KERTAUSTEHTÄVIÄ KURSSIIN A-01 Mekaniikka, osa 1

Koko: px
Aloita esitys sivulta:

Download "KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1"

Transkriptio

1 KERTAUSTEHTÄVIÄ KURSSIIN A-01 Mekaniikka, osa 1 Tässä materiaalissa on ensin helpompia laskuja, joiden avulla voi kerrata perusasioita, ja sen jälkeen muutamia vaikeampia laskuja. Laskujen jälkeen on pohdintatehtäviä. Niitäkin kannattaa miettiä, jos on aikaa. Pohdintatehtäviä tekemällä löytää aukkoja omassa tietämyksessään. Tässä materiaalissa viimeisenä on vastauksia laskuihin ja pariin pohdintatehtävään. Peruslaskuja T 1: Juna lähtee asemalta ja saavuttaa tasaisesti kiihdyttäen 5,0 minuutissa vauhdin 8,0 m/s. Tämän jälkeen juna kulkee tasaisella vauhdilla. Kuinka pitkän matkan juna kulkee 8,0 minuutissa lähtöhetkestä mitattuna? T 2: Kappale heitetään maan pinnalta suoraan ylöspäin alkunopeudella v y0 = 10 m/s. a) Kuinka kauan kappale nousee ennen kuin se alkaa jälleen pudota? b) Kuinka korkealle kappale nousee? c) Kuinka kauan kestää (heittämishetkestä alkaen) ennen kuin kappale tulee maahan takaisin? T 3: Kappale liikkuu pitkin x-akselia. Kappaleen nopeus ajan funktiona noudattaa yhtälöä v at 2 bt c missä a = 4,00 ms -3, b = -3,00 ms -2 ja c = -2,00 ms -1. Mikä on kappaleen kiihtyvyys ja paikka ajanhetkellä t = 2,00 s? Kappale on origossa, kun t = 0. Opastus: Nyt kiihtyvyys ei ole vakio. T 4: Vauhtipyörä (säde 0,300 m) aloittaa levosta ja pyörii vakiokulmakiihtyvyydellä 0,600 rad/s 2. Laske pyörän reunan pisteelle tangentiaalinen kiihtyvyys, normaalikiihtyvyys (= keskeiskiihtyvyys) ja kokonaiskiihtyvyys seuraavissa kohdissa: a) alussa b) kun pyörä on kääntynyt 60,0 o c) kun pyörä on kääntynyt 120,0 o. T 5: Ihminen heittää kiven kädellään 1,2 metrin korkeudelta maan pinnasta alkunopeudella 13,5 m/s ja kulmassa, joka on vaakatasosta 26 o ylöspäin. a) Mikä tulee olemaan kiven maksimikorkeus maan pinnasta? b) Mikä on kiven kantama, kun kivi putoaa vaakasuoralle maan pinnalle? c) Mikä on kiven lentoaika? d) Mikä on kiven nopeus, kun se osuu maahan? 3 2 T 6: Kappaleen paikka ajan funktiona on r [(2t 5t 3t)ˆ i (4t 2) ˆj ] m. Määritä nopeus ja kiihtyvyys ajan funktiona. Määritä kappaleen paikka, nopeus ja kiihtyvyys, kun t = 0 ja kun t = 5 s. T 7: Kappale, jonka massa on 2,2 kg, heitetään kaltevaa tasoa ylöspäin alkunopeudella 3,7 m/s. Tason kaltevuus on 20 o. Tason ja kappaleen välinen liikekitkakerroin 0,13. Laske Newtonin II lain avulla, kuinka pitkän matkan kappale liukuu tasoa pitkin ylöspäin, ennen kuin se pysähtyy.

2 T 8: Kappale, jonka massa on 2,9 kg, liikkuu siten että sen paikka ja nopeus ajanhetkellä t = 0 ovat r = (3i 4j 7k) m ja v = (2i + j + 3k) m/s. Ajanhetkellä t = 1,0 s voima F = (i 3j + 2k) N alkaa vaikuttaa kappaleeseen ja vaikutus kestää kaksi sekuntia. Laske kappaleen paikka, kun t = 4,5 s. T 9: Kappale on aluksi levossa korkeudella A (katso alla oleva kuva). Se päästetään vapaaksi ja liukuu ensin kitkatonta kaarevaa pintaa pitkin kohtaan B ja sen jälkeen vaakasuoraa pintaa pitkin kohtaan C, johon kappale pysähtyy. Mikä on kappaleen ja vaakasuoran pinnan välinen kitkakerroin, jos kaarevan pinnan säde R = 1,60 m, kappalen massa 0,200 kg ja vaakasuora väli BC 3,00 m? T 10: Alla olevan kuvan mukaisessa systeemissä jousi on aluksi puristuneena 0,220 m. Jousi vapautetaan ja kappale irtoaa siitä tasapainoaseman kohdalla. Kuinka korkealle kappale nousee tasoa pitkin, jos kitkaa ei ole? (Kappaleen massa on 2,00 kg, jousivakio 400 N/m ja tason kaltevuuskulma 37,0 o.) T 11: Kappale, jonka massa on m, liikkuu voimakentässä, jonka potentiaalienergia on muotoa U = ax 2 +bx. Olkoon massa m = 2,5 kg, vakio a = 3,2 J/m 2 ja vakio b = 1,1 J/m. a) Määritä tämän kentän kappaleeseen aiheuttama voima. b) Laske, minkä työn kappaleeseen vaikuttava voima tekee, kun kappale siirtyy kohdasta x = 0 kohtaan x = 2,0 m. c) Mikä on kappaleen nopeus b)-kohdassa esitetyn siirtymän jälkeen, jos origossa kappaleen nopeus v 0 oli (4,1 m) î? Oleta, että kappaleeseen ei vaikuta muita voimia. T 12: Systeemissä on neljä hiukkasta. Niiden massat ja paikat xy-koordinaatistossa ovat vastaavasti: 3,5 kg ja (1,0 m, 2,0 m), 2,8 kg ja (4,5 m, 0,3 m), 4,7 kg ja (2,7 m, 3,0 m) sekä 7,3 kg ja (6,1 m, 2,7 m). Laske muiden hiukkasten aiheuttama gravitaatiovoima ensimmäiseen 3,5 kg:n hiukkaseen (sekä voiman suunta että suuruus). T 13: Kappale, jonka massa on 3,0 kg, on kiinnitetty jouseen, jonka jousivakio on 22 N/m. Kappaletta poikkeutetaan 320 mm tasapainoasemastaan (jossa x = 0) eräällä ajanhetkellä t = 0 ja vapautetaan levosta. a) Mikä on liikkeen periodi? b) Mikä on syntyvän harmonisen liikkeen maksimikiihtyvyys?

3 T 14: Vaimenemattoman värähtelijän jaksonaika on 12.0 s. Vaimenevan värähtelijän kulmataajuus on 97 % vaimenemattoman värähtelijän kulmataajuudesta. a) Mikä on peräkkäisten maksimien amplitudien suhde? b) Missä ajassa värähtelijän amplitudi pienenee puoleen? Haastavampia laskuja T 15: Kun autoa lähdetään kiihdyttämään nopeudesta v 0 = 25,0 m/s, kiihtyvyys (samalla vaihteella ajettaessa) noudattaa yhtälöä a b ct dt 2 missä b = 1,00 m/s 2, c = 0,10 m/s 3 ja d = 0,01 m/s 4. Laske auton nopeus kymmenen sekunnin kuluttua kiihdytyksen aloittamisesta. Laske myös auton tänä aikana kulkema matka. T 16: Pistemäinen kappale liikkuu xy-tasossa siten, että sen kiihtyvyyden komponentit ovat: a a x y 4sin t 3cos t Hetkellä t = 0 kappaleen paikka on muotoinen tämä rata voisi olla? 3 ĵ ja nopeus 4 î. Johda kappaleen radan yhtälö. Mieti, minkä T 17: Kappale, jonka massa on m, lähtee liikkeelle paikasta x 0 pitkin x-akselia voiman F K 2 x vaikutuksen alaisena. Osoita, että kappaleen nopeus paikassa x noudattaa yhtälöä v 2K 1 m x x Opastus: Kiihtyvyys on a dv dt dv dx dx dt dv v dx T 18: Kappaleeseen vaikuttavan konservatiivisen voiman lauseke on F 2x 2 iˆ 2yj ˆ Määritä voimaan liittyvä potentiaalienergian lauseke. Valitse potentiaalienergian nollakohta origoon.

4 Pohdintatehtäviä T 19: Kappale lähtee levosta ja liikkuu pitkin x-akselia. Kappaleen paikka ajan funktiona on esitetty alla olevassa kuvassa. Numeroarvoja on taulukossa. t [s] x [m] t [s] x [m] ,5 2, ,5 6, ,5 12, ,5 20, a) Milloin kappaleen nopeus on nolla? b) Milloin kappaleen nopeus on vakio mutta eri kuin nolla? c) Milloin kappale on kiihtyvässä tai hidastuvassa liikkeessä? d) Mikä on kappaleen nopeus aikavälillä 9 s 17 s?

5 T 20: Kappale lähtee levosta ja liikkuu pitkin x-akselia. (Kyseessä on sama tapahtuma kuin tehtävässä T 19.) Kappaleen nopeus ajan funktiona on esitetty alla olevassa kuvassa. Numeroarvoja on taulukossa. t [s] v [m/s] t [s] v [m/s] , , , , a) Milloin kappaleen kiihtyvyys on nolla? b) Milloin kappaleen kiihtyvyys on vakio mutta eri kuin nolla? c) Mikä on kappaleen kiihtyvyys aikavälillä 0 s 4,5 s? T 21: Kappaleen paikka ajan funktiona on x = x 0 + v 0 t + ½at 2. a) Mikä on kappaleen nopeus ajan funktiona? b) Mikä on vakioiden x 0, v 0 ja a arvo tehtävässä T 19 ja T 20 esitetylle liikkeelle välillä 0 s 4,5 s? T 22: a) Kirjoita paikan ja nopeuden yhtälöt pystysuoralle heittoliikkeelle. Nyt kannattaa käyttää paikan muuttujana y-koordinaattia. b) Piirrä pystysuoran heittoliikkeen tapauksessa kuvaaja y(t) eli korkeus ajan funktiona. c) Piirrä pystysuoran heittoliikkeen tapauksessa kuvaaja v y (t) eli nopeus ajan funktiona. d) Piirrä pystysuoran heittoliikkeen tapauksessa kuvaaja a y (t) eli kiihtyvyys ajan funktiona.

6 T 23: Suoraviivaisen, tasaisesti kiihtyvän liikkeen perusyhtälö on: x = x 0 + v 0 t + ½at 2 Kirjoita tämän yhtälön avulla vinon heittoliikkeen yhtälöt: -korkeus y ajan funktiona -vaakasuora siirtymä x ajan funktiona -pystysuora nopeus v y ajan funktiona -vaakasuora nopeus v x ajan funktiona Oleta alkunopeus v 0 ja lähtökulma α tunnetuksi. T 24: Kappale heitetään maan pinnalta alkunopeudella v o kulmaan α maan pintaan nähden. Hahmottele seuraavat kuvaajat: a) korkeus ajan funktiona, b) pysty- ja vaakasuuntaiset nopeuden komponentit ajan funktiona, c) pysty- ja vaakasuuntaiset kiihtyvyyden komponentit ajan funktiona, d) korkeus y maan pintaa pitkin mitatun etäisyyden x funktiona. T 25: Kappale on vinossa heittoliikkeessä, jossa ilman vastusta ei ole. Oheisessa kuvassa on esitetty kappaleen paikka vaaka- ja pystysuunnassa (eli x- ja y-koordinaatit) 0,1 sekunnin välein. Vastaavat lukuarvot ovat taulukossa. Maanpinta on kohdassa y = 0. a) Miltä korkeudelta kappale lähtee eli mikä on vakion y 0 arvo? b) Mikä on x 0 eli lähtöpisteen x-koordinaatti? c) Arvioi kuvasta ja/tai taulukosta, mikä on nousuaika? d) Arvioi kuvasta ja/tai taulukosta, mikä on lentoaika? e) Arvioi kuvasta ja/tai taulukosta, mikä on nousukorkeus? f) Arvioi kuvasta ja/tai taulukosta, mikä on lentomatka eli kantama? g) Laske lähtökulma. h) Laske lähtönopeus.

7 T 26: Kappale (massa m) liikkuu pitkin ympyränmuotoista rataa (säde R) hetkellisen nopeuden ollessa v. Kappale on kiihtyvässä liikkeessä, kiihtyvyys on vakio a (> 0). a) Piirrä kuva, johon merkitset nopeusvektorin, tangentiaalisen kiihtyvyysvektorin, normaalikiihtyvyysvektorin, kokonaiskiihtyvyysvektorin, kulmanopeusvektorin ja kulmakiihtyvyysvektorin. b) Mikä edellisessä kuvassa muuttuu, jos a olisi < 0 eli liike olisi hidastuvaa? c) Määritä edellä annettujen tietojen perusteella itseisarvo kulmanopeudelle, kulmakiihtyvyydelle, ja normaalikiihtyvyydelle (= keskeiskiihtyvyydelle). T 27: Liikeyhtälöksi sanotaan yhtälöä, joka kirjoitetaan kappaleelle (tai useamman kappaleen systeemille) Newtonin toisen lain mukaisesti ΣF i = ma. a) Kirjoita liikeyhtälö peräkärrylle (massa m), jota kiihtyvässä liikkeessä oleva auto vetää voimalla F. Peräkärryyn vaikuttaa kitkavoiman F µ. b) Tilanne on muuten sama kuin a)-kohdassa, mutta nyt auton ja peräkärryn muodostama systeemi liikkuu eteenpäin tasaisella nopeudella v. Kirjoita liikeyhtälö peräkärrylle. c) Kirjoita liikeyhtälö kelkalle (massa m), jota lapsi vetää mäkeä (kaltevuuskulma α) ylöspäin voimalla F. Kitkakerroin kelkan ja lumen välillä on µ.

8 T 28: Kappale (massa m) on kaltevalla tasolla, jonka kaltevuuskulma on α. Lepokitkakerroin pinnan ja kappaleen välillä on μ s ja liukukitkakerroin μ k. Piirrä kuva tilanteesta ja merkitse siihen kaikki voimat, jotka vaikuttavat kappaleeseen kun: a) kappale on levossa b) kappale liikkuu ylämäkeen nopeudella v. Mikä on kappaleen kiihtyvyys? T 29: Kappale (massa m) ja massaton lanka (pituus l ) muodostavat heilurin. Eräällä hetkellä langan poikkeamakulma pystysuorasta suunnasta on. (Suurin poikkeama on θ 0.) Piirrä kuva tilanteesta ja merkitse kuvaan kaikki voimat, jotka vaikuttavat kappaleeseen. Määritä langan jännitys ääriasennossa. T 30: Kappale, jonka massa m on 50 g, liikkuu kuvan mukaisesti pitkin vaakasuoraa ympyrää langan varassa. Langan pituus L on 86 cm ja kaltevuuskulma α on 8,5 o. (Huomaa: α on vakio.) a) Piirrä kuva, johon merkitset kaikki kappaleeseen vaikuttavat voimat. b) Määritä kappaleeseen vaikuttavien voimien suuruus ja kappaleen nopeus. α

9 T 31: Määritä voiman F = 10,0 N kappaleeseen tekemä työ seuraavissa tapauksissa: (Kappale siirtyy jokaisessa tapahtumassa 3 m oikealle.) a) F s = 3 m b) 30 o F s = 3 m c) F s = 3 m d) F s = 3 m T 32: a) Minkä työn seuraavat voimat tekevät kuvan kappaleeseen? Ilmoita vastaus vain kaavana annettuja symboleja käyttäen, ei numeroarvoja paitsi jos vastaus on nolla. F α i) voima F ii) pinnan tukivoima eli normaalivoima N iii) painovoima G iv) kitkavoima F. (Kappaleen massa on m ja kitkakerroin kappaleen ja tason välillä on.)

10 b) Mikä on a)-kohdan kappaleeseen tehty nettotyö ja kuinka paljon kappaleen kineettinen energia muuttuu? (Ilmoita tulokset kaavoina annettuja symboleja käyttäen.) T 33: Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä. Massaan kiinnitetty kynä piirtää käyrää, joka esittää poikkeamaa ajan funktiona kuten videossa Tuloksena saadaan alla olevat kuvat. Määritä a) liikkeen amplitudi (sama jokaisessa kolmessa kuvassa), b) liikkeen periodi (sama jokaisessa kolmessa kuvassa), c) liikkeen kulmataajuus (sama jokaisessa kolmessa kuvassa), d) liikkeen vaihekulma (eri jokaisessa kuvassa). e) Kirjoita alimmalle liikkeelle yhtälö x = Asin(ωt +φ), johon sijoitat vakioiden arvot. Oleta, että liike on vaimentumatonta.

11

12 T 34: Harmonisen värähtelijän yhtälö on x = (0,10 m) sin 2 (rad/s) t + /4. a) Mikä on suurin poikkeama tasapainoasemasta? b) Montako edestakaista värähdystä tapahtuu sekunnissa? c) Mikä on liikkeen taajuus? d) Mikä on poikkeama ajanhetkellä t = 0? T 35: Harmonisen värähtelijän liikettä kuvataan yhtälöllä x = Asin( t + ). Määritä harmonisen värähtelijän nopeus ajan funktiona ja kiihtyvyys ajan funktiona. T 36: Kappale, jonka massa on m, liikkuu harmonisen voiman F = - kx vaikutuksen alaisena. a) Kirjoita differentiaaliyhtälö, josta saa ratkaisuna kappaleen poikkeaman tasapainoasemasta ajan funktiona: x = A sin(ωt + φ). Yhtälöä ei tarvitse ratkaista, mutta selvitä pääpiirteittäin (esimerkiksi Fysiikan matematiikan kurssilla oppimasi perusteella), miten kyseinen differentiaaliyhtälö ratkaistaan. b) Mitä yllä olevassa lausekkeessa tarkoittavat A, ω ja φ? c) Miten lasketaan värähdysliikkeen periodi? d) Mikä on kyseisen värähtelijän hetkellinen potentiaalienergia ja kokonaisenergia. T 37: Kappale, jonka massa on m, liikkuu harmonisen voiman F = - kx vaikutuksen alaisena. Lisätään systeemiin liikettä hidastava voima, joka riippuu kappaleen nopeudesta seuraavalla tavalla: F = - bv a) Kirjoita differentiaaliyhtälö, josta saa ratkaisuna kappaleen poikkeaman tasapainoasemasta ajan funktiona. Yhtälöä ei tarvitse ratkaista, mutta saa ratkaista, jos haluaa treenata laskemista. b) Differentiaaliyhtälön ratkaisu on: x = Ae -(b/2m)t sin(ωt + φ) Mitä tässä yhtälössä tarkoittavat A, b, m, ω ja φ? c) Milloin vaimennettu värähtelijä on ylivaimennettu? Mitä se käytännössä tarkoittaa? d) Jos piirtäisit tehtävän vaimentumattoman ja vaimennetun värähtelijän kuvaajan, miten ne eroaisivat toisistaan? Oleta, että m, k ja φ ovat samoja molemmille värähtelijöille. T 38: Koejärjestely on muuten samanlainen kuin tehtävässä T 33, mutta nyt kappaleeseen vaikuttaa hidastava voima. Kappale on esimerkiksi upotettu nesteeseen. Asiaa havainnollistaa videossa vasemmanpuoleisin kuva tai video Alla olevassa kuvassa on esitetty kappaleen poikkeama ajan funktiona. Määritä vakion b/2m arvo, jos liikettä kuvataan yhtälöllä x = Ae -(b/2m)t sin(ωt + φ).

13 Vastaukset T 1: 2,6 km T 2: a) 1,02 s, b) 5,10 m, c) 2,04 s T 3: a(2 s) = 13,0 m/s 2, x(2 s) = 0,667 m T 4: b) a TAN = 0,180 m/s 2, a RAD = 0,377 m/s 2, a TOT = 0,420 m/s 2 T 5: a) 2,99 m, b) 16,8 m, c) 1,4 s, d) 14,3 m/s T 6: t = 5 s r = 142 m, v = 103 m/s, a = 50,0 m/s 2. Anna tulokset (ensisijaisesti) vektoreina. T 7: 1,5 m T 8: r = (13,7i 4,67j + 9,95k) m T 9: 0,533 T 10: s = 0,820 m tai h = 0,493 m

14 T 11: a) [(6,4x + 1,1)i]N, b) 15 J, c) 2,2 m/s T 12: F KOK = (3,5i + 1,3j) N, F KOK = 3, N T 13: a) 2,32 s, b) 2,35 m/s 2 T 14: a) 0,21, b) 5,45 s T 15: v(10 s) = 36,7 m/s, x(10 s) = 308 m T 16: r = (4sint)i 3(cost -2)j T 18: T 30: G = 0,491 N, T = 0,496 N, v = 0,432 m/s T 38: noin 0,05 s -1

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina 31.5.2012. T 6.1 (pakollinen): Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä.

Lisätiedot

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic

Lisätiedot

BM30A0240, Fysiikka L osa 4

BM30A0240, Fysiikka L osa 4 BM30A0240, Fysiikka L osa 4 Luennot: Heikki Pitkänen 1 Oppikirja: Young & Freedman: University Physics Luku 14 - Periodic motion Luku 15 - Mechanical waves Luku 16 - Sound and hearing Muuta - Diffraktio,

Lisätiedot

Kinematiikka -1- K09A,B&C Harjoitustehtäviä Kevät 2010 PARTIKKELI. Suoraviivainen liike

Kinematiikka -1- K09A,B&C Harjoitustehtäviä Kevät 2010 PARTIKKELI. Suoraviivainen liike Kinematiikka -1- K09A,B&C Harjoitustehtäviä Kevät 010 PARTIKKELI Suoraviivainen liike 1. Suoraviivaisessa liikkeessä olevan partikkelin asema on (järjestelmä m, s) 3 x ( = t 15t + 36t 10. Laske a) partikkelin

Lisätiedot

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1). H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Huom: luvun 4 kohdalla luennolla ei ollut laskuesimerkkejä, vaan koko luvun 5 voi nähdä kokoelmana sovellusesimerkkejä edellisen luvun asioihin! Esimerkki 5.1 Moottori roikkuu oheisen

Lisätiedot

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI NEWTONIN LAIT MEKANIIKAN I PERUSLAKI eli jatkavuuden laki tai liikkeen jatkuvuuden laki (myös Newtonin I laki tai inertialaki) Kappale jatkaa tasaista suoraviivaista liikettä vakionopeudella tai pysyy

Lisätiedot

Luento 10: Työ, energia ja teho

Luento 10: Työ, energia ja teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho Ajankohtaista Konseptitesti 1 Kysymys Ajat pyörällä ylös jyrkkää mäkeä. Huipulle vie kaksi polkua, toinen kaksi kertaa pidempi kuin

Lisätiedot

Pietarsaaren lukio Vesa Maanselkä

Pietarsaaren lukio Vesa Maanselkä Fys 9 / Mekaniikan osio Liike ja sen kuvaaminen koordinaatistossa Newtonin lait Voimavektorit ja vapaakappalekuvat Työ, teho,työ-energiaperiaate ja energian säilymislaki Liikemäärä ja sen säilymislaki,

Lisätiedot

g-kentät ja voimat Haarto & Karhunen

g-kentät ja voimat Haarto & Karhunen g-kentät ja voimat Haarto & Karhunen Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure Aiheuttaa kappaleelle

Lisätiedot

Jakso 3: Dynamiikan perusteet Näiden tehtävien viimeinen palautus- tai näyttöpäivä on keskiviikko 5.8.2015.

Jakso 3: Dynamiikan perusteet Näiden tehtävien viimeinen palautus- tai näyttöpäivä on keskiviikko 5.8.2015. Jakso 3: Dynamiikan perusteet Näiden tehtävien viimeinen palautus- tai näyttöpäivä on keskiviikko 5.8.2015. Tässä jaksossa harjoittelemme Newtonin toisen lain soveltamista. Newtonin toinen laki on yhtälön

Lisätiedot

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

3.4 Liike-energiasta ja potentiaalienergiasta

3.4 Liike-energiasta ja potentiaalienergiasta Työperiaatteeksi (the work-energy theorem) kutsutaan sitä että suljetun systeemin liike-energian muutos Δ on voiman systeemille tekemä työ W Tämä on yksi konservatiivisen voiman erityistapaus Työperiaate

Lisätiedot

Työ ja kineettinen energia

Työ ja kineettinen energia Työ ja kineettinen energia Kaikki mekaniikan probleemat voidaan periaatteessa ratkaista Newtonin lakien avulla, liikeyhtälöistä. Työ- ja energiakäsitteiden käyttöönottaminen kuitenkin yksinkertaistaa monia

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 10.1 Tee-se-itse putkimies ei saa vesiputken kiinnitystä auki putkipihdeillään, joten hän päättää lisätä vääntömomenttia jatkamalla pihtien vartta siihen tiukasti sopivalla

Lisätiedot

Nyt kerrataan! Lukion FYS5-kurssi

Nyt kerrataan! Lukion FYS5-kurssi Nyt kerrataan! Lukion FYS5-kurssi Vaakasuora heittoliike Heittoliikettä voidaan tarkastella erikseen vaaka- ja pystysuunnassa v=(v x,v y ) Jos ilmanvastausta ei oteta huomioon (yleensä ei), vaakasuunnalle

Lisätiedot

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto Fysiikan perusteet Voimat ja kiihtyvyys Antti Haarto.05.01 Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure

Lisätiedot

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE Harmoninen voima on voima, jonka suuruus on suoraan verrannollinen poikkeamaan tasapainoasemasta

Lisätiedot

Liikkeet. Haarto & Karhunen. www.turkuamk.fi

Liikkeet. Haarto & Karhunen. www.turkuamk.fi Liikkeet Haarto & Karhunen Suureita Aika: tunnus t, yksikkö: sekunti = s Paikka: tunnus x, y, r, ; yksikkö: metri = m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema) oidaan ilmoittaa

Lisätiedot

Kitka ja Newtonin lakien sovellukset

Kitka ja Newtonin lakien sovellukset Kitka ja Newtonin lakien sovellukset Haarto & Karhunen Tavallisimpia voimia: Painovoima G Normaalivoima, Tukivoima Jännitysvoimat Kitkavoimat Voimat yleisesti F f T ja s f k N Vapaakappalekuva Kuva, joka

Lisätiedot

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis Fys1, moniste 2 Vastauksia Tehtävä 1 N ewtonin ensimmäisen lain mukaan pallo jatkaa suoraviivaista liikettä kun kourun siihen kohdistama tukivoima (tässä tapauksessa ympyräradalla pitävä voima) lakkaa

Lisätiedot

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t,

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, v)-koordinaatistossa ruutumenetelmällä. Tehtävä 4 (~YO-K97-1). Tekniikan

Lisätiedot

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun.

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun. Matematiikka KoTiA1 Demotehtäviä 1. Ratkaise epäyhtälöt x + 1 x 2 b) 3 x 1 < 2 x + 1 c) x 2 x 2 2. Ratkaise epäyhtälöt 2 x < 1 2 2 b) x 3 < x 2x 3. Olkoon f (x) kolmannen asteen polynomi jonka korkeimman

Lisätiedot

Theory Finnish (Finland)

Theory Finnish (Finland) Q1-1 Kaksi tehtävää mekaniikasta (10 pistettä) Lue yleisohjeet ennen tehtävien aloittamista. Osa A: Piilotettu kiekko (3,5 pistettä) Tässä tehtävässä käsitellään umpinaista puista sylinteriä, jonka säde

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Täydennä kuhunkin kohtaan yhtälöstä puuttuva suure tai vakio alla olevasta taulukosta. Anna vastauksena kuhunkin kohtaan ainoastaan

Lisätiedot

BM30A0240, Fysiikka L osa 4. Värähtelyfysiikkaa. Luennot: Heikki Pitkänen

BM30A0240, Fysiikka L osa 4. Värähtelyfysiikkaa. Luennot: Heikki Pitkänen BM30A0240, Fysiikka L osa 4 Värähtelyfysiikkaa 1 Luennot: Heikki Pitkänen Oppikirja: Young & Freedman: University Physics Periodic motion Mechanical waves Sound and hearing Muuta - Diffraktio, interferenssi,

Lisätiedot

Fysiikan lisäkurssin tehtävät (kurssiin I liittyvät, syksy 2013, Kaukonen)

Fysiikan lisäkurssin tehtävät (kurssiin I liittyvät, syksy 2013, Kaukonen) 1. Ylöspäin liikkuvan hissin, jonka massa on 480 kg, nopeus riippuu ajasta oheisen kuvion mukaisesti. Laske kannatinvaijeria jännittävä voima liikkeen eri vaiheissa. (YO, S 84) 0-4s: 4,9 kn, 4..10s: 4,7

Lisätiedot

Fysiikan perusteet. Liikkeet. Antti Haarto 22.05.2012. www.turkuamk.fi

Fysiikan perusteet. Liikkeet. Antti Haarto 22.05.2012. www.turkuamk.fi Fysiikan perusteet Liikkeet Antti Haarto.5.1 Suureita Aika: tunnus t, yksikkö: sekunti s Paikka: tunnus x, y, r, ; yksikkö: metri m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema)

Lisätiedot

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a) Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman

Lisätiedot

FYSIIKAN HARJOITUSTEHTÄVIÄ

FYSIIKAN HARJOITUSTEHTÄVIÄ FYSIIKAN HARJOITUSTEHTÄVIÄ MEKANIIKKA Nopeus ja keskinopeus 6. Auto kulkee 114 km matkan tunnissa ja 13 minuutissa. Mikä on auton keskinopeus: a) Yksikössä km/h 1. Jauhemaalaamon kuljettimen nopeus on

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

Jakso 4: Dynamiikan perusteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautus- tai näyttöpäivä on maanantaina

Jakso 4: Dynamiikan perusteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautus- tai näyttöpäivä on maanantaina Jako 4: Dynamiikan peruteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautu- tai näyttöpäivä on maanantaina 8.8.2016. Kolmea enimmäieä lakua ovelletaan Newtonin 2. ja 3. lakia. T 4.1 (pakollinen):

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Syksy 2016 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia Ajankohtaista Presemokyselyn poimintoja Millä odotuksilla aloitat

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut A1 Ampumahiihtäjä ampuu luodin vaakasuoraan kohti maalitaulun keskipistettä. Luodin lähtönopeus on v 0 = 445 m/s ja etäisyys maalitauluun s = 50,0 m. a) Kuinka pitkä on luodin lentoaika? b) Kuinka kauaksi

Lisätiedot

Luento 11: Potentiaalienergia

Luento 11: Potentiaalienergia Luento 11: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia Ajankohtaista Konseptitesti 1 Kysymys Levossa oleva kappale lähtee

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

1.4 Suhteellinen liike

1.4 Suhteellinen liike Suhteellisen liikkeen ensimmäinen esimerkkimme on joskus esitetty kompakysymyksenäkin. Esimerkki 5 Mihin suuntaan ja millä nopeudella liikkuu luoti, joka ammutaan suihkukoneesta mahdollisimman suoraan

Lisätiedot

Luento 6: Liikemäärä ja impulssi

Luento 6: Liikemäärä ja impulssi Luento 6: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Laskettuja esimerkkejä Luennon sisältö Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.3.2016 Susanna Hurme Rotaatioliikkeen liike-energia, teho ja energiaperiaate (Kirjan luku 18) Osaamistavoitteet Ymmärtää, miten liike-energia määritetään kiinteän

Lisätiedot

Havainnoi mielikuviasi ja selitä, Panosta ajatteluun, selvitä liikkeen salat!

Havainnoi mielikuviasi ja selitä, Panosta ajatteluun, selvitä liikkeen salat! Parry Hotteri tutki näkymättömiä voimia kammiossaan Hän aikoi tönäistä pallon liikkeelle pöydällä olevassa ympyrän muotoisessa kourussa, joka oli katkaistu kuvan osoittamalla tavalla. Hän avasi Isaac Newtonin

Lisätiedot

Luento 11: Potentiaalienergia. Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia

Luento 11: Potentiaalienergia. Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia Luento 11: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia 1 / 22 Luennon sisältö Potentiaalienergia Konservatiiviset voimat

Lisätiedot

Muunnokset ja mittayksiköt

Muunnokset ja mittayksiköt Muunnokset ja mittayksiköt 1 a Mitä kymmenen potenssia tarkoittavat etuliitteet m, G ja n? b Mikä on massan (mass) mittayksikkö SI-järjestelmässäa? c Mikä on painon (weight) mittayksikkö SI-järjestelmässä?

Lisätiedot

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Liike ja voima Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Tasainen liike Nopeus on fysiikan suure, joka kuvaa kuinka pitkän matkan kappale kulkee tietyssä ajassa. Nopeus voidaan

Lisätiedot

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi Fysiikan perusteet Työ, energia ja energian säilyminen Antti Haarto 0.09.0 Voiman tekemä työ Voiman F tekemä työ W määritellään kuljetun matkan s ja matkan suuntaisen voiman komponentin tulona. Yksikkö:

Lisätiedot

KALTEVA TASO. 1. Työn tavoitteet. 2. Teoria

KALTEVA TASO. 1. Työn tavoitteet. 2. Teoria Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1. Työn tavoitteet Tämän työn ensimmäisessä osassa tutkit kuulan, sylinterin ja sylinterirenkaan vierimistä pitkin kaltevaa tasoa.

Lisätiedot

Luento 7: Voima ja Liikemäärä

Luento 7: Voima ja Liikemäärä Luento 7: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä Ajankohtaista Konseptitesti 1 Kysymys Viereisessä kuvaajassa on kuvattu kappaleen nopeutta

Lisätiedot

2.3 Voiman jakaminen komponentteihin

2.3 Voiman jakaminen komponentteihin Seuraavissa kappaleissa tarvitaan aina silloin tällöin taitoa jakaa voima komponentteihin sekä myös taitoa suorittaa sille vastakkainen operaatio eli voimien resultantin eli kokonaisvoiman laskeminen.

Lisätiedot

Luvun 8 laskuesimerkit

Luvun 8 laskuesimerkit Luvun 8 laskuesimerkit Esimerkki 8.1 Heität pallon, jonka massa on 0.40 kg seinään. Pallo osuu seinään horisontaalisella nopeudella 30 m/s ja kimpoaa takaisin niin ikään horisontaalisesti nopeudella 20

Lisätiedot

Luento 7: Voima ja Liikemäärä. Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä

Luento 7: Voima ja Liikemäärä. Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä Luento 7: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä 1 / 36 Johdanto Dynamiikka tutkii voimia ja niiden aiheuttamaa liikettä Newtonin liikelait

Lisätiedot

= vaimenevan värähdysliikkeen taajuus)

= vaimenevan värähdysliikkeen taajuus) Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 7: MEKAANINEN VÄRÄHTELIJÄ Teoriaa Vaimeneva värähdysliike y ŷ ŷ ŷ t T Kuva. Vaimeneva värähdysliike ajan funktiona.

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Funktion derivoituvuus pisteessä

Funktion derivoituvuus pisteessä Esimerkki A Esimerkki A Esimerkki B Esimerkki B Esimerkki C Esimerkki C Esimerkki 4.0 Ratkaisu (/) Ratkaisu (/) Mielikuva: Funktio f on derivoituva x = a, jos sen kuvaaja (xy-tasossa) pisteen (a, f(a))

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Mikro- ja nanotekniikan laitos Syksy 2016 1 / 21 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia

Lisätiedot

5.3 Ensimmäisen asteen polynomifunktio

5.3 Ensimmäisen asteen polynomifunktio Yllä olevat polynomit P ( x) = 2 x + 1 ja Q ( x) = 2x 1 ovat esimerkkejä 1. asteen polynomifunktioista: muuttujan korkein potenssi on yksi. Yleisessä 1. asteen polynomifunktioissa on lisäksi vakiotermi;

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 26. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 26. syyskuuta 2016 1 / 14 Hieman kertausta

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 28. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta 2016 1 / 22 Hieman kertausta

Lisätiedot

Luento 5: Voima ja Liikemäärä

Luento 5: Voima ja Liikemäärä Luento 5: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä Johdanto Dynamiikka tutkii voimia ja niiden aiheuttamaa liikettä Newtonin liikelait (Newton

Lisätiedot

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 31.5.2006, malliratkaisut ja arvostelu.

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 31.5.2006, malliratkaisut ja arvostelu. 1 Linja-autoon on suunniteltu vauhtipyörä, johon osa linja-auton liike-energiasta siirtyy jarrutuksen aikana Tätä energiaa käytetään hyväksi kun linja-autoa taas kiihdytetään Linja-auto, jonka nopeus on

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

2.2 Principia: Sir Isaac Newtonin 1. ja 2. laki

2.2 Principia: Sir Isaac Newtonin 1. ja 2. laki Voima se on joka jyllää!, sanottiin ennen. Fysiikassakin voimalla tarkoitetaan jokseenkin juuri sitä, mikä ennenkin jylläsi, joskin täytyy muistaa, että voima ja teho ovat kaksi eri asiaa. Fysiikan tutkimuksen

Lisätiedot

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

Numeeriset menetelmät Pekka Vienonen

Numeeriset menetelmät Pekka Vienonen Numeeriset menetelmät Pekka Vienonen 1. Funktion nollakohta Newtonin menetelmällä 2. Määrätty integraali puolisuunnikassäännöllä 3. Määrätty integraali Simpsonin menetelmällä Newtonin menetelmä Newtonin

Lisätiedot

Harjoitustyö Hidastuva liike Biljardisimulaatio

Harjoitustyö Hidastuva liike Biljardisimulaatio Harjoitustyö Hidastuva liike Biljardisimulaatio Tietotekniikka Ammattialan matemaattiset menetelmät Tommi Sukuvaara Nico Hätönen, Joni Toivonen, Tomi Poutiainen INTINU13A6 Arviointi Päiväys Arvosana Opettajan

Lisätiedot

Lineaarialgebra MATH.1040 / voima

Lineaarialgebra MATH.1040 / voima Lineaarialgebra MATH.1040 / voima 1 Seuraavaksi määrittelemme kaksi vektoreille määriteltyä tuloa; pistetulo ja. Määritelmät ja erilaiset tulojen ominaisuudet saattavat tuntua, sekavalta kokonaisuudelta.

Lisätiedot

Differentiaalilaskenta 1.

Differentiaalilaskenta 1. Differentiaalilaskenta. a) Mikä on tangentti? Mikä on sekantti? b) Määrittele funktion monotonisuuteen liittyvät käsitteet: kasvava, aidosti kasvava, vähenevä ja aidosti vähenevä. Anna esimerkit. c) Selitä,

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

Liike pyörivällä maapallolla

Liike pyörivällä maapallolla Liike pyörivällä maapallolla Voidaan olettaa: Maan pyöriminen tasaista Maan rataliikkeen näennäisvoimat tasapainossa Auringon vetovoiman kanssa Riittää tarkastella Maan tasaisesta pyörimisestä akselinsa

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2009, insinöörivalinnan fysiikan koe 27.5.2009, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2009, insinöörivalinnan fysiikan koe 27.5.2009, malliratkaisut Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2009, insinöörivalinnan fysiikan koe 27.5.2009, malliratkaisut 1 Huvipuiston vuoristoradalla vaunu (massa m v = 1100 kg) lähtee levosta liikkeelle

Lisätiedot

Luento 14: Periodinen liike, osa 2. Vaimennettu värähtely Pakkovärähtely Resonanssi F t F r

Luento 14: Periodinen liike, osa 2. Vaimennettu värähtely Pakkovärähtely Resonanssi F t F r Luento 14: Periodinen liike, osa 2 Vaimennettu värähtely Pakkovärähtely Resonanssi θ F µ F t F r m g 1 / 20 Luennon sisältö Vaimennettu värähtely Pakkovärähtely Resonanssi 2 / 20 Vaimennettu värähtely

Lisätiedot

Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa

Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa Potentiaalikuoppa Luento 9 Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa U( x ) = U U( x ) = 0 0 kun x < 0 tai x > L, kun 0 x L. Kuopan kohdalla hiukkanen on vapaa,

Lisätiedot

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 1.6.2005, malliratkaisut.

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 1.6.2005, malliratkaisut. 1 Kuvaan 1 on piiretty kahden suoraviivaisesti samaan suuntaan liikkuvan auton ja B nopeudet ajan funktiona. utot ovat rinnakkain ajanhetkellä t = 0 s. a) Kuvaile auton liikettä ajan funktiona. Kumpi autoista

Lisätiedot

Luento 8: Liikemäärä ja impulssi. Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä

Luento 8: Liikemäärä ja impulssi. Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä Luento 8: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä 1 / 46 Luennon sisältö Liikemäärä ja impulssi Liikemäärän säilyminen

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7

A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7 1 Tuotteen hinta nousee ensin 10 % ja laskee sitten 10 %, joten lopullinen hinta on... alkuperäisestä hinnasta. alkuperäisestä hinnasta. YLIOPPILASTUTKINTO- LAUTAKUNTA 23.3.2016 MATEMATIIKAN KOE PITKÄ

Lisätiedot

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut Diplomi-insino o rien ja arkkitehtien yhteisalinta - dia-alinta 15 Insino o rialinnan fysiikan koe 7.5.15, malliratkaisut A1 Pallo (massa m = 1, kg, sa de r =, cm) nojaa kur an mukaisesti pystysuoraan

Lisätiedot

2 Keskeisvoimakenttä. 2.1 Newtonin gravitaatiolaki

2 Keskeisvoimakenttä. 2.1 Newtonin gravitaatiolaki 2 Keskeisvoimakenttä 2.1 Newtonin gravitaatiolaki Newton oletti, että kappale, jolla on massa m 1, vaikuttaa etäisyydellä r 12 olevaan toiseen kappaleeseen, jonka massa on m 2, gravitaatiovoimalla, joka

Lisätiedot

Huomaa, että 0 kitkakerroin 1. Aika harvoin kitka on tasan 0. Koska kitkakerroin 1, niin

Huomaa, että 0 kitkakerroin 1. Aika harvoin kitka on tasan 0. Koska kitkakerroin 1, niin Kun alat vetää jotain esinettä pitkin alustaa, huomaat, että tarvitaan tietty nollaa suurempi voima ennen kuin mainittu esine lähtee edes liikkeelle. Yleensä on vielä niin, että liikkeelle lähteminen vaatii

Lisätiedot

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi Mallivastaukset - Harjoituskoe F F1 a) (a + b) 2 (a b) 2 a 2 + 2ab + b 2 (a 2 2ab + b 2 ) a 2 + 2ab + b 2 a 2 + 2ab b 2 4ab b) tan x 3 x π 3 + nπ, n Z c) f(x) x2 x + 1 f (x) 2x (x + 1) x2 1 (x + 1) 2 2x2

Lisätiedot

Mekaniikka 1 Lukion fysiikan kertausta

Mekaniikka 1 Lukion fysiikan kertausta Mekaniikka 1 Lukion fysiikan kertausta 21.7.2009 Pietarsaaren lukio Vesa Maanselkä Kiihdyttäviä autoja, lipsuvia hihnoja, loistavia tehtäviä, loistavaa filosofiaa LAske! Sisältö Alustavia lähtökohtia mekaniikkaan...

Lisätiedot

nopeammin. Havaitaan, että kussakin tapauksessa kuvaaja (t, ϕ)-koordinaatistossa on nouseva suora.

nopeammin. Havaitaan, että kussakin tapauksessa kuvaaja (t, ϕ)-koordinaatistossa on nouseva suora. nopeammin. Havaitaan, että kussakin tapauksessa kuvaaja (t, ϕ)-koordinaatistossa on nouseva suora. Teimme mittaukset käyttäen Pascon pyörimisliikelaitteistoa (ME-895) ja Logger Promittausohjelmaa. Kuva

Lisätiedot

2 x 5 4x + x 2, [ 100,2].

2 x 5 4x + x 2, [ 100,2]. 7. Derivaatan sovellutuksia 7.1. Derivaatta tangentin kulmakertoimena 6. Määritä a, b ja c siten, että käyrät y = x + ax + b ja y = cx x sivuavat toisiaan pisteessä (1,). a = 0, b =, c = 4. 6. Määritä

Lisätiedot

Luento 8: Liikemäärä ja impulssi

Luento 8: Liikemäärä ja impulssi Luento 8: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä Ajankohtaista Konseptitesti 1 ÄLÄ KOKEILE TÄTÄ KOTONA! Kysymys

Lisätiedot

4. Käyrän lokaaleja ominaisuuksia

4. Käyrän lokaaleja ominaisuuksia 23 VEKTORIANALYYSI Luento 3 4 Käyrän lokaaleja ominaisuuksia Käyrän tangentti Tarkastellaan parametrisoitua käyrää r( t ) Parametrilla t ei tarvitse olla mitään fysikaalista merkitystä, mutta seuraavassa

Lisätiedot

MAA7 HARJOITUSTEHTÄVIÄ

MAA7 HARJOITUSTEHTÄVIÄ MAA7 HARJOITUSTEHTÄVIÄ Selvitä, mitä -akselin väliä tarkoittavat merkinnät: a) < b) U(, ) c) 4 < 0 0 Ilmoita väli a) 4 < < b) ] 5, 765[ tavalla 7 tehtävän a)-kohdan mukaisella kana, kana 0 Palautetaan

Lisätiedot

On määritettävä puupalikan ja lattian välinen liukukitkakerroin. Sekuntikello, metrimitta ja puupalikka (tai jääkiekko).

On määritettävä puupalikan ja lattian välinen liukukitkakerroin. Sekuntikello, metrimitta ja puupalikka (tai jääkiekko). TYÖ 5b LIUKUKITKAKERTOIMEN MÄÄRITTÄMINEN Tehtävä Välineet Taustatietoja On määritettävä puupalikan ja lattian välinen liukukitkakerroin Sekuntikello, metrimitta ja puupalikka (tai jääkiekko) Kitkavoima

Lisätiedot

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 LIIKE Jos vahvempi kaveri törmää heikompaan kaveriin, vahvemmalla on enemmän voimaa. Pallon heittäjä antaa pallolle heittovoimaa, jonka

Lisätiedot

1 Laske ympyrän kehän pituus, kun

1 Laske ympyrän kehän pituus, kun Ympyrään liittyviä harjoituksia 1 Laske ympyrän kehän pituus, kun a) ympyrän halkaisijan pituus on 17 cm b) ympyrän säteen pituus on 1 33 cm 3 2 Kuinka pitkä on ympyrän säde, jos sen kehä on yhden metrin

Lisätiedot

1.3 Kappaleen tasaisesta liikkeestä

1.3 Kappaleen tasaisesta liikkeestä Arkikielen sana vauhti (speed) tarkoittaa fysiikassa nopeuden (velocity) suuruutta (magnitude of velocity). Kun nopeus on fysiikassa vektorisuure, niin vauhti taas on vain luku skalaari johon liittyy yksikkö.

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009

MATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 EB-TUTKINTO 2009 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2008 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 5. kesäkuuta 2008 (aamupäivä) KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Europpa-koulun antama taulukkovihkonen Funktiolaskin,

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

1 Oikean painoisen kuulan valinta

1 Oikean painoisen kuulan valinta Oikean painoisen kuulan valinta Oheisessa kuvaajassa on optimoitu kuulan painoa niin, että se olisi mahdollisimman nopeasti perillä tietyltä etäisyydeltä ammuttuna airsoft-aseella. Tulos on riippumaton

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 23.9.2015 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 23.9.2015 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 3.9.05 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot