Kompleksiesitys: Harmoninen aalto esitetään usein kompleksimuodossa
|
|
- Petri Palo
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Kompleksiesitys: Harmoninen aalto esitetään usein kompleksimuodossa 13 i( kx-w t) %, y = Ae joka Eulerin kaavalla avautuu muotoon y% = Acos( kx- wt) + iasin( kx-wt). Kompleksiesitys sisältää siis sekä sini- että kosiniaallon. Erilaisia ilmiöitä tarkasteltaessa on usein laskennollisesti kätevämpää operoida kompleksiesityksellä kuin todellisella sini- tai kosinimuodolla. Monesti kirjoitetaan y x t i( kx-w t) (, ) Re{ Ae } =, jonka reaaliosa siis esittää todellista (reaalista) aaltoa (kosinimuodossa). On myös tavallista, että aallossa reaaliosan ottamista tarkoittava symboli Re jätetään kirjoittamatta. Tällöin on syytä olla varovainen. Jos aaltoon kohdistuvat laskuoperaatiot ovat lineaarisia (yhteenlasku, vakiolla kertominen,...), niin reaaliosa voidaan ottaa vasta lopputuloksesta ja näin saadaan oikea tulos. Mutta, jos laskutoimitukset eivät ole lineaarisia (neliöjuuri, toiseen korottaminen,...) reaaliosa on otettava ennen operaation suorittamista. Tästä on yksi tärkeä poikkeus. Jos lasketaan neliöllisen lausekkeen aikakeskiarvoa, riittää kun reaaliosa otetaan vasta lopputuloksesta. Esimerkki: Kirjoita aallon y( x, t) = Asin( kx- wt+ j ) kompleksiesitys siten, että yxt (,) on kompleksiesityksen reaaliosa. 0 Ratkaisu: ij Koska y( x, t) = Re{ Ae } = Acosj = Asin( j + p / ), kompleksiesityksen on oltava muotoa y% = Ae i( kx wt j0 p /)
2 AALLON NOPEUS Fysikaaliset suureet, jotka määräävät poikittaisen aallon etenemisnopeuden köydessä ovat köyden jännitysvoima (tension) ja köyden massa pituusyksikköä kohti. Jälkimmäista sanotaan myös lineaariseksi massatiheydeksi. Jännitysvoimalla puolestaan tarkoitetaan sitä voimaa, joka tarvittaisiin pitämään köyden osia edelleen yhdessä, jos köysi leikattaisiin poikki. Jännityksen lisääminen kasvattaa palauttavaa voimaa, joka pyrkii oikaisemaan köyden häiriön edetessä siinä. On helppo kuvitella, että jännityksen lisääminen kasvattaa aallon nopeutta. On myös helppo arvata, että massan kasvattaminen hidastaa nopeutta, koska köyden liikkeet tulevat jähmeämmiksi. Johdetaan seuraavassa aallon nopeudelle kaava, ja katsotaan siitä sattuivatko arvauksemme kohdalleen. Seuraavassa kuvassa tarkastellaan täysin notkeaa köyttä, jonka massa pituusyksikköä kohti on m (kg/m) ja johon tasapainoasemassa kohdistuu jännitysvoima F. Oletetaan lisäksi, että köysi on painoton, joten se kuvassa (a) on täsmälleen suorassa.
3 15 Hetkellä t = 0 köyden päähän kohdistetaan lisävoima F y ylöspäin, jolloin köysi lähtee nousemaan. Köysi on painoton, joten noustessaan se muodostaa kuvan (b) mukaisen kolmion, missä piste P erottaa liikkuvan osan vielä liikkumattomasta. Köyden liike on nyt se häiriö (pulssi, aalto), jonka jo aikaisemmin olemme todenneet etenevän vakionopeudella. Nyt siis piste P liikkuu vakionopeudella v. Vakiovoima F y ei tässä tapauksessa johda kiihtyvään liikkeeseen, koska massa, johon voima kohdistuu, kasvaa koko ajan. Siis pisteen P vasemmalla puolella oleva köyden osa liikkuu ylöspäin vakionopeudella v y. Jos liike olisi kiihtyvä, piste P etenisi myös kiihtyvällä nopeudella ja syntyisi ristiriita. Hetkellä t köyden pää on noussut matkan v y t ja piste P edennyt matkan v t (kuvan b tilanne). Voimien ja köyden muodostamista kolmioista voimme kirjoittaa F F y yt = v v t Þ Fy y = F v v. Seuraavaksi sovellamme mekaniikasta tuttua impulssiteoreemaa. Voiman F y impulssi Ft, y joka on kehittynyt aikavälillä 0 t, menee liikkuvan köydenosan liikemäärän muutokseksi mv y - 0. Tulee F t = mv. Tässä m= mv t on liikkuvan köydenosan massa. On siis y y v v = mvv y F t t ja kun tästä ratkaistaan v, saadaan y, F v =. (1.4.1) m
4 16 Intuitiivinen pohdiskelumme alussa johti siis oikeaan tulokseen. Aallon nopeus kasvaa, kun jännitysvoima ( F ) kasvaa ja pienenee, kun massa pituusyksikköä kohti (m ) kasvaa. Kaavan neliöjuurta emme intuitiivisesti keksineet, mutta se paljastuu helposti yksikkötarkastelulla. Tuloksessa (1.4.1) jännitysvoima F edustaa väliaineen (köyden) kimmoisuutta ja lineaarinen massatiheys m sen hitautta. Yleisesti pätee kaikille systeemeille kimmoisuus v = (1.4.) hitaus Esimerkki: Kolme L:n pituista köyttä yhdistetään, jolloin kokonaispituudeksi tulee 3L. Ensimmäisen osan lineaarinen massatiheys on m 1, toisen m = 4m1 ja kolmannen m3 = m1/4. Yhdistettyyn köyteen kohdistetaan jännitysvoima F. a) Mikä jännitysvoima vaikuttaa osaköysissä? b) Kuinka kauan pulssilta kestää kulkea köyden läpi? Ratkaisu: Huomaa, että jännitysvoima F vaikuttaa köyden molemmissa päissä. Jos se vaikuttaisi vain toisessa, köysi joutuisi kiihtyvään liikkeeseen (muistele mekaniikkaa). a) Jokaisessa osaköydessä vaikuttaa sama jännitysvoima F. Jos esimerkiksi ensimmäisen ja toisen osaköyden liitoskohdassa
5 17 ensimmäiseen osaan vaikuttaisi jokin muu voima (esim. F /3), niin ensimmäinen osaköysi joutuisi kiihtyvään liikkeeseen, koska sen toisessa päässä vaikuttaa F. b) Pulssin kulkuaika köyden läpi on L L L æ 1 3 tkok = t1 + t + t3 = + + = L m m m ö ç + + v1 v v3 è F F F ø æ 1ö m1 7 m1 = Lç 1+ + = L. è ø F F 1.5 AALLON ENERGIA Tarkastellaan taas köydessä positiivisen x-akselin suuntaan etenevää poikittaista aaltoa. Viereisessä kuvassa on esitetty hyvin pieni osa värähtelevästä köydestä pisteen a ympäristöstä. Pisteeseen a kohdistuu jännitysvoima F sekä pystysuorassa suunnassa liikkeen aiheuttava voima F y. Tämä voima F y on juuri se voima, jonka tekemä työ siirtyy köyttä pitkin eteenpäin oikealle. Köyden vasemmassa päässä tämä voima synnytetään käden liikkeellä, ks. kuva sivulla 14.
6 18 Köyden suunnassa (kulmakerroin y/ x) kokonaisvoima syntyy kahdesta komponentista, kuva (b), ja kuvan perusteella yxt (,) Fy(,) x t =-F, (1.5.1) x missä negatiivinen merkki on tarpeen, koska suhde Fy / F on negatiivinen silloin kun köyden kulmakerroin (slope) y/ x on positiivinen. Kun piste a liikkuu y-suunnassa, voima Pxt (,) = F(,) xtv (,) xt =-F y y F y tekee työtä. Teho on yxt (,) yxt (,). (1.5.) x t Tämä on hetkellinen teho, jolla pisteen a vasemmalla puolella oleva köyden osa siirtää energiaa pisteeseen a. Kaava siis kertoo millä teholla energiaa virtaa köyttä pitkin oikealle. Kaava on voimassa kaikenlaisille köydessä eteneville aalloille. Sinimuotoisten eli harmonisten aaltojen tapauksessa aaltofunktio on y( x, t) = Asin( kx- wt), josta ja hetkelliseksi tehoksi tulee yxt (,) = kacos( kx-wt), x yxt (,) =-wacos( kx-wt), t P( x, t) = FkwA cos ( kx- wt). (1.5.3) Kun vielä käytetään relaatioita w =v k ja v = F / m, saadaan P( x, t) = mfw A cos ( kx- wt). (1.5.4) Tästä näemme, että energia ei koskaan virtaa aallon etenemissuuntaa vastaan (teho aina positiivinen).
7 19 Funktion cos ( kx- wt) keskimääräinen arvo on 1/, joten keskimääräiseksi tehoksi saamme 1 Pav = mfw A. (1.5.5) Energian siirtymisnopeus on siis verrannollinen amplitudin neliöön ja taajuuden neliöön. Yleistys: P av 1 (hitaus) (kimmoisuus) = w A (1.5.6) - Esimerkki: Köyttä ( m = kg/m) jännitetään 80.0 N:n voimalla. Millä keskimääräisellä teholla köyteen on syötettävä energiaa, jos siihen halutaan synnyttää harmoninen aalto, jonka taajuus on 60 Hz ja amplitudi 6.00 cm? Ratkaisu: Sovelletaan tulosta (1.5.5) - m = kg/m F = 80.0 N (1 N = 1 kg m/s ) w= p f = p 60 1/s - A = m 1 Pav = mfw A = kg m» 51W. s s ækg m Nm J ö ç = = = W 3 s s s è ø
8 0 Esimerkki: Jännitetyssä langassa, jonka lineaarinen massatiheys on kg/m, etenee harmoninen aalto éë ùû. 1 1 y( x, t) =.30mm cos (6.98 m - ) x-(74 s - ) t Millä keskimääräisellä teholla aalto kuljettaa energiaa? Ratkaisu: Keskimääräinen teho yhtälöstä (1.5.5) w Pav = mfw A = mv w A = m A, k missä ensin on käytetty tulosta (1.4.1) p w w v = ln = =. k p k Aaltofunktiosta luemme: amplitudi -3 A = m kulmataajuus w = 74 s -1 aaltoluku k = 6.98 m -1, ja lineaarinen massatiheys on m F = mv ja sitten -3 = kg/m. Lopulta tulee P av = kgm 3 m ms = W. kg m kgm m Nm J Yksikkötarkastelu: m = = = = W. 3 m s s s s s
9 1 AALTOLIIKKEIDEN YHDISTÄMINEN Kun aalto osuu väliaineen rajapintaan, se heijastuu siitä takaisin joko osittain tai kokonaan. Esimerkiksi äänen osuessa talon seinään se palaa takaisin kaikuna. Missä määrin ja miten takaisinheijastuminen tapahtuu riippuu rajapinnan ominaisuuksista. Väliaineen reunaa kohti etenevä aalto ja jo aikaisemmin väliaineen reunasta takaisin heijastunut aalto voivat esiintyä yhtä aikaa samassa tilassa. Tästä seuraa ilmiöitä, joita sanotaan interferenssiksi. Se miten kaksi (tai useampi) samanaikaista aaltoa poikkeuttaa väliaineen osasia määräytyy ns. superpositioperiaatteesta. Kun systeemissä on kaksi rajapintaa, kuten esimerkiksi molemmista päistään kiinnitetyssä kitaran kielessä, syntyy toistuvia heijastuksia ja osoittautuu, että systeemissä voi edetä vain tietyn taajuiset aallot. Näitä erityisiä taajuuksia ja niihin liittyviä aaltojen muotoja sanotaan systeemin normaalivärähdysmuodoiksi. Nyt tutkimme edellämainittuja ilmiöitä mekaanisten aaltojen tapauksessa. Interferenssi-ilmiöt ovat tärkeitä myös ei-mekaanisilla aalloilla ja valon tapaukseen palaamme tarkemmin myöhemmin..1 HEIJASTUMINEN JA LÄPÄISY Tutkitaan aallon heijastumista kahden väliaineen rajapinnasta käyttäen esimerkkinä köydessä etenevää poikittaista aaltoa. Tarkastellaan kahta erilaista tapausta. Kuvassa vasemmalla köyden pää on kiinnitetty, eikä se pääse liikkumaan aallon osuessa siihen. Kuvassa oikealla köyden pää on vapaa ja se pääsee liikkumaan aallon vaikutuksesta ylös-alas-suunnassa.
10 Se ehto miten köysi on kiinnitetty on ns. rajapintaehto (rajaehto, reunaehto, boundary condition). Köyden rajapintaan (seinään, köyden päähän) saapuva pulssi heijastuu (kimpoaa takaisin). Jos pää on kiinnitetty, pulssi palaa takaisin ylösalaisin kääntyneenä. Tämä johtuu seinän köyteen kohdistamasta reaktiovoimasta, joka on yhtä suuri, mutta vastakkaissuuntainen kuin saapuvan pulssin seinään kohdistama voima. Pulssin ylösalaisin kääntyminen vastaa vaiheen siirtymistä 180 (puhutaan p :n vaihe-siirrosta). Jos köyden pää on vapaa liikkumaan, siihen ei kohdistu ulkoisia voimia ja heijastunut pulssi ei käänny. Vaihesiirtoa ei siis tapahdu. Kun aalto kohtaa absoluuttisen jäykän seinän, kaikki aallon energia heijastuu takaisin. Yleensä rajapinnat eivät kuitenkaan ole absoluuttisen jäykkiä ja osa aallon energiasta pääsee rajapinnan toiselle puolelle. Osa aallosta siis läpäisee rajapinnan. Viereisessä kuvassa kaksi erivahvuista köyttä on liitetty toisiinsa. Köysien liitoskohta edustaa nyt rajapintaa, jota kohti pulssi saapuu kuvassa (a). Rajapinnassa osa pulssista heijastuu takaisin ja osa menee läpi. Mitä raskaampi jälkimmäinen köysi on sitä vähemmän menee läpi ja
11 3 äärettömän raskaan köyden tapauksessa tilanne vastaa jo edellisen esimerkin seinää. Periodisen aallon tapauksessa läpäisseen aallon - taajuus f ei muutu (helppo ymmärtää) - nopeus v muuttuu, koska m muuttuu - aallonpituus muuttuu yhtälön l =v / f mukaisesti. Kuvassa (yllä) aalto saapuu "kevyemmästä" väliaineesta "raskaampaan", jolloin heijastuneessa aallossa havaitaan p :n vaihesiirto (vrt. köysi kiinnitetty seinään). Jos aalto saapuu raskaammasta väliaineesta kevyempään, vaihesiirtoa ei havaita. Läpimennyt aalto ei koskaan koe vaihesiirtoa. Esimerkki: Köydessä etenee siniaalto y( x, t) = Asin( kx- wt). Aaltoon aiheutetaan (tavalla tai toisella) yht äkkinen 180 asteen vaihesiirto. Osoita, että aalto kääntyy ylösalaisin. Ratkaisu: Vaihesiirto D f0 tarkoittaa: y( x, t) = Asin( kx- wt+d f0 ). Tässä D f0 = p eli 180 ja koska sin( a + b) = sinacos b + cosasin b saadaan y( x, t) = Asin( kx- wt)cos( p) + Acos( kx- wt)sin( p), mistä y( x, t) =-Asin( kx- wt) eli kääntynyt ylösalaisin alkuperäiseen verrattuna. Kuva piirretty ajanhetkellä t = 0:
12 4. SUPERPOSITIOPERIAATE Jos useampia aaltoliikkeitä vaikuttaa samanaikaisesti määrättyyn väliaineen pisteeseen, niin pisteen poikkeama tasapainoasemasta saadaan laskemalla yhteen eri aaltoliikkeiden erikseen aiheuttamat poikkeamat. Resultanttiaalto on siis yksittäisten aaltojen summa ja jos esimerkiksi y1( xt,) ja y( xt,) edustavat kahden osa-aallon aaltofunktioita, niin kokonaisaaltofunktio on y (,) xt = y(,) xt + y(,) xt. (..1) tot 1 Matemaattisesti summautuvuusominaisuus on seurausta aaltoyhtälön (1..3) y 1 y = x v t lineaarisuudesta. Lineaarisuus tässä tarkoittaa juuri sitä, että jos y1( xt,) ja y( xt,) ovat aaltoyhtälön ratkaisuja, niin myös niiden summa on ratkaisu. Tämä on helposti osoitettavissa sillä y1 1 y1 = ja x v t ja laskemalla nämä yhteen saadaan y 1 y x v t = y y 1 y 1 y x x v t v t josta 1 ( y 1+ y) = ( y 1+ y). x v t Myös summa siis toteuttaa aaltoyhtälön = +
13 5 Yksi superpositioperiaatteen seurauksista on se, että kahden aallon kohdatessa ne jatkavat kohtaamisen jälkeen matkaansa täysin muuttumattomina aivan kuin mitään ei olisi tapahtunut. Tässä tarkastelimme aaltojen ns. lineaarista superpositiota. Se on voimassa silloin, kun amplitudi on niin pieni, että väliaineen palauttava voima noudattaa Hooken lakia, ts. on lineaarinen poikkeaman funktio. Jos amplitudi kasvaa suureksi, väliaine menettää elastisuutensa ja superpositioperiaate ei enää ole voimassa. Tästä sinänsä seuraa hyvin mielenkiintoisia ilmiöitä. Esimerkiksi voimakkaan laser-valon vuorovaikuttaessa materian kanssa havaitaan erinäisiä epälineaarisia ilmiöitä. Tällainen ns. epälineaarinen optiikka on yksi modernin optiikan tärkeimmistä tutkimusalueista. Esimerkki: Laske kahden aallon ìy1( x, t) = 1.0sin( kx-wt) í îy( x, t) = 0.9sin( kx- wt+ 1.0rad) superpositio eli resultantti(summa-)aalto. Ratkaisu: Lasketaan summa y= y1+ y = 1.0sin( a) + 0.9sin( a + 1.0), missä a = kx- wt sisältää paikka- ja aikariippuvuuden. Tunnetusti sin( a + b) = sinacos b + cosasin b, joten y = 1.0sin( a) + 0.9sin( a)cos(1.0) + 0.9cos( a)sin(1.0) = sin( a)[ cos(1.0)] + cos( a)0.9sin(1.0) = asin( a) + bcos( a), missä a ja b ovat vakioita. Kun merkitään a= Acos( b ) ja b= Asin( b ) voidaan käyttää uudelleen edellä mainittua trigonometristä identiteettiä ja kirjoittaa
14 6 y= Asin( a + b), missä A= a + b ja b = arctan( b/ a). Tässä a = cos(1.0) = ja b = 0.9sin(1.0) = , joten A = ja b = Vastaukseksi kirjoitamme: y= 1.7sin( kx- wt+ 0.47rad).3 SEISOVA AALTOLIIKE Seisova aalto syntyy superpositioperiaatteen seurauksena silloin, kun annettu aalto esiintyy yhtä aikaa sekä eteenpäin menevänä että takaisin palaavana samassa tilassa samanaikaisesti. Tavallisesti tällainen tilanne havaitaan silloin, kun aalto jossakin etenemisensä pisteessä kokee heijastumisen. Tarkastellaan siis kahta vastakkaisiin suuntiin etenevää harmonista aaltoa, joilla on sama amplitudi, taajuus ja aallonpituus: Resultanttiaalloksi tulee 1 y1( x, t) = Asin( kx- w t), (.3.1) y( x, t) = Asin( kx+ wt). (.3.) yxt (,) = y(,) xt + y(,) xt = A[sin( kx - wt) + sin( kx + wt)]. (.3.3) Kun tässä kirjoitetaan ja sovelletaan identiteettiä saadaan a = kx+ wt ja b = kx-wt sina + sin b = sin ( a + b)cos ( a - b), 1 1 y( x, t) = (Asin kx)coswt, (.3.4) joka on seisova aalto. Aalto on esitetty kuvassa alla.
15 7 Suluissa oleva osa (Asin kx ) edustaa aallon ajasta riippumatonta amplitudia, joka riippuu vain paikasta x. Se kertoo, että kaikilla ajanhetkillä köysi muodostaa sinikäyrän, mutta toisin kuin etenevässä aallossa, sinikäyrä pysyy nyt paikoillaan. Se kylläkin värähtelee, hengittää, tekijän cosw t mukaisesti. Kaikki köyden osaset värähtelevät harmonisesti samalla taajuudella. +A -A Solmut (N = node) Seisovan aallon amplitudi on nolla, kun sinkx = 0, ts. kun p kx= x = mp, missä m = 0, ± 1, ±, K l eli siis paikoissa x= m l. (.3.5) Näissä paikoissa poikkeama y on nolla kaikilla ajanhetkillä. Paikkoja sanotaan seisovan aallon solmupisteiksi (nodes, N) tai solmukohdiksi. Solmupisteiden välimatka on l /. Solmupisteissä osa-aallot kumoavat aina toisensa. Kuvut (Antinode) Seisovan aallon amplitudilla on maksimi, kun sin( kx ) =± 1, ts. kun p p kx= x= + mp, missä m = 0, ± 1, ±, K l eli paikoissa æ 1 öl x= ç m+. (.3.6) è ø
16 8 Näissä paikoissa, solmukohtien puolessa välissä l / :n välein, osaaallot vahvistavat toisiaan ja synnyttävät ns. kuvut. Kupu maksimissa Seisovan aallon värähdellessä ajan funktiona sen poikkeama tasapainosta on maksimissaan, kun ajasta riippuva osa cosw t saa maksimiarvonsa, ts. cosw t =± 1. Näin käy, kun p wt = p ft = t = mp, missä nyt m = 0,1,, L T eli ajanhetkillä T t = m æ ö ç è ø. (.3.7) Köysi suorana Seisova aalto on kaikkialla nolla, kun cosw t = 0, ts. kun siis kun æ 1 ö wt = ç m+ p, missä m = 0,1,, L è ø Näillä ajanhetkillä köysi on täysin suora. 1 T t = æ ç m+ öæ ç ö è øè ø. (.3.8) Toisin kuin etenevät aallot, seisovat aallot eivät kuljeta energiaa. Tämä on helppo todeta esimerkiksi laskemalla aallon keskimääräinen teho lähtien hetkellisen teho lausekkeesta (1.5.3) ja käyttäen aaltofunktiona seisovaa aaltoa (.3.4). Esimerkki: Positiivisen x-akselin suuntaisen köyden toinen pää on kiinnitetty origoon ( x= 0, y= 0). Köydessä etenee negatiivisen x- akselin suuntaan siniaalto nopeudella 84.0 m/s, amplitudilla 1.50 mm ja taajuudella 10 Hz. Tämä aalto heijastuu kiinnityspisteestä x = 0. Heijastuneen ja tulevan aallon superpositiona syntyy seisova aalto.
Ratkaisu: Vaatimus on, että muuttujat x ja t esiintyvät muodossa x-v t. On siis kirjoitettava,
8 Ratkaisu: Vaatimus on, että muuttujat x ja t esiintyvät muodossa x-v t. On siis kirjoitettava 3 3 y = =, ( x- vt) + 1 ( x- t) + 1 missä siis v = m/s. Tulos on SI-yksiköissä, joten x ja y ovat metreinä
Lisätiedot2 AALTOLIIKKEIDEN YHDISTÄMINEN
1 AALTOLIIKKEIDEN YHDISTÄMINEN Kun aalto osuu väliaineen rajapintaan, se heijastuu siitä takaisin joko osittain tai kokonaan. Esimerkiksi äänen osuessa talon seinään se palaa takaisin kaikuna. Missä määrin
Lisätiedot1 PERUSKÄSITTEITÄ 1.1 AALTOJEN TYYPIT
1 1 PERUSKÄSITTEITÄ Luonto on täynnä aaltoja. Aaltoliikettä voi syntyä kimmoisissa systeemeissä, jotka poikkeutettuna tasapainotilastaan pyrkivät palaamaan siihen takaisin. Aalto etenee, kun poikkeama
LisätiedotYLEINEN AALTOLIIKEOPPI
YLEINEN AALTOLIIKEOPPI KEVÄT 2017 1 Saana-Maija Huttula (saana.huttula@oulu.fi) Maanantai Tiistai Keskiviikko Torstai Perjantai Vk 8 Luento 1 Mekaaniset aallot 1 Luento 2 Mekaaniset aallot 2 Ääni ja kuuleminen
LisätiedotLuento 15: Mekaaniset aallot
Luento 15: Mekaaniset aallot Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot Ajankohtaista Luennon sisältö Mekaaniset aallot Eteneminen Aallon nopeus
LisätiedotLuento 15: Mekaaniset aallot. Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot
Luento 15: Mekaaniset aallot Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot 1 / 40 Luennon sisältö Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa
LisätiedotSEISOVA AALTOLIIKE 1. TEORIAA
1 SEISOVA AALTOLIIKE MOTIVOINTI Työssä tutkitaan poikittaista ja pitkittäistä aaltoliikettä pitkässä langassa ja jousessa. Tarkastellaan seisovaa aaltoliikettä. Määritetään aaltoliikkeen etenemisnopeus
Lisätiedot766329A Aaltoliike ja optiikka
76639A Aaltoliike ja optiikka Seppo Alanko Oulun yliopisto Fysiikan laitos Kevät 5 Perustuu oppikirjoihin: H. D. Young and R. A. Freedman University Physics, Addison-Wesley th ed., and th ed., 4 F. L.
Lisätiedot9 VALOAALTOJEN SUPERPOSITIO
09 9 VALOAALTOJEN SUPERPOSITIO Edellisissä kappaleissa olemme tutkineet valon heijastumista peileissä ja taittumista linsseissä geometrisen optiikan approksimaation avulla Approksimaatiossa valon aaltoluonnetta
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys12 Kevät 21 Jukka Maalampi LUENTO 11 Mekaaninen aaltoliike alto = avaruudessa etenevä järjestäytynyt häiriö. alto altoja on kahdenlaisia: Poikittainen aalto - poikkeamat kohtisuorassa
Lisätiedot= 0.175m, 0.525m, 0.875m,...
9 (a) Esitä seisovan aallon aaltofunktio. (b) Paikallista ne köyden pisteet, jotka eivät liiku ollenkaan. (c) Paikallista ne köyden pisteet, jotka liikkuvat eniten ja laske vastaavat maksimipoikkeamat,
LisätiedotLuento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,
LisätiedotLuento 15: Ääniaallot, osa 2
Luento 15: Ääniaallot, osa 2 Aaltojen interferenssi Doppler Laskettuja esimerkkejä Luennon sisältö Aaltojen interferenssi Doppler Laskettuja esimerkkejä Aaltojen interferenssi Samassa pisteessä vaikuttaa
Lisätiedot- 3 välikoetta, jokaisessa 4 tehtävää, yht. 12 teht. - 6 pistettä yhdestä tehtävästä - max pisteet 72 (+ lisät harjoituksista)
1/2 KURSSIN ARVOSTELU - 3 välikoetta, jokaisessa 4 tehtävää, yht. 12 teht. - 6 pistettä yhdestä tehtävästä - max pisteet 72 (+ lisät harjoituksista) pisteet arvosana 00,00 35,25-35,50 41,25 1 1/2 maksimista
LisätiedotJakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina
Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina 31.5.2012. T 6.1 (pakollinen): Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä.
LisätiedotLuento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r
Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic
Lisätiedot2 Mekaaninen aalto. Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium).
2 Mekaaninen aalto Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium). 1 Mekaanisten aaltojen vastakohtana ovat sähkömagneettiset allot, jotka kulkevat
LisätiedotVoima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori!
6.1 Työ Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! Siirtymä s = r 2 r 1 Kun voiman kohteena olevaa kappaletta voidaan kuvata
LisätiedotTEHTÄVIEN RATKAISUT. b) 105-kiloisella puolustajalla on yhtä suuri liikemäärä, jos nopeus on kgm 712 p m 105 kg
TEHTÄVIEN RATKAISUT 15-1. a) Hyökkääjän liikemäärä on p = mv = 89 kg 8,0 m/s = 71 kgm/s. b) 105-kiloisella puolustajalla on yhtä suuri liikemäärä, jos nopeus on kgm 71 p v = = s 6,8 m/s. m 105 kg 15-.
Lisätiedoton radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).
H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika
Lisätiedot3.1 PITKITTÄISEN AALLON NOPEUS JA ENERGIA
37 3 ÄÄNI Yksi ihmisen kannalta tärkeimmistä luonnossa esiintyvistä aaltoilmiöistä muodostuu ilmassa etenevistä pitkittäisistä aalloista eli ääniaalloista (sound waves) Tarkastelemme nyt ääntä lähinnä
Lisätiedot23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen
3 VALON POLARISAATIO 3.1 Johdanto Mawellin htälöiden avulla voidaan johtaa aaltohtälö sähkömagneettisen säteiln etenemiselle väliaineessa. Mawellin htälöiden ratkaisusta seuraa aina, että valo on poikittaista
LisätiedotVapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen)
Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen Vapaaseen hiukkaseen ei vaikuta voimia, joten U(x = 0. Vapaan hiukkasen energia on sen liike-energia eli E=p /m. Koska hiukkasella on määrätty energia,
LisätiedotFYS03: Aaltoliike. kurssin muistiinpanot. Rami Nuotio
FYS03: Aaltoliike kurssin muistiinpanot Rami Nuotio päivitetty 24.1.2010 Sisältö 1. Mekaaninen aaltoliike 2 1.1. Harmoninen voima 2 1.2. Harmoninen värähdysliike 2 1.3. Mekaaninen aalto 3 1.4. Mekaanisen
LisätiedotAaltojen heijastuminen ja taittuminen
Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan
Lisätiedot, tulee. Käyttämällä identiteettiä
44 euraavaksi käytämme tilavuusmodulin B määritelmää (katso sivu 4) B =- dp /( dv / V ). Tässä dp on paineen muutos, joka nyt on pxt (,). aamme siten dv yxt (,) p(,) x t =- B =-B. (3.3.3) V x Kun tähän
LisätiedotLuento 11: Periodinen liike
Luento 11: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r Konseptitesti 1 Tehtävänanto Kuvassa on jouseen kytketyn massan sijainti ajan funktiona. Kuvaile
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän
LisätiedotLuvun 8 laskuesimerkit
Luvun 8 laskuesimerkit Esimerkki 8.1 Heität pallon, jonka massa on 0.40 kg seinään. Pallo osuu seinään horisontaalisella nopeudella 30 m/s ja kimpoaa takaisin niin ikään horisontaalisesti nopeudella 20
Lisätiedotdl = F k dl. dw = F dl = F cos. Kun voima vaikuttaa kaarevalla polulla P 1 P 2, polku voidaan jakaa infinitesimaalisen pieniin siirtymiin dl
Kun voima vaikuttaa kaarevalla polulla P 2, polku voidaan jakaa infinitesimaalisen pieniin siirtymiin dl Kukin siirtymä dl voidaan approksimoida suoraviivaiseksi, jolloin vastaava työn elementti voidaan
LisätiedotKuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus
Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus värähtelytiheyden. 1 Funktiot ja aallot Aiemmin käsiteltiin funktioita ja miten niiden avulla voidaan kuvata fysiikan
LisätiedotAaltojen heijastuminen ja taittuminen
Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan
Lisätiedot7.4 PERUSPISTEIDEN SIJAINTI
67 7.4 PERUSPISTEIDEN SIJAINTI Optisen systeemin peruspisteet saadaan systeemimatriisista. Käytetään seuraavan kuvan merkintöjä: Kuvassa sisäänmenotaso on ensimmäisen linssin ensimmäisessä pinnassa eli
LisätiedotMekaniikan jatkokurssi Fys102
Meaniian jatourssi Fys10 Sysy 009 Jua Maalampi LUENTO 6 Harmonisen värähdysliieen energia Jousen potentiaalienergia on U ( x missä on jousivaio ja Dx on poieama tasapainosta. Valitaan origo tasapainopisteeseen,
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 6 Yksinkertainen harmoninen liike yhteys ympyräliikkeeseen energia dynamiikka Värähdysliike Knight Ch 14 Heilahtelut pystysuunnassa ja gravitaation
LisätiedotLuento 13: Periodinen liike
Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos Ajankohtaista
Lisätiedotja siis myös n= nk ( ). Tällöin dk l l
Tästä havaitaan, että jos nopeus ei riipu aallonpituudesta, ts. ei ole dispersiota, vg = v p. Tilanne on tällainen esimerkiksi tyhjiössä, missä vg = v p = c. Dispersiivisessä väliaineessa v p = c/ n, missä
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain
LisätiedotAaltoliike ajan suhteen:
Aaltoliike Aaltoliike on etenevää värähtelyä Värähdysliikkeen jaksonaika T on yhteen värähdykseen kuluva aika Värähtelyn taajuus on sekunnissa tapahtuvien värähdysten lukumäärä Taajuuden ƒ yksikkö Hz (hertsi,
Lisätiedot9 VALOAALTOJEN SUPERPOSITIO
09 9 VALOAALTOJEN SUPERPOSITIO Edellisissä kaaleissa olemme tutkineet valon heijastumista eileissä ja taittumista linsseissä geometrisen otiikan aroksimaation avulla Aroksimaatiossa valon aaltoluonnetta
LisätiedotLuento 10: Työ, energia ja teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho Ajankohtaista Konseptitesti 1 Kysymys Ajat pyörällä ylös jyrkkää mäkeä. Huipulle vie kaksi polkua, toinen kaksi kertaa pidempi kuin
LisätiedotPietarsaaren lukio Vesa Maanselkä
Fys 9 / Mekaniikan osio Liike ja sen kuvaaminen koordinaatistossa Newtonin lait Voimavektorit ja vapaakappalekuvat Työ, teho,työ-energiaperiaate ja energian säilymislaki Liikemäärä ja sen säilymislaki,
LisätiedotKun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u.
DEE-00 Lineaariset järjestelmät Harjoitus, ratkaisuehdotukset Järjestelmien lineaarisuus ja aikainvarianttisuus Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla
LisätiedotBM30A0240, Fysiikka L osa 4
BM30A0240, Fysiikka L osa 4 Luennot: Heikki Pitkänen 1 Oppikirja: Young & Freedman: University Physics Luku 14 - Periodic motion Luku 15 - Mechanical waves Luku 16 - Sound and hearing Muuta - Diffraktio,
LisätiedotPotentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa
Potentiaalikuoppa Luento 9 Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa U( x ) = U U( x ) = 0 0 kun x < 0 tai x > L, kun 0 x L. Kuopan kohdalla hiukkanen on vapaa,
LisätiedotDerivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r
Vuka HT 4 Tehtävä. Lyhyenä alustuksena tehtävään johdetaan keskeiskiihtyvyys tasaisessa pyörimisessä. Meillä on ympyräradalla liikkuva kappale joka pyörii vakiokulmanopeudella ω dϕ säteellä r origosta.
LisätiedotVedetään kiekkoa erisuuruisilla voimilla! havaitaan kiekon saaman kiihtyvyyden olevan suoraan verrannollinen käytetyn voiman suuruuteen
4.3 Newtonin II laki Esim. jääkiekko märällä jäällä: pystysuuntaiset voimat kumoavat toisensa: jään kiekkoon kohdistama tukivoima n on yhtäsuuri, mutta vastakkaismerkkinen kuin kiekon paino w: n = w kitka
Lisätiedotjonka peruslait tiivistyvät neljään ns. Maxwellin yhtälöön.
71 4. SÄHKÖMAGNEETTINEN AALTO Sähköön ja magnetismiin liittyvät havainnot yhdistettiin noin 1800luvun puolessa välissä yhtenäiseksi sähkömagnetismin teoriaksi, jonka peruslait tiivistyvät neljään ns. Maxwellin
LisätiedotSuhteellinen nopeus. Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää
3.5 Suhteellinen nopeus Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää P:n nopeus junassa istuvan toisen matkustajan suhteen on v P/B-x = 1.0 m/s Intuitio :
Lisätiedot11.1 MICHELSONIN INTERFEROMETRI
47 11 INTERFEROMETRIA Edellisessä kappaleessa tarkastelimme interferenssiä. Instrumentti, joka on suunniteltu interferenssikuvion muodostamiseen ja sen tutkimiseen (mittaamiseen) on ns. interferometri.
Lisätiedotd+tv 1 S l x 2 x 1 x 3 MEI Mallintamisen perusteet Harjoitus 6, kevät 2015 Tuomas Kovanen
MEI-55100 Mallintamisen perusteet Harjoitus 6, kevät 2015 Tuomas Kovanen Tehtävä 1: Tarkastellaan luentojen esimerkkiä, jossa johepalkki liikkuu kahen johelevyn välissä homogeenisessä magneettikentässä,
Lisätiedot16 Ääni ja kuuleminen
16 Ääni ja kuuleminen Ääni on väliaineessa etenevää pitkittäistä aaltoliikettä. Ihmisen kuuloalue 20 Hz 20 000 Hz. (Infraääni kuuloalue ultraääni) 1 2 Ääniaallon esittämistapoja: A = poikkeama-amplitudi
LisätiedotMonissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta
8 LIIKEMÄÄRÄ, IMPULSSI JA TÖRMÄYKSET Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta Tällöin dynamiikan peruslain F = ma käyttäminen ei ole helppoa tai edes mahdollista Newtonin
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa
LisätiedotLuento 11: Periodinen liike
Luento 11: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä θ F t m g F r Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä Johdanto Tarkastellaan
LisätiedotNopeus, kiihtyvyys ja liikemäärä Vektorit
Nopeus, kiihtyvyys ja liikemäärä Vektorit Luento 2 https://geom.mathstat.helsinki.fi/moodle/course/view.php?id=360 Luennon tavoitteet: Vektorit tutuiksi Koordinaatiston valinta Vauhdin ja nopeuden ero
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys102 Syksy 2009 Jukka Maalampi LUENTO 12 Aallot kahdessa ja kolmessa ulottuvuudessa Toistaiseksi on tarkasteltu aaltoja, jotka etenevät yhteen suuntaan. Yleisempiä tapauksia ovat
LisätiedotDerivaatan sovellukset (ääriarvotehtävät ym.)
Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion
LisätiedotShrödingerin yhtälön johto
Shrödingerin yhtälön johto Tomi Parviainen 4. maaliskuuta 2018 Sisältö 1 Schrödingerin yhtälön johto tasaisessa liikkeessä olevalle elektronille 1 2 Schrödingerin yhtälöstä aaltoyhtälöön kiihtyvässä liikkeessä
LisätiedotLuvun 5 laskuesimerkit
Luvun 5 laskuesimerkit Huom: luvun 4 kohdalla luennolla ei ollut laskuesimerkkejä, vaan koko luvun 5 voi nähdä kokoelmana sovellusesimerkkejä edellisen luvun asioihin! Esimerkki 5.1 Moottori roikkuu oheisen
Lisätiedot(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi
Tehtävä 1 Tornadon virtauskenttää voidaan approksimoida kaksiulotteisen nielun ja pyörteen summana Oleta, että nielun voimakkuus on m < ja pyörteen voimakkuus on > (a Määritä tornadon potentiaali- ja virtafunktiot
LisätiedotValon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen
Valon luonne ja eteneminen Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen 1 Valonlähteitä Perimmiltään valon lähteenä toimii kiihtyvässä liikkeessä olevat sähkövaraukset Kaikki
Lisätiedot5-2. a) Valitaan suunta alas positiiviseksi. 55 N / 6,5 N 8,7 m/s = =
TEHTÄVIEN RATKAISUT 5-1. a) A. Valitaan suunta vasemmalle positiiviseksi. Alustan suuntainen kokonaisvoima on ΣF = 19 N + 17 N -- 16 N = 0 N vasemmalle. B. Valitaan suunta oikealle positiiviseksi. Alustan
LisätiedotLuvun 5 laskuesimerkit
Luvun 5 laskuesimerkit Esimerkki 5.1 Moottori roikkuu oheisen kuvan mukaisessa ripustuksessa. a) Mitkä ovat kahleiden jännitykset? b) Mikä kahleista uhkaa katketa ensimmäisenä? Piirretäänpä parit vapaakappalekuvat.
Lisätiedotz 1+i (a) f (z) = 3z 4 5z 3 + 2z (b) f (z) = z 4z + 1 f (z) = 12z 3 15z 2 + 2
BM20A5700 - Integraauunnokset Harjoitus 2 1. Laske seuraavat raja-arvot. -kohta ratkeaa, kun pistät sekä yläkerran että alakerran muotoon (z z 1 )(z z 2 ), missä siis z 1 ja z 2 ovat näiden lausekkeiden
LisätiedotKvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.
Lisätiedoty 2 h 2), (a) Näytä, että virtauksessa olevan fluidialkion tilavuus ei muutu.
Tehtävä 1 Tarkastellaan paineen ajamaa Poisseuille-virtausta kahden yhdensuuntaisen levyn välissä Levyjen välinen etäisyys on 2h Nopeusjakauma raossa on tällöin u(y) = 1 dp ( y 2 h 2), missä y = 0 on raon
LisätiedotJuuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77
Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty.5.07 Kertaus K. a) sin 0 = 0,77 b) cos ( 0 ) = cos 0 = 0,6 c) sin 50 = sin (80 50 ) = sin 0 = 0,77 d) tan 0 = tan (0 80 ) = tan 0 =,9 e)
Lisätiedot3.4 Liike-energiasta ja potentiaalienergiasta
Työperiaatteeksi (the work-energy theorem) kutsutaan sitä että suljetun systeemin liike-energian muutos Δ on voiman systeemille tekemä työ W Tämä on yksi konservatiivisen voiman erityistapaus Työperiaate
LisätiedotW el = W = 1 2 kx2 1
7.2 Elastinen potentiaalienergia Paitsi gravitaatioon, myös materiaalien deformaatioon (muodonmuutoksiin) liittyy systeemin rakenneosasten keskinäisiin paikkoihin liittyvää potentiaalienergiaa Elastinen
LisätiedotSovelletun fysiikan pääsykoe
Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille
LisätiedotTÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA
TÄSSÄ ON ESMERKKEJÄ SÄHKÖ- JA MAGNETSMOPN KEVÄÄN 2017 MATERAALSTA a) Määritetään magneettikentän voimakkuus ja suunta q P = +e = 1,6022 10 19 C, v P = (1500 m s ) i, F P = (2,25 10 16 N)j q E = e = 1,6022
LisätiedotHARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE
HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE Harmoninen voima on voima, jonka suuruus on suoraan verrannollinen poikkeamaan tasapainoasemasta
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino
LisätiedotBraggin ehdon mukaan hilatasojen etäisyys (111)-tasoille on
763343A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 2 Kevät 2018 1. Tehtävä: Kuparin kiderakenne on pkk. Käyttäen säteilyä, jonka aallonpituus on 0.1537 nm, havaittiin kuparin (111-heijastus sirontakulman θ arvolla
LisätiedotFysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto
Fysiikan perusteet Voimat ja kiihtyvyys Antti Haarto.05.01 Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 15.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinematiikka: asema, nopeus ja kiihtyvyys (Kirjan luvut 12.1-12.5, 16.1 ja 16.2) Osaamistavoitteet Ymmärtää
Lisätiedot+ 0, (29.20) 32 SÄHKÖMAGNEETTISET AALLOT (Electromagnetic Waves) i c+ ε 0 dφ E / dt ja silmukan kohdalla vaikuttavan magneettivuon tiheyden
5 3 SÄHKÖMAGNEETTISET AALLOT (Electromagnetic Waves) Mitä valo on? Tämä kysymys on askarruttanut ihmisiä vuosisatojen ajan. Nykykäsityksen mukaan valo on luonteeltaan kaksijakoinen eli dualistinen. Valoa
Lisätiedot16 ÄÄNI JA KUULEMINEN (Sound and Hearing)
8 16 ÄÄNI JA KUULEMINEN (Sound and Hearing) Ihmisen kannalta yksi tärkeimmistä luonnossa esiintyvistä aaltoilmiöistä muodostuu ilmassa etenevistä pitkittäisistä aalloista eli ääniaalloista (sound waves)
Lisätiedot1 WKB-approksimaatio. Yleisiä ohjeita. S Harjoitus
S-114.1427 Harjoitus 3 29 Yleisiä ohjeita Ratkaise tehtävät MATLABia käyttäen. Kirjoita ratkaisut.m-tiedostoihin. Tee tuloksistasi lyhyt seloste, jossa esität laskemasi arvot sekä piirtämäsi kuvat (sekä
LisätiedotYhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014
Yhtälönratkaisusta Johanna Rämö, Helsingin yliopisto 22. syyskuuta 2014 Yhtälönratkaisu on koulusta tuttua, mutta usein sitä tehdään mekaanisesti sen kummempia ajattelematta. Jotta pystytään ratkaisemaan
LisätiedotIntegrointi ja sovellukset
Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,
LisätiedotSTATIIKKA. TF00BN89 5op
STATIIKKA TF00BN89 5op Sisältö: Statiikan peruslait Voiman resultantti ja jako komponentteihin Voiman momentti ja voimapari Partikkelin ja jäykän kappaleen tasapainoyhtälöt Tukivoimat Ristikot, palkit
LisätiedotTarkastellaan tilannetta, jossa kappale B on levossa ennen törmäystä: v B1x = 0:
8.4 Elastiset törmäykset Liike-energia ja liikemäärä säilyvät elastisissa törmäyksissä Vain konservatiiviset voimat vaikuttavat 1D-tilanteessa kappaleiden A ja B törmäykselle: 1 2 m Av 2 A1x + 1 2 m Bv
LisätiedotDiplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut
Diplomi-insino o rien ja arkkitehtien yhteisalinta - dia-alinta 15 Insino o rialinnan fysiikan koe 7.5.15, malliratkaisut A1 Pallo (massa m = 1, kg, sa de r =, cm) nojaa kur an mukaisesti pystysuoraan
LisätiedotSekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä
Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja
LisätiedotUseita oskillaattoreita yleinen tarkastelu
Useita oskillaattoreita yleinen tarkastelu Useita riippumattomia vapausasteita q i, i =,..., n ja potentiaali vastaavasti U(q, q 2,..., q n). Tasapainoasema {q 0, q0 2,..., q0 n} q 0 Käytetään merkintää
LisätiedotHARJOITUS 4 1. (E 5.29):
HARJOITUS 4 1. (E 5.29): Työkalulaatikko, jonka massa on 45,0 kg, on levossa vaakasuoralla lattialla. Kohdistat laatikkoon asteittain kasvavan vaakasuoran työntövoiman ja havaitset, että laatikko alkaa
LisätiedotMATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 24.9.2019 HYVÄN VASTAUKSEN PIIRTEITÄ Alustavat hyvän vastauksen piirteet on suuntaa-antava kuvaus kokeen tehtäviin odotetuista vastauksista ja tarkoitettu ensisijaisesti
LisätiedotPakotettu vaimennettu harmoninen värähtelijä Resonanssi
Pakotettu vaimennettu harmoninen värähtelijä Resonanssi Tällä luennolla tavoitteena Mikä on pakkovoiman aiheuttama vaikutus vaimennettuun harmoniseen värähtelijään? Mikä on resonanssi? Kertaus: energian
Lisätiedot763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1
763306A JOHDATUS SUHTLLISUUSTORIAAN Ratkaisut 3 Kevät 07. Fuusioreaktio. Lähdetään suoraan annetuista yhtälöistä nergia on suoraan yhtälön ) mukaan + m ) p P ) m + p 3) M + P 4) + m 5) Ratkaistaan seuraavaksi
Lisätiedot3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta.
3 Ääni ja kuulo 1 Mekaanisista aalloista ääni on ihmisen kannalta tärkein. Ääni on pitkittäistä aaltoliikettä, eli ilman (tai muun väliaineen) hiukkaset värähtelevät suuntaan joka on sama kuin aallon etenemissuunta.
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 24.3.2016 Susanna Hurme Rotaatioliikkeen liike-energia, teho ja energiaperiaate (Kirjan luku 18) Osaamistavoitteet Ymmärtää, miten liike-energia määritetään kiinteän
Lisätiedot15 MEKAANISET AALLOT (Mechanical Waves)
3 15 MEKAANISET AALLOT (Mechaical Waves) Luoto o täyä aaltoja. Aaltoliikettä voi sytyä systeemeissä, jotka poikkeutettua tasapaiotilastaa pyrkivät palaamaa siihe takaisi. Aalto eteee, ku poikkeama (häiriö)
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 10.3.2016 Susanna Hurme Statiikan välikoe 14.3.2016 Ajankohta ma 14.3.2016 klo 14:15 17:15 Salijako Aalto-Sali: A-Q (sukunimen alkukirjaimen mukaan) Ilmoittautuminen
LisätiedotMATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alustavat hyvän vastauksen piirteet on suuntaa-antava kuvaus kokeen tehtäviin odotetuista vastauksista ja tarkoitettu ensisijaisesti
LisätiedotKitka ja Newtonin lakien sovellukset
Kitka ja Newtonin lakien sovellukset Haarto & Karhunen Tavallisimpia voimia: Painovoima G Normaalivoima, Tukivoima Jännitysvoimat Kitkavoimat Voimat yleisesti F f T ja s f k N Vapaakappalekuva Kuva, joka
Lisätiedot