YLEINEN AALTOLIIKEOPPI

Koko: px
Aloita esitys sivulta:

Download "YLEINEN AALTOLIIKEOPPI"

Transkriptio

1 YLEINEN AALTOLIIKEOPPI KEVÄT Saana-Maija Huttula (saana.huttula@oulu.fi)

2 Maanantai Tiistai Keskiviikko Torstai Perjantai Vk 8 Luento 1 Mekaaniset aallot 1 Luento 2 Mekaaniset aallot 2 Ääni ja kuuleminen 1 Luento 3 Ääni ja kuuleminen 2 Vk 9 Luento 4 Ääni ja kuuleminen 3 Laskarit 1 Mekaaniset aallot, Ääni ja kuuleminen Luento 5 SM aallot 1 Luento 6 SM aallot 2 Laskarit 1 Mekaaniset aallot, Ääni ja kuuleminen Laskarit Mekaaniset aallot, Ääni ja kuuleminen Vk 10 TALVI- LOMA- VIIKKO, EI OPETUSTA. Vk 11 Vk 12 Vk 13 Luento 7 Valon luonne ja eteneminen 1 Luento 10 Geometrinen optiikka 2 Laskarit 2 SM aallot 1. VÄLIKOE Laskarit 3 Valon luonne ja eteneminen Luento 8 Valon luonne ja eteneminen 2 Luento 11 Geometrinen optiikka 3 Luento 13 Valon interferenssi 2 Luento 14 Diffraktio 1 Laskarit 4 2. VÄLIKOE Geometrinen optiikka Luento 9 Geometrinen optiikka 1 Laskarit 2 SM aallot Luento 12 Valon interferenssi 1 Laskarit 3 Valon luonne ja eteneminen Luento 15 Diffraktio 2 Laskarit 4 Geometrinen optiikka Laskarit 2 SM aallot Laskarit 3 Valon luonne ja eteneminen Laskarit 4 Geometrinen optiikka Vk 14 Laskarit 5 Valon interferenssi Diffraktio 3. VÄLIKOE Laskarit 5 Valon interferenssi Diffraktio Laskarit 5 Valon interferenssi Diffraktio 2 Vk VÄLIKOE

3 Oppikirja: Young-Freedman: Fundamental University Physics Kappaleet 15,16 ja Kaikki viimeisimmät painokset ovat käypiä. Seppo Alangon suomenkielinen tiivistelmä löytyy Nopasta! Kurssiin kuuluvat viikoittaiset luennot, laskuharjoitukset (5 kpl) ja neljä välikoetta. Kurssin läpäisy: 4 välikoetta, jokaisessa 2 tehtävää, max. 8x6p = 48p Läpipääsyyn vaaditaan 50% maksimipisteistä = 24 p. Lisäpisteitä saa lasketuista ja näytetyistä harjoituksista (5 harjoituskertaa) seuraavasti: Tehdyt tehtävät vähintään (prosentteina) pisteet: 18% - 1p 36% - 2p, 54% - 3p 72% - 4p 90% - 5p. 3

4 Mekaaniset aallot Aktivoi ennakkotietosi: Missä törmäät aaltoliikkeeseen/voit havaita aaltoliikettä? Millaisia eri aaltoliikkeen muotoja on olemassa? 4

5 Kuva: Kuva: 5 Kuva Natacha Pisarenko / AP / Lehtikuva

6 Poikittainen aalto: Pitkittäinen aalto: 6

7 Pitkittäinen jaksollinen aalto: 7

8 Esimerkki: Ääniaallot ovat ilmassa eteneviä pitkittäisiä aaltoja. Äänen nopeus, lämpötilassa 20 C, on 344 m/s. Mikä on äänen aallonpituus, kun taajuus on f = 262 Hz? Taajuus vastaa pianon keski-c:tä. Mikä on kahta oktaavia korkeamman C:n aallonpituus, kun yksi oktaavi vastaa taajuuden kaksinkertaistamista? 8

9 Aallon matemaattinen esitys Esimerkki: Jännitetyn köyden pää värähtelee taajuudella 2.00 Hz ja amplitudilla m. Köyteen syntyvän aallon nopeus on 12.0 m/s. Ajanhetkellä t = 0 köyden pään poikkeama tasapainoasemasta on y = 0 ja aalto liikkuu positiivisen x-akselin suuntaan. a) Laske aallon amplitudi, kulmataajuus, jakso, aallonpituus ja aaltoluku. b) Kirjoita aallon aaltofunktio. c) Kirjoita yhtälö poikkeamalle köyden päässä ja kolmen metrin etäisyydellä köyden päästä. 9

10 Aaltofunktiosta saadaan ratkaistua yksittäisen hiukkasen nopeus ja kiihtyvyys. 10

11 Viereinen kuva esittää sinimuotoista aaltoa (periodi on T) ajan kuluessa T/8:n välein. (a) Millä ajanhetkellä piste A liikkuu ylöspäin maksiminopeudella? (b) Milloin pisteen B kiihtyvyys ylöspäin saa maksimiarvon? (c) Milloin pisteen C nopeus on ylöspäin mutta kiihtyvyys alaspäin? 11

12 Poikittaisen aallon nopeus Kitarassa on kuusi samanpituista kieltä, joissa on sama jännitys. Missä kielessä aalto kulkee nopeimmin? (i) Paksuimmassa kielessä (ii) Ohuimmassa kielessä (iii) Nopeus on sama kaikissa kielissä 12

13 13

14 Esimerkki: Viereisessä kuvassa geologi lähettää signaalin köyttä pitkin maan pinnalle. Köyden massa on 2.00 kg ja pituus 80.0 m. Kivinäytteen massa on 20.0 kg. Laske köydessä etenevän signaalin nopeus alhaalla kaivannossa, köyden puolessa välissä ja ylhäällä. 14

15 Aaltoliikkeen energia: Esimerkki: Lankaa (μ = kg/m) jännitetään 80.0 N:n voimalla. Millä keskimääräisellä teholla lankaan on syötettävä energiaa, jos siihen halutaan synnyttää harmoninen aalto, jonka taajuus on 60 Hz ja amplitudi 6.00 cm? 15

16 Neljässä identtisessä kielessä kulkee sinimuotoinen aalto 10 Hz taajuudella. Kielissä on eri jännitykset ja amplitudit. Rankkaa kielet järjestykseen (suurimmasta pienimpään) aaltoliikkeen keskimääräisen tehon mukaan, kun kielen (i) jännitys on 10 N, amplitudi 1.0 mm (ii) jännitys on 40 N, amplitudi 1.0 mm (iii) jännitys on 10 N, amplitudi 4.0 mm (iv) jännitys on 20 N, amplitudi 2.0 mm 16

17 Aallon intensiteetti: Intensiteetti on aallon kuljettama keskimääräinen energia aikayksikössä etenemissuuntaa vastaan kohtisuoran pinta-alayksikön läpi. (W/m 2 ) Esimerkki: Korkean maston huipussa oleva sireeni lähettää ääniaaltoja samalla tavalla kaikkiin suuntiin. Sireenistä etäisyydellä 15.0 m äänen intensiteetti on W/m 2. Millä etäisyydellä intensiteetti on pudonnut arvoon W/m 2? 17

18 Superpositioperiaate: y(x,t)= y 1 (x,t) + y 2 (x,t) 18

19 Seisova aaltoliike Esimerkki: Positiivisen x-akselin suuntaisen köyden toinen pää on kiinnitetty pisteeseen ( x = 0, y = 0). Köydessä etenee x-akselin suuntaan siniaalto nopeudella 84.0 m/s, amplitudilla 1.50 mm ja taajuudella 120 Hz. Tämä aalto heijastuu pisteestä x = 0. Heijastuneen ja tulevan aallon superpositiona syntyy seisova aalto. (a) Kirjoita yhtälö, joka kertoo köyden poikkeaman tasapainoasemasta paikan ja ajan funktiona. (b) Paikallista ne köyden pisteet, jotka eivät liiku ollenkaan. (c) Paikallista ne köyden pisteet, jotka liikkuvat eniten ja laske vastaavat maksimipoikkeamat, maksiminopeudet ja maksimikiihtyvyydet. 19

20 Normaalivärähdysmuodot köydessä Normaalimuoto = liike, jossa systeemin kaikki hiukkaset värähtelevät harmonisesti samalla taajuudella. Kielen värähdyksen purkaminen normaalimuotojen summaksi 20

21 Seisovat aallot ja soittimet Molemmista päistä kiinnitettyjä köysiä esiintyy monissa soittimissa Bassokielet pitkiä (suuri L) ja paksuja (painavia, suuri μ) Diskantti kielet lyhyitä (pieni L) ja ohuita (keveitä, pieni μ) Kitarassa sävelkorkeutta muutetaan muuttamalla kielen pituutta (L) sormella painamalla Soitin viritetään muuttamalla kielen jännitystä (F) 21

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys12 Kevät 21 Jukka Maalampi LUENTO 11 Mekaaninen aaltoliike alto = avaruudessa etenevä järjestäytynyt häiriö. alto altoja on kahdenlaisia: Poikittainen aalto - poikkeamat kohtisuorassa

Lisätiedot

SEISOVA AALTOLIIKE 1. TEORIAA

SEISOVA AALTOLIIKE 1. TEORIAA 1 SEISOVA AALTOLIIKE MOTIVOINTI Työssä tutkitaan poikittaista ja pitkittäistä aaltoliikettä pitkässä langassa ja jousessa. Tarkastellaan seisovaa aaltoliikettä. Määritetään aaltoliikkeen etenemisnopeus

Lisätiedot

Luento 15: Ääniaallot, osa 2

Luento 15: Ääniaallot, osa 2 Luento 15: Ääniaallot, osa 2 Aaltojen interferenssi Doppler Laskettuja esimerkkejä Luennon sisältö Aaltojen interferenssi Doppler Laskettuja esimerkkejä Aaltojen interferenssi Samassa pisteessä vaikuttaa

Lisätiedot

FYS03: Aaltoliike. kurssin muistiinpanot. Rami Nuotio

FYS03: Aaltoliike. kurssin muistiinpanot. Rami Nuotio FYS03: Aaltoliike kurssin muistiinpanot Rami Nuotio päivitetty 24.1.2010 Sisältö 1. Mekaaninen aaltoliike 2 1.1. Harmoninen voima 2 1.2. Harmoninen värähdysliike 2 1.3. Mekaaninen aalto 3 1.4. Mekaanisen

Lisätiedot

16 Ääni ja kuuleminen

16 Ääni ja kuuleminen 16 Ääni ja kuuleminen Ääni on väliaineessa etenevää pitkittäistä aaltoliikettä. Ihmisen kuuloalue 20 Hz 20 000 Hz. (Infraääni kuuloalue ultraääni) 1 2 Ääniaallon esittämistapoja: A = poikkeama-amplitudi

Lisätiedot

Luento 15: Mekaaniset aallot

Luento 15: Mekaaniset aallot Luento 15: Mekaaniset aallot Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot Ajankohtaista Luennon sisältö Mekaaniset aallot Eteneminen Aallon nopeus

Lisätiedot

2 AALTOLIIKKEIDEN YHDISTÄMINEN

2 AALTOLIIKKEIDEN YHDISTÄMINEN 1 AALTOLIIKKEIDEN YHDISTÄMINEN Kun aalto osuu väliaineen rajapintaan, se heijastuu siitä takaisin joko osittain tai kokonaan. Esimerkiksi äänen osuessa talon seinään se palaa takaisin kaikuna. Missä määrin

Lisätiedot

Luento 15: Mekaaniset aallot. Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot

Luento 15: Mekaaniset aallot. Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot Luento 15: Mekaaniset aallot Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot 1 / 40 Luennon sisältö Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Syksy 2009 Jukka Maalampi LUENTO 12 Aallot kahdessa ja kolmessa ulottuvuudessa Toistaiseksi on tarkasteltu aaltoja, jotka etenevät yhteen suuntaan. Yleisempiä tapauksia ovat

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Aalto köydessä Kohdassa x olevan ainehiukkasen poikkeama tasapainosta y ajan funktiona on y( x, t) Asin( kx t 0) Ketjusääntö: Ainehiukkasen

Lisätiedot

2 Mekaaninen aalto. Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium).

2 Mekaaninen aalto. Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium). 2 Mekaaninen aalto Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium). 1 Mekaanisten aaltojen vastakohtana ovat sähkömagneettiset allot, jotka kulkevat

Lisätiedot

- 3 välikoetta, jokaisessa 4 tehtävää, yht. 12 teht. - 6 pistettä yhdestä tehtävästä - max pisteet 72 (+ lisät harjoituksista)

- 3 välikoetta, jokaisessa 4 tehtävää, yht. 12 teht. - 6 pistettä yhdestä tehtävästä - max pisteet 72 (+ lisät harjoituksista) 1/2 KURSSIN ARVOSTELU - 3 välikoetta, jokaisessa 4 tehtävää, yht. 12 teht. - 6 pistettä yhdestä tehtävästä - max pisteet 72 (+ lisät harjoituksista) pisteet arvosana 00,00 35,25-35,50 41,25 1 1/2 maksimista

Lisätiedot

Ratkaisu: Vaatimus on, että muuttujat x ja t esiintyvät muodossa x-v t. On siis kirjoitettava,

Ratkaisu: Vaatimus on, että muuttujat x ja t esiintyvät muodossa x-v t. On siis kirjoitettava, 8 Ratkaisu: Vaatimus on, että muuttujat x ja t esiintyvät muodossa x-v t. On siis kirjoitettava 3 3 y = =, ( x- vt) + 1 ( x- t) + 1 missä siis v = m/s. Tulos on SI-yksiköissä, joten x ja y ovat metreinä

Lisätiedot

BM30A0240, Fysiikka L osa 4

BM30A0240, Fysiikka L osa 4 BM30A0240, Fysiikka L osa 4 Luennot: Heikki Pitkänen 1 Oppikirja: Young & Freedman: University Physics Luku 14 - Periodic motion Luku 15 - Mechanical waves Luku 16 - Sound and hearing Muuta - Diffraktio,

Lisätiedot

Luento 14: Ääniaallot ja kuulo

Luento 14: Ääniaallot ja kuulo Luento 14: Ääniaallot ja kuulo Pikajohdanto elastisuusteoriaan Ääniaallot Luennon sisältö Pikajohdanto elastisuusteoriaan Ääniaallot Miksi pikajohdanto? Osa ääniaaltojen käsittelystä perustuu elastisuusteoriaan

Lisätiedot

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina 31.5.2012. T 6.1 (pakollinen): Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä.

Lisätiedot

1 PERUSKÄSITTEITÄ 1.1 AALTOJEN TYYPIT

1 PERUSKÄSITTEITÄ 1.1 AALTOJEN TYYPIT 1 1 PERUSKÄSITTEITÄ Luonto on täynnä aaltoja. Aaltoliikettä voi syntyä kimmoisissa systeemeissä, jotka poikkeutettuna tasapainotilastaan pyrkivät palaamaan siihen takaisin. Aalto etenee, kun poikkeama

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan

Lisätiedot

Aaltoliike ajan suhteen:

Aaltoliike ajan suhteen: Aaltoliike Aaltoliike on etenevää värähtelyä Värähdysliikkeen jaksonaika T on yhteen värähdykseen kuluva aika Värähtelyn taajuus on sekunnissa tapahtuvien värähdysten lukumäärä Taajuuden ƒ yksikkö Hz (hertsi,

Lisätiedot

Kompleksiesitys: Harmoninen aalto esitetään usein kompleksimuodossa

Kompleksiesitys: Harmoninen aalto esitetään usein kompleksimuodossa Kompleksiesitys: Harmoninen aalto esitetään usein kompleksimuodossa 13 i( kx-w t) %, y = Ae joka Eulerin kaavalla avautuu muotoon y% = Acos( kx- wt) + iasin( kx-wt). Kompleksiesitys sisältää siis sekä

Lisätiedot

Luento 14: Ääniaallot ja kuulo

Luento 14: Ääniaallot ja kuulo Luento 14: Ääniaallot ja kuulo Pikajohdanto elastisuusteoriaan Ääniaallot Luennon sisältö Pikajohdanto elastisuusteoriaan Ääniaallot Miksi pikajohdanto? Osa ääniaaltojen käsittelystä perustuu elastisuusteoriaan

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 6 Yksinkertainen harmoninen liike yhteys ympyräliikkeeseen energia dynamiikka Värähdysliike Knight Ch 14 Heilahtelut pystysuunnassa ja gravitaation

Lisätiedot

= 0.175m, 0.525m, 0.875m,...

= 0.175m, 0.525m, 0.875m,... 9 (a) Esitä seisovan aallon aaltofunktio. (b) Paikallista ne köyden pisteet, jotka eivät liiku ollenkaan. (c) Paikallista ne köyden pisteet, jotka liikkuvat eniten ja laske vastaavat maksimipoikkeamat,

Lisätiedot

HARJOITUS 4 1. (E 5.29):

HARJOITUS 4 1. (E 5.29): HARJOITUS 4 1. (E 5.29): Työkalulaatikko, jonka massa on 45,0 kg, on levossa vaakasuoralla lattialla. Kohdistat laatikkoon asteittain kasvavan vaakasuoran työntövoiman ja havaitset, että laatikko alkaa

Lisätiedot

Luento 11: Periodinen liike

Luento 11: Periodinen liike Luento 11: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r Konseptitesti 1 Tehtävänanto Kuvassa on jouseen kytketyn massan sijainti ajan funktiona. Kuvaile

Lisätiedot

FY3: Aallot. Kurssin arviointi. Ryhmätyöt ja Vertaisarviointi. Itsearviointi. Laskennalliset ja käsitteelliset tehtävät

FY3: Aallot. Kurssin arviointi. Ryhmätyöt ja Vertaisarviointi. Itsearviointi. Laskennalliset ja käsitteelliset tehtävät FY3: Aallot Laskennalliset ja käsitteelliset tehtävät Ryhmätyöt ja Vertaisarviointi Itsearviointi Kurssin arviointi Kurssin arviointi koostuu seuraavista asioista 1) Palautettavat tehtävät (20 %) 3) Itsearviointi

Lisätiedot

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic

Lisätiedot

9 VALOAALTOJEN SUPERPOSITIO

9 VALOAALTOJEN SUPERPOSITIO 09 9 VALOAALTOJEN SUPERPOSITIO Edellisissä kappaleissa olemme tutkineet valon heijastumista peileissä ja taittumista linsseissä geometrisen optiikan approksimaation avulla Approksimaatiossa valon aaltoluonnetta

Lisätiedot

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE Harmoninen voima on voima, jonka suuruus on suoraan verrannollinen poikkeamaan tasapainoasemasta

Lisätiedot

Luento 16: Ääniaallot ja kuulo

Luento 16: Ääniaallot ja kuulo Luento 16: Ääniaallot ja kuulo Pikajohdanto elastisuusteoriaan* Ääniaallot* Aaltojen interferenssi Doppler* Laskettuja esimerkkejä Ajankohtaista Luennon sisältö Pikajohdanto elastisuusteoriaan* Ääniaallot*

Lisätiedot

3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta.

3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta. 3 Ääni ja kuulo 1 Mekaanisista aalloista ääni on ihmisen kannalta tärkein. Ääni on pitkittäistä aaltoliikettä, eli ilman (tai muun väliaineen) hiukkaset värähtelevät suuntaan joka on sama kuin aallon etenemissuunta.

Lisätiedot

havainnollistaa Dopplerin ilmiötä ja interferenssin aiheuttamaa huojuntailmiötä

havainnollistaa Dopplerin ilmiötä ja interferenssin aiheuttamaa huojuntailmiötä FYSP0 / K3 DOPPLERIN ILMIÖ Työn tavoitteita havainnollistaa Dopplerin ilmiötä ja interferenssin aiheuttamaa huojuntailmiötä harjoitella mittausarvojen poimimista Capstonen kuvaajalta sekä kerrata maksimiminimi

Lisätiedot

Äänen eteneminen ja heijastuminen

Äänen eteneminen ja heijastuminen Äänen ominaisuuksia Ääni on ilmamolekyylien tihentymiä ja harventumia. Aaltoliikettä ja värähtelyä. Värähtelevä kappale synnyttää ääntä. Pistemäinen äänilähde säteilee pallomaisesti ilman esteitä. Käytännössä

Lisätiedot

Luento 13: Periodinen liike

Luento 13: Periodinen liike Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos Ajankohtaista

Lisätiedot

2.1 Ääni aaltoliikkeenä

2.1 Ääni aaltoliikkeenä 2. Ääni Äänen tutkimusta kutsutaan akustiikaksi. Akustiikassa tutkitaan äänen tuottamista, äänen ominaisuuksia, soittimia, musiikkia, puhetta, äänen etenemistä ja kuulemisen fysiologiaa. Ääni kuljettaa

Lisätiedot

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus värähtelytiheyden. 1 Funktiot ja aallot Aiemmin käsiteltiin funktioita ja miten niiden avulla voidaan kuvata fysiikan

Lisätiedot

, tulee. Käyttämällä identiteettiä

, tulee. Käyttämällä identiteettiä 44 euraavaksi käytämme tilavuusmodulin B määritelmää (katso sivu 4) B =- dp /( dv / V ). Tässä dp on paineen muutos, joka nyt on pxt (,). aamme siten dv yxt (,) p(,) x t =- B =-B. (3.3.3) V x Kun tähän

Lisätiedot

Luento 18: Kertausluento

Luento 18: Kertausluento Luento 18: Kertausluento Värähdysliike Harmoninen värähtely Vaimennettu värähtely Pakkovärähtely Mekaaniset aallot Eteneminen Seisovat aallot Ääniaallot Luennon sisältö Värähdysliike Harmoninen värähtely

Lisätiedot

Harjoitustehtävien vastaukset

Harjoitustehtävien vastaukset Harjoitustehtävien vastaukset Esimerkiksi kaiutinelementti, rumpukalvo (niin rummussa kuin korvassa), jännitetty kuminauha tai kielisoittimien (esimerkiksi viulu, kitara) kielet, kellon koneisto, heiluri,

Lisätiedot

Ihmiskorva havaitsee ääniaallot taajuusvälillä 20 Hz 20 khz.

Ihmiskorva havaitsee ääniaallot taajuusvälillä 20 Hz 20 khz. 3 Ääni ja kuulo 3.1 Intro e1 Mekaanisista aalloista ääni on ihmisen kannalta tärkein. Ääni on pitkittäistä aaltoliikettä, eli ilman (tai muun väliaineen) hiukkaset värähtelevät suuntaan joka on sama kuin

Lisätiedot

2.2 Ääni aaltoliikkeenä

2.2 Ääni aaltoliikkeenä 2.1 Äänen synty Siirrymme tarkastelemaan akustiikkaa eli äänioppia. Ääni on ilman tai nesteen paineen vaihteluita (pitkittäistä aaltoliikettä). Kiinteissä materiaaleissa ääni voi edetä poikittaisena aaltoliikkeenä.

Lisätiedot

766329A Aaltoliike ja optiikka

766329A Aaltoliike ja optiikka 76639A Aaltoliike ja optiikka Seppo Alanko Oulun yliopisto Fysiikan laitos Kevät 5 Perustuu oppikirjoihin: H. D. Young and R. A. Freedman University Physics, Addison-Wesley th ed., and th ed., 4 F. L.

Lisätiedot

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1). H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika

Lisätiedot

PHYS-C0240 Materiaalifysiikka (5op), kevät 2016

PHYS-C0240 Materiaalifysiikka (5op), kevät 2016 PHYS-C0240 Materiaalifysiikka (5op), kevät 2016 Prof. Martti Puska Emppu Salonen Tomi Ketolainen Ville Vierimaa Luento 7: Hilavärähtelyt tiistai 12.4.2016 Aiheet tänään Hilavärähtelyt: johdanto Harmoninen

Lisätiedot

Ääni, akustiikka. 1 Johdanto. 2.2 Energia ja vaimeneminen (1) 2 Värähtelevät järjestelmät

Ääni, akustiikka. 1 Johdanto. 2.2 Energia ja vaimeneminen (1) 2 Värähtelevät järjestelmät Ääni, akustiikka Lähdemateriaali: Rossing. (1990). The science of sound. Luvut 2-4, 23. Sisältö: 1. Johdanto 2. Värähtelevät järjestelmät 3. Aallot 4. Resonanssi 5. Huoneakustiikka 1 Johdanto Akustiikka

Lisätiedot

Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa

Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa Potentiaalikuoppa Luento 9 Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa U( x ) = U U( x ) = 0 0 kun x < 0 tai x > L, kun 0 x L. Kuopan kohdalla hiukkanen on vapaa,

Lisätiedot

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut Diplomi-insino o rien ja arkkitehtien yhteisalinta - dia-alinta 15 Insino o rialinnan fysiikan koe 7.5.15, malliratkaisut A1 Pallo (massa m = 1, kg, sa de r =, cm) nojaa kur an mukaisesti pystysuoraan

Lisätiedot

Kuuloaisti. Korva ja ääni. Melu

Kuuloaisti. Korva ja ääni. Melu Kuuloaisti Ääni aaltoliikkeenä Tasapainoaisti Korva ja ääni Äänen kulku Korvan sairaudet Melu Kuuloaisti Ääni syntyy värähtelyistä. Taajuus mitataan värähtelyt/sekunti ja ilmaistaan hertseinä (Hz) Ihmisen

Lisätiedot

Luento 11: Periodinen liike

Luento 11: Periodinen liike Luento 11: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä θ F t m g F r Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä Johdanto Tarkastellaan

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

Luento 8. Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli. Sähkönjohtavuus Druden malli

Luento 8. Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli. Sähkönjohtavuus Druden malli Luento 8 Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli Sähkönjohtavuus Druden malli Klassiset C V -mallit Termodynamiikka kun Ei ennustetta arvosta! Klassinen

Lisätiedot

Luento 16: Ääniaallot ja kuulo

Luento 16: Ääniaallot ja kuulo Luento 16: Ääniaallot ja kuulo Pikajohdanto elastisuusteoriaan* Ääniaallot* Aaltojen interferenssi Doppler* Laskettuja esimerkkejä 1 / 48 Luennon sisältö Pikajohdanto elastisuusteoriaan* Ääniaallot* Aaltojen

Lisätiedot

= vaimenevan värähdysliikkeen taajuus)

= vaimenevan värähdysliikkeen taajuus) Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 7: MEKAANINEN VÄRÄHTELIJÄ Teoriaa Vaimeneva värähdysliike y ŷ ŷ ŷ t T Kuva. Vaimeneva värähdysliike ajan funktiona.

Lisätiedot

Pakotettu vaimennettu harmoninen värähtelijä Resonanssi

Pakotettu vaimennettu harmoninen värähtelijä Resonanssi Pakotettu vaimennettu harmoninen värähtelijä Resonanssi Tällä luennolla tavoitteena Mikä on pakkovoiman aiheuttama vaikutus vaimennettuun harmoniseen värähtelijään? Mikä on resonanssi? Kertaus: energian

Lisätiedot

766326A Atomifysiikka 1 - Syksy 2013

766326A Atomifysiikka 1 - Syksy 2013 766326A Atomifysiikka 1 - Syksy 2013 Luennot n. 46 tuntia Torstaisin 8-10 sali IT116 Perjantaisin 8-10 sali L6 Poikkeuksia: to 19.9. luento vain 8-9 to 17.10. luento vain 8-9 to 14.11. luento vain 8-9

Lisätiedot

3.1 PITKITTÄISEN AALLON NOPEUS JA ENERGIA

3.1 PITKITTÄISEN AALLON NOPEUS JA ENERGIA 37 3 ÄÄNI Yksi ihmisen kannalta tärkeimmistä luonnossa esiintyvistä aaltoilmiöistä muodostuu ilmassa etenevistä pitkittäisistä aalloista eli ääniaalloista (sound waves) Tarkastelemme nyt ääntä lähinnä

Lisätiedot

4 Optiikka. 4.1 Valon luonne

4 Optiikka. 4.1 Valon luonne 4 Optiikka 4.1 Valon luonne 1 Valo on etenevää aaltoliikettä, joka syntyy sähkökentän ja magneettikentän yhteisvaikutuksesta. Jos sähkömagneettinen aalto (valoaalto) liikkuu x-akselin suuntaan, värähtelee

Lisätiedot

+ 0, (29.20) 32 SÄHKÖMAGNEETTISET AALLOT (Electromagnetic Waves) i c+ ε 0 dφ E / dt ja silmukan kohdalla vaikuttavan magneettivuon tiheyden

+ 0, (29.20) 32 SÄHKÖMAGNEETTISET AALLOT (Electromagnetic Waves) i c+ ε 0 dφ E / dt ja silmukan kohdalla vaikuttavan magneettivuon tiheyden 5 3 SÄHKÖMAGNEETTISET AALLOT (Electromagnetic Waves) Mitä valo on? Tämä kysymys on askarruttanut ihmisiä vuosisatojen ajan. Nykykäsityksen mukaan valo on luonteeltaan kaksijakoinen eli dualistinen. Valoa

Lisätiedot

Interferenssi. Luku 35. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun

Interferenssi. Luku 35. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun Luku 35 Interferenssi PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Johdanto Interferenssi-ilmiö tapahtuu, kun kaksi aaltoa yhdistyy

Lisätiedot

3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 1. Tsunamin synty. 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.

3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 1. Tsunamin synty. 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut. Akustiikan perussuureita, desibelit. 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 1 Tsunamin synty 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 2 1 Tasoaallon synty 3.1.2013

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

Liikemäärän säilyminen Vuorovesivoimat Jousivoima

Liikemäärän säilyminen Vuorovesivoimat Jousivoima Liikemäärän säilyminen Vuorovesivoimat Jousivoima Tämän luennon tavoitteet Liikemäärän säilyminen Vuorovesivoimat ja binomiapproksimaatio gravitaatio jatkuu viime viikolta Jousivoima: mikä se on ja miten

Lisätiedot

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi Kvantittuminen Planckin kvanttihypoteesi Kappale vastaanottaa ja luovuttaa säteilyä vain tietyn suuruisina energia-annoksina eli kvantteina Kappaleen emittoima säteily ei ole jatkuvaa (kvantittuminen)

Lisätiedot

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen)

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen) Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen Vapaaseen hiukkaseen ei vaikuta voimia, joten U(x = 0. Vapaan hiukkasen energia on sen liike-energia eli E=p /m. Koska hiukkasella on määrätty energia,

Lisätiedot

Massakeskipiste Kosketusvoimat

Massakeskipiste Kosketusvoimat Massakeskipiste Kosketusvoimat Luennon tavoitteet Kosketusvoimia Kitka Tukivoima Jännitys Jousivoima Massakeskipisteen käsite ja sillä laskeminen (Resonanssi tiedottaa tarjoavansa kahvia luentotauolla)

Lisätiedot

Toisessa fysiikan jaksossa käsitellään Aalto-oppia. Oppikirja s. 13 82.

Toisessa fysiikan jaksossa käsitellään Aalto-oppia. Oppikirja s. 13 82. Fysiikka 2, 7. lk RUOKOLAHDEN KIRKONKYLÄN KOULU Toisessa fysiikan jaksossa käsitellään Aalto-oppia. Oppikirja s. 13 82. Tämä dokumentin versio on päivätty 6. syyskuuta 2013. Uusin löytyy osoitteesta http://rikun.net/mat

Lisätiedot

9 VALOAALTOJEN SUPERPOSITIO

9 VALOAALTOJEN SUPERPOSITIO 09 9 VALOAALTOJEN SUPERPOSITIO Edellisissä kaaleissa olemme tutkineet valon heijastumista eileissä ja taittumista linsseissä geometrisen otiikan aroksimaation avulla Aroksimaatiossa valon aaltoluonnetta

Lisätiedot

jonka peruslait tiivistyvät neljään ns. Maxwellin yhtälöön.

jonka peruslait tiivistyvät neljään ns. Maxwellin yhtälöön. 71 4. SÄHKÖMAGNEETTINEN AALTO Sähköön ja magnetismiin liittyvät havainnot yhdistettiin noin 1800luvun puolessa välissä yhtenäiseksi sähkömagnetismin teoriaksi, jonka peruslait tiivistyvät neljään ns. Maxwellin

Lisätiedot

Osallistumislomakkeen viimeinen palautuspäivä on maanantai

Osallistumislomakkeen viimeinen palautuspäivä on maanantai Jakso : Materiaalihiukkasten aaltoluonne. Teoriaa näihin tehtäviin löytyy Beiserin kirjasta kappaleesta 3 ja hyvin myös peruskurssitasoisista kirjoista. Seuraavat videot demonstroivat vaihe- ja ryhmänopeutta:

Lisätiedot

15 MEKAANISET AALLOT (Mechanical Waves)

15 MEKAANISET AALLOT (Mechanical Waves) 3 15 MEKAANISET AALLOT (Mechaical Waves) Luoto o täyä aaltoja. Aaltoliikettä voi sytyä systeemeissä, jotka poikkeutettua tasapaiotilastaa pyrkivät palaamaa siihe takaisi. Aalto eteee, ku poikkeama (häiriö)

Lisätiedot

Yleistä. Digitaalisen äänenkäsittelyn perusteet. Tentit. Kurssin hyväksytty suoritus = Harjoitustyö 2(2) Harjoitustyö 1(2)

Yleistä. Digitaalisen äänenkäsittelyn perusteet. Tentit. Kurssin hyväksytty suoritus = Harjoitustyö 2(2) Harjoitustyö 1(2) Yleistä Digitaalisen äänenkäsittelyn perusteet Jouni Smed jouni.smed@utu.fi syksy 2006 laajuus: 5 op. (3 ov.) esitiedot: Java-ohjelmoinnin perusteet luennot: keskiviikkoisin 10 12 12 salissa β perjantaisin

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1 763306A JOHDATUS SUHTLLISUUSTORIAAN Ratkaisut 3 Kevät 07. Fuusioreaktio. Lähdetään suoraan annetuista yhtälöistä nergia on suoraan yhtälön ) mukaan + m ) p P ) m + p 3) M + P 4) + m 5) Ratkaistaan seuraavaksi

Lisätiedot

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4 766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4 0. MUISTA: Tenttitehtävä tulevassa päätekokeessa: Fysiikan säilymislait ja symmetria. (Tästä tehtävästä voi saada tentissä kolme ylimääräistä pistettä. Nämä

Lisätiedot

Ääni, akustiikka Lähdemateriaali: Rossing. (1990). The science of sound. Luvut 2-4, 23.

Ääni, akustiikka Lähdemateriaali: Rossing. (1990). The science of sound. Luvut 2-4, 23. Ääni, akustiikka Lähdemateriaali: Rossing. (1990). The science of sound. Luvut 2-4, 23. Sisältö: 1. Johdanto 2. Värähtelevät järjestelmät 3. Aallot 4. Resonanssi 5. Huoneakustiikka 1 Johdanto Sanaa akustiikka

Lisätiedot

Viikko 13 23.3.2015-29.3.2015

Viikko 13 23.3.2015-29.3.2015 Viikko 13 23.3.2015-29.3.2015 Maanantai 23.3. Tiistai 24.3. Keskiviikko 25.3. Torstai 26.3. Perjantai 27.3. Lauantai 28.3. Sunnuntai 29.3. Radio Channels, Luento 08:15 - TS127 Communication signal processing

Lisätiedot

Nopeus, kiihtyvyys ja liikemäärä Vektorit

Nopeus, kiihtyvyys ja liikemäärä Vektorit Nopeus, kiihtyvyys ja liikemäärä Vektorit Luento 2 https://geom.mathstat.helsinki.fi/moodle/course/view.php?id=360 Luennon tavoitteet: Vektorit tutuiksi Koordinaatiston valinta Vauhdin ja nopeuden ero

Lisätiedot

5-2. a) Valitaan suunta alas positiiviseksi. 55 N / 6,5 N 8,7 m/s = =

5-2. a) Valitaan suunta alas positiiviseksi. 55 N / 6,5 N 8,7 m/s = = TEHTÄVIEN RATKAISUT 5-1. a) A. Valitaan suunta vasemmalle positiiviseksi. Alustan suuntainen kokonaisvoima on ΣF = 19 N + 17 N -- 16 N = 0 N vasemmalle. B. Valitaan suunta oikealle positiiviseksi. Alustan

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 9 Tavoitteet Valon luonne ja eteneminen Dispersio Lähde: https: //www.flickr.com/photos/fastlizard4/5427856900/in/set-72157626537669172,

Lisätiedot

Pietarsaaren lukio Vesa Maanselkä

Pietarsaaren lukio Vesa Maanselkä Fys 9 / Mekaniikan osio Liike ja sen kuvaaminen koordinaatistossa Newtonin lait Voimavektorit ja vapaakappalekuvat Työ, teho,työ-energiaperiaate ja energian säilymislaki Liikemäärä ja sen säilymislaki,

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 22.3.2016 Susanna Hurme Päivän aihe: Rotaatioliikkeen kinematiikka: kulmanopeus ja -kiihtyvyys (Kirjan luvut 12.7, 16.3) Osaamistavoitteet Osata analysoida jäykän

Lisätiedot

1. Perusteita. 1.1. Äänen fysiikkaa. Ääniaalto. Aallonpituus ja amplitudi. Taajuus (frequency) Äänen nopeus

1. Perusteita. 1.1. Äänen fysiikkaa. Ääniaalto. Aallonpituus ja amplitudi. Taajuus (frequency) Äänen nopeus 1. Perusteita 1. Äänen fysiikkaa 2. Psykoakustiikka 3. Äänen syntetisointi 4. Samplaus ja kvantisointi 5. Tiedostoformaatit 1.1. Äänen fysiikkaa ääni = väliaineessa etenevä mekaaninen värähtely (aaltoliike),

Lisätiedot

3 TOISEN ASTEEN POLYNOMIFUNKTIO

3 TOISEN ASTEEN POLYNOMIFUNKTIO 3 TOISEN ASTEEN POLYNOMIFUNKTIO POHDITTAVAA 1. Kuvasta voidaan arvioida, että frisbeegolfkiekko käy noin 9 metrin korkeudella ja se lentää noin 40 metrin päähän. Vastaus: Frisbeegolfkiekko käy n. 9 m:n

Lisätiedot

BM30A0240, Fysiikka L osa 4. Värähtelyfysiikkaa. Luennot: Heikki Pitkänen

BM30A0240, Fysiikka L osa 4. Värähtelyfysiikkaa. Luennot: Heikki Pitkänen BM30A0240, Fysiikka L osa 4 Värähtelyfysiikkaa 1 Luennot: Heikki Pitkänen Oppikirja: Young & Freedman: University Physics Periodic motion Mechanical waves Sound and hearing Muuta - Diffraktio, interferenssi,

Lisätiedot

Puheen akustiikan perusteita Mitä puhe on? 2.luento. Äänet, resonanssi ja spektrit. Äänen tuotto ja eteneminen. Puhe äänenä

Puheen akustiikan perusteita Mitä puhe on? 2.luento. Äänet, resonanssi ja spektrit. Äänen tuotto ja eteneminen. Puhe äänenä Puheen akustiikan perusteita Mitä puhe on? 2.luento Martti Vainio Äänet, resonanssi ja spektrit Fonetiikan laitos, Helsingin yliopisto Puheen akustiikan perusteita p.1/37 S-114.770 Kieli kommunikaatiossa...

Lisätiedot

PHYS-A3121 Termodynamiikka (ENG1) (5 op)

PHYS-A3121 Termodynamiikka (ENG1) (5 op) PHYS-A3121 Termodynamiikka (ENG1) (5 op) Sisältö: Nestevirtaukset Elastiset muodonmuutokset Kineettinen kaasuteoria Termodynamiikan käsitteet Termodynamiikan pääsäännöt Termodynaamiset prosessit Termodynaamiset

Lisätiedot

4 Optiikka. 4.1 Valon luonne

4 Optiikka. 4.1 Valon luonne 4 Optiikka 4.1 Valon luonne 1 Valo on etenevää aaltoliikettä, joka syntyy sähkökentän ja magneettikentän yhteisvaikutuksesta. Jos sähkömagneettinen aalto (valoaalto) liikkuu x-akselin suuntaan, värähtelee

Lisätiedot

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r Vuka HT 4 Tehtävä. Lyhyenä alustuksena tehtävään johdetaan keskeiskiihtyvyys tasaisessa pyörimisessä. Meillä on ympyräradalla liikkuva kappale joka pyörii vakiokulmanopeudella ω dϕ säteellä r origosta.

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Syksy 2016 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia Ajankohtaista Presemokyselyn poimintoja Millä odotuksilla aloitat

Lisätiedot

Sovelletun fysiikan pääsykoe

Sovelletun fysiikan pääsykoe Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille

Lisätiedot

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 Mittalaitetekniikka NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

PIENTAAJUISET SÄHKÖ- JA MAGNEETTIKENTÄT HARJOITUSTEHTÄVÄ 1. Pallomaisen solun relaksaatiotaajuus 1 + 1

PIENTAAJUISET SÄHKÖ- JA MAGNEETTIKENTÄT HARJOITUSTEHTÄVÄ 1. Pallomaisen solun relaksaatiotaajuus 1 + 1 Aalto-yliopisto HARJOITUSTEHTÄVIEN Sähkötekniikan korkeakoulu RATKAISUT Sähkömagneettisten kenttien ja optisen säteilyn biologiset 8.1.016 vaikutukset ja mittaukset ELEC-E770 Lauri Puranen Säteilyturvakeskus

Lisätiedot

Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen

Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen Valon luonne ja eteneminen Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen 1 Valonlähteitä Perimmiltään valon lähteenä toimii kiihtyvässä liikkeessä olevat sähkövaraukset Kaikki

Lisätiedot

Infrapunaspektroskopia

Infrapunaspektroskopia ultravioletti näkyvä valo Infrapunaspektroskopia IHMISEN JA ELINYMPÄ- RISTÖN KEMIAA, KE2 Kertausta sähkömagneettisesta säteilystä Sekä IR-spektroskopia että NMR-spektroskopia käyttävät sähkömagneettista

Lisätiedot

LUT, Sähkötekniikan osasto. 1. Ilmassa etenevällä tasoaallolla on sähkökentän voimakkuus z. d) vaihekerroin

LUT, Sähkötekniikan osasto. 1. Ilmassa etenevällä tasoaallolla on sähkökentän voimakkuus z. d) vaihekerroin SÄHKÖMAGNETISMI LUT, Sähkötekniikan osasto LH5/216 P.I. Ketausta: 1. Ilassa etenevällä tasoaallolla on sähkökentän voiakkuus z t E cos t z Ex,. Aallon taajuus on 2 MHz. Kuvassa 1 on esitetty tasoaallon

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Meaniian jatourssi Fys10 Sysy 009 Jua Maalampi LUENTO 6 Harmonisen värähdysliieen energia Jousen potentiaalienergia on U ( x missä on jousivaio ja Dx on poieama tasapainosta. Valitaan origo tasapainopisteeseen,

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain

Lisätiedot

Johdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen

Johdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Johdatus vaihtosähköön, sinimuotoiset suureet 1 Vaihtovirta vs tasavirta Sähkömagneettinen induktio tuottaa kaikissa pyörivissä generaattoreissa vaihtojännitettä. Vaihtosähköä on

Lisätiedot

Termodynamiikan suureita ja vähän muutakin mikko rahikka

Termodynamiikan suureita ja vähän muutakin mikko rahikka Termodynamiikan suureita ja vähän muutakin mikko rahikka 2006 m@hyl.fi 1 Lämpötila Suure lämpötila kuvaa kappaleen/systeemin lämpimyyttä (huono ilmaisu). Ihmisen aisteilla on hankala tuntea lämpötilaa,

Lisätiedot