetun matkan s ja matkan suuntaisen voiman komponentin tulona. Yksikkö:

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys12 Kevät 21 Jukka Maalampi LUENTO 11 Mekaaninen aaltoliike alto = avaruudessa etenevä järjestäytynyt häiriö. alto altoja on kahdenlaisia: Poikittainen aalto - poikkeamat kohtisuorassa

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

FYS03: Aaltoliike. kurssin muistiinpanot. Rami Nuotio

FYS03: Aaltoliike. kurssin muistiinpanot. Rami Nuotio FYS03: Aaltoliike kurssin muistiinpanot Rami Nuotio päivitetty 24.1.2010 Sisältö 1. Mekaaninen aaltoliike 2 1.1. Harmoninen voima 2 1.2. Harmoninen värähdysliike 2 1.3. Mekaaninen aalto 3 1.4. Mekaanisen

Lisätiedot

Harjoitustehtävien vastaukset

Harjoitustehtävien vastaukset Harjoitustehtävien vastaukset Esimerkiksi kaiutinelementti, rumpukalvo (niin rummussa kuin korvassa), jännitetty kuminauha tai kielisoittimien (esimerkiksi viulu, kitara) kielet, kellon koneisto, heiluri,

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

Nimi: Muiden ryhmäläisten nimet:

Nimi: Muiden ryhmäläisten nimet: Nimi: Muiden ryhmäläisten nimet: PALKKIANTURI Työssä tutustutaan palkkianturin toimintaan ja havainnollistetaan sen avulla pienten ainepitoisuuksien havainnointia. Työn mittaukset on jaettu kolmeen osaan,

Lisätiedot

Erään piirikomponentin napajännite on nolla, eikä sen läpi kulje virtaa ajanhetkellä 0 jännitteen ja virran arvot ovat. 500t.

Erään piirikomponentin napajännite on nolla, eikä sen läpi kulje virtaa ajanhetkellä 0 jännitteen ja virran arvot ovat. 500t. DEE- Piirianalyysi Harjoitus / viikko 4 Erään piirikomponentin napajännite on nolla, eikä sen läpi kulje virtaa ajanhetkellä jännitteen ja virran arvot ovat t Kun t, v te t 5t 8 V, i te t 5t 5 A, a) Määritä

Lisätiedot

Jani-Matti Hätinen 012327153 Työn pvm 1.11.2002 assistentti Stefan Eriksson 22.11.2002

Jani-Matti Hätinen 012327153 Työn pvm 1.11.2002 assistentti Stefan Eriksson 22.11.2002 Kimmoton törmäys Jani-Matti Hätinen 012327153 Työn pvm 1.11.2002 assistentti Stefan Eriksson 22.11.2002 1 1 Tiivistelmä Tutkittiin liikemäärän ja liike-energian muuttumista kimmottomassa törmäyksessä.

Lisätiedot

Fononit. Värähtelyt lineaarisessa atomiketjussa Dispersiorelaatio Kaksi erilaista atomia ketjussa Fononit kolmessa dimensiossa

Fononit. Värähtelyt lineaarisessa atomiketjussa Dispersiorelaatio Kaksi erilaista atomia ketjussa Fononit kolmessa dimensiossa Fononit Värähtelyt lineaarisessa atomiketjussa Dispersiorelaatio Kaksi erilaista atomia ketjussa Fononit kolmessa dimensiossa Atomien lämpövärähtely Mikä on atomien värähtelyn taajuus ja amplitudi? Tarkastellaan

Lisätiedot

Luento 11: Potentiaalienergia

Luento 11: Potentiaalienergia Luento 11: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia Ajankohtaista Konseptitesti 1 Kysymys Levossa oleva kappale lähtee

Lisätiedot

1 Oikean painoisen kuulan valinta

1 Oikean painoisen kuulan valinta Oikean painoisen kuulan valinta Oheisessa kuvaajassa on optimoitu kuulan painoa niin, että se olisi mahdollisimman nopeasti perillä tietyltä etäisyydeltä ammuttuna airsoft-aseella. Tulos on riippumaton

Lisätiedot

nopeammin. Havaitaan, että kussakin tapauksessa kuvaaja (t, ϕ)-koordinaatistossa on nouseva suora.

nopeammin. Havaitaan, että kussakin tapauksessa kuvaaja (t, ϕ)-koordinaatistossa on nouseva suora. nopeammin. Havaitaan, että kussakin tapauksessa kuvaaja (t, ϕ)-koordinaatistossa on nouseva suora. Teimme mittaukset käyttäen Pascon pyörimisliikelaitteistoa (ME-895) ja Logger Promittausohjelmaa. Kuva

Lisätiedot

Nopeus, kiihtyvyys ja liikemäärä Vektorit

Nopeus, kiihtyvyys ja liikemäärä Vektorit Nopeus, kiihtyvyys ja liikemäärä Vektorit Luento 2 https://geom.mathstat.helsinki.fi/moodle/course/view.php?id=360 Luennon tavoitteet: Vektorit tutuiksi Koordinaatiston valinta Vauhdin ja nopeuden ero

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain

Lisätiedot

Normaaliryhmä. Toisen kertaluvun normaaliryhmä on yleistä muotoa

Normaaliryhmä. Toisen kertaluvun normaaliryhmä on yleistä muotoa Normaaliryhmä Toisen kertaluvun normaaliryhmä on yleistä muotoa x = u(t,x,y), y t I, = v(t,x,y), Funktiot u = u(t,x,y), t I ja v = v(t,x,y), t I ovat tunnettuja Toisen kertaluvun normaaliryhmän ratkaisu

Lisätiedot

Luento 18: Kertausluento

Luento 18: Kertausluento Luento 18: Kertausluento Värähdysliike Harmoninen värähtely Vaimennettu värähtely Pakkovärähtely Mekaaniset aallot Eteneminen Seisovat aallot Ääniaallot Luennon sisältö Värähdysliike Harmoninen värähtely

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 26. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 26. syyskuuta 2016 1 / 14 Hieman kertausta

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

Tietoliikennesignaalit & spektri

Tietoliikennesignaalit & spektri Tietoliikennesignaalit & spektri 1 Tietoliikenne = informaation siirtoa sähköisiä signaaleja käyttäen. Signaali = vaihteleva jännite (tms.), jonka vaihteluun on sisällytetty informaatiota. Signaalin ominaisuuksia

Lisätiedot

Työ ja kineettinen energia

Työ ja kineettinen energia Työ ja kineettinen energia Kaikki mekaniikan probleemat voidaan periaatteessa ratkaista Newtonin lakien avulla, liikeyhtälöistä. Työ- ja energiakäsitteiden käyttöönottaminen kuitenkin yksinkertaistaa monia

Lisätiedot

Harjoitus 5 -- Ratkaisut

Harjoitus 5 -- Ratkaisut Harjoitus -- Ratkaisut 1 Ei kommenttia. Tutkittava funktio oskilloi äärettömän tiheään nollan lähellä. PlotPoints-asetus määrää, kuinka tiheästi Plot-funktio ottaa piirrettävästä funktiosta "näytteitä"

Lisätiedot

havainnollistaa Dopplerin ilmiötä ja interferenssin aiheuttamaa huojuntailmiötä

havainnollistaa Dopplerin ilmiötä ja interferenssin aiheuttamaa huojuntailmiötä FYSP0 / K3 DOPPLERIN ILMIÖ Työn tavoitteita havainnollistaa Dopplerin ilmiötä ja interferenssin aiheuttamaa huojuntailmiötä harjoitella mittausarvojen poimimista Capstonen kuvaajalta sekä kerrata maksimiminimi

Lisätiedot

Luento 10. Potentiaali jatkuu, voiman konservatiivisuus, dynamiikan ja energiaperiaatteen käyttö, reaalinen jousi

Luento 10. Potentiaali jatkuu, voiman konservatiivisuus, dynamiikan ja energiaperiaatteen käyttö, reaalinen jousi Luento 10 Potentiaali jatkuu, voiman konservatiivisuus, dynamiikan ja energiaperiaatteen käyttö, reaalinen jousi Tällä luennolla tavoitteena: Gravitaatio jatkuu Konservatiivinen voima Mitä eroa on energia-

Lisätiedot

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike 1 / 29 Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat

Lisätiedot

Termodynamiikan mukaan ideaalikaasujen molaaristen lämpökapasiteettien erotus on yleinen kaasuvakio R

Termodynamiikan mukaan ideaalikaasujen molaaristen lämpökapasiteettien erotus on yleinen kaasuvakio R ADIABAATTIVAKIO 1 Johdanto Aineen ominaislämpökapasiteetti c kertoo kuinka paljon lämpöä vaaditaan aineen lämpötilan kasvattamiseen massayksikköä kohden. Kiinteillä ja nestemäisillä aineilla ominaislämpö

Lisätiedot

1 Tieteellinen esitystapa, yksiköt ja dimensiot

1 Tieteellinen esitystapa, yksiköt ja dimensiot 1 Tieteellinen esitystapa, yksiköt ja dimensiot 1.1 Tieteellinen esitystapa Maan ja auringon välinen etäisyys on 1 AU. AU on astronomical unit, joka määritelmänsä mukaan on maan ja auringon välinen keskimääräinen

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 29.3.2016 Susanna Hurme Yleisen tasoliikkeen kinematiikka: absoluuttinen ja suhteellinen liike, rajoitettu liike (Kirjan luvut 16.4-16.7) Osaamistavoitteet Ymmärtää,

Lisätiedot

S SÄHKÖTEKNIIKKA Kimmo Silvonen

S SÄHKÖTEKNIIKKA Kimmo Silvonen S55.103 SÄHKÖTKNKK 21.12.2000 Kimmo Silvonen Tentti: tehtävät 1,3,4,8,9 1. välikoe: tehtävät 1,2,3,4,5 2. välikoe: tehtävät,7,8,9,10 Oletko jo ehtinyt vastata palautekyselyyn Voit täyttää lomakkeen nyt.

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 07: Yhden vapausasteen vaimenematon ominaisvärähtely

VÄRÄHTELYMEKANIIKKA SESSIO 07: Yhden vapausasteen vaimenematon ominaisvärähtely 7/ VÄRÄHTELYMEKNKK SESS 7: Yhden vapausasteen vaieneaton oinaisvärähtely JHDNT inaisvärähtely tarkoittaa ekaanisen systeein liikettä, jossa se liikkuu ilan ulkoisten herätevoiien vaikutusta. inaisvärähtely

Lisätiedot

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1 infoa Viikon aiheet Tentti ensi viikolla ma 23.0. klo 9.00-3.00 Huomaa, alkaa tasalta! D0 (Sukunimet A-) E204 (Sukunimet S-Ö) Mukaan kynä ja kumi. Ei muuta materiaalia. Tentissä kaavakokoelma valmiina.

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 22.3.2016 Susanna Hurme Päivän aihe: Rotaatioliikkeen kinematiikka: kulmanopeus ja -kiihtyvyys (Kirjan luvut 12.7, 16.3) Osaamistavoitteet Osata analysoida jäykän

Lisätiedot

Massakeskipiste Kosketusvoimat

Massakeskipiste Kosketusvoimat Massakeskipiste Kosketusvoimat Luennon tavoitteet Kosketusvoimia Kitka Tukivoima Jännitys Jousivoima Massakeskipisteen käsite ja sillä laskeminen (Resonanssi tiedottaa tarjoavansa kahvia luentotauolla)

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1 / 18

Lisätiedot

Nyt kerrataan! Lukion FYS5-kurssi

Nyt kerrataan! Lukion FYS5-kurssi Nyt kerrataan! Lukion FYS5-kurssi Vaakasuora heittoliike Heittoliikettä voidaan tarkastella erikseen vaaka- ja pystysuunnassa v=(v x,v y ) Jos ilmanvastausta ei oteta huomioon (yleensä ei), vaakasuunnalle

Lisätiedot