jonka peruslait tiivistyvät neljään ns. Maxwellin yhtälöön.

Koko: px
Aloita esitys sivulta:

Download "jonka peruslait tiivistyvät neljään ns. Maxwellin yhtälöön."

Transkriptio

1 71 4. SÄHKÖMAGNEETTINEN AALTO Sähköön ja magnetismiin liittyvät havainnot yhdistettiin noin 1800luvun puolessa välissä yhtenäiseksi sähkömagnetismin teoriaksi, jonka peruslait tiivistyvät neljään ns. Maxwellin yhtälöön. Maxwellin yhtälöt osoittavat, että muuttuva magneettikenttä toimii sähkökentän lähteenä ja päinvastoin, muuttuva sähkökenttä synnyttää magneettikentän. Sähkökenttä E (sähkökentän voimakkuus, V/m) ja magneettikenttä B (magneettivuon tiheys, Vs/m = T) voivat siis ylläpitää toisiaan ja muodostaa näin sähkömagneettisen aallon, joka etenee avaruudessa. Sähkömagneettinen aalto on poikittaista aaltoliikettä. Aalto muodostuu kahdesta komponentista, sähkökentästä E ja magneettikentästä B. Molemmat komponentit ovat kohtisuorassa aallon etenemissuuntaan nähden ja vielä siten, että ristitulo E B osoittaa aallon etenemissuuntaan. Komponentit ovat kohtisuorassa myös toisiaan vastaan Esimerkiksi positiivisen x-akselin suuntaan etenevä harmoninen (sinimuotoinen) sähkömagneettinen aalto on ìïe( x, t ) = E0 sin(kx - w t ) ˆj, í ˆ ïîb ( x, t ) = B0 sin(kx - w t ) k missä sähkökenttä on valittu värähtelemään xy-tasossa ja magneettikenttä xz-tasossa. Vektori ˆj on y-akselin suuntainen yksikkövektori ja kˆ z-akselin suuntainen. Värähtelevän sähkökentän amplitudi on E0 ja magneettikentän B

2 7 Sähkömagneettisessa aallossa kentät ovat samassa vaiheessa (sama argumentti sinin sisällä) ja kenttien suuruudet E = E ja B = B kytkeytyvät toisiinsa yhtälöllä 1 (4..1) B = E, missä on valon tyhjiönopeus m/s. Näin edellä esitetyssä aallossa myös amplitudeille pätee B0 = E0 / Esimerkki: Hiilidioksidi(CO)laser emittoi sinimuotoista sähkömagneettista aaltoa aallonpituudella 10.6 m m siten, että sähkökentän maksimiarvo on V/m. Kirjoita lasersäteen sähköja magneettikentät E ja B ajan ja paikan funktiona, kun laser on käännetty sellaiseen asentoon, että E - kenttä värähtelee z-akselin suunnassa ja säde etenee negatiivisen x-akselin suuntaan. Ratkaisu: Sähkökenttä värähtelee z-suunnassa ja aalto etenee negatiivisen x-akselin suuntaan, joten r E = E = E0 sin(kx + w t ) kˆ, missä E0 = V/m. Lisäksi E B osoittaa aallon etenemissuuntaan, ts. -iˆ -suuntaan, joten magneettikentälle (magneettivuon tiheydelle) voimme kirjoittaa r B = B = B0 sin(kx + w t ) ˆj, koska kˆ ˆj = -ˆi. Magneettikentän amplitudiksi laskemme E V/m -3 Vs B0 = = = = 5.00 mt m/s m ja lisäksi aallon aaltoluvulle ja kulmataajuudelle saamme p p k= = = m-1-6 l m

3 m/s 14-1 = s. w = pn = p = p m l CO-laserin aallonpituus sijoittuu infrapuna-alueelle eikä siten ole silmin nähtävää Huom! Sähkömagneettisten aaltojen yhteydessä taajuuden symboli on n. Sähkömagneettinen aalto eristeessä Edellä tarkastelimme sähkömagneettista aaltoa tyhjiössä. Totesimme, että aallon kuvaamiseen riittää tarkastella vain esim. sähkökenttää, joka suuruus ( E = E ) harmonisen aallon tapauksessa on E ( x, t ) = E0 sin(kx - w t ), missä aallon tyhjiönopeus saadaan laskemalla = w / k. Sähkömagneettinen aalto voi edetä myös aineessa. Tavalliset optiset läpinäkyvät materiaalit (ilma, lasi, vesi, ) ovat eristeitä, joissa aalto on muodoltaan sama kuin tyhjiössä E ( x, t ) = E0 sin(kx - w t ), mutta nopeus on muuttunut arvoon w (4..) v= =, k n missä =v 0 on valon nopeuden tyhjiöarvo ja n on väliaineen ns. taitekerroin. Valon nopeus tavallisissa eristeissa on aina pienempi kuin tyhjiönopeus, joten taitekerroin n on aina > 1. Voidaan kirjoittaa (laske nämä tulokset): nopeus on v = v 0 / n = / n taajuus n = n 0 ei muutu

4 74 aallonpituus l = l0 / n lyhenee aaltoluku k = nk0 kasvaa kulmataajuus w = w0 ei muutu. Näissä alaindeksi 0 viittaa tyhjiöarvoon Esimerkki: Natrium(Na)-lamppu emittoi keltaista valoa taajuudella Hz. Laske nopeus ja aallonpituus seuraavissa optisissa materiaaleissa: Tyhjiö n =1 Ilma n = Vesi n = 1.33 Lasi n = 1.50 Timantti n =.4 Ratkaisu: ì = m/s v ja l =, missä í v= 14 n n în = /s v /() v /(108 m/s) l / nm Tyhjiö Ilma Vesi Lasi Timantti Sähkömagneettinen aalto johteessa Johteessa taitekerroin n on kompleksinen ja aalto absorboituu materiaaliin sitä nopeammin mitä suurempi materiaalin johtavuus on.

5 ENERGIA JA LIIKEMÄÄRÄ On tuttu tosiasia, että sähkömagneettinen aalto kuljettaa mukanaan energiaa. Esimerkiksi auringon säteet lämmittävät ihoa. Liikkuvaan energiaan liittyy aina myös liikemäärä. Sähkömagneettisen säteilyn liikemäärä havaitaan ns. säteilypaineena. Irradianssi Sähkömagneettisen aallon intensiteetti eli irradianssi saadaan ns. Poyntingin vektorin S = e 0 E B, e 0 = tyhjiön permittiivisyys itseisarvon (siis pituuden) S = S aikakeskiarvona I= S. (4.3.1) Itse vektori S osoittaa energian virtaussuuntaan. Poyntingin vektorin "keksi" brittifyysikko John Poynting ( ). Harmonisen aallon irradianssi Sovelletaan tulosta (4.3.1) positiivisen x-akselin suuntaan etenevään lineaarisesti polarisoituneeseen ( E - ja B -kenttien suunnat kiinnitetty) harmoniseen aaltoon (ks. esimerkki sivulla 71): ìïe( x, t ) = E0 sin(kx - w t ) ˆj í ïîb ( x, t ) = B0 sin(kx - w t ) kˆ Poyntingin vektori saa muodon S = e 0 E B = e 0 E0 B0 sin (kx - w t ) éë ˆj kˆ ùû = e 0 E0 B0 sin (kx - w t )ˆi, jonka itseisarvoksi tulee S = e 0 E0 B0 sin (kx - w t ).

6 76 Tämä on hetkellinen energiavirta pinta-alayksikköä kohti aikayksikössä (hetkellinen teho pinta-alayksikköä kohti, W/m). Koska E ja B vaihtelevat nopeasti (optisella alueella taajuudella 1014 Hz Hz), Poyntingin vektorin suuruus vaihtelee nopeasti ajan funktiona ja hetkellistä arvoa ei pystytä käytännössä mittaamaan. Irradianssi onkin määritelty aikakeskiarvona (4.3.1) I = S = e 0 E0 B0 sin (kx - w t ). Trigonometristen funktioiden neliöiden, niin sin f (t ) :n kuin os f (t ) :nkin, aikakeskiarvot ovat arvoltaan 1/ (laskuharjoitus), joten 1 I = e 0 E0 B0. joka voidaan kirjoittaa relaation B0 = E0 / nojalla muotoon 1 (4.3.) I = e 0 E0. Voidaan osoittaa, että tulos (4.3.) pätee yleisesti sähkömagneettisille aalloille, ts. ei ainoastaan harmonisille aalloille. Tulos kertoo myös, että sähkömagneettisesta aallosta tarvitsee tarkastella vain toista komponenttia, tavallisesti sähkökenttää. Magneettikenttää tarvitaan vain harvoin ja aina tarvittaessa se voidaan kirjoittaa näkyviin lähtien tunnetusta sähkökennttäkomponentista Esimerkki: Radioaseman keskimääräinen teho on 50 kw. Oletetaan, että teho jakautuu tasaisesti maan pinnan yläpuoliseen puoliavaruuteen (ks. kuva). Laske amplitudit E0 ja B0, jotka havaitaan 100 km:n korkeudella lentävässä satelliitissa.

7 77 Ratkaisu: Irradianssi (4.3.) on keskimääräinen teho pinta-alayksikköä kohti: josta I= E0 = PAV 1, E = e r p (4 ) PAV, e 0 p r PAV = W e 0 = AsV-1m-1 = m/s r = m. Sähkökentän amplitudiksi tulee missä W Vm s» V/m (W=VA) m As m ja magneettikentän amplitudille saadaan E0 = E V/m -11 Vs -11 T. B0 = = =» m/s m Kommentti: Tässä sähkökentän amplitudi E0 on suuruusluokaltaan sitä, mitä havaitaan tavallisissa sähkökokeissa laboratorioissa. Magneettivuon tiheys sitävastoin on hyvin heikko. Tästä johtuen monet sähkömagneettisen aallon havainnointiin tarkoitetut ilmaisimet (detektorit) toimivat mittaamalla nimenomaan sähkökentän aiheuttamaa vastetta anturissa

8 78 Säteilypaine Vuonna 1619 Johannes Kepler esitti, että komeetan pyrstö kääntyy aina poispäin Auringosta, koska Auringon valo aiheuttaa siihen paineen. Sen ajan laboratoriokokeissa tällaista valopainetta ei kuitenkaan pystytty havaitsemaan, onhan kysymys erittäin heikoista voimista. Ajatus säteilypaineesta vaipui unholaan. Vuonna 1873 Maxwell pystyi osoittamaan teoreettisesti, että sähkömagneettinen aalto todellakin kohdistaa materiaaliin paineen. Kun sähkömagneettinen aalto kohtaa materiaalin pinnan, se vuorovaikuttaa materiaalissa olevien varausten kanssa. Riippumatta siitä absorboituuko vai heijastuuko aalto, se kohdistaa varauksiin voimia, ja siten voiman itse pintaan. Esimerkiksi johdemateriaaliin aallon sähkökenttä generoi virtoja, jotka kytkeytyvät aallon magneettikenttään voimien välityksellä. Voimien suuruus voidaan laskea sähkömagneettisen teorian avulla. Kun aalto tulee pintaan kohtisuorasti ja absorboituu siihen täydellisesti, säteilypaineen Prad keskimääräiseksi arvoksi saadaan I (4.3.3) Prad =, missä I on irradianssi. Tämä sama paine kohdistuu luonnollisesti myös säteilyn lähteeseen aallon "poistuessa" siitä. Jos valaistu pinta on täysin heijastava, tuleva valo saapuu nopeudella + ja heijastuva aalto lähtee nopeudella -. Tämä vastaa kaksinkertaista liikemäärän muutosta verrattuna absorptioon, joten I (4.3.4) Prad =

9 79 Esimerkki: Auringon valon irradianssi juuri ilmakehän ulkopuolella on noin 1.4 kw/m. Maata kiertävän satelliitin aurinkopaneelien kokonaispinta-ala on 4.0 m. Oletetaan, että auringon valo osuu paneeleihin kohtisuorasti ja että paneelit absorboivat valon täydellisesti. Laske millä keskimääräisellä teholla energiaa absorboituu ja säteilypaineeseen liittyvä voima. Ratkaisu: Irradianssi (teho pinta-alayksikköä kohti) on I = W/m. Keskimääräiseksi tehoksi laskemme P = IA = ( W / m )(4.0m ) = W = 5.6 kw. Säteilypaine on I W / m Prad = = = Pa» Pa m/s Kokonaisvoimaksi F tulee F = Prad A = Pa 4.0m = N» N Energiaa absorboituu huomattavan suurella teholla. Osa muutetaan sähkösi satelliitin laitteita varten ja loput muuttuu paneleissa lämmöksi joko suoraan tai valokennojen epätäydellisyyden takia (hyötysuhde ei ole 100%). Säteilyn aiheuttama voima vastaa suolahitusen painoa maan pinnalla. Ajan mittaan näinkin pieni, mutta jatkuvasti vaikuttava voima saattaa aiheuttaa ongelmia, jos rataa ei korjata aika ajoin

10 POLARISAATIO Edellä olemme todenneet, että sähkömagneettiseen aaltoon liittyvät kentät ovat vektorisuureita, siten että jokaisessa pisteessä sähkökenttä, magneettikenttä ja Poyntingin vektori, joka kertoo aallon etenemissuunnan, ovat kohtisuorassa toisiaan vastaan ja vielä siten, että E B osoittaa aallon etenemissuuntaan. Siten sähkömagneettinen aalto on yksikäsitteisesti määrätty, kun esimerkiksi sähkökenttä on annettu. Tarkastellaan esimerkkinä positiivisen z-akselin suuntaan etenevää sähkömagneettista aaltoa, jonka sähkökenttä värähtelee x-akselin suunnassa: E = E0 sin(kz - w t )ˆi. Tähän liittyvä magneettikenttä on muotoon 1 B = E0 sin( kz - w t ) ˆj ja Poyntingin vektoriksi tulee S = e 0 E B = e 0E0 sin (kz - w t )kˆ. Sähkömagneettisen aallon ns. polarisaation suunta (polarisaatio) on sähkökentän suunta. Polarisaatio antaa käytännössä suunnan sille voimalle (Lorentz-voimalle), jonka sähköisesti varattu hiukkanen kokee ollessaan aallon vaikutuksen alaisena. Lorentz-voimassa F = q (E + v B), missä q on hiukkasen varaus ja v sen nopeus, magneettikentän antama osuus qv B on olematon ei-relativistisilla nopeuksilla. Monet optiset sovellukset perustuvat sähkömagneettisen aallon polarisaation luonteeseen ja sen suunnan manipuloimiseen.

11 Esimerkki: Positiivisen z-akselin suuntaan etenevällä aallolla E( z, t ) = E0 sin(kz - w t ) ˆi sähkökenttä E värähtelee xsuunnassa ja pysyy koko ajan xz-tasossa. Aalto on lineaarisesti polarisoitunut x-suuntaan Tarkastellaan positiivisen z-akselin suuntaan etenevää aaltoa yleisemmin. Aallon sähkökentän suunta on xytasossa (ks. kuva) ja se voidaan kirjoittaa kahden komponentin summana E( z, t ) = E ( z, t )ˆi + E ( z, t )ˆj x missä komponentit ovat y ì E x ( z, t ) = E0 x sin(kz - w t ) í î E y ( z, t ) = E0 y sin( kz - w t + e ) Tässä E0 x ja E0 y ovat amplitudit x- ja y-suunnassa ja e on komponenttien välinen mahdollinen vaihe-ero. Vaihe-ero määrää polarisaation luonteen. Lineaarinen polarisaatio Jos vaihe-ero on nolla, ts. e = 0, komponenttiaallot ovat samassa vaiheessa ja kokonaisaalloksi tulee E( z, t ) = ( E0 x ˆi + E0 y ˆj)sin(kz - w t ). (4.4.1) Sähkökentällä on siis vakioamplitudi ( E0 x ˆi + E0 y ˆj), joka osoittaa aina samaan suuntaan. Amplitudin suuruudeksi tulee

12 8 E0 = E0x + E0y, ja värähtelysuunnan kulmaksi x-akselista mitattuna (ks. kuva) tan a = E0 y / E0 x. Kuvassa valo tulee kohti katsojaa z-suuntaan. Jos vaihe-ero on e = p, voidaan kirjoittaa E( z, t ) = ( E ˆi - E ˆj)sin(kz - w t ), 0x 0y (4.4.) koska sin(j + p ) = sin j os p + os j sin p = - sin j. Siis myös tällöin päädytään lineaarisesti polarisoituun aaltoon. Edelliseen verrattuna amplitudi on sama, mutta värähdyssuunta on kiertynyt. Ympyräpolarisaatio Toinen tärkeä erikoistapaus saadaan, kun komponenttiaaltojen vaihe-ero on p e=, ja niillä on sama amplitudi, ts. E0 x = E0 y = E0. Tällöin nimittäin, koska sin(j + p / ) = os j, tulee E( z, t ) = E0 [sin(kz - w t )ˆi + os(kz - w t )ˆj]. (4.4.3) Tässä sähkökenttävektorin pituus säilyy E = E0 sin (kz - w t ) + os (kz - w t ) = E0, mutta se pyörii, ts. on ympyräpolarisoitunut Esimerkki: Tarkastellaan aallon (4.4.3) sähkökenttävektorin käyttäytymista kiinnitetyssä avaruuden pisteessä z = 0. Vektori on E = E0 éësin(-w t )ˆi + os(-w t )ˆjùû. Koska sin(-a ) = - sin a ja os( -a ) = os a ja kulmataajuus voidaan kirjoittaa muodossa w = pn = p /T, saadaan

13 83 é æ p ö æ p ö ù E = E0 ê - sin ç t ˆi + os ç t ˆjú èt ø èt ø û ë Lasketaan eri ajan hetkillä: Kun t = 0, E = E0 éë0ˆi + 1ˆjùû = + E0 ˆj Kun t = T / 4, E = E0 éë -1ˆi + 0ˆjùû = - E0ˆi Kun t = T /, E = E0 éë0ˆi - 1ˆjùû = - E0ˆj Kuvassa sähkökenttävektori kiertää vastapäivään ajan kuluessa Kun sähkökenttävektori kiertää kiinnitetyssä paikassa vastapäivään, kun valo tulee kohti katsojaa, valo on ns. vasenkätisesti ympyräpolarisoitunutta. Jos e = -p / ja E0 x = E0 y = E0, aalto on oikeakätisesti ympyräpolarisoitunut (sähkökenttä kiertää kiinnitetyssä paikassa myötäpäivään, kun aalto tulee kohti katsojaa) ja E( z, t ) = E0 [sin(kz - w t )ˆi - os(kz - w t )ˆj]. (4.4.4) Elliptinen polarisaatio Yleisessä tapauksessa, kun vaihe-ero on mielivaltainen ja osa-aaltojen amplitudit erisuuria, sähkökenttä pyörii ja samalla sen pituus

14 84 muuttu. Sähkäkenttävektorin kärki piirtää ellipsin ja puhutaan elliptisesti polarisoituneesta aallosta. Molemmat erikoistapaukset edellä (lineaarinen- ja ympyräpolarisaatio) ovat elliptisen polarisaation erikoistapauksia Esimerkki: Kirjoita lauseke positiivisen x-akselin suuntaan etenevälle lineaarisesti polarisoituneelle aallolle, jonka amplitudi on E0 ja sähkökenttävektori värähtelee kulmassa 30 xy-tasoon nähden. Lisäksi sähkökentän on oltava positiivisessa maksimissaan (siis arvossa E0 ) paikassa x = 0 ajan hetkellä t = 0. Ratkaisu: Aalto etenee x-akselin suuntaan, joten sähkökentän suunta on yztasossa. Yleinen muoto on E = ( E0 y ˆj + E0 zkˆ )sin(kx - w t + j0 ), missä Paikassa x = 0 ajan hetkellä t = 0 aalto on maksimissa, ts. sin(kx - w t + j0 ) = sin j0 = 1 Þ j0 = p /. Vastauseksi kirjoitamme: æ 3ˆ 1 ö E = E0 ç j + kˆ sin(kx - w t + p / ). ø è

15 Esimerkki: Osoita, että sama-amplitudisten oikea- ja vasenkätisten ympyräpolarisoituneiden aaltojen summa antaa lineaarisesti polarisoituneen aallon. Ratkaisu: E R = E0 [sin(kz - w t )ˆi - os(kz - w t )ˆj], missä R on right (oikea) E L = E0 [sin(kz - w t )ˆi + os(kz - w t )ˆj], missä L on left (vasen) E R + Ε L = ( E0ˆi )sin(kz - w t ). Tulos on lineaarisesti polarisoitunut SÄHKÖMAGNEETTINEN SPEKTRI Sähkömagneettiset aallot kattavat hyvin laajan taajuusalueen. Niitä on havaittu ainakin taajuusvälillä : 1 : 104 Hz. Taajuuksilla ei ole varsinaista teoreettista ylärajaa. Kuvassa seuraavalla sivulla on esitetty sähkömagneettinen spektri sekä taajuus- että aallonpituusasteikolla. Muunnos asteikkojen välillä toteutetaan yhtälöllä = l f, missä = m/s. Taajuudet (ja aallonpituudet) jaetaan erillisiin osa-alueisiin lähinnä sen mukaan miten aallot syntyvät ja/tai miten niitä havaitaan. Alueiden väliset rajat eivät ole tarkkoja, etenkin kun alueet jaetaan tavallisesti vielä osa-alueisiin.

e =tyhjiön permittiivisyys

e =tyhjiön permittiivisyys 75 4.3 ENERGIA JA LIIKEMÄÄRÄ On tuttu tosiasia, että sähkömagneettinen aalto kuljettaa mukanaan energiaa. Esimerkiksi auringon säteet lämmittävät ihoa. Liikkuvaan energiaan liittyy aina myös liikemäärä.

Lisätiedot

+ 0, (29.20) 32 SÄHKÖMAGNEETTISET AALLOT (Electromagnetic Waves) i c+ ε 0 dφ E / dt ja silmukan kohdalla vaikuttavan magneettivuon tiheyden

+ 0, (29.20) 32 SÄHKÖMAGNEETTISET AALLOT (Electromagnetic Waves) i c+ ε 0 dφ E / dt ja silmukan kohdalla vaikuttavan magneettivuon tiheyden 5 3 SÄHKÖMAGNEETTISET AALLOT (Electromagnetic Waves) Mitä valo on? Tämä kysymys on askarruttanut ihmisiä vuosisatojen ajan. Nykykäsityksen mukaan valo on luonteeltaan kaksijakoinen eli dualistinen. Valoa

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 17. marraskuuta 2016 Tasoaallot, osa 2 (Ulaby 7.3, 7.5, 7.6) Tasoaallon polarisaatio Virranahtoilmiö Tehotiheys ja Poyntingin vektori 2 (18)

Lisätiedot

9 VALOAALTOJEN SUPERPOSITIO

9 VALOAALTOJEN SUPERPOSITIO 09 9 VALOAALTOJEN SUPERPOSITIO Edellisissä kappaleissa olemme tutkineet valon heijastumista peileissä ja taittumista linsseissä geometrisen optiikan approksimaation avulla Approksimaatiossa valon aaltoluonnetta

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 9 / versio 9. marraskuuta 2015 Tasoaallot, osa 2 (Ulaby 7.3, 7.5, 7.6) Tasoaallon polarisaatio Virranahtoilmiö Tehotiheys ja Poyntingin vektori

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 9 Tavoitteet Valon luonne ja eteneminen Dispersio Lähde: https: //www.flickr.com/photos/fastlizard4/5427856900/in/set-72157626537669172,

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen

Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen Valon luonne ja eteneminen Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen 1 Valonlähteitä Perimmiltään valon lähteenä toimii kiihtyvässä liikkeessä olevat sähkövaraukset Kaikki

Lisätiedot

Kuva 1. Valon polarisoituminen. P = polarisaattori, A = analysaattori (kierrettävä).

Kuva 1. Valon polarisoituminen. P = polarisaattori, A = analysaattori (kierrettävä). P O L A R I S A A T I O VALON POLARISAATIO = ilmiö, jossa valon sähkökentän värähtelyt tapahtuvat vain yhdessä tasossa (= polarisaatiotasossa) kohtisuorasti etenemissuuntaa vastaan Kuva 1. Valon polarisoituminen.

Lisätiedot

Maxwell ja hänen yhtälönsä mitä seurasi?

Maxwell ja hänen yhtälönsä mitä seurasi? Maxwell ja hänen yhtälönsä mitä seurasi? Oleteaan tyhjiö: ei virtoja ei varauksia Muutos magneettikentässä saisi aikaan sähkökentän. Muutos vuorostaan sähkökentässä saisi aikaan magneettikentän....ja niinhän

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Syksy 2009 Jukka Maalampi LUENTO 12 Aallot kahdessa ja kolmessa ulottuvuudessa Toistaiseksi on tarkasteltu aaltoja, jotka etenevät yhteen suuntaan. Yleisempiä tapauksia ovat

Lisätiedot

PIENTAAJUISET SÄHKÖ- JA MAGNEETTIKENTÄT HARJOITUSTEHTÄVÄ 1. Pallomaisen solun relaksaatiotaajuus 1 + 1

PIENTAAJUISET SÄHKÖ- JA MAGNEETTIKENTÄT HARJOITUSTEHTÄVÄ 1. Pallomaisen solun relaksaatiotaajuus 1 + 1 Aalto-yliopisto HARJOITUSTEHTÄVIEN Sähkötekniikan korkeakoulu RATKAISUT Sähkömagneettisten kenttien ja optisen säteilyn biologiset 8.1.016 vaikutukset ja mittaukset ELEC-E770 Lauri Puranen Säteilyturvakeskus

Lisätiedot

Maxwell ja hänen yhtälönsä mitä seurasi?

Maxwell ja hänen yhtälönsä mitä seurasi? Maxwell ja hänen yhtälönsä mitä seurasi? Oleteaan tyhjiö: ei virtoja ei varauksia Muutos magneettikentässä saisi aikaan sähkökentän. Muutos vuorostaan sähkökentässä saisi aikaan magneettikentän....ja niinhän

Lisätiedot

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen 3 VALON POLARISAATIO 3.1 Johdanto Mawellin htälöiden avulla voidaan johtaa aaltohtälö sähkömagneettisen säteiln etenemiselle väliaineessa. Mawellin htälöiden ratkaisusta seuraa aina, että valo on poikittaista

Lisätiedot

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA TÄSSÄ ON ESMERKKEJÄ SÄHKÖ- JA MAGNETSMOPN KEVÄÄN 2017 MATERAALSTA a) Määritetään magneettikentän voimakkuus ja suunta q P = +e = 1,6022 10 19 C, v P = (1500 m s ) i, F P = (2,25 10 16 N)j q E = e = 1,6022

Lisätiedot

XFYS4336 Havaitseva tähtitiede II

XFYS4336 Havaitseva tähtitiede II XFYS4336 Havaitseva tähtitiede II Silja Pohjolainen Kaj Wiik Tuorlan observatorio Kevät 2014 Osa kuvista on lainattu kirjasta Wilson, Rohlfs, Hüttemeister: Tools of Radio astronomy XFYS4336 Havaitseva

Lisätiedot

SEISOVA AALTOLIIKE 1. TEORIAA

SEISOVA AALTOLIIKE 1. TEORIAA 1 SEISOVA AALTOLIIKE MOTIVOINTI Työssä tutkitaan poikittaista ja pitkittäistä aaltoliikettä pitkässä langassa ja jousessa. Tarkastellaan seisovaa aaltoliikettä. Määritetään aaltoliikkeen etenemisnopeus

Lisätiedot

Scanned by CamScanner

Scanned by CamScanner Scanned by CamScanner ELEC-C414 Kenttäteoria ESIMERKKIRATKAISUT 2. välikoe: 13.12.216 4. (a) Ominaisimpedanssi (merkitään Z ) on siirtojohdon ominaisuus. Se on siis eri asia kuin tasoaaltojen yhteydessä

Lisätiedot

Sähköstatiikka ja magnetismi

Sähköstatiikka ja magnetismi Sähköstatiikka ja magnetismi Johdatus magnetismiin Antti Haarto 19.11.2012 Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän

Lisätiedot

Polarisaatio. Timo Lehtola. 26. tammikuuta 2009

Polarisaatio. Timo Lehtola. 26. tammikuuta 2009 Polarisaatio Timo Lehtola 26. tammikuuta 2009 1 Johdanto Lineaarinen, ympyrä, elliptinen Kahtaistaittuvuus Nicol, metalliverkko Aaltolevyt 2 45 Polarisaatio 3 Lineaarinen polarisaatio y Sähkökentän vaihtelu

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy

Lisätiedot

YLEINEN AALTOLIIKEOPPI

YLEINEN AALTOLIIKEOPPI YLEINEN AALTOLIIKEOPPI KEVÄT 2017 1 Saana-Maija Huttula (saana.huttula@oulu.fi) Maanantai Tiistai Keskiviikko Torstai Perjantai Vk 8 Luento 1 Mekaaniset aallot 1 Luento 2 Mekaaniset aallot 2 Ääni ja kuuleminen

Lisätiedot

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän 3. MAGNEETTIKENTTÄ Magneettikenttä Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän Havaittuja magneettisia perusilmiöitä: Riippumatta magneetin muodosta, sillä on aina

Lisätiedot

3. Optiikka. 1. Geometrinen optiikka. 2. Aalto-optiikka. 3. Stokesin parametrit. 4. Perussuureita. 5. Kuvausvirheet. 6. Optiikan suunnittelu

3. Optiikka. 1. Geometrinen optiikka. 2. Aalto-optiikka. 3. Stokesin parametrit. 4. Perussuureita. 5. Kuvausvirheet. 6. Optiikan suunnittelu 3. Optiikka 1. Geometrinen optiikka 2. Aalto-optiikka 3. Stokesin parametrit 4. Perussuureita 5. Kuvausvirheet 6. Optiikan suunnittelu 3.1 Geometrinen optiikka! klassinen optiikka! Valoa kuvaa suoraan

Lisätiedot

ja siis myös n= nk ( ). Tällöin dk l l

ja siis myös n= nk ( ). Tällöin dk l l Tästä havaitaan, että jos nopeus ei riipu aallonpituudesta, ts. ei ole dispersiota, vg = v p. Tilanne on tällainen esimerkiksi tyhjiössä, missä vg = v p = c. Dispersiivisessä väliaineessa v p = c/ n, missä

Lisätiedot

Luento 15: Ääniaallot, osa 2

Luento 15: Ääniaallot, osa 2 Luento 15: Ääniaallot, osa 2 Aaltojen interferenssi Doppler Laskettuja esimerkkejä Luennon sisältö Aaltojen interferenssi Doppler Laskettuja esimerkkejä Aaltojen interferenssi Samassa pisteessä vaikuttaa

Lisätiedot

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus värähtelytiheyden. 1 Funktiot ja aallot Aiemmin käsiteltiin funktioita ja miten niiden avulla voidaan kuvata fysiikan

Lisätiedot

Antennin impedanssi. Z A = R A + jx A, (7 2 ) jossa R A on sy öttöresistanssi ja X A sy öttöreak tanssi. 6. maaliskuuta 2008

Antennin impedanssi. Z A = R A + jx A, (7 2 ) jossa R A on sy öttöresistanssi ja X A sy öttöreak tanssi. 6. maaliskuuta 2008 Antennin impedanssi Antennin sy ö ttö impedanssi on se impedanssi, jolla antenni näk y y sen sy öttöpisteisiin. S y öttöimpedanssiin v aik u ttav at k aik k i antennin läh istöllä olev at rak enteet ja

Lisätiedot

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö S-108-2110 OPTIIKKA 1/10 POLARISAATIO Laboratoriotyö S-108-2110 OPTIIKKA 2/10 SISÄLLYSLUETTELO 1 Polarisaatio...3 2 Työn suoritus...6 2.1 Työvälineet...6 2.2 Mittaukset...6 2.2.1 Malus:in laki...6 2.2.2

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

Tfy Fysiikka IIB Mallivastaukset

Tfy Fysiikka IIB Mallivastaukset Tfy-.14 Fysiikka B Mallivastaukset 14.5.8 Tehtävä 1 a) Lenin laki: Muuttuvassa magneettikentässä olevaan virtasilmukkaan inusoitunut sähkömotorinen voima on sellainen, että siihen liittyvän virran aiheuttama

Lisätiedot

Hz = 277 Hz 3.8 SHOKKIAALTO

Hz = 277 Hz 3.8 SHOKKIAALTO 59 Esimerkki IV: Poliisiauto ajaa nopeudella v S = 45 m/s havaitsijan auton edellä. Havaitsijan nopeus on vl = 15m/s. Laske havaittu taajuus? Ratkaisu: Merkkisääntö sanoo, että molemmat nopeudet ovat positiivisia,

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2018 Tämä luentomateriaali on suurelta osin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 8 Sähkömagneettiset aallot (YF 32) Maxwellin

Lisätiedot

10. Polarimetria. 1. Polarisaatio tähtitieteessä. 2. Stokesin parametrit. 3. Polarisaattorit. 4. CCD polarimetria

10. Polarimetria. 1. Polarisaatio tähtitieteessä. 2. Stokesin parametrit. 3. Polarisaattorit. 4. CCD polarimetria 10. Polarimetria 1. Polarisaatio tähtitieteessä 2. Stokesin parametrit 3. Polarisaattorit 4. CCD polarimetria 10.1 Polarisaatio tähtitieteessä Polarisaatiota mittaamalla päästään käsiksi moniin fysikaalisiin

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 12 Aaltojen heijastuminen ja taittuminen Tarkastelemme tässä luvussa sähkömagneettisten aaltojen heijastumis- ja taittumisominaisuuksia erilaisten väliaineiden rajapinnalla, ja lopuksi tutustutaan

Lisätiedot

9. Polarimetria. 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä. 3. Polarisaattorit 4. CCD polarimetria

9. Polarimetria. 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä. 3. Polarisaattorit 4. CCD polarimetria 9. Polarimetria 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä 3. Polarisaattorit 4. CCD polarimetria 10.1 Stokesin parametrit 10.1

Lisätiedot

Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä

Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä Antti Haarto.5.13 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä

Lisätiedot

Häiriöt kaukokentässä

Häiriöt kaukokentässä Häiriöt kaukokentässä eli kun ollaan kaukana antennista Tavoitteet Tuntee keskeiset periaatteet radioteitse tapahtuvan häiriön kytkeytymiseen ja suojaukseen Tunnistaa kauko- ja lähikentän sähkömagneettisessa

Lisätiedot

Lauri Puranen Säteilyturvakeskus Ionisoimattoman säteilyn valvonta

Lauri Puranen Säteilyturvakeskus Ionisoimattoman säteilyn valvonta LC-577 Sähömagneettisten enttien ja optisen säteilyn biologiset vaiutuset ja mittauset Sysy 16 PINTAAJUIST SÄHKÖ- JA MAGNTTIKNTÄT Lauri Puranen Säteilyturvaesus Ionisoimattoman säteilyn valvonta SÄTILYTURVAKSKUS

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino

Lisätiedot

9. Polarimetria. tähtitieteessä. 1. Polarisaatio. 2. Stokesin parametrit. 3. Polarisaattorit. 4. CCD polarimetria

9. Polarimetria. tähtitieteessä. 1. Polarisaatio. 2. Stokesin parametrit. 3. Polarisaattorit. 4. CCD polarimetria 9. Polarimetria 1. Polarisaatio tähtitieteessä 2. Stokesin parametrit 3. Polarisaattorit 4. CCD polarimetria 9.1 Polarisaatio tähtitieteessä! Polarisaatiota mittaamalla päästään käsiksi moniin fysikaalisiin

Lisätiedot

Sähkömagneettinen induktio

Sähkömagneettinen induktio Sähkömagneettinen induktio Vuonna 1831 Michael Faraday huomasi jotakin, joka muuttaisi maailmaa: sähkömagneettisen induktion. ( Magneto-electricity ) M. Faraday (1791-1867) M.Faraday: Experimental researches

Lisätiedot

Fysiikka 1. Coulombin laki ja sähkökenttä. Antti Haarto

Fysiikka 1. Coulombin laki ja sähkökenttä. Antti Haarto ysiikka 1 Coulombin laki ja sähkökenttä Antti Haarto 7.1.1 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä voi syntyä

Lisätiedot

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi Magneettikentät Haarto & Karhunen Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän Magneettikenttä aiheuttaa voiman liikkuvaan

Lisätiedot

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r Vuka HT 4 Tehtävä. Lyhyenä alustuksena tehtävään johdetaan keskeiskiihtyvyys tasaisessa pyörimisessä. Meillä on ympyräradalla liikkuva kappale joka pyörii vakiokulmanopeudella ω dϕ säteellä r origosta.

Lisätiedot

9 VALOAALTOJEN SUPERPOSITIO

9 VALOAALTOJEN SUPERPOSITIO 09 9 VALOAALTOJEN SUPERPOSITIO Edellisissä kaaleissa olemme tutkineet valon heijastumista eileissä ja taittumista linsseissä geometrisen otiikan aroksimaation avulla Aroksimaatiossa valon aaltoluonnetta

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys12 Kevät 21 Jukka Maalampi LUENTO 11 Mekaaninen aaltoliike alto = avaruudessa etenevä järjestäytynyt häiriö. alto altoja on kahdenlaisia: Poikittainen aalto - poikkeamat kohtisuorassa

Lisätiedot

9. Polarimetria. Havaitsevan tähtitieteen peruskurssi I, Kevät 2014 Veli-Matti Pelkonen (Kalvot JN, TH, MG & VMP)

9. Polarimetria. Havaitsevan tähtitieteen peruskurssi I, Kevät 2014 Veli-Matti Pelkonen (Kalvot JN, TH, MG & VMP) 9. Polarimetria Havaitsevan tähtitieteen peruskurssi I, Kevät 2014 Veli-Matti Pelkonen (Kalvot JN, TH, MG & VMP) 1 9. Polarimetria 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä 3. Polarisaattorit

Lisätiedot

9. Polarimetria. Havaitsevan tähtitieteen peruskurssi I, Syksy 2017 Thomas Hackman (Kalvot JN, TH, MG & VMP)

9. Polarimetria. Havaitsevan tähtitieteen peruskurssi I, Syksy 2017 Thomas Hackman (Kalvot JN, TH, MG & VMP) 9. Polarimetria Havaitsevan tähtitieteen peruskurssi I, Syksy 2017 Thomas Hackman (Kalvot JN, TH, MG & VMP) 1 9. Polarimetria 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä 3. Polarisaattorit 4.

Lisätiedot

7.4 PERUSPISTEIDEN SIJAINTI

7.4 PERUSPISTEIDEN SIJAINTI 67 7.4 PERUSPISTEIDEN SIJAINTI Optisen systeemin peruspisteet saadaan systeemimatriisista. Käytetään seuraavan kuvan merkintöjä: Kuvassa sisäänmenotaso on ensimmäisen linssin ensimmäisessä pinnassa eli

Lisätiedot

Shrödingerin yhtälön johto

Shrödingerin yhtälön johto Shrödingerin yhtälön johto Tomi Parviainen 4. maaliskuuta 2018 Sisältö 1 Schrödingerin yhtälön johto tasaisessa liikkeessä olevalle elektronille 1 2 Schrödingerin yhtälöstä aaltoyhtälöön kiihtyvässä liikkeessä

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 8. marraskuuta 2016 Tasoaallot, osa 1 (Ulaby 7.1, 7.2, 7.4) Kenttäosoittimet Aikaharmoniset Maxwellin yhtälöt Tasoaaltoratkaisu Tasoaaltoyhtälöt

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 1 / versio 8. syyskuuta 2015 Johdanto (ti) Merkinnät ja yksiköt Kenttä- ja lähdesuureet Maxwellin yhtälöt ja väliaineyhtälöt Aallot ja osoittimet

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Aalto köydessä Kohdassa x olevan ainehiukkasen poikkeama tasapainosta y ajan funktiona on y( x, t) Asin( kx t 0) Ketjusääntö: Ainehiukkasen

Lisätiedot

Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v.

Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v. Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin w = w w = ( 4) 2 + ( 3) 2 = 25 = 5 v = v v = ( 3) 2 + 2 2 = 13. w =5 3 2 v = 13 4 3 LM1, Kesä 2014 76/102 Normin ominaisuuksia I Lause

Lisätiedot

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen)

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen) Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen Vapaaseen hiukkaseen ei vaikuta voimia, joten U(x = 0. Vapaan hiukkasen energia on sen liike-energia eli E=p /m. Koska hiukkasella on määrätty energia,

Lisätiedot

Infrapunaspektroskopia

Infrapunaspektroskopia ultravioletti näkyvä valo Infrapunaspektroskopia IHMISEN JA ELINYMPÄ- RISTÖN KEMIAA, KE2 Kertausta sähkömagneettisesta säteilystä Sekä IR-spektroskopia että NMR-spektroskopia käyttävät sähkömagneettista

Lisätiedot

Kenttäteoria. Viikko 10: Tasoaallon heijastuminen ja taittuminen

Kenttäteoria. Viikko 10: Tasoaallon heijastuminen ja taittuminen Kenttäteoria Viikko 10: Tasoaallon heijastuminen ja taittuminen Tämän viikon sisältöä Todellinen aalto vai tasoaalto Desibelit Esitehtävä Kohtisuora heijastus metalliseinästä Kohtisuora heijastus ja läpäisy

Lisätiedot

4 VALO. nettiin ja Euklides (325-265) postuloi, että näkösäteet ovat suoria viivoja ja esineiden näennäinen koko riippuu säteiden muodostamista

4 VALO. nettiin ja Euklides (325-265) postuloi, että näkösäteet ovat suoria viivoja ja esineiden näennäinen koko riippuu säteiden muodostamista 65 4 VALO Mitä valo on? Tämä kysymys on askarruttanut ihmisiä vuosisatojen ajan. Nykykäsityksen mukaan valon luonne on kaksijakoinen: 1. Klassillisessa optiikassa valoa käsitellään sähkömagneettisena aaltona.

Lisätiedot

7 VALON DIFFRAKTIO JA POLARISAATIO

7 VALON DIFFRAKTIO JA POLARISAATIO 7 VALON DIFFRAKTIO JA POLARISAATIO 7.1 Valon luonne Valon mallit: Hiukkasmalli: Valo koostuu pienistä hiukkasista Aaltomalli: Valo on aaltoliikettä Aaltohiukkasdualismi: Valoa voidaan tarkastella sekä

Lisätiedot

Fysiikka 8. Aine ja säteily

Fysiikka 8. Aine ja säteily Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian

Lisätiedot

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina Jakso 1. iot-savartin laki, Ampèren laki, vektoripotentiaali Tässä jaksossa lasketaan erimuotoisten virtajohtimien aiheuttamien magneettikenttien suuruutta kahdella eri menetelmällä, iot-savartin lain

Lisätiedot

RATKAISUT: 19. Magneettikenttä

RATKAISUT: 19. Magneettikenttä Physica 9 1. painos 1(6) : 19.1 a) Magneettivuo määritellään kaavalla Φ =, jossa on magneettikenttää vastaan kohtisuorassa olevan pinnan pinta-ala ja on magneettikentän magneettivuon tiheys, joka läpäisee

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI.

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI. VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Oskari Uitto i78966 Lauri Karppi j82095 SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI Sivumäärä: 14 Jätetty tarkastettavaksi: 25.02.2008 Työn

Lisätiedot

Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö.

Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö. Yleistä sähkömagnetismista IÄLTÖ: ähkömagnetismi käsitekarttana ähkömagnetismin kaavakokoelma ähkö- ja magneettikentistä Maxwellin yhtälöistä ÄHKÖMAGNETIMI KÄITEKARTTANA: Kapasitanssi Kondensaattori Varaus

Lisätiedot

Nopeus, kiihtyvyys ja liikemäärä Vektorit

Nopeus, kiihtyvyys ja liikemäärä Vektorit Nopeus, kiihtyvyys ja liikemäärä Vektorit Luento 2 https://geom.mathstat.helsinki.fi/moodle/course/view.php?id=360 Luennon tavoitteet: Vektorit tutuiksi Koordinaatiston valinta Vauhdin ja nopeuden ero

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,

Lisätiedot

Luku 27. Tavoiteet Määrittää magneettikentän aiheuttama voima o varattuun hiukkaseen o virtajohtimeen o virtasilmukkaan

Luku 27. Tavoiteet Määrittää magneettikentän aiheuttama voima o varattuun hiukkaseen o virtajohtimeen o virtasilmukkaan Luku 27 Magnetismi Mikä aiheuttaa magneettikentän? Magneettivuon tiheys Virtajohtimeen ja varattuun hiukkaseen vaikuttava voima magneettikentässä Magneettinen dipoli Hallin ilmiö Luku 27 Tavoiteet Määrittää

Lisätiedot

25 INTERFEROMETRI 25.1 Johdanto

25 INTERFEROMETRI 25.1 Johdanto 5 INTERFEROMETRI 5.1 Johdanto Interferometrin toiminta perustuu valon interferenssiin. Interferenssillä tarkoitetaan kahden tai useamman aallon yhdistymistä yhdeksi resultanttiaalloksi. Kuvassa 1 tarkastellaan

Lisätiedot

4 Optiikka. 4.1 Valon luonne

4 Optiikka. 4.1 Valon luonne 4 Optiikka 4.1 Valon luonne 1 Valo on etenevää aaltoliikettä, joka syntyy sähkökentän ja magneettikentän yhteisvaikutuksesta. Jos sähkömagneettinen aalto (valoaalto) liikkuu x-akselin suuntaan, värähtelee

Lisätiedot

12. Eristeet Vapaa atomi

12. Eristeet Vapaa atomi 12. Eristeet Eristeiden tyypillisiä piirteitä ovat kovalenttiset sidokset (tai vahvat ionisidokset) ja siitä seuraavat mekaaniset ja sähköiset ominaisuudet. Makroskooppisen ulkoisen sähkökentän E läsnäollessa

Lisätiedot

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Esimerkki: Kun halutaan suojautua sähkömagneettisia

Lisätiedot

Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori!

Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! 6.1 Työ Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! Siirtymä s = r 2 r 1 Kun voiman kohteena olevaa kappaletta voidaan kuvata

Lisätiedot

12. Eristeet Vapaa atomi. Muodostuva sähköinen dipolimomentti on p =! " 0 E loc (12.4)

12. Eristeet Vapaa atomi. Muodostuva sähköinen dipolimomentti on p =!  0 E loc (12.4) 12. Eristeet Eristeiden tyypillisiä piirteitä ovat kovalenttiset sidokset (tai vahvat ionisidokset) ja siitä seuraavat mekaaniset ja sähköiset ominaisuudet. Makroskooppisen ulkoisen sähkökentän E läsnäollessa

Lisätiedot

VALON DIFFRAKTIO JA POLARISAATIO

VALON DIFFRAKTIO JA POLARISAATIO 1 VALON DIFFRAKTIO JA POLARISAATIO 1 Työn tavoitteet Tässä työssä tutkit valoa aaltoliikkeenä. Tutustut valon taipumiseen eli diffraktioon, joka havaitaan esimerkiksi, kun monokromaattinen valo kulkee

Lisätiedot

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 1 Maxwellin & Kirchhoffin laeista Piirimallin

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I Geometrinen optiikka 3. Optiikka Lauri Jetsu Fysiikan laitos Helsingin yliopisto Geometrinen optiikka Geometrinen optiikka Geometrinen optiikka (kuva: @www.goldastro.com) Ei huomioi, että valo on aaltoliikettä

Lisätiedot

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina 31.5.2012. T 6.1 (pakollinen): Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä.

Lisätiedot

SATE1120 Staattinen kenttäteoria kevät / 5 Laskuharjoitus 2 / Coulombin laki ja sähkökentänvoimakkuus

SATE1120 Staattinen kenttäteoria kevät / 5 Laskuharjoitus 2 / Coulombin laki ja sähkökentänvoimakkuus AT taattinen kenttäteoria kevät 6 / 5 Laskuharjoitus / Coulombin laki ja sähkökentänvoimakkuus Tehtävä Kaksi pistevarausta ja sijaitsevat x-tason pisteissä r x e x e ja r x e x e. Mikä ehto varauksien

Lisätiedot

VALON KÄYTTÄYTYMINEN RAJAPINNOILLA

VALON KÄYTTÄYTYMINEN RAJAPINNOILLA VALON KÄYTTÄYTYMINEN RAJAPINNOILLA 1 Johdanto 1.1 Valon nopeus ja taitekerroin Maxwellin yhtälöiden avulla voidaan johtaa aaltoyhtälö sähkömagneettisen säteilyn (esimerkiksi valon) etenemiselle väliaineessa.

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

LUT, Sähkötekniikan osasto. 1. Ilmassa etenevällä tasoaallolla on sähkökentän voimakkuus z. d) vaihekerroin

LUT, Sähkötekniikan osasto. 1. Ilmassa etenevällä tasoaallolla on sähkökentän voimakkuus z. d) vaihekerroin SÄHKÖMAGNETISMI LUT, Sähkötekniikan osasto LH5/216 P.I. Ketausta: 1. Ilassa etenevällä tasoaallolla on sähkökentän voiakkuus z t E cos t z Ex,. Aallon taajuus on 2 MHz. Kuvassa 1 on esitetty tasoaallon

Lisätiedot

YHDEN RAON DIFFRAKTIO. Laskuharjoitustehtävä harjoituksessa 11.

YHDEN RAON DIFFRAKTIO. Laskuharjoitustehtävä harjoituksessa 11. YHDEN RAON DIFFRAKTIO Laskuharjoitustehtävä harjoituksessa 11. Vanha tenttitehtävä Kapean raon Fraunhoferin diffraktiokuvion irradianssijakauma saadaan lausekkeesta æsin b ö I = I0 ç b è ø, missä b = 1

Lisätiedot

1 Johdanto Mikä tämä kurssi on Hieman taustaa Elektrodynamiikan perusrakenne Kirjallisuutta... 8

1 Johdanto Mikä tämä kurssi on Hieman taustaa Elektrodynamiikan perusrakenne Kirjallisuutta... 8 Sisältö 1 Johdanto 3 1.1 Mikä tämä kurssi on....................... 3 1.2 Hieman taustaa.......................... 4 1.3 Elektrodynamiikan perusrakenne................ 6 1.4 Kirjallisuutta...........................

Lisätiedot

FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ

FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ MIKKO LAINE 2. kesäkuuta 2015 1. Johdanto Tässä työssä määritämme Maan magneettikentän komponentit, laskemme totaalikentän voimakkuuden ja monitoroimme magnetometrin

Lisätiedot

4 Optiikka. 4.1 Valon luonne

4 Optiikka. 4.1 Valon luonne 4 Optiikka 4.1 Valon luonne 1 Valo on etenevää aaltoliikettä, joka syntyy sähkökentän ja magneettikentän yhteisvaikutuksesta. Jos sähkömagneettinen aalto (valoaalto) liikkuu x-akselin suuntaan, värähtelee

Lisätiedot

Ratkaisu: Vaatimus on, että muuttujat x ja t esiintyvät muodossa x-v t. On siis kirjoitettava,

Ratkaisu: Vaatimus on, että muuttujat x ja t esiintyvät muodossa x-v t. On siis kirjoitettava, 8 Ratkaisu: Vaatimus on, että muuttujat x ja t esiintyvät muodossa x-v t. On siis kirjoitettava 3 3 y = =, ( x- vt) + 1 ( x- t) + 1 missä siis v = m/s. Tulos on SI-yksiköissä, joten x ja y ovat metreinä

Lisätiedot

d+tv 1 S l x 2 x 1 x 3 MEI Mallintamisen perusteet Harjoitus 6, kevät 2015 Tuomas Kovanen

d+tv 1 S l x 2 x 1 x 3 MEI Mallintamisen perusteet Harjoitus 6, kevät 2015 Tuomas Kovanen MEI-55100 Mallintamisen perusteet Harjoitus 6, kevät 2015 Tuomas Kovanen Tehtävä 1: Tarkastellaan luentojen esimerkkiä, jossa johepalkki liikkuu kahen johelevyn välissä homogeenisessä magneettikentässä,

Lisätiedot

Fysiikka 7. Sähkömagnetismi

Fysiikka 7. Sähkömagnetismi Fysiikka 7 Sähkömagnetismi Magneetti Aineen magneettiset ominaisuudet ovat seurausta atomiydintä kiertävistä elektroneista (ytimen kiertäminen ja spin). Magneettinen vuorovaikutus Etävuorovaikutus Magneetilla

Lisätiedot

VAIHTOVIRTAPIIRI. 1 Työn tavoitteet

VAIHTOVIRTAPIIRI. 1 Työn tavoitteet Oulun yliopisto Fysiikan opetuslaboratorio Sähkö- ja magnetismiopin laboratoriotyöt AHTOTAP Työn tavoitteet aihtovirran ja jännitteen suunta vaihtelee ajan funktiona. Esimerkiksi Suomessa käytettävä verkkovirta

Lisätiedot

Aiheena tänään. Virtasilmukka magneettikentässä Sähkömagneettinen induktio. Vaihtovirtageneraattorin toimintaperiaate Itseinduktio

Aiheena tänään. Virtasilmukka magneettikentässä Sähkömagneettinen induktio. Vaihtovirtageneraattorin toimintaperiaate Itseinduktio Sähkömagnetismi 2 Aiheena tänään Virtasilmukka magneettikentässä Sähkömagneettinen induktio Vaihtovirtageneraattorin toimintaperiaate Itseinduktio Käämiin vaikuttava momentti Magneettikentässä olevaan

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 8 / versio 3. marraskuuta 2015 Tasoaallot, osa 1 (Ulaby 7.1, 7.2, 7.4) Kenttäosoittimet Aikaharmoniset Maxwellin yhtälöt Tasoaaltoratkaisu

Lisätiedot

2 Staattinen sähkökenttä Sähkövaraus ja Coulombin laki... 9

2 Staattinen sähkökenttä Sähkövaraus ja Coulombin laki... 9 Sisältö 1 Johdanto 3 1.1 Mikä tämä kurssi on....................... 3 1.2 Hieman taustaa.......................... 4 1.3 Elektrodynamiikan perusrakenne................ 5 1.4 Pari sanaa laskennasta......................

Lisätiedot

Magneettikenttä ja sähkökenttä

Magneettikenttä ja sähkökenttä Magneettikenttä ja sähkökenttä Gaussin laki sähkökentälle suljettu pinta Ampèren laki suljettu käyrä Coulombin laki Biot-Savartin laki Biot-Savartin laki: Onko virtajohdin entisensä? on aina kuvan tasoon

Lisätiedot

Varatun hiukkasen liike

Varatun hiukkasen liike Luku 15 Varatun hiukkasen liike SM-kentässä Tarkastellaan lopuksi varatun hiukkasen liikettä sähkömagneettisessa kentässä. Liikeyhtälö on tullut esiin useaan otteeseen kurssin aikana aiemminkin. Yleisesti

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot