Kompleksiesitys: Harmoninen aalto esitetään usein kompleksimuodossa

Koko: px
Aloita esitys sivulta:

Download "Kompleksiesitys: Harmoninen aalto esitetään usein kompleksimuodossa"

Transkriptio

1 Kompleksiesitys: Harmoninen aalto esitetään usein kompleksimuodossa 13 i( kx-w t) %, y = Ae joka Eulerin kaavalla avautuu muotoon y% = Acos( kx- wt) + iasin( kx-wt). Kompleksiesitys sisältää siis sekä sini- että kosiniaallon. Erilaisia ilmiöitä tarkasteltaessa on usein laskennollisesti kätevämpää operoida kompleksiesityksellä kuin todellisella sini- tai kosinimuodolla. Monesti kirjoitetaan y x t i( kx-w t) (, ) Re{ Ae } =, jonka reaaliosa siis esittää todellista (reaalista) aaltoa (kosinimuodossa). On myös tavallista, että aallossa reaaliosan ottamista tarkoittava symboli Re jätetään kirjoittamatta. Tällöin on syytä olla varovainen. Jos aaltoon kohdistuvat laskuoperaatiot ovat lineaarisia (yhteenlasku, vakiolla kertominen,...), niin reaaliosa voidaan ottaa vasta lopputuloksesta ja näin saadaan oikea tulos. Mutta, jos laskutoimitukset eivät ole lineaarisia (neliöjuuri, toiseen korottaminen,...) reaaliosa on otettava ennen operaation suorittamista. Tästä on yksi tärkeä poikkeus. Jos lasketaan neliöllisen lausekkeen aikakeskiarvoa, riittää kun reaaliosa otetaan vasta lopputuloksesta. Esimerkki: Kirjoita aallon y( x, t) = Asin( kx- wt+ j ) kompleksiesitys siten, että yxt (,) on kompleksiesityksen reaaliosa. 0 Ratkaisu: ij Koska y( x, t) = Re{ Ae } = Acosj = Asin( j + p / ), kompleksiesityksen on oltava muotoa y% = Ae i( kx wt j0 p /)

2 AALLON NOPEUS Fysikaaliset suureet, jotka määräävät poikittaisen aallon etenemisnopeuden köydessä ovat köyden jännitysvoima (tension) ja köyden massa pituusyksikköä kohti. Jälkimmäista sanotaan myös lineaariseksi massatiheydeksi. Jännitysvoimalla puolestaan tarkoitetaan sitä voimaa, joka tarvittaisiin pitämään köyden osia edelleen yhdessä, jos köysi leikattaisiin poikki. Jännityksen lisääminen kasvattaa palauttavaa voimaa, joka pyrkii oikaisemaan köyden häiriön edetessä siinä. On helppo kuvitella, että jännityksen lisääminen kasvattaa aallon nopeutta. On myös helppo arvata, että massan kasvattaminen hidastaa nopeutta, koska köyden liikkeet tulevat jähmeämmiksi. Johdetaan seuraavassa aallon nopeudelle kaava, ja katsotaan siitä sattuivatko arvauksemme kohdalleen. Seuraavassa kuvassa tarkastellaan täysin notkeaa köyttä, jonka massa pituusyksikköä kohti on m (kg/m) ja johon tasapainoasemassa kohdistuu jännitysvoima F. Oletetaan lisäksi, että köysi on painoton, joten se kuvassa (a) on täsmälleen suorassa.

3 15 Hetkellä t = 0 köyden päähän kohdistetaan lisävoima F y ylöspäin, jolloin köysi lähtee nousemaan. Köysi on painoton, joten noustessaan se muodostaa kuvan (b) mukaisen kolmion, missä piste P erottaa liikkuvan osan vielä liikkumattomasta. Köyden liike on nyt se häiriö (pulssi, aalto), jonka jo aikaisemmin olemme todenneet etenevän vakionopeudella. Nyt siis piste P liikkuu vakionopeudella v. Vakiovoima F y ei tässä tapauksessa johda kiihtyvään liikkeeseen, koska massa, johon voima kohdistuu, kasvaa koko ajan. Siis pisteen P vasemmalla puolella oleva köyden osa liikkuu ylöspäin vakionopeudella v y. Jos liike olisi kiihtyvä, piste P etenisi myös kiihtyvällä nopeudella ja syntyisi ristiriita. Hetkellä t köyden pää on noussut matkan v y t ja piste P edennyt matkan v t (kuvan b tilanne). Voimien ja köyden muodostamista kolmioista voimme kirjoittaa F F y yt = v v t Þ Fy y = F v v. Seuraavaksi sovellamme mekaniikasta tuttua impulssiteoreemaa. Voiman F y impulssi Ft, y joka on kehittynyt aikavälillä 0 t, menee liikkuvan köydenosan liikemäärän muutokseksi mv y - 0. Tulee F t = mv. Tässä m= mv t on liikkuvan köydenosan massa. On siis y y v v = mvv y F t t ja kun tästä ratkaistaan v, saadaan y, F v =. (1.4.1) m

4 16 Intuitiivinen pohdiskelumme alussa johti siis oikeaan tulokseen. Aallon nopeus kasvaa, kun jännitysvoima ( F ) kasvaa ja pienenee, kun massa pituusyksikköä kohti (m ) kasvaa. Kaavan neliöjuurta emme intuitiivisesti keksineet, mutta se paljastuu helposti yksikkötarkastelulla. Tuloksessa (1.4.1) jännitysvoima F edustaa väliaineen (köyden) kimmoisuutta ja lineaarinen massatiheys m sen hitautta. Yleisesti pätee kaikille systeemeille kimmoisuus v = (1.4.) hitaus Esimerkki: Kolme L:n pituista köyttä yhdistetään, jolloin kokonaispituudeksi tulee 3L. Ensimmäisen osan lineaarinen massatiheys on m 1, toisen m = 4m1 ja kolmannen m3 = m1/4. Yhdistettyyn köyteen kohdistetaan jännitysvoima F. a) Mikä jännitysvoima vaikuttaa osaköysissä? b) Kuinka kauan pulssilta kestää kulkea köyden läpi? Ratkaisu: Huomaa, että jännitysvoima F vaikuttaa köyden molemmissa päissä. Jos se vaikuttaisi vain toisessa, köysi joutuisi kiihtyvään liikkeeseen (muistele mekaniikkaa). a) Jokaisessa osaköydessä vaikuttaa sama jännitysvoima F. Jos esimerkiksi ensimmäisen ja toisen osaköyden liitoskohdassa

5 17 ensimmäiseen osaan vaikuttaisi jokin muu voima (esim. F /3), niin ensimmäinen osaköysi joutuisi kiihtyvään liikkeeseen, koska sen toisessa päässä vaikuttaa F. b) Pulssin kulkuaika köyden läpi on L L L æ 1 3 tkok = t1 + t + t3 = + + = L m m m ö ç + + v1 v v3 è F F F ø æ 1ö m1 7 m1 = Lç 1+ + = L. è ø F F 1.5 AALLON ENERGIA Tarkastellaan taas köydessä positiivisen x-akselin suuntaan etenevää poikittaista aaltoa. Viereisessä kuvassa on esitetty hyvin pieni osa värähtelevästä köydestä pisteen a ympäristöstä. Pisteeseen a kohdistuu jännitysvoima F sekä pystysuorassa suunnassa liikkeen aiheuttava voima F y. Tämä voima F y on juuri se voima, jonka tekemä työ siirtyy köyttä pitkin eteenpäin oikealle. Köyden vasemmassa päässä tämä voima synnytetään käden liikkeellä, ks. kuva sivulla 14.

6 18 Köyden suunnassa (kulmakerroin y/ x) kokonaisvoima syntyy kahdesta komponentista, kuva (b), ja kuvan perusteella yxt (,) Fy(,) x t =-F, (1.5.1) x missä negatiivinen merkki on tarpeen, koska suhde Fy / F on negatiivinen silloin kun köyden kulmakerroin (slope) y/ x on positiivinen. Kun piste a liikkuu y-suunnassa, voima Pxt (,) = F(,) xtv (,) xt =-F y y F y tekee työtä. Teho on yxt (,) yxt (,). (1.5.) x t Tämä on hetkellinen teho, jolla pisteen a vasemmalla puolella oleva köyden osa siirtää energiaa pisteeseen a. Kaava siis kertoo millä teholla energiaa virtaa köyttä pitkin oikealle. Kaava on voimassa kaikenlaisille köydessä eteneville aalloille. Sinimuotoisten eli harmonisten aaltojen tapauksessa aaltofunktio on y( x, t) = Asin( kx- wt), josta ja hetkelliseksi tehoksi tulee yxt (,) = kacos( kx-wt), x yxt (,) =-wacos( kx-wt), t P( x, t) = FkwA cos ( kx- wt). (1.5.3) Kun vielä käytetään relaatioita w =v k ja v = F / m, saadaan P( x, t) = mfw A cos ( kx- wt). (1.5.4) Tästä näemme, että energia ei koskaan virtaa aallon etenemissuuntaa vastaan (teho aina positiivinen).

7 19 Funktion cos ( kx- wt) keskimääräinen arvo on 1/, joten keskimääräiseksi tehoksi saamme 1 Pav = mfw A. (1.5.5) Energian siirtymisnopeus on siis verrannollinen amplitudin neliöön ja taajuuden neliöön. Yleistys: P av 1 (hitaus) (kimmoisuus) = w A (1.5.6) - Esimerkki: Köyttä ( m = kg/m) jännitetään 80.0 N:n voimalla. Millä keskimääräisellä teholla köyteen on syötettävä energiaa, jos siihen halutaan synnyttää harmoninen aalto, jonka taajuus on 60 Hz ja amplitudi 6.00 cm? Ratkaisu: Sovelletaan tulosta (1.5.5) - m = kg/m F = 80.0 N (1 N = 1 kg m/s ) w= p f = p 60 1/s - A = m 1 Pav = mfw A = kg m» 51W. s s ækg m Nm J ö ç = = = W 3 s s s è ø

8 0 Esimerkki: Jännitetyssä langassa, jonka lineaarinen massatiheys on kg/m, etenee harmoninen aalto éë ùû. 1 1 y( x, t) =.30mm cos (6.98 m - ) x-(74 s - ) t Millä keskimääräisellä teholla aalto kuljettaa energiaa? Ratkaisu: Keskimääräinen teho yhtälöstä (1.5.5) w Pav = mfw A = mv w A = m A, k missä ensin on käytetty tulosta (1.4.1) p w w v = ln = =. k p k Aaltofunktiosta luemme: amplitudi -3 A = m kulmataajuus w = 74 s -1 aaltoluku k = 6.98 m -1, ja lineaarinen massatiheys on m F = mv ja sitten -3 = kg/m. Lopulta tulee P av = kgm 3 m ms = W. kg m kgm m Nm J Yksikkötarkastelu: m = = = = W. 3 m s s s s s

9 1 AALTOLIIKKEIDEN YHDISTÄMINEN Kun aalto osuu väliaineen rajapintaan, se heijastuu siitä takaisin joko osittain tai kokonaan. Esimerkiksi äänen osuessa talon seinään se palaa takaisin kaikuna. Missä määrin ja miten takaisinheijastuminen tapahtuu riippuu rajapinnan ominaisuuksista. Väliaineen reunaa kohti etenevä aalto ja jo aikaisemmin väliaineen reunasta takaisin heijastunut aalto voivat esiintyä yhtä aikaa samassa tilassa. Tästä seuraa ilmiöitä, joita sanotaan interferenssiksi. Se miten kaksi (tai useampi) samanaikaista aaltoa poikkeuttaa väliaineen osasia määräytyy ns. superpositioperiaatteesta. Kun systeemissä on kaksi rajapintaa, kuten esimerkiksi molemmista päistään kiinnitetyssä kitaran kielessä, syntyy toistuvia heijastuksia ja osoittautuu, että systeemissä voi edetä vain tietyn taajuiset aallot. Näitä erityisiä taajuuksia ja niihin liittyviä aaltojen muotoja sanotaan systeemin normaalivärähdysmuodoiksi. Nyt tutkimme edellämainittuja ilmiöitä mekaanisten aaltojen tapauksessa. Interferenssi-ilmiöt ovat tärkeitä myös ei-mekaanisilla aalloilla ja valon tapaukseen palaamme tarkemmin myöhemmin..1 HEIJASTUMINEN JA LÄPÄISY Tutkitaan aallon heijastumista kahden väliaineen rajapinnasta käyttäen esimerkkinä köydessä etenevää poikittaista aaltoa. Tarkastellaan kahta erilaista tapausta. Kuvassa vasemmalla köyden pää on kiinnitetty, eikä se pääse liikkumaan aallon osuessa siihen. Kuvassa oikealla köyden pää on vapaa ja se pääsee liikkumaan aallon vaikutuksesta ylös-alas-suunnassa.

10 Se ehto miten köysi on kiinnitetty on ns. rajapintaehto (rajaehto, reunaehto, boundary condition). Köyden rajapintaan (seinään, köyden päähän) saapuva pulssi heijastuu (kimpoaa takaisin). Jos pää on kiinnitetty, pulssi palaa takaisin ylösalaisin kääntyneenä. Tämä johtuu seinän köyteen kohdistamasta reaktiovoimasta, joka on yhtä suuri, mutta vastakkaissuuntainen kuin saapuvan pulssin seinään kohdistama voima. Pulssin ylösalaisin kääntyminen vastaa vaiheen siirtymistä 180 (puhutaan p :n vaihe-siirrosta). Jos köyden pää on vapaa liikkumaan, siihen ei kohdistu ulkoisia voimia ja heijastunut pulssi ei käänny. Vaihesiirtoa ei siis tapahdu. Kun aalto kohtaa absoluuttisen jäykän seinän, kaikki aallon energia heijastuu takaisin. Yleensä rajapinnat eivät kuitenkaan ole absoluuttisen jäykkiä ja osa aallon energiasta pääsee rajapinnan toiselle puolelle. Osa aallosta siis läpäisee rajapinnan. Viereisessä kuvassa kaksi erivahvuista köyttä on liitetty toisiinsa. Köysien liitoskohta edustaa nyt rajapintaa, jota kohti pulssi saapuu kuvassa (a). Rajapinnassa osa pulssista heijastuu takaisin ja osa menee läpi. Mitä raskaampi jälkimmäinen köysi on sitä vähemmän menee läpi ja

11 3 äärettömän raskaan köyden tapauksessa tilanne vastaa jo edellisen esimerkin seinää. Periodisen aallon tapauksessa läpäisseen aallon - taajuus f ei muutu (helppo ymmärtää) - nopeus v muuttuu, koska m muuttuu - aallonpituus muuttuu yhtälön l =v / f mukaisesti. Kuvassa (yllä) aalto saapuu "kevyemmästä" väliaineesta "raskaampaan", jolloin heijastuneessa aallossa havaitaan p :n vaihesiirto (vrt. köysi kiinnitetty seinään). Jos aalto saapuu raskaammasta väliaineesta kevyempään, vaihesiirtoa ei havaita. Läpimennyt aalto ei koskaan koe vaihesiirtoa. Esimerkki: Köydessä etenee siniaalto y( x, t) = Asin( kx- wt). Aaltoon aiheutetaan (tavalla tai toisella) yht äkkinen 180 asteen vaihesiirto. Osoita, että aalto kääntyy ylösalaisin. Ratkaisu: Vaihesiirto D f0 tarkoittaa: y( x, t) = Asin( kx- wt+d f0 ). Tässä D f0 = p eli 180 ja koska sin( a + b) = sinacos b + cosasin b saadaan y( x, t) = Asin( kx- wt)cos( p) + Acos( kx- wt)sin( p), mistä y( x, t) =-Asin( kx- wt) eli kääntynyt ylösalaisin alkuperäiseen verrattuna. Kuva piirretty ajanhetkellä t = 0:

12 4. SUPERPOSITIOPERIAATE Jos useampia aaltoliikkeitä vaikuttaa samanaikaisesti määrättyyn väliaineen pisteeseen, niin pisteen poikkeama tasapainoasemasta saadaan laskemalla yhteen eri aaltoliikkeiden erikseen aiheuttamat poikkeamat. Resultanttiaalto on siis yksittäisten aaltojen summa ja jos esimerkiksi y1( xt,) ja y( xt,) edustavat kahden osa-aallon aaltofunktioita, niin kokonaisaaltofunktio on y (,) xt = y(,) xt + y(,) xt. (..1) tot 1 Matemaattisesti summautuvuusominaisuus on seurausta aaltoyhtälön (1..3) y 1 y = x v t lineaarisuudesta. Lineaarisuus tässä tarkoittaa juuri sitä, että jos y1( xt,) ja y( xt,) ovat aaltoyhtälön ratkaisuja, niin myös niiden summa on ratkaisu. Tämä on helposti osoitettavissa sillä y1 1 y1 = ja x v t ja laskemalla nämä yhteen saadaan y 1 y x v t = y y 1 y 1 y x x v t v t josta 1 ( y 1+ y) = ( y 1+ y). x v t Myös summa siis toteuttaa aaltoyhtälön = +

13 5 Yksi superpositioperiaatteen seurauksista on se, että kahden aallon kohdatessa ne jatkavat kohtaamisen jälkeen matkaansa täysin muuttumattomina aivan kuin mitään ei olisi tapahtunut. Tässä tarkastelimme aaltojen ns. lineaarista superpositiota. Se on voimassa silloin, kun amplitudi on niin pieni, että väliaineen palauttava voima noudattaa Hooken lakia, ts. on lineaarinen poikkeaman funktio. Jos amplitudi kasvaa suureksi, väliaine menettää elastisuutensa ja superpositioperiaate ei enää ole voimassa. Tästä sinänsä seuraa hyvin mielenkiintoisia ilmiöitä. Esimerkiksi voimakkaan laser-valon vuorovaikuttaessa materian kanssa havaitaan erinäisiä epälineaarisia ilmiöitä. Tällainen ns. epälineaarinen optiikka on yksi modernin optiikan tärkeimmistä tutkimusalueista. Esimerkki: Laske kahden aallon ìy1( x, t) = 1.0sin( kx-wt) í îy( x, t) = 0.9sin( kx- wt+ 1.0rad) superpositio eli resultantti(summa-)aalto. Ratkaisu: Lasketaan summa y= y1+ y = 1.0sin( a) + 0.9sin( a + 1.0), missä a = kx- wt sisältää paikka- ja aikariippuvuuden. Tunnetusti sin( a + b) = sinacos b + cosasin b, joten y = 1.0sin( a) + 0.9sin( a)cos(1.0) + 0.9cos( a)sin(1.0) = sin( a)[ cos(1.0)] + cos( a)0.9sin(1.0) = asin( a) + bcos( a), missä a ja b ovat vakioita. Kun merkitään a= Acos( b ) ja b= Asin( b ) voidaan käyttää uudelleen edellä mainittua trigonometristä identiteettiä ja kirjoittaa

14 6 y= Asin( a + b), missä A= a + b ja b = arctan( b/ a). Tässä a = cos(1.0) = ja b = 0.9sin(1.0) = , joten A = ja b = Vastaukseksi kirjoitamme: y= 1.7sin( kx- wt+ 0.47rad).3 SEISOVA AALTOLIIKE Seisova aalto syntyy superpositioperiaatteen seurauksena silloin, kun annettu aalto esiintyy yhtä aikaa sekä eteenpäin menevänä että takaisin palaavana samassa tilassa samanaikaisesti. Tavallisesti tällainen tilanne havaitaan silloin, kun aalto jossakin etenemisensä pisteessä kokee heijastumisen. Tarkastellaan siis kahta vastakkaisiin suuntiin etenevää harmonista aaltoa, joilla on sama amplitudi, taajuus ja aallonpituus: Resultanttiaalloksi tulee 1 y1( x, t) = Asin( kx- w t), (.3.1) y( x, t) = Asin( kx+ wt). (.3.) yxt (,) = y(,) xt + y(,) xt = A[sin( kx - wt) + sin( kx + wt)]. (.3.3) Kun tässä kirjoitetaan ja sovelletaan identiteettiä saadaan a = kx+ wt ja b = kx-wt sina + sin b = sin ( a + b)cos ( a - b), 1 1 y( x, t) = (Asin kx)coswt, (.3.4) joka on seisova aalto. Aalto on esitetty kuvassa alla.

15 7 Suluissa oleva osa (Asin kx ) edustaa aallon ajasta riippumatonta amplitudia, joka riippuu vain paikasta x. Se kertoo, että kaikilla ajanhetkillä köysi muodostaa sinikäyrän, mutta toisin kuin etenevässä aallossa, sinikäyrä pysyy nyt paikoillaan. Se kylläkin värähtelee, hengittää, tekijän cosw t mukaisesti. Kaikki köyden osaset värähtelevät harmonisesti samalla taajuudella. +A -A Solmut (N = node) Seisovan aallon amplitudi on nolla, kun sinkx = 0, ts. kun p kx= x = mp, missä m = 0, ± 1, ±, K l eli siis paikoissa x= m l. (.3.5) Näissä paikoissa poikkeama y on nolla kaikilla ajanhetkillä. Paikkoja sanotaan seisovan aallon solmupisteiksi (nodes, N) tai solmukohdiksi. Solmupisteiden välimatka on l /. Solmupisteissä osa-aallot kumoavat aina toisensa. Kuvut (Antinode) Seisovan aallon amplitudilla on maksimi, kun sin( kx ) =± 1, ts. kun p p kx= x= + mp, missä m = 0, ± 1, ±, K l eli paikoissa æ 1 öl x= ç m+. (.3.6) è ø

16 8 Näissä paikoissa, solmukohtien puolessa välissä l / :n välein, osaaallot vahvistavat toisiaan ja synnyttävät ns. kuvut. Kupu maksimissa Seisovan aallon värähdellessä ajan funktiona sen poikkeama tasapainosta on maksimissaan, kun ajasta riippuva osa cosw t saa maksimiarvonsa, ts. cosw t =± 1. Näin käy, kun p wt = p ft = t = mp, missä nyt m = 0,1,, L T eli ajanhetkillä T t = m æ ö ç è ø. (.3.7) Köysi suorana Seisova aalto on kaikkialla nolla, kun cosw t = 0, ts. kun siis kun æ 1 ö wt = ç m+ p, missä m = 0,1,, L è ø Näillä ajanhetkillä köysi on täysin suora. 1 T t = æ ç m+ öæ ç ö è øè ø. (.3.8) Toisin kuin etenevät aallot, seisovat aallot eivät kuljeta energiaa. Tämä on helppo todeta esimerkiksi laskemalla aallon keskimääräinen teho lähtien hetkellisen teho lausekkeesta (1.5.3) ja käyttäen aaltofunktiona seisovaa aaltoa (.3.4). Esimerkki: Positiivisen x-akselin suuntaisen köyden toinen pää on kiinnitetty origoon ( x= 0, y= 0). Köydessä etenee negatiivisen x- akselin suuntaan siniaalto nopeudella 84.0 m/s, amplitudilla 1.50 mm ja taajuudella 10 Hz. Tämä aalto heijastuu kiinnityspisteestä x = 0. Heijastuneen ja tulevan aallon superpositiona syntyy seisova aalto.

Ratkaisu: Vaatimus on, että muuttujat x ja t esiintyvät muodossa x-v t. On siis kirjoitettava,

Ratkaisu: Vaatimus on, että muuttujat x ja t esiintyvät muodossa x-v t. On siis kirjoitettava, 8 Ratkaisu: Vaatimus on, että muuttujat x ja t esiintyvät muodossa x-v t. On siis kirjoitettava 3 3 y = =, ( x- vt) + 1 ( x- t) + 1 missä siis v = m/s. Tulos on SI-yksiköissä, joten x ja y ovat metreinä

Lisätiedot

2 AALTOLIIKKEIDEN YHDISTÄMINEN

2 AALTOLIIKKEIDEN YHDISTÄMINEN 1 AALTOLIIKKEIDEN YHDISTÄMINEN Kun aalto osuu väliaineen rajapintaan, se heijastuu siitä takaisin joko osittain tai kokonaan. Esimerkiksi äänen osuessa talon seinään se palaa takaisin kaikuna. Missä määrin

Lisätiedot

1 PERUSKÄSITTEITÄ 1.1 AALTOJEN TYYPIT

1 PERUSKÄSITTEITÄ 1.1 AALTOJEN TYYPIT 1 1 PERUSKÄSITTEITÄ Luonto on täynnä aaltoja. Aaltoliikettä voi syntyä kimmoisissa systeemeissä, jotka poikkeutettuna tasapainotilastaan pyrkivät palaamaan siihen takaisin. Aalto etenee, kun poikkeama

Lisätiedot

YLEINEN AALTOLIIKEOPPI

YLEINEN AALTOLIIKEOPPI YLEINEN AALTOLIIKEOPPI KEVÄT 2017 1 Saana-Maija Huttula (saana.huttula@oulu.fi) Maanantai Tiistai Keskiviikko Torstai Perjantai Vk 8 Luento 1 Mekaaniset aallot 1 Luento 2 Mekaaniset aallot 2 Ääni ja kuuleminen

Lisätiedot

Luento 15: Mekaaniset aallot

Luento 15: Mekaaniset aallot Luento 15: Mekaaniset aallot Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot Ajankohtaista Luennon sisältö Mekaaniset aallot Eteneminen Aallon nopeus

Lisätiedot

Luento 15: Mekaaniset aallot. Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot

Luento 15: Mekaaniset aallot. Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot Luento 15: Mekaaniset aallot Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot 1 / 40 Luennon sisältö Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa

Lisätiedot

SEISOVA AALTOLIIKE 1. TEORIAA

SEISOVA AALTOLIIKE 1. TEORIAA 1 SEISOVA AALTOLIIKE MOTIVOINTI Työssä tutkitaan poikittaista ja pitkittäistä aaltoliikettä pitkässä langassa ja jousessa. Tarkastellaan seisovaa aaltoliikettä. Määritetään aaltoliikkeen etenemisnopeus

Lisätiedot

766329A Aaltoliike ja optiikka

766329A Aaltoliike ja optiikka 76639A Aaltoliike ja optiikka Seppo Alanko Oulun yliopisto Fysiikan laitos Kevät 5 Perustuu oppikirjoihin: H. D. Young and R. A. Freedman University Physics, Addison-Wesley th ed., and th ed., 4 F. L.

Lisätiedot

9 VALOAALTOJEN SUPERPOSITIO

9 VALOAALTOJEN SUPERPOSITIO 09 9 VALOAALTOJEN SUPERPOSITIO Edellisissä kappaleissa olemme tutkineet valon heijastumista peileissä ja taittumista linsseissä geometrisen optiikan approksimaation avulla Approksimaatiossa valon aaltoluonnetta

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys12 Kevät 21 Jukka Maalampi LUENTO 11 Mekaaninen aaltoliike alto = avaruudessa etenevä järjestäytynyt häiriö. alto altoja on kahdenlaisia: Poikittainen aalto - poikkeamat kohtisuorassa

Lisätiedot

= 0.175m, 0.525m, 0.875m,...

= 0.175m, 0.525m, 0.875m,... 9 (a) Esitä seisovan aallon aaltofunktio. (b) Paikallista ne köyden pisteet, jotka eivät liiku ollenkaan. (c) Paikallista ne köyden pisteet, jotka liikkuvat eniten ja laske vastaavat maksimipoikkeamat,

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

Luento 15: Ääniaallot, osa 2

Luento 15: Ääniaallot, osa 2 Luento 15: Ääniaallot, osa 2 Aaltojen interferenssi Doppler Laskettuja esimerkkejä Luennon sisältö Aaltojen interferenssi Doppler Laskettuja esimerkkejä Aaltojen interferenssi Samassa pisteessä vaikuttaa

Lisätiedot

- 3 välikoetta, jokaisessa 4 tehtävää, yht. 12 teht. - 6 pistettä yhdestä tehtävästä - max pisteet 72 (+ lisät harjoituksista)

- 3 välikoetta, jokaisessa 4 tehtävää, yht. 12 teht. - 6 pistettä yhdestä tehtävästä - max pisteet 72 (+ lisät harjoituksista) 1/2 KURSSIN ARVOSTELU - 3 välikoetta, jokaisessa 4 tehtävää, yht. 12 teht. - 6 pistettä yhdestä tehtävästä - max pisteet 72 (+ lisät harjoituksista) pisteet arvosana 00,00 35,25-35,50 41,25 1 1/2 maksimista

Lisätiedot

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina 31.5.2012. T 6.1 (pakollinen): Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä.

Lisätiedot

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic

Lisätiedot

2 Mekaaninen aalto. Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium).

2 Mekaaninen aalto. Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium). 2 Mekaaninen aalto Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium). 1 Mekaanisten aaltojen vastakohtana ovat sähkömagneettiset allot, jotka kulkevat

Lisätiedot

Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori!

Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! 6.1 Työ Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! Siirtymä s = r 2 r 1 Kun voiman kohteena olevaa kappaletta voidaan kuvata

Lisätiedot

TEHTÄVIEN RATKAISUT. b) 105-kiloisella puolustajalla on yhtä suuri liikemäärä, jos nopeus on kgm 712 p m 105 kg

TEHTÄVIEN RATKAISUT. b) 105-kiloisella puolustajalla on yhtä suuri liikemäärä, jos nopeus on kgm 712 p m 105 kg TEHTÄVIEN RATKAISUT 15-1. a) Hyökkääjän liikemäärä on p = mv = 89 kg 8,0 m/s = 71 kgm/s. b) 105-kiloisella puolustajalla on yhtä suuri liikemäärä, jos nopeus on kgm 71 p v = = s 6,8 m/s. m 105 kg 15-.

Lisätiedot

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1). H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika

Lisätiedot

3.1 PITKITTÄISEN AALLON NOPEUS JA ENERGIA

3.1 PITKITTÄISEN AALLON NOPEUS JA ENERGIA 37 3 ÄÄNI Yksi ihmisen kannalta tärkeimmistä luonnossa esiintyvistä aaltoilmiöistä muodostuu ilmassa etenevistä pitkittäisistä aalloista eli ääniaalloista (sound waves) Tarkastelemme nyt ääntä lähinnä

Lisätiedot

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen 3 VALON POLARISAATIO 3.1 Johdanto Mawellin htälöiden avulla voidaan johtaa aaltohtälö sähkömagneettisen säteiln etenemiselle väliaineessa. Mawellin htälöiden ratkaisusta seuraa aina, että valo on poikittaista

Lisätiedot

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen)

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen) Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen Vapaaseen hiukkaseen ei vaikuta voimia, joten U(x = 0. Vapaan hiukkasen energia on sen liike-energia eli E=p /m. Koska hiukkasella on määrätty energia,

Lisätiedot

FYS03: Aaltoliike. kurssin muistiinpanot. Rami Nuotio

FYS03: Aaltoliike. kurssin muistiinpanot. Rami Nuotio FYS03: Aaltoliike kurssin muistiinpanot Rami Nuotio päivitetty 24.1.2010 Sisältö 1. Mekaaninen aaltoliike 2 1.1. Harmoninen voima 2 1.2. Harmoninen värähdysliike 2 1.3. Mekaaninen aalto 3 1.4. Mekaanisen

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

, tulee. Käyttämällä identiteettiä

, tulee. Käyttämällä identiteettiä 44 euraavaksi käytämme tilavuusmodulin B määritelmää (katso sivu 4) B =- dp /( dv / V ). Tässä dp on paineen muutos, joka nyt on pxt (,). aamme siten dv yxt (,) p(,) x t =- B =-B. (3.3.3) V x Kun tähän

Lisätiedot

Luento 11: Periodinen liike

Luento 11: Periodinen liike Luento 11: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r Konseptitesti 1 Tehtävänanto Kuvassa on jouseen kytketyn massan sijainti ajan funktiona. Kuvaile

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

Luvun 8 laskuesimerkit

Luvun 8 laskuesimerkit Luvun 8 laskuesimerkit Esimerkki 8.1 Heität pallon, jonka massa on 0.40 kg seinään. Pallo osuu seinään horisontaalisella nopeudella 30 m/s ja kimpoaa takaisin niin ikään horisontaalisesti nopeudella 20

Lisätiedot

dl = F k dl. dw = F dl = F cos. Kun voima vaikuttaa kaarevalla polulla P 1 P 2, polku voidaan jakaa infinitesimaalisen pieniin siirtymiin dl

dl = F k dl. dw = F dl = F cos. Kun voima vaikuttaa kaarevalla polulla P 1 P 2, polku voidaan jakaa infinitesimaalisen pieniin siirtymiin dl Kun voima vaikuttaa kaarevalla polulla P 2, polku voidaan jakaa infinitesimaalisen pieniin siirtymiin dl Kukin siirtymä dl voidaan approksimoida suoraviivaiseksi, jolloin vastaava työn elementti voidaan

Lisätiedot

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus värähtelytiheyden. 1 Funktiot ja aallot Aiemmin käsiteltiin funktioita ja miten niiden avulla voidaan kuvata fysiikan

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

7.4 PERUSPISTEIDEN SIJAINTI

7.4 PERUSPISTEIDEN SIJAINTI 67 7.4 PERUSPISTEIDEN SIJAINTI Optisen systeemin peruspisteet saadaan systeemimatriisista. Käytetään seuraavan kuvan merkintöjä: Kuvassa sisäänmenotaso on ensimmäisen linssin ensimmäisessä pinnassa eli

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Meaniian jatourssi Fys10 Sysy 009 Jua Maalampi LUENTO 6 Harmonisen värähdysliieen energia Jousen potentiaalienergia on U ( x missä on jousivaio ja Dx on poieama tasapainosta. Valitaan origo tasapainopisteeseen,

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 6 Yksinkertainen harmoninen liike yhteys ympyräliikkeeseen energia dynamiikka Värähdysliike Knight Ch 14 Heilahtelut pystysuunnassa ja gravitaation

Lisätiedot

Luento 13: Periodinen liike

Luento 13: Periodinen liike Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos Ajankohtaista

Lisätiedot

ja siis myös n= nk ( ). Tällöin dk l l

ja siis myös n= nk ( ). Tällöin dk l l Tästä havaitaan, että jos nopeus ei riipu aallonpituudesta, ts. ei ole dispersiota, vg = v p. Tilanne on tällainen esimerkiksi tyhjiössä, missä vg = v p = c. Dispersiivisessä väliaineessa v p = c/ n, missä

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain

Lisätiedot

Aaltoliike ajan suhteen:

Aaltoliike ajan suhteen: Aaltoliike Aaltoliike on etenevää värähtelyä Värähdysliikkeen jaksonaika T on yhteen värähdykseen kuluva aika Värähtelyn taajuus on sekunnissa tapahtuvien värähdysten lukumäärä Taajuuden ƒ yksikkö Hz (hertsi,

Lisätiedot

9 VALOAALTOJEN SUPERPOSITIO

9 VALOAALTOJEN SUPERPOSITIO 09 9 VALOAALTOJEN SUPERPOSITIO Edellisissä kaaleissa olemme tutkineet valon heijastumista eileissä ja taittumista linsseissä geometrisen otiikan aroksimaation avulla Aroksimaatiossa valon aaltoluonnetta

Lisätiedot

Luento 10: Työ, energia ja teho

Luento 10: Työ, energia ja teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho Ajankohtaista Konseptitesti 1 Kysymys Ajat pyörällä ylös jyrkkää mäkeä. Huipulle vie kaksi polkua, toinen kaksi kertaa pidempi kuin

Lisätiedot

Pietarsaaren lukio Vesa Maanselkä

Pietarsaaren lukio Vesa Maanselkä Fys 9 / Mekaniikan osio Liike ja sen kuvaaminen koordinaatistossa Newtonin lait Voimavektorit ja vapaakappalekuvat Työ, teho,työ-energiaperiaate ja energian säilymislaki Liikemäärä ja sen säilymislaki,

Lisätiedot

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u.

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u. DEE-00 Lineaariset järjestelmät Harjoitus, ratkaisuehdotukset Järjestelmien lineaarisuus ja aikainvarianttisuus Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla

Lisätiedot

BM30A0240, Fysiikka L osa 4

BM30A0240, Fysiikka L osa 4 BM30A0240, Fysiikka L osa 4 Luennot: Heikki Pitkänen 1 Oppikirja: Young & Freedman: University Physics Luku 14 - Periodic motion Luku 15 - Mechanical waves Luku 16 - Sound and hearing Muuta - Diffraktio,

Lisätiedot

Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa

Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa Potentiaalikuoppa Luento 9 Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa U( x ) = U U( x ) = 0 0 kun x < 0 tai x > L, kun 0 x L. Kuopan kohdalla hiukkanen on vapaa,

Lisätiedot

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r Vuka HT 4 Tehtävä. Lyhyenä alustuksena tehtävään johdetaan keskeiskiihtyvyys tasaisessa pyörimisessä. Meillä on ympyräradalla liikkuva kappale joka pyörii vakiokulmanopeudella ω dϕ säteellä r origosta.

Lisätiedot

Vedetään kiekkoa erisuuruisilla voimilla! havaitaan kiekon saaman kiihtyvyyden olevan suoraan verrannollinen käytetyn voiman suuruuteen

Vedetään kiekkoa erisuuruisilla voimilla! havaitaan kiekon saaman kiihtyvyyden olevan suoraan verrannollinen käytetyn voiman suuruuteen 4.3 Newtonin II laki Esim. jääkiekko märällä jäällä: pystysuuntaiset voimat kumoavat toisensa: jään kiekkoon kohdistama tukivoima n on yhtäsuuri, mutta vastakkaismerkkinen kuin kiekon paino w: n = w kitka

Lisätiedot

jonka peruslait tiivistyvät neljään ns. Maxwellin yhtälöön.

jonka peruslait tiivistyvät neljään ns. Maxwellin yhtälöön. 71 4. SÄHKÖMAGNEETTINEN AALTO Sähköön ja magnetismiin liittyvät havainnot yhdistettiin noin 1800luvun puolessa välissä yhtenäiseksi sähkömagnetismin teoriaksi, jonka peruslait tiivistyvät neljään ns. Maxwellin

Lisätiedot

Suhteellinen nopeus. Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää

Suhteellinen nopeus. Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää 3.5 Suhteellinen nopeus Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää P:n nopeus junassa istuvan toisen matkustajan suhteen on v P/B-x = 1.0 m/s Intuitio :

Lisätiedot

11.1 MICHELSONIN INTERFEROMETRI

11.1 MICHELSONIN INTERFEROMETRI 47 11 INTERFEROMETRIA Edellisessä kappaleessa tarkastelimme interferenssiä. Instrumentti, joka on suunniteltu interferenssikuvion muodostamiseen ja sen tutkimiseen (mittaamiseen) on ns. interferometri.

Lisätiedot

d+tv 1 S l x 2 x 1 x 3 MEI Mallintamisen perusteet Harjoitus 6, kevät 2015 Tuomas Kovanen

d+tv 1 S l x 2 x 1 x 3 MEI Mallintamisen perusteet Harjoitus 6, kevät 2015 Tuomas Kovanen MEI-55100 Mallintamisen perusteet Harjoitus 6, kevät 2015 Tuomas Kovanen Tehtävä 1: Tarkastellaan luentojen esimerkkiä, jossa johepalkki liikkuu kahen johelevyn välissä homogeenisessä magneettikentässä,

Lisätiedot

16 Ääni ja kuuleminen

16 Ääni ja kuuleminen 16 Ääni ja kuuleminen Ääni on väliaineessa etenevää pitkittäistä aaltoliikettä. Ihmisen kuuloalue 20 Hz 20 000 Hz. (Infraääni kuuloalue ultraääni) 1 2 Ääniaallon esittämistapoja: A = poikkeama-amplitudi

Lisätiedot

Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta

Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta 8 LIIKEMÄÄRÄ, IMPULSSI JA TÖRMÄYKSET Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta Tällöin dynamiikan peruslain F = ma käyttäminen ei ole helppoa tai edes mahdollista Newtonin

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

Luento 11: Periodinen liike

Luento 11: Periodinen liike Luento 11: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä θ F t m g F r Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä Johdanto Tarkastellaan

Lisätiedot

Nopeus, kiihtyvyys ja liikemäärä Vektorit

Nopeus, kiihtyvyys ja liikemäärä Vektorit Nopeus, kiihtyvyys ja liikemäärä Vektorit Luento 2 https://geom.mathstat.helsinki.fi/moodle/course/view.php?id=360 Luennon tavoitteet: Vektorit tutuiksi Koordinaatiston valinta Vauhdin ja nopeuden ero

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Syksy 2009 Jukka Maalampi LUENTO 12 Aallot kahdessa ja kolmessa ulottuvuudessa Toistaiseksi on tarkasteltu aaltoja, jotka etenevät yhteen suuntaan. Yleisempiä tapauksia ovat

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

Shrödingerin yhtälön johto

Shrödingerin yhtälön johto Shrödingerin yhtälön johto Tomi Parviainen 4. maaliskuuta 2018 Sisältö 1 Schrödingerin yhtälön johto tasaisessa liikkeessä olevalle elektronille 1 2 Schrödingerin yhtälöstä aaltoyhtälöön kiihtyvässä liikkeessä

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Huom: luvun 4 kohdalla luennolla ei ollut laskuesimerkkejä, vaan koko luvun 5 voi nähdä kokoelmana sovellusesimerkkejä edellisen luvun asioihin! Esimerkki 5.1 Moottori roikkuu oheisen

Lisätiedot

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi Tehtävä 1 Tornadon virtauskenttää voidaan approksimoida kaksiulotteisen nielun ja pyörteen summana Oleta, että nielun voimakkuus on m < ja pyörteen voimakkuus on > (a Määritä tornadon potentiaali- ja virtafunktiot

Lisätiedot

Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen

Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen Valon luonne ja eteneminen Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen 1 Valonlähteitä Perimmiltään valon lähteenä toimii kiihtyvässä liikkeessä olevat sähkövaraukset Kaikki

Lisätiedot

5-2. a) Valitaan suunta alas positiiviseksi. 55 N / 6,5 N 8,7 m/s = =

5-2. a) Valitaan suunta alas positiiviseksi. 55 N / 6,5 N 8,7 m/s = = TEHTÄVIEN RATKAISUT 5-1. a) A. Valitaan suunta vasemmalle positiiviseksi. Alustan suuntainen kokonaisvoima on ΣF = 19 N + 17 N -- 16 N = 0 N vasemmalle. B. Valitaan suunta oikealle positiiviseksi. Alustan

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Esimerkki 5.1 Moottori roikkuu oheisen kuvan mukaisessa ripustuksessa. a) Mitkä ovat kahleiden jännitykset? b) Mikä kahleista uhkaa katketa ensimmäisenä? Piirretäänpä parit vapaakappalekuvat.

Lisätiedot

z 1+i (a) f (z) = 3z 4 5z 3 + 2z (b) f (z) = z 4z + 1 f (z) = 12z 3 15z 2 + 2

z 1+i (a) f (z) = 3z 4 5z 3 + 2z (b) f (z) = z 4z + 1 f (z) = 12z 3 15z 2 + 2 BM20A5700 - Integraauunnokset Harjoitus 2 1. Laske seuraavat raja-arvot. -kohta ratkeaa, kun pistät sekä yläkerran että alakerran muotoon (z z 1 )(z z 2 ), missä siis z 1 ja z 2 ovat näiden lausekkeiden

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

y 2 h 2), (a) Näytä, että virtauksessa olevan fluidialkion tilavuus ei muutu.

y 2 h 2), (a) Näytä, että virtauksessa olevan fluidialkion tilavuus ei muutu. Tehtävä 1 Tarkastellaan paineen ajamaa Poisseuille-virtausta kahden yhdensuuntaisen levyn välissä Levyjen välinen etäisyys on 2h Nopeusjakauma raossa on tällöin u(y) = 1 dp ( y 2 h 2), missä y = 0 on raon

Lisätiedot

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77 Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty.5.07 Kertaus K. a) sin 0 = 0,77 b) cos ( 0 ) = cos 0 = 0,6 c) sin 50 = sin (80 50 ) = sin 0 = 0,77 d) tan 0 = tan (0 80 ) = tan 0 =,9 e)

Lisätiedot

3.4 Liike-energiasta ja potentiaalienergiasta

3.4 Liike-energiasta ja potentiaalienergiasta Työperiaatteeksi (the work-energy theorem) kutsutaan sitä että suljetun systeemin liike-energian muutos Δ on voiman systeemille tekemä työ W Tämä on yksi konservatiivisen voiman erityistapaus Työperiaate

Lisätiedot

W el = W = 1 2 kx2 1

W el = W = 1 2 kx2 1 7.2 Elastinen potentiaalienergia Paitsi gravitaatioon, myös materiaalien deformaatioon (muodonmuutoksiin) liittyy systeemin rakenneosasten keskinäisiin paikkoihin liittyvää potentiaalienergiaa Elastinen

Lisätiedot

Sovelletun fysiikan pääsykoe

Sovelletun fysiikan pääsykoe Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille

Lisätiedot

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA TÄSSÄ ON ESMERKKEJÄ SÄHKÖ- JA MAGNETSMOPN KEVÄÄN 2017 MATERAALSTA a) Määritetään magneettikentän voimakkuus ja suunta q P = +e = 1,6022 10 19 C, v P = (1500 m s ) i, F P = (2,25 10 16 N)j q E = e = 1,6022

Lisätiedot

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE Harmoninen voima on voima, jonka suuruus on suoraan verrannollinen poikkeamaan tasapainoasemasta

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino

Lisätiedot

Braggin ehdon mukaan hilatasojen etäisyys (111)-tasoille on

Braggin ehdon mukaan hilatasojen etäisyys (111)-tasoille on 763343A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 2 Kevät 2018 1. Tehtävä: Kuparin kiderakenne on pkk. Käyttäen säteilyä, jonka aallonpituus on 0.1537 nm, havaittiin kuparin (111-heijastus sirontakulman θ arvolla

Lisätiedot

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto Fysiikan perusteet Voimat ja kiihtyvyys Antti Haarto.05.01 Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 15.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinematiikka: asema, nopeus ja kiihtyvyys (Kirjan luvut 12.1-12.5, 16.1 ja 16.2) Osaamistavoitteet Ymmärtää

Lisätiedot

+ 0, (29.20) 32 SÄHKÖMAGNEETTISET AALLOT (Electromagnetic Waves) i c+ ε 0 dφ E / dt ja silmukan kohdalla vaikuttavan magneettivuon tiheyden

+ 0, (29.20) 32 SÄHKÖMAGNEETTISET AALLOT (Electromagnetic Waves) i c+ ε 0 dφ E / dt ja silmukan kohdalla vaikuttavan magneettivuon tiheyden 5 3 SÄHKÖMAGNEETTISET AALLOT (Electromagnetic Waves) Mitä valo on? Tämä kysymys on askarruttanut ihmisiä vuosisatojen ajan. Nykykäsityksen mukaan valo on luonteeltaan kaksijakoinen eli dualistinen. Valoa

Lisätiedot

16 ÄÄNI JA KUULEMINEN (Sound and Hearing)

16 ÄÄNI JA KUULEMINEN (Sound and Hearing) 8 16 ÄÄNI JA KUULEMINEN (Sound and Hearing) Ihmisen kannalta yksi tärkeimmistä luonnossa esiintyvistä aaltoilmiöistä muodostuu ilmassa etenevistä pitkittäisistä aalloista eli ääniaalloista (sound waves)

Lisätiedot

1 WKB-approksimaatio. Yleisiä ohjeita. S Harjoitus

1 WKB-approksimaatio. Yleisiä ohjeita. S Harjoitus S-114.1427 Harjoitus 3 29 Yleisiä ohjeita Ratkaise tehtävät MATLABia käyttäen. Kirjoita ratkaisut.m-tiedostoihin. Tee tuloksistasi lyhyt seloste, jossa esität laskemasi arvot sekä piirtämäsi kuvat (sekä

Lisätiedot

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014 Yhtälönratkaisusta Johanna Rämö, Helsingin yliopisto 22. syyskuuta 2014 Yhtälönratkaisu on koulusta tuttua, mutta usein sitä tehdään mekaanisesti sen kummempia ajattelematta. Jotta pystytään ratkaisemaan

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

STATIIKKA. TF00BN89 5op

STATIIKKA. TF00BN89 5op STATIIKKA TF00BN89 5op Sisältö: Statiikan peruslait Voiman resultantti ja jako komponentteihin Voiman momentti ja voimapari Partikkelin ja jäykän kappaleen tasapainoyhtälöt Tukivoimat Ristikot, palkit

Lisätiedot

Tarkastellaan tilannetta, jossa kappale B on levossa ennen törmäystä: v B1x = 0:

Tarkastellaan tilannetta, jossa kappale B on levossa ennen törmäystä: v B1x = 0: 8.4 Elastiset törmäykset Liike-energia ja liikemäärä säilyvät elastisissa törmäyksissä Vain konservatiiviset voimat vaikuttavat 1D-tilanteessa kappaleiden A ja B törmäykselle: 1 2 m Av 2 A1x + 1 2 m Bv

Lisätiedot

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut Diplomi-insino o rien ja arkkitehtien yhteisalinta - dia-alinta 15 Insino o rialinnan fysiikan koe 7.5.15, malliratkaisut A1 Pallo (massa m = 1, kg, sa de r =, cm) nojaa kur an mukaisesti pystysuoraan

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

Useita oskillaattoreita yleinen tarkastelu

Useita oskillaattoreita yleinen tarkastelu Useita oskillaattoreita yleinen tarkastelu Useita riippumattomia vapausasteita q i, i =,..., n ja potentiaali vastaavasti U(q, q 2,..., q n). Tasapainoasema {q 0, q0 2,..., q0 n} q 0 Käytetään merkintää

Lisätiedot

HARJOITUS 4 1. (E 5.29):

HARJOITUS 4 1. (E 5.29): HARJOITUS 4 1. (E 5.29): Työkalulaatikko, jonka massa on 45,0 kg, on levossa vaakasuoralla lattialla. Kohdistat laatikkoon asteittain kasvavan vaakasuoran työntövoiman ja havaitset, että laatikko alkaa

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 24.9.2019 HYVÄN VASTAUKSEN PIIRTEITÄ Alustavat hyvän vastauksen piirteet on suuntaa-antava kuvaus kokeen tehtäviin odotetuista vastauksista ja tarkoitettu ensisijaisesti

Lisätiedot

Pakotettu vaimennettu harmoninen värähtelijä Resonanssi

Pakotettu vaimennettu harmoninen värähtelijä Resonanssi Pakotettu vaimennettu harmoninen värähtelijä Resonanssi Tällä luennolla tavoitteena Mikä on pakkovoiman aiheuttama vaikutus vaimennettuun harmoniseen värähtelijään? Mikä on resonanssi? Kertaus: energian

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1 763306A JOHDATUS SUHTLLISUUSTORIAAN Ratkaisut 3 Kevät 07. Fuusioreaktio. Lähdetään suoraan annetuista yhtälöistä nergia on suoraan yhtälön ) mukaan + m ) p P ) m + p 3) M + P 4) + m 5) Ratkaistaan seuraavaksi

Lisätiedot

3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta.

3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta. 3 Ääni ja kuulo 1 Mekaanisista aalloista ääni on ihmisen kannalta tärkein. Ääni on pitkittäistä aaltoliikettä, eli ilman (tai muun väliaineen) hiukkaset värähtelevät suuntaan joka on sama kuin aallon etenemissuunta.

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.3.2016 Susanna Hurme Rotaatioliikkeen liike-energia, teho ja energiaperiaate (Kirjan luku 18) Osaamistavoitteet Ymmärtää, miten liike-energia määritetään kiinteän

Lisätiedot

15 MEKAANISET AALLOT (Mechanical Waves)

15 MEKAANISET AALLOT (Mechanical Waves) 3 15 MEKAANISET AALLOT (Mechaical Waves) Luoto o täyä aaltoja. Aaltoliikettä voi sytyä systeemeissä, jotka poikkeutettua tasapaiotilastaa pyrkivät palaamaa siihe takaisi. Aalto eteee, ku poikkeama (häiriö)

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 10.3.2016 Susanna Hurme Statiikan välikoe 14.3.2016 Ajankohta ma 14.3.2016 klo 14:15 17:15 Salijako Aalto-Sali: A-Q (sukunimen alkukirjaimen mukaan) Ilmoittautuminen

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alustavat hyvän vastauksen piirteet on suuntaa-antava kuvaus kokeen tehtäviin odotetuista vastauksista ja tarkoitettu ensisijaisesti

Lisätiedot

Kitka ja Newtonin lakien sovellukset

Kitka ja Newtonin lakien sovellukset Kitka ja Newtonin lakien sovellukset Haarto & Karhunen Tavallisimpia voimia: Painovoima G Normaalivoima, Tukivoima Jännitysvoimat Kitkavoimat Voimat yleisesti F f T ja s f k N Vapaakappalekuva Kuva, joka

Lisätiedot