KERTAUSTEHTÄVIÄ KURSSIIN A-01 Mekaniikka, osa 1

Koko: px
Aloita esitys sivulta:

Download "KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1"

Transkriptio

1 KERTAUSTEHTÄVIÄ KURSSIIN A-01 Mekaniikka, osa 1 Tässä materiaalissa on ensin helpompia laskuja, joiden avulla voi kerrata perusasioita, ja sen jälkeen muutamia vaikeampia laskuja. Laskujen jälkeen on pohdintatehtäviä. Niitäkin kannattaa miettiä, jos on aikaa. Pohdintatehtäviä tekemällä löytää aukkoja omassa tietämyksessään. Tässä materiaalissa viimeisenä on vastauksia laskuihin ja pariin pohdintatehtävään. Peruslaskuja T 1: Juna lähtee asemalta ja saavuttaa tasaisesti kiihdyttäen 5,0 minuutissa vauhdin 8,0 m/s. Tämän jälkeen juna kulkee tasaisella vauhdilla. Kuinka pitkän matkan juna kulkee 8,0 minuutissa lähtöhetkestä mitattuna? T 2: Kappale heitetään maan pinnalta suoraan ylöspäin alkunopeudella v y0 = 10 m/s. a) Kuinka kauan kappale nousee ennen kuin se alkaa jälleen pudota? b) Kuinka korkealle kappale nousee? c) Kuinka kauan kestää (heittämishetkestä alkaen) ennen kuin kappale tulee maahan takaisin? T 3: Kappale liikkuu pitkin x-akselia. Kappaleen nopeus ajan funktiona noudattaa yhtälöä v at 2 bt c missä a = 4,00 ms -3, b = -3,00 ms -2 ja c = -2,00 ms -1. Mikä on kappaleen kiihtyvyys ja paikka ajanhetkellä t = 2,00 s? Kappale on origossa, kun t = 0. Opastus: Nyt kiihtyvyys ei ole vakio. T 4: Vauhtipyörä (säde 0,300 m) aloittaa levosta ja pyörii vakiokulmakiihtyvyydellä 0,600 rad/s 2. Laske pyörän reunan pisteelle tangentiaalinen kiihtyvyys, normaalikiihtyvyys (= keskeiskiihtyvyys) ja kokonaiskiihtyvyys seuraavissa kohdissa: a) alussa b) kun pyörä on kääntynyt 60,0 o c) kun pyörä on kääntynyt 120,0 o. T 5: Ihminen heittää kiven kädellään 1,2 metrin korkeudelta maan pinnasta alkunopeudella 13,5 m/s ja kulmassa, joka on vaakatasosta 26 o ylöspäin. a) Mikä tulee olemaan kiven maksimikorkeus maan pinnasta? b) Mikä on kiven kantama, kun kivi putoaa vaakasuoralle maan pinnalle? c) Mikä on kiven lentoaika? d) Mikä on kiven nopeus, kun se osuu maahan? 3 2 T 6: Kappaleen paikka ajan funktiona on r [(2t 5t 3t)ˆ i (4t 2) ˆj ] m. Määritä nopeus ja kiihtyvyys ajan funktiona. Määritä kappaleen paikka, nopeus ja kiihtyvyys, kun t = 0 ja kun t = 5 s. T 7: Kappale, jonka massa on 2,2 kg, heitetään kaltevaa tasoa ylöspäin alkunopeudella 3,7 m/s. Tason kaltevuus on 20 o. Tason ja kappaleen välinen liikekitkakerroin 0,13. Laske Newtonin II lain avulla, kuinka pitkän matkan kappale liukuu tasoa pitkin ylöspäin, ennen kuin se pysähtyy.

2 T 8: Kappale, jonka massa on 2,9 kg, liikkuu siten että sen paikka ja nopeus ajanhetkellä t = 0 ovat r = (3i 4j 7k) m ja v = (2i + j + 3k) m/s. Ajanhetkellä t = 1,0 s voima F = (i 3j + 2k) N alkaa vaikuttaa kappaleeseen ja vaikutus kestää kaksi sekuntia. Laske kappaleen paikka, kun t = 4,5 s. T 9: Kappale on aluksi levossa korkeudella A (katso alla oleva kuva). Se päästetään vapaaksi ja liukuu ensin kitkatonta kaarevaa pintaa pitkin kohtaan B ja sen jälkeen vaakasuoraa pintaa pitkin kohtaan C, johon kappale pysähtyy. Mikä on kappaleen ja vaakasuoran pinnan välinen kitkakerroin, jos kaarevan pinnan säde R = 1,60 m, kappalen massa 0,200 kg ja vaakasuora väli BC 3,00 m? T 10: Alla olevan kuvan mukaisessa systeemissä jousi on aluksi puristuneena 0,220 m. Jousi vapautetaan ja kappale irtoaa siitä tasapainoaseman kohdalla. Kuinka korkealle kappale nousee tasoa pitkin, jos kitkaa ei ole? (Kappaleen massa on 2,00 kg, jousivakio 400 N/m ja tason kaltevuuskulma 37,0 o.) T 11: Kappale, jonka massa on m, liikkuu voimakentässä, jonka potentiaalienergia on muotoa U = ax 2 +bx. Olkoon massa m = 2,5 kg, vakio a = 3,2 J/m 2 ja vakio b = 1,1 J/m. a) Määritä tämän kentän kappaleeseen aiheuttama voima. b) Laske, minkä työn kappaleeseen vaikuttava voima tekee, kun kappale siirtyy kohdasta x = 0 kohtaan x = 2,0 m. c) Mikä on kappaleen nopeus b)-kohdassa esitetyn siirtymän jälkeen, jos origossa kappaleen nopeus v 0 oli (4,1 m) î? Oleta, että kappaleeseen ei vaikuta muita voimia. T 12: Systeemissä on neljä hiukkasta. Niiden massat ja paikat xy-koordinaatistossa ovat vastaavasti: 3,5 kg ja (1,0 m, 2,0 m), 2,8 kg ja (4,5 m, 0,3 m), 4,7 kg ja (2,7 m, 3,0 m) sekä 7,3 kg ja (6,1 m, 2,7 m). Laske muiden hiukkasten aiheuttama gravitaatiovoima ensimmäiseen 3,5 kg:n hiukkaseen (sekä voiman suunta että suuruus). T 13: Kappale, jonka massa on 3,0 kg, on kiinnitetty jouseen, jonka jousivakio on 22 N/m. Kappaletta poikkeutetaan 320 mm tasapainoasemastaan (jossa x = 0) eräällä ajanhetkellä t = 0 ja vapautetaan levosta. a) Mikä on liikkeen periodi? b) Mikä on syntyvän harmonisen liikkeen maksimikiihtyvyys?

3 T 14: Vaimenemattoman värähtelijän jaksonaika on 12.0 s. Vaimenevan värähtelijän kulmataajuus on 97 % vaimenemattoman värähtelijän kulmataajuudesta. a) Mikä on peräkkäisten maksimien amplitudien suhde? b) Missä ajassa värähtelijän amplitudi pienenee puoleen? Haastavampia laskuja T 15: Kun autoa lähdetään kiihdyttämään nopeudesta v 0 = 25,0 m/s, kiihtyvyys (samalla vaihteella ajettaessa) noudattaa yhtälöä a b ct dt 2 missä b = 1,00 m/s 2, c = 0,10 m/s 3 ja d = 0,01 m/s 4. Laske auton nopeus kymmenen sekunnin kuluttua kiihdytyksen aloittamisesta. Laske myös auton tänä aikana kulkema matka. T 16: Pistemäinen kappale liikkuu xy-tasossa siten, että sen kiihtyvyyden komponentit ovat: a a x y 4sin t 3cos t Hetkellä t = 0 kappaleen paikka on muotoinen tämä rata voisi olla? 3 ĵ ja nopeus 4 î. Johda kappaleen radan yhtälö. Mieti, minkä T 17: Kappale, jonka massa on m, lähtee liikkeelle paikasta x 0 pitkin x-akselia voiman F K 2 x vaikutuksen alaisena. Osoita, että kappaleen nopeus paikassa x noudattaa yhtälöä v 2K 1 m x x Opastus: Kiihtyvyys on a dv dt dv dx dx dt dv v dx T 18: Kappaleeseen vaikuttavan konservatiivisen voiman lauseke on F 2x 2 iˆ 2yj ˆ Määritä voimaan liittyvä potentiaalienergian lauseke. Valitse potentiaalienergian nollakohta origoon.

4 Pohdintatehtäviä T 19: Kappale lähtee levosta ja liikkuu pitkin x-akselia. Kappaleen paikka ajan funktiona on esitetty alla olevassa kuvassa. Numeroarvoja on taulukossa. t [s] x [m] t [s] x [m] ,5 2, ,5 6, ,5 12, ,5 20, a) Milloin kappaleen nopeus on nolla? b) Milloin kappaleen nopeus on vakio mutta eri kuin nolla? c) Milloin kappale on kiihtyvässä tai hidastuvassa liikkeessä? d) Mikä on kappaleen nopeus aikavälillä 9 s 17 s?

5 T 20: Kappale lähtee levosta ja liikkuu pitkin x-akselia. (Kyseessä on sama tapahtuma kuin tehtävässä T 19.) Kappaleen nopeus ajan funktiona on esitetty alla olevassa kuvassa. Numeroarvoja on taulukossa. t [s] v [m/s] t [s] v [m/s] , , , , a) Milloin kappaleen kiihtyvyys on nolla? b) Milloin kappaleen kiihtyvyys on vakio mutta eri kuin nolla? c) Mikä on kappaleen kiihtyvyys aikavälillä 0 s 4,5 s? T 21: Kappaleen paikka ajan funktiona on x = x 0 + v 0 t + ½at 2. a) Mikä on kappaleen nopeus ajan funktiona? b) Mikä on vakioiden x 0, v 0 ja a arvo tehtävässä T 19 ja T 20 esitetylle liikkeelle välillä 0 s 4,5 s? T 22: a) Kirjoita paikan ja nopeuden yhtälöt pystysuoralle heittoliikkeelle. Nyt kannattaa käyttää paikan muuttujana y-koordinaattia. b) Piirrä pystysuoran heittoliikkeen tapauksessa kuvaaja y(t) eli korkeus ajan funktiona. c) Piirrä pystysuoran heittoliikkeen tapauksessa kuvaaja v y (t) eli nopeus ajan funktiona. d) Piirrä pystysuoran heittoliikkeen tapauksessa kuvaaja a y (t) eli kiihtyvyys ajan funktiona.

6 T 23: Suoraviivaisen, tasaisesti kiihtyvän liikkeen perusyhtälö on: x = x 0 + v 0 t + ½at 2 Kirjoita tämän yhtälön avulla vinon heittoliikkeen yhtälöt: -korkeus y ajan funktiona -vaakasuora siirtymä x ajan funktiona -pystysuora nopeus v y ajan funktiona -vaakasuora nopeus v x ajan funktiona Oleta alkunopeus v 0 ja lähtökulma α tunnetuksi. T 24: Kappale heitetään maan pinnalta alkunopeudella v o kulmaan α maan pintaan nähden. Hahmottele seuraavat kuvaajat: a) korkeus ajan funktiona, b) pysty- ja vaakasuuntaiset nopeuden komponentit ajan funktiona, c) pysty- ja vaakasuuntaiset kiihtyvyyden komponentit ajan funktiona, d) korkeus y maan pintaa pitkin mitatun etäisyyden x funktiona. T 25: Kappale on vinossa heittoliikkeessä, jossa ilman vastusta ei ole. Oheisessa kuvassa on esitetty kappaleen paikka vaaka- ja pystysuunnassa (eli x- ja y-koordinaatit) 0,1 sekunnin välein. Vastaavat lukuarvot ovat taulukossa. Maanpinta on kohdassa y = 0. a) Miltä korkeudelta kappale lähtee eli mikä on vakion y 0 arvo? b) Mikä on x 0 eli lähtöpisteen x-koordinaatti? c) Arvioi kuvasta ja/tai taulukosta, mikä on nousuaika? d) Arvioi kuvasta ja/tai taulukosta, mikä on lentoaika? e) Arvioi kuvasta ja/tai taulukosta, mikä on nousukorkeus? f) Arvioi kuvasta ja/tai taulukosta, mikä on lentomatka eli kantama? g) Laske lähtökulma. h) Laske lähtönopeus.

7 T 26: Kappale (massa m) liikkuu pitkin ympyränmuotoista rataa (säde R) hetkellisen nopeuden ollessa v. Kappale on kiihtyvässä liikkeessä, kiihtyvyys on vakio a (> 0). a) Piirrä kuva, johon merkitset nopeusvektorin, tangentiaalisen kiihtyvyysvektorin, normaalikiihtyvyysvektorin, kokonaiskiihtyvyysvektorin, kulmanopeusvektorin ja kulmakiihtyvyysvektorin. b) Mikä edellisessä kuvassa muuttuu, jos a olisi < 0 eli liike olisi hidastuvaa? c) Määritä edellä annettujen tietojen perusteella itseisarvo kulmanopeudelle, kulmakiihtyvyydelle, ja normaalikiihtyvyydelle (= keskeiskiihtyvyydelle). T 27: Liikeyhtälöksi sanotaan yhtälöä, joka kirjoitetaan kappaleelle (tai useamman kappaleen systeemille) Newtonin toisen lain mukaisesti ΣF i = ma. a) Kirjoita liikeyhtälö peräkärrylle (massa m), jota kiihtyvässä liikkeessä oleva auto vetää voimalla F. Peräkärryyn vaikuttaa kitkavoiman F µ. b) Tilanne on muuten sama kuin a)-kohdassa, mutta nyt auton ja peräkärryn muodostama systeemi liikkuu eteenpäin tasaisella nopeudella v. Kirjoita liikeyhtälö peräkärrylle. c) Kirjoita liikeyhtälö kelkalle (massa m), jota lapsi vetää mäkeä (kaltevuuskulma α) ylöspäin voimalla F. Kitkakerroin kelkan ja lumen välillä on µ.

8 T 28: Kappale (massa m) on kaltevalla tasolla, jonka kaltevuuskulma on α. Lepokitkakerroin pinnan ja kappaleen välillä on μ s ja liukukitkakerroin μ k. Piirrä kuva tilanteesta ja merkitse siihen kaikki voimat, jotka vaikuttavat kappaleeseen kun: a) kappale on levossa b) kappale liikkuu ylämäkeen nopeudella v. Mikä on kappaleen kiihtyvyys? T 29: Kappale (massa m) ja massaton lanka (pituus l ) muodostavat heilurin. Eräällä hetkellä langan poikkeamakulma pystysuorasta suunnasta on. (Suurin poikkeama on θ 0.) Piirrä kuva tilanteesta ja merkitse kuvaan kaikki voimat, jotka vaikuttavat kappaleeseen. Määritä langan jännitys ääriasennossa. T 30: Kappale, jonka massa m on 50 g, liikkuu kuvan mukaisesti pitkin vaakasuoraa ympyrää langan varassa. Langan pituus L on 86 cm ja kaltevuuskulma α on 8,5 o. (Huomaa: α on vakio.) a) Piirrä kuva, johon merkitset kaikki kappaleeseen vaikuttavat voimat. b) Määritä kappaleeseen vaikuttavien voimien suuruus ja kappaleen nopeus. α

9 T 31: Määritä voiman F = 10,0 N kappaleeseen tekemä työ seuraavissa tapauksissa: (Kappale siirtyy jokaisessa tapahtumassa 3 m oikealle.) a) F s = 3 m b) 30 o F s = 3 m c) F s = 3 m d) F s = 3 m T 32: a) Minkä työn seuraavat voimat tekevät kuvan kappaleeseen? Ilmoita vastaus vain kaavana annettuja symboleja käyttäen, ei numeroarvoja paitsi jos vastaus on nolla. F α i) voima F ii) pinnan tukivoima eli normaalivoima N iii) painovoima G iv) kitkavoima F. (Kappaleen massa on m ja kitkakerroin kappaleen ja tason välillä on.)

10 b) Mikä on a)-kohdan kappaleeseen tehty nettotyö ja kuinka paljon kappaleen kineettinen energia muuttuu? (Ilmoita tulokset kaavoina annettuja symboleja käyttäen.) T 33: Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä. Massaan kiinnitetty kynä piirtää käyrää, joka esittää poikkeamaa ajan funktiona kuten videossa Tuloksena saadaan alla olevat kuvat. Määritä a) liikkeen amplitudi (sama jokaisessa kolmessa kuvassa), b) liikkeen periodi (sama jokaisessa kolmessa kuvassa), c) liikkeen kulmataajuus (sama jokaisessa kolmessa kuvassa), d) liikkeen vaihekulma (eri jokaisessa kuvassa). e) Kirjoita alimmalle liikkeelle yhtälö x = Asin(ωt +φ), johon sijoitat vakioiden arvot. Oleta, että liike on vaimentumatonta.

11

12 T 34: Harmonisen värähtelijän yhtälö on x = (0,10 m) sin 2 (rad/s) t + /4. a) Mikä on suurin poikkeama tasapainoasemasta? b) Montako edestakaista värähdystä tapahtuu sekunnissa? c) Mikä on liikkeen taajuus? d) Mikä on poikkeama ajanhetkellä t = 0? T 35: Harmonisen värähtelijän liikettä kuvataan yhtälöllä x = Asin( t + ). Määritä harmonisen värähtelijän nopeus ajan funktiona ja kiihtyvyys ajan funktiona. T 36: Kappale, jonka massa on m, liikkuu harmonisen voiman F = - kx vaikutuksen alaisena. a) Kirjoita differentiaaliyhtälö, josta saa ratkaisuna kappaleen poikkeaman tasapainoasemasta ajan funktiona: x = A sin(ωt + φ). Yhtälöä ei tarvitse ratkaista, mutta selvitä pääpiirteittäin (esimerkiksi Fysiikan matematiikan kurssilla oppimasi perusteella), miten kyseinen differentiaaliyhtälö ratkaistaan. b) Mitä yllä olevassa lausekkeessa tarkoittavat A, ω ja φ? c) Miten lasketaan värähdysliikkeen periodi? d) Mikä on kyseisen värähtelijän hetkellinen potentiaalienergia ja kokonaisenergia. T 37: Kappale, jonka massa on m, liikkuu harmonisen voiman F = - kx vaikutuksen alaisena. Lisätään systeemiin liikettä hidastava voima, joka riippuu kappaleen nopeudesta seuraavalla tavalla: F = - bv a) Kirjoita differentiaaliyhtälö, josta saa ratkaisuna kappaleen poikkeaman tasapainoasemasta ajan funktiona. Yhtälöä ei tarvitse ratkaista, mutta saa ratkaista, jos haluaa treenata laskemista. b) Differentiaaliyhtälön ratkaisu on: x = Ae -(b/2m)t sin(ωt + φ) Mitä tässä yhtälössä tarkoittavat A, b, m, ω ja φ? c) Milloin vaimennettu värähtelijä on ylivaimennettu? Mitä se käytännössä tarkoittaa? d) Jos piirtäisit tehtävän vaimentumattoman ja vaimennetun värähtelijän kuvaajan, miten ne eroaisivat toisistaan? Oleta, että m, k ja φ ovat samoja molemmille värähtelijöille. T 38: Koejärjestely on muuten samanlainen kuin tehtävässä T 33, mutta nyt kappaleeseen vaikuttaa hidastava voima. Kappale on esimerkiksi upotettu nesteeseen. Asiaa havainnollistaa videossa vasemmanpuoleisin kuva tai video Alla olevassa kuvassa on esitetty kappaleen poikkeama ajan funktiona. Määritä vakion b/2m arvo, jos liikettä kuvataan yhtälöllä x = Ae -(b/2m)t sin(ωt + φ).

13 Vastaukset T 1: 2,6 km T 2: a) 1,02 s, b) 5,10 m, c) 2,04 s T 3: a(2 s) = 13,0 m/s 2, x(2 s) = 0,667 m T 4: b) a TAN = 0,180 m/s 2, a RAD = 0,377 m/s 2, a TOT = 0,420 m/s 2 T 5: a) 2,99 m, b) 16,8 m, c) 1,4 s, d) 14,3 m/s T 6: t = 5 s r = 142 m, v = 103 m/s, a = 50,0 m/s 2. Anna tulokset (ensisijaisesti) vektoreina. T 7: 1,5 m T 8: r = (13,7i 4,67j + 9,95k) m T 9: 0,533 T 10: s = 0,820 m tai h = 0,493 m

14 T 11: a) [(6,4x + 1,1)i]N, b) 15 J, c) 2,2 m/s T 12: F KOK = (3,5i + 1,3j) N, F KOK = 3, N T 13: a) 2,32 s, b) 2,35 m/s 2 T 14: a) 0,21, b) 5,45 s T 15: v(10 s) = 36,7 m/s, x(10 s) = 308 m T 16: r = (4sint)i 3(cost -2)j T 18: T 30: G = 0,491 N, T = 0,496 N, v = 0,432 m/s T 38: noin 0,05 s -1

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina 31.5.2012. T 6.1 (pakollinen): Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä.

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan

Lisätiedot

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic

Lisätiedot

Luento 3: Käyräviivainen liike

Luento 3: Käyräviivainen liike Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike 2015-09-14 13:50:32 1/40 luentokalvot_03_combined.pdf (#36) Luennon

Lisätiedot

Luento 5: Käyräviivainen liike

Luento 5: Käyräviivainen liike Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike Ajankohtaista Konseptitesti 1 Kysymys Viereisessä kuvassa leppäkerttu istuu karusellissa,

Lisätiedot

Luku 8. Mekaanisen energian säilyminen. Konservatiiviset ja eikonservatiiviset. Potentiaalienergia Voima ja potentiaalienergia.

Luku 8. Mekaanisen energian säilyminen. Konservatiiviset ja eikonservatiiviset. Potentiaalienergia Voima ja potentiaalienergia. Luku 8 Mekaanisen energian säilyminen Konservatiiviset ja eikonservatiiviset voimat Potentiaalienergia Voima ja potentiaalienergia Mekaanisen energian säilyminen Teho Tavoitteet: Erottaa konservatiivinen

Lisätiedot

BM30A0240, Fysiikka L osa 4

BM30A0240, Fysiikka L osa 4 BM30A0240, Fysiikka L osa 4 Luennot: Heikki Pitkänen 1 Oppikirja: Young & Freedman: University Physics Luku 14 - Periodic motion Luku 15 - Mechanical waves Luku 16 - Sound and hearing Muuta - Diffraktio,

Lisätiedot

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike 1 / 29 Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat

Lisätiedot

Luento 3: Käyräviivainen liike

Luento 3: Käyräviivainen liike Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luennon sisältö Kertausta viime viikolta Käyräviivainen liike

Lisätiedot

Kinematiikka -1- K09A,B&C Harjoitustehtäviä Kevät 2010 PARTIKKELI. Suoraviivainen liike

Kinematiikka -1- K09A,B&C Harjoitustehtäviä Kevät 2010 PARTIKKELI. Suoraviivainen liike Kinematiikka -1- K09A,B&C Harjoitustehtäviä Kevät 010 PARTIKKELI Suoraviivainen liike 1. Suoraviivaisessa liikkeessä olevan partikkelin asema on (järjestelmä m, s) 3 x ( = t 15t + 36t 10. Laske a) partikkelin

Lisätiedot

Luento 11: Periodinen liike

Luento 11: Periodinen liike Luento 11: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r Konseptitesti 1 Tehtävänanto Kuvassa on jouseen kytketyn massan sijainti ajan funktiona. Kuvaile

Lisätiedot

Luento 5: Käyräviivainen liike

Luento 5: Käyräviivainen liike Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike Ajankohtaista Konseptitesti 1 http://presemo.aalto.fi/mekaniikka2017 Kysymys Sotalaivasta

Lisätiedot

Luku 7 Työ ja energia. Muuttuvan voiman tekemä työ Liike-energia

Luku 7 Työ ja energia. Muuttuvan voiman tekemä työ Liike-energia Luku 7 Työ ja energia Muuttuvan voiman tekemä työ Liike-energia Tavoitteet: Selittää työn käsite Mallittaa voiman tekemä työ Mallittaa liike-energian ja työn keskinäinen riippuvuus Esitiedot Newtonin lait

Lisätiedot

Luento 13: Periodinen liike

Luento 13: Periodinen liike Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos Ajankohtaista

Lisätiedot

Luento 11: Periodinen liike

Luento 11: Periodinen liike Luento 11: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä θ F t m g F r Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä Johdanto Tarkastellaan

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 6 Yksinkertainen harmoninen liike yhteys ympyräliikkeeseen energia dynamiikka Värähdysliike Knight Ch 14 Heilahtelut pystysuunnassa ja gravitaation

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain

Lisätiedot

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r Vuka HT 4 Tehtävä. Lyhyenä alustuksena tehtävään johdetaan keskeiskiihtyvyys tasaisessa pyörimisessä. Meillä on ympyräradalla liikkuva kappale joka pyörii vakiokulmanopeudella ω dϕ säteellä r origosta.

Lisätiedot

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1). H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika

Lisätiedot

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4 766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4 0. MUISTA: Tenttitehtävä tulevassa päätekokeessa: Fysiikan säilymislait ja symmetria. (Tästä tehtävästä voi saada tentissä kolme ylimääräistä pistettä. Nämä

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI NEWTONIN LAIT MEKANIIKAN I PERUSLAKI eli jatkavuuden laki tai liikkeen jatkuvuuden laki (myös Newtonin I laki tai inertialaki) Kappale jatkaa tasaista suoraviivaista liikettä vakionopeudella tai pysyy

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Huom: luvun 4 kohdalla luennolla ei ollut laskuesimerkkejä, vaan koko luvun 5 voi nähdä kokoelmana sovellusesimerkkejä edellisen luvun asioihin! Esimerkki 5.1 Moottori roikkuu oheisen

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Esimerkki 5.1 Moottori roikkuu oheisen kuvan mukaisessa ripustuksessa. a) Mitkä ovat kahleiden jännitykset? b) Mikä kahleista uhkaa katketa ensimmäisenä? Piirretäänpä parit vapaakappalekuvat.

Lisätiedot

g-kentät ja voimat Haarto & Karhunen

g-kentät ja voimat Haarto & Karhunen g-kentät ja voimat Haarto & Karhunen Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure Aiheuttaa kappaleelle

Lisätiedot

Luento 10: Työ, energia ja teho

Luento 10: Työ, energia ja teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho Ajankohtaista Konseptitesti 1 Kysymys Ajat pyörällä ylös jyrkkää mäkeä. Huipulle vie kaksi polkua, toinen kaksi kertaa pidempi kuin

Lisätiedot

HARJOITUS 4 1. (E 5.29):

HARJOITUS 4 1. (E 5.29): HARJOITUS 4 1. (E 5.29): Työkalulaatikko, jonka massa on 45,0 kg, on levossa vaakasuoralla lattialla. Kohdistat laatikkoon asteittain kasvavan vaakasuoran työntövoiman ja havaitset, että laatikko alkaa

Lisätiedot

Jakso 3: Dynamiikan perusteet Näiden tehtävien viimeinen palautus- tai näyttöpäivä on keskiviikko 5.8.2015.

Jakso 3: Dynamiikan perusteet Näiden tehtävien viimeinen palautus- tai näyttöpäivä on keskiviikko 5.8.2015. Jakso 3: Dynamiikan perusteet Näiden tehtävien viimeinen palautus- tai näyttöpäivä on keskiviikko 5.8.2015. Tässä jaksossa harjoittelemme Newtonin toisen lain soveltamista. Newtonin toinen laki on yhtälön

Lisätiedot

Pietarsaaren lukio Vesa Maanselkä

Pietarsaaren lukio Vesa Maanselkä Fys 9 / Mekaniikan osio Liike ja sen kuvaaminen koordinaatistossa Newtonin lait Voimavektorit ja vapaakappalekuvat Työ, teho,työ-energiaperiaate ja energian säilymislaki Liikemäärä ja sen säilymislaki,

Lisätiedot

Nopeus, kiihtyvyys ja liikemäärä Vektorit

Nopeus, kiihtyvyys ja liikemäärä Vektorit Nopeus, kiihtyvyys ja liikemäärä Vektorit Luento 2 https://geom.mathstat.helsinki.fi/moodle/course/view.php?id=360 Luennon tavoitteet: Vektorit tutuiksi Koordinaatiston valinta Vauhdin ja nopeuden ero

Lisätiedot

Massakeskipiste Kosketusvoimat

Massakeskipiste Kosketusvoimat Massakeskipiste Kosketusvoimat Luennon tavoitteet Kosketusvoimia Kitka Tukivoima Jännitys Jousivoima Massakeskipisteen käsite ja sillä laskeminen (Resonanssi tiedottaa tarjoavansa kahvia luentotauolla)

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori!

Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! 6.1 Työ Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! Siirtymä s = r 2 r 1 Kun voiman kohteena olevaa kappaletta voidaan kuvata

Lisätiedot

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,

Lisätiedot

= 6, Nm 2 /kg kg 71kg (1, m) N. = 6, Nm 2 /kg 2 7, kg 71kg (3, m) N

= 6, Nm 2 /kg kg 71kg (1, m) N. = 6, Nm 2 /kg 2 7, kg 71kg (3, m) N t. 1 Auringon ja kuun kohdistamat painovoimat voidaan saada hyvin tarkasti laksettua Newtonin painovoimalailla, koska ne ovat pallon muotoisia. Junalle sillä saadaan selville suuruusluokka, joka riittää

Lisätiedot

Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten)

Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten) Noste Ympyräliike I Luennon tavoitteet Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten) Aloitetaan ympyräliikettä Keskeisvoiman

Lisätiedot

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto Fysiikan perusteet Voimat ja kiihtyvyys Antti Haarto.05.01 Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure

Lisätiedot

3.4 Liike-energiasta ja potentiaalienergiasta

3.4 Liike-energiasta ja potentiaalienergiasta Työperiaatteeksi (the work-energy theorem) kutsutaan sitä että suljetun systeemin liike-energian muutos Δ on voiman systeemille tekemä työ W Tämä on yksi konservatiivisen voiman erityistapaus Työperiaate

Lisätiedot

Liikkeet. Haarto & Karhunen. www.turkuamk.fi

Liikkeet. Haarto & Karhunen. www.turkuamk.fi Liikkeet Haarto & Karhunen Suureita Aika: tunnus t, yksikkö: sekunti = s Paikka: tunnus x, y, r, ; yksikkö: metri = m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema) oidaan ilmoittaa

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 15.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinematiikka: asema, nopeus ja kiihtyvyys (Kirjan luvut 12.1-12.5, 16.1 ja 16.2) Osaamistavoitteet Ymmärtää

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 10.1 Tee-se-itse putkimies ei saa vesiputken kiinnitystä auki putkipihdeillään, joten hän päättää lisätä vääntömomenttia jatkamalla pihtien vartta siihen tiukasti sopivalla

Lisätiedot

Kitka ja Newtonin lakien sovellukset

Kitka ja Newtonin lakien sovellukset Kitka ja Newtonin lakien sovellukset Haarto & Karhunen Tavallisimpia voimia: Painovoima G Normaalivoima, Tukivoima Jännitysvoimat Kitkavoimat Voimat yleisesti F f T ja s f k N Vapaakappalekuva Kuva, joka

Lisätiedot

Työ ja kineettinen energia

Työ ja kineettinen energia Työ ja kineettinen energia Kaikki mekaniikan probleemat voidaan periaatteessa ratkaista Newtonin lakien avulla, liikeyhtälöistä. Työ- ja energiakäsitteiden käyttöönottaminen kuitenkin yksinkertaistaa monia

Lisätiedot

Luento 9: Potentiaalienergia

Luento 9: Potentiaalienergia Luento 9: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Laskettuja esimerkkejä Luennon sisältö Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta

Lisätiedot

Nyt kerrataan! Lukion FYS5-kurssi

Nyt kerrataan! Lukion FYS5-kurssi Nyt kerrataan! Lukion FYS5-kurssi Vaakasuora heittoliike Heittoliikettä voidaan tarkastella erikseen vaaka- ja pystysuunnassa v=(v x,v y ) Jos ilmanvastausta ei oteta huomioon (yleensä ei), vaakasuunnalle

Lisätiedot

4 Kaksi- ja kolmiulotteinen liike

4 Kaksi- ja kolmiulotteinen liike Mansfield and O Sullivan: Understandin physics, painos 1999, kpl 4. Näitä löytyy myös Youn and Freedman: University physics -teoksen luvuissa 4, osin myös luvuissa 3 ja 5. 4 Kaksi- ja kolmiulotteinen liike

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 22.3.2016 Susanna Hurme Päivän aihe: Rotaatioliikkeen kinematiikka: kulmanopeus ja -kiihtyvyys (Kirjan luvut 12.7, 16.3) Osaamistavoitteet Osata analysoida jäykän

Lisätiedot

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE Harmoninen voima on voima, jonka suuruus on suoraan verrannollinen poikkeamaan tasapainoasemasta

Lisätiedot

Liikemäärän säilyminen Vuorovesivoimat Jousivoima

Liikemäärän säilyminen Vuorovesivoimat Jousivoima Liikemäärän säilyminen Vuorovesivoimat Jousivoima Tämän luennon tavoitteet Liikemäärän säilyminen Vuorovesivoimat ja binomiapproksimaatio gravitaatio jatkuu viime viikolta Jousivoima: mikä se on ja miten

Lisätiedot

E 3.15: Maan pinnalla levossa olevassa avaruusaluksessa pallo vierii pois pöydän vaakasuoralta pinnalta ja osuu lattiaan D:n etäisyydellä pöydän

E 3.15: Maan pinnalla levossa olevassa avaruusaluksessa pallo vierii pois pöydän vaakasuoralta pinnalta ja osuu lattiaan D:n etäisyydellä pöydän HARJOITUS 2 E 3.9: Fysiikan kirja luisuu pois pöydän vaakasuoralta pinnalta nopeudella 1,10 m/s. Kirja osuu lattiaan 0,350 sekunnin kuluttua. Jätä ilmanvastus huomiotta. Laske a) pöydän pinnan etäisyys

Lisätiedot

x (t) = 2t ja y (t) = 3t 2 x (t) + + y (t) Lasketaan pari käyrän arvoa ja hahmotellaan kuvaaja: A 2 A 1

x (t) = 2t ja y (t) = 3t 2 x (t) + + y (t) Lasketaan pari käyrän arvoa ja hahmotellaan kuvaaja: A 2 A 1 BM2A582 Integraalilaskenta ja sovellukset Harjoitus 6, Kevät 26 Kaikissa tehtävissä tärkeintä ja riittävää on saada oikea lauseke aikaiseksi. Useissa tehtävissä integraalit eivät tosin ole niin vaikeita

Lisätiedot

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t,

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, v)-koordinaatistossa ruutumenetelmällä. Tehtävä 4 (~YO-K97-1). Tekniikan

Lisätiedot

5-2. a) Valitaan suunta alas positiiviseksi. 55 N / 6,5 N 8,7 m/s = =

5-2. a) Valitaan suunta alas positiiviseksi. 55 N / 6,5 N 8,7 m/s = = TEHTÄVIEN RATKAISUT 5-1. a) A. Valitaan suunta vasemmalle positiiviseksi. Alustan suuntainen kokonaisvoima on ΣF = 19 N + 17 N -- 16 N = 0 N vasemmalle. B. Valitaan suunta oikealle positiiviseksi. Alustan

Lisätiedot

v = Δs 12,5 km 5,0 km Δt 1,0 h 0,2 h 0,8 h = 9,375 km h 9 km h kaava 1p, matkanmuutos 1p, ajanmuutos 1p, sijoitus 1p, vastaus ja tarkkuus 1p

v = Δs 12,5 km 5,0 km Δt 1,0 h 0,2 h 0,8 h = 9,375 km h 9 km h kaava 1p, matkanmuutos 1p, ajanmuutos 1p, sijoitus 1p, vastaus ja tarkkuus 1p 2. Pyöräilijä lähti Pietarsaaresta kohti Kokkolaa, jonne on matkaa 33 km. Hän asetti tavoitteeksi ajaa edestakaisen matkan keskinopeudella 24 km/h. Vastatuulen takia hän joutui käyttämään menomatkaan aikaa

Lisätiedot

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis Fys1, moniste 2 Vastauksia Tehtävä 1 N ewtonin ensimmäisen lain mukaan pallo jatkaa suoraviivaista liikettä kun kourun siihen kohdistama tukivoima (tässä tapauksessa ympyräradalla pitävä voima) lakkaa

Lisätiedot

Theory Finnish (Finland)

Theory Finnish (Finland) Q1-1 Kaksi tehtävää mekaniikasta (10 pistettä) Lue yleisohjeet ennen tehtävien aloittamista. Osa A: Piilotettu kiekko (3,5 pistettä) Tässä tehtävässä käsitellään umpinaista puista sylinteriä, jonka säde

Lisätiedot

Fysiikan perusteet. Liikkeet. Antti Haarto 22.05.2012. www.turkuamk.fi

Fysiikan perusteet. Liikkeet. Antti Haarto 22.05.2012. www.turkuamk.fi Fysiikan perusteet Liikkeet Antti Haarto.5.1 Suureita Aika: tunnus t, yksikkö: sekunti s Paikka: tunnus x, y, r, ; yksikkö: metri m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema)

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun.

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun. Matematiikka KoTiA1 Demotehtäviä 1. Ratkaise epäyhtälöt x + 1 x 2 b) 3 x 1 < 2 x + 1 c) x 2 x 2 2. Ratkaise epäyhtälöt 2 x < 1 2 2 b) x 3 < x 2x 3. Olkoon f (x) kolmannen asteen polynomi jonka korkeimman

Lisätiedot

3 TOISEN ASTEEN POLYNOMIFUNKTIO

3 TOISEN ASTEEN POLYNOMIFUNKTIO 3 TOISEN ASTEEN POLYNOMIFUNKTIO POHDITTAVAA 1. Kuvasta voidaan arvioida, että frisbeegolfkiekko käy noin 9 metrin korkeudella ja se lentää noin 40 metrin päähän. Vastaus: Frisbeegolfkiekko käy n. 9 m:n

Lisätiedot

dl = F k dl. dw = F dl = F cos. Kun voima vaikuttaa kaarevalla polulla P 1 P 2, polku voidaan jakaa infinitesimaalisen pieniin siirtymiin dl

dl = F k dl. dw = F dl = F cos. Kun voima vaikuttaa kaarevalla polulla P 1 P 2, polku voidaan jakaa infinitesimaalisen pieniin siirtymiin dl Kun voima vaikuttaa kaarevalla polulla P 2, polku voidaan jakaa infinitesimaalisen pieniin siirtymiin dl Kukin siirtymä dl voidaan approksimoida suoraviivaiseksi, jolloin vastaava työn elementti voidaan

Lisätiedot

Fysiikan lisäkurssin tehtävät (kurssiin I liittyvät, syksy 2013, Kaukonen)

Fysiikan lisäkurssin tehtävät (kurssiin I liittyvät, syksy 2013, Kaukonen) 1. Ylöspäin liikkuvan hissin, jonka massa on 480 kg, nopeus riippuu ajasta oheisen kuvion mukaisesti. Laske kannatinvaijeria jännittävä voima liikkeen eri vaiheissa. (YO, S 84) 0-4s: 4,9 kn, 4..10s: 4,7

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

FYSIIKAN HARJOITUSTEHTÄVIÄ

FYSIIKAN HARJOITUSTEHTÄVIÄ FYSIIKAN HARJOITUSTEHTÄVIÄ MEKANIIKKA Nopeus ja keskinopeus 6. Auto kulkee 114 km matkan tunnissa ja 13 minuutissa. Mikä on auton keskinopeus: a) Yksikössä km/h 1. Jauhemaalaamon kuljettimen nopeus on

Lisätiedot

- suurempi voima aiheuttaa nopeampaa liikettä kuin pieni voima - samanlainen voima aiheuttaa samalle kappaleelle aina samanlaisen vaikutuksen

- suurempi voima aiheuttaa nopeampaa liikettä kuin pieni voima - samanlainen voima aiheuttaa samalle kappaleelle aina samanlaisen vaikutuksen 3 Dynamiikka 3.1 Voima (force) - Jos työnnät jotain kevyttä kappaletta, se alkaa liikkua - jos työnnät sitä kovemmin, se liikkuu nopeammin Kyseinen suure on voima - suurempi voima aiheuttaa nopeampaa liikettä

Lisätiedot

BM30A0240, Fysiikka L osa 4. Värähtelyfysiikkaa. Luennot: Heikki Pitkänen

BM30A0240, Fysiikka L osa 4. Värähtelyfysiikkaa. Luennot: Heikki Pitkänen BM30A0240, Fysiikka L osa 4 Värähtelyfysiikkaa 1 Luennot: Heikki Pitkänen Oppikirja: Young & Freedman: University Physics Periodic motion Mechanical waves Sound and hearing Muuta - Diffraktio, interferenssi,

Lisätiedot

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Täydennä kuhunkin kohtaan yhtälöstä puuttuva suure tai vakio alla olevasta taulukosta. Anna vastauksena kuhunkin kohtaan ainoastaan

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 30.3.2016 Susanna Hurme Yleisen tasoliikkeen kinetiikka (Kirjan luku 17.5) Osaamistavoitteet Osata ratkaista voimia ja niiden aiheuttamia kiihtyvyyksiä tasoliikkeessä

Lisätiedot

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77 Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty.5.07 Kertaus K. a) sin 0 = 0,77 b) cos ( 0 ) = cos 0 = 0,6 c) sin 50 = sin (80 50 ) = sin 0 = 0,77 d) tan 0 = tan (0 80 ) = tan 0 =,9 e)

Lisätiedot

Jakso 4: Dynamiikan perusteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautus- tai näyttöpäivä on maanantaina

Jakso 4: Dynamiikan perusteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautus- tai näyttöpäivä on maanantaina Jako 4: Dynamiikan peruteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautu- tai näyttöpäivä on maanantaina 8.8.2016. Kolmea enimmäieä lakua ovelletaan Newtonin 2. ja 3. lakia. T 4.1 (pakollinen):

Lisätiedot

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a) Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

Muunnokset ja mittayksiköt

Muunnokset ja mittayksiköt Muunnokset ja mittayksiköt 1 a Mitä kymmenen potenssia tarkoittavat etuliitteet m, G ja n? b Mikä on massan (mass) mittayksikkö SI-järjestelmässäa? c Mikä on painon (weight) mittayksikkö SI-järjestelmässä?

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut A1 Ampumahiihtäjä ampuu luodin vaakasuoraan kohti maalitaulun keskipistettä. Luodin lähtönopeus on v 0 = 445 m/s ja etäisyys maalitauluun s = 50,0 m. a) Kuinka pitkä on luodin lentoaika? b) Kuinka kauaksi

Lisätiedot

:37:37 1/50 luentokalvot_05_combined.pdf (#38)

:37:37 1/50 luentokalvot_05_combined.pdf (#38) 'VLTJ,)Ł /Ł 2015-09-21 13:37:37 1/50 luentokalvot_05_combined.pdf (#38) Luento 5: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä 2015-09-21 13:37:37

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Syksy 2016 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia Ajankohtaista Presemokyselyn poimintoja Millä odotuksilla aloitat

Lisätiedot

Luento 11: Potentiaalienergia

Luento 11: Potentiaalienergia Luento 11: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia Ajankohtaista Konseptitesti 1 Kysymys Levossa oleva kappale lähtee

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

Luento 9: Potentiaalienergia

Luento 9: Potentiaalienergia Luento 9: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Laskettuja esimerkkejä ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2015 Mikro- ja nanotekniikan

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

Tarkastellaan tilannetta, jossa kappale B on levossa ennen törmäystä: v B1x = 0:

Tarkastellaan tilannetta, jossa kappale B on levossa ennen törmäystä: v B1x = 0: 8.4 Elastiset törmäykset Liike-energia ja liikemäärä säilyvät elastisissa törmäyksissä Vain konservatiiviset voimat vaikuttavat 1D-tilanteessa kappaleiden A ja B törmäykselle: 1 2 m Av 2 A1x + 1 2 m Bv

Lisätiedot

Gravitaatio ja heittoliike. Gravitaatiovoima Numeerisen ratkaisun perusteet Heittoliike

Gravitaatio ja heittoliike. Gravitaatiovoima Numeerisen ratkaisun perusteet Heittoliike Gravitaatio ja heittoliike Gravitaatiovoima Numeerisen ratkaisun perusteet Heittoliike KERTAUS Newtonin lait Newtonin I laki Kappale, johon ei vaikuta voimia/voimien summa on nolla, ei muuta liiketilaansa

Lisätiedot

Luento 6: Liikemäärä ja impulssi

Luento 6: Liikemäärä ja impulssi Luento 6: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Laskettuja esimerkkejä Luennon sisältö Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste

Lisätiedot

Havainnoi mielikuviasi ja selitä, Panosta ajatteluun, selvitä liikkeen salat!

Havainnoi mielikuviasi ja selitä, Panosta ajatteluun, selvitä liikkeen salat! Parry Hotteri tutki näkymättömiä voimia kammiossaan Hän aikoi tönäistä pallon liikkeelle pöydällä olevassa ympyrän muotoisessa kourussa, joka oli katkaistu kuvan osoittamalla tavalla. Hän avasi Isaac Newtonin

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle / MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,

Lisätiedot

1.4 Suhteellinen liike

1.4 Suhteellinen liike Suhteellisen liikkeen ensimmäinen esimerkkimme on joskus esitetty kompakysymyksenäkin. Esimerkki 5 Mihin suuntaan ja millä nopeudella liikkuu luoti, joka ammutaan suihkukoneesta mahdollisimman suoraan

Lisätiedot

Luento 7: Voima ja Liikemäärä. Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä

Luento 7: Voima ja Liikemäärä. Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä Luento 7: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä 1 / 36 Johdanto Dynamiikka tutkii voimia ja niiden aiheuttamaa liikettä Newtonin liikelait

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.3.2016 Susanna Hurme Rotaatioliikkeen liike-energia, teho ja energiaperiaate (Kirjan luku 18) Osaamistavoitteet Ymmärtää, miten liike-energia määritetään kiinteän

Lisätiedot

Luento 11: Potentiaalienergia. Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia

Luento 11: Potentiaalienergia. Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia Luento 11: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia 1 / 22 Luennon sisältö Potentiaalienergia Konservatiiviset voimat

Lisätiedot

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Liike ja voima Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Tasainen liike Nopeus on fysiikan suure, joka kuvaa kuinka pitkän matkan kappale kulkee tietyssä ajassa. Nopeus voidaan

Lisätiedot

Luento 7: Voima ja Liikemäärä

Luento 7: Voima ja Liikemäärä Luento 7: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä Ajankohtaista Konseptitesti 1 Kysymys Viereisessä kuvaajassa on kuvattu kappaleen nopeutta

Lisätiedot

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi Fysiikan perusteet Työ, energia ja energian säilyminen Antti Haarto 0.09.0 Voiman tekemä työ Voiman F tekemä työ W määritellään kuljetun matkan s ja matkan suuntaisen voiman komponentin tulona. Yksikkö:

Lisätiedot

Luvun 8 laskuesimerkit

Luvun 8 laskuesimerkit Luvun 8 laskuesimerkit Esimerkki 8.1 Heität pallon, jonka massa on 0.40 kg seinään. Pallo osuu seinään horisontaalisella nopeudella 30 m/s ja kimpoaa takaisin niin ikään horisontaalisesti nopeudella 20

Lisätiedot

2.3 Voiman jakaminen komponentteihin

2.3 Voiman jakaminen komponentteihin Seuraavissa kappaleissa tarvitaan aina silloin tällöin taitoa jakaa voima komponentteihin sekä myös taitoa suorittaa sille vastakkainen operaatio eli voimien resultantin eli kokonaisvoiman laskeminen.

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 26. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 26. syyskuuta 2016 1 / 14 Hieman kertausta

Lisätiedot

W el = W = 1 2 kx2 1

W el = W = 1 2 kx2 1 7.2 Elastinen potentiaalienergia Paitsi gravitaatioon, myös materiaalien deformaatioon (muodonmuutoksiin) liittyy systeemin rakenneosasten keskinäisiin paikkoihin liittyvää potentiaalienergiaa Elastinen

Lisätiedot

C B A. Kolmessa ensimmäisessä laskussa sovelletaan Newtonin 2. ja 3. lakia.

C B A. Kolmessa ensimmäisessä laskussa sovelletaan Newtonin 2. ja 3. lakia. Jako 4: Dynamiikan peruteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautu- tai näyttöpäivä on tiitaina 23.5.2017. Ektra-tehtävät vataavat kolmea tehtävää, kun kurin lopua laketaan lakuharjoitupiteitä.

Lisätiedot

KALTEVA TASO. 1. Työn tavoitteet. 2. Teoria

KALTEVA TASO. 1. Työn tavoitteet. 2. Teoria Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1. Työn tavoitteet Tämän työn ensimmäisessä osassa tutkit kuulan, sylinterin ja sylinterirenkaan vierimistä pitkin kaltevaa tasoa.

Lisätiedot