Sinin muotoinen signaali

Koko: px
Aloita esitys sivulta:

Download "Sinin muotoinen signaali"

Transkriptio

1 Sinin muotoinen signaali Pekka Rantala.. Sini syntyy tasaisesta pyörimisestä Sini-signaali syntyy vakio-nopeudella pyörivän osoittimen y-suuntaisesta projektiosta. y u û α positiivinen pyörimissuunta x û (u hattu) = osoittimen pituus = huippuarvo u (pieni u) = hetkellisarvo = u(t) = ajan funktio α (alfa) = kulma hetkellä t Täysi ympyrä = 6 = π radiaania = π rad

2 Sinin muotoinen signaali Sini-signaalin muotoinen signaali syntyy myös vakionopeudella pyörivän osoittimen x-suuntaisesta projektiosta. Tällöin saadaan cosini-signaali. Sini ja cosini ovat samanmuotoiset, mutta niillä on keskenään 9 vaihe-ero. Kun α =, niin sin = cos = sin y α cos x Sini-signaali û α[astetta] T Jaksonpituus eli jaksonaika T vastaa aikaa, jossa pyörivä osoitin tekee yhden täyden kierroksen eli 6 (astetta) = π radiaania Jaksonpituus T on aika, jonka jälkeen kuvio alkaa toistamaan itseään uudestaan, alkaa uusi kierros. f(t) = f(t±t) Jaksonpituutta määritettäessä alkupisteen voi valita mihin hyvänsä signaalin kohtaan. Milloin tulee seuraavan kerran sama kohta?

3 Taajuus f ja jaksonpituus T Yhden jakson pituus on T sekuntia Yhteen sekuntiin mahtuu s kpl jaksoja T = signaalin taajuus f Taajuus vastaa sitä, kuinka monta jaksoa eli osoittimen täyttä kierrosta yhdessä sekunnissa on f = T ja T = f f on taajuus [Hz] = [ s] T on jaksonpituus [s] Taajuus f ja kulmataajuus ω (omega) Taajuus f ilmaisee, kuinka monta kierrosta eli jaksoa osoitin pyörii yhdessä sekunnissa. Yksikkö on jaksoa = = hertsi = Hz s s Kulmataajuus ω ilmaisee, kuinka monta radiaania osoitin etenee yhdessä sekunnissa. Yksikkö on rad (= ) s s Ajan hetkeä t vastaava kulma α radiaaneina α = ωt Jos taajuus f = Hz, niin yhdessä sekunnissa osoitin pyörii yhden kierroksen eli π rad ω = π rad = π = π s s s Jos taajuus f = Hz, niin yhdessä sekunnissa osoitin pyörii kierrosta eli π rad ω = π rad = π = π s s s ω = πf

4 Sinin muotoinen jännite Jännitteen hetkellisarvo u(t) = û sinα u(t) = û sin (ωt) eli u(t) = û sin (πft) û = huippuarvo [V] ω = kulmataajuus [ rad s ] f = taajuus [Hz] t = aika [s] Hz:n AC-jännite Jaksonpituus T = ms ( = 6 = π rad) u(t) = û sin (πt) Ajan hetki Asteita Radiaania Sinin arvo Hetkellisarvo u(t) ms V ms 9 ½π û V ms 8 π V ms 7 ½π - -û V ms 6 π V

5 Vaihesiirto eteen- ja taaksepäin kaavana Jännitteen hetkellisarvo u(t) u(t) = û sin (ωt +φ) ϕ = vaihesiirtokulma (phi = fii) jos ϕ on positiivinen signaali on edellä -kohtaan verrattuna jos ϕ on negatiivinen signaali on jäljessä -kohtaan verrattuna Vaihesiirto eteen- ja taaksepäin kuvana u(t) u(t) u(t) u(t) = sin (α) u(t) = sin (α 6 ) u(t) = sin (α +9 ) on kohdallaan 6 jäljessä u:stä 9 edellä u:stä

6 Eri tavat ilmoittaa jännitteen amplitudi Suure Symboli määritelmä Lukuarvo Hetkellisarvo u(t) û sin (πft) vaihtelee Huippuarvo û U V Huipusta huippuun arvo U pp û 6 V Keskiarvo U av T T u t dt V Tehollisarvo U rms = U û/ V Tasasuuntauskeskiarvo U r π û 7 V sinisignaali tasasuunnattu sini Pyörivä ja paikallaan oleva osoitin Pyörivän osoittimen avulla ymmärtää (toivottavasti) sini-signaalin syntymisen. Pyörivän osoittimen pituus on signaalin huippuarvo. Usean sinisignaalin keskinäisiä vaihe-eroja ja suuruuksia (= tehollisarvoja) esitetään paikallaan olevien osoittimien avulla. Paikallaan oleva osoitin on yhdellä hetkellä otettu valokuva. 6

7 Osoitinpiirros (paikallaan olevat osoittimet) Osoitinpiirroksen avulla voi esittää eri signaalien väliset vaihe-erot ja amplitudierot. Yhdessä osoitinpiirroksessa olevilla signaaleilla pitää olla sama taajuus. Osoitinpiirroksessa ei ole x- ja y-koordinaatteja. Osoitinpiirroksessa on vaihekulma (napakulma) ja osoittimen pituus (tehollisarvo) = napakoordinaatisto = polaarikoordinaatisto Signaalit aikatasossa ja osoitinkuvassa U u(t) u(t) u(t) +9 U U - Valitaan jännite u(t):n vaihekulmaksi Jännite u(t) on 6 jäljessä u(t):tä Jännite u(t) on 9 edellä u(t):tä U = jännitteen U tehollisarvo ( ) U = jännitteen U tehollisarvo (-6 ) U = jännitteen U tehollisarvo (+9 ) 7

8 Osoitinkuvassa asento vapaa U +9-6 U U U U Yllä olevat osoitinkuvat esittävät täysin samaa tilannetta Perusosoittimeksi x-akselin + suuntaan valitaan tilanteen mukaan sopivin suure Aika-akseli rullataan kelalle huippujen vaihe-ero aika u(t) u(t) Osoitinpiirros Aikataso - Sininen ehtinyt pidemmälle = edellä - Sininen ajassa aikaisemmassa hetkessä = edellä - Pituudet edustavat tehollisarvoja - Huiput edustavat huippuarvoja 8

Johdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen

Johdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Johdatus vaihtosähköön, sinimuotoiset suureet 1 Vaihtovirta vs tasavirta Sähkömagneettinen induktio tuottaa kaikissa pyörivissä generaattoreissa vaihtojännitettä. Vaihtosähköä on

Lisätiedot

Sinimuotoinen vaihtosähkö ja siihen liittyviä käsitteitä ja suureita. Sinimuotoisten suureiden esittäminen osoittimilla

Sinimuotoinen vaihtosähkö ja siihen liittyviä käsitteitä ja suureita. Sinimuotoisten suureiden esittäminen osoittimilla LIITE I Vaihtosähkön perusteet Vaihtojännitteeksi kutsutaan jännitettä, jonka suunta vaihtelee. Vaihtojännite on valittuun suuntaan nähden vuorotellen positiivinen ja negatiivinen. Samalla tavalla määritellään

Lisätiedot

Lineaarialgebra MATH.1040 / Piirianalyysiä 2

Lineaarialgebra MATH.1040 / Piirianalyysiä 2 Lineaarialgebra MATH.1040 / Piirianalyysiä 2 1 Seuraavat tarkastelut nojaavat trigonometrisille funktioille todistettuihin kaavoihin. sin(α + β) = sinα cosβ + cosα sinβ (1) cos(α + β) = cosα cosβ sinα

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA Vaihtosähkö SMG-2100: SÄHKÖTEKNIIKKA Sinimuotoiset suureet Tehollisarvo Sinimuotoinen vaihtosähkö & passiiviset piirikomponentit Käydään läpi, mistä sinimuotoiset jännite ja virta ovat peräisin. Näytetään,

Lisätiedot

Tietoliikennesignaalit & spektri

Tietoliikennesignaalit & spektri Tietoliikennesignaalit & spektri 1 Tietoliikenne = informaation siirtoa sähköisiä signaaleja käyttäen. Signaali = vaihteleva jännite (tms.), jonka vaihteluun on sisällytetty informaatiota. Signaalin ominaisuuksia

Lisätiedot

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 Mittalaitetekniikka NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella

Lisätiedot

Sähkötekniikka ja elektroniikka

Sähkötekniikka ja elektroniikka Sähkötekniikka ja elektroniikka Kimmo Silvonen (X) Vaihtovirta ja osoitinlaskenta Luento Sinimuotoinen virta ja jännite Tehollisarvo, huippuarvo, vaihekulma Ajan vai taajuuden funktiona? Viime viikon kytkentäilmiöt

Lisätiedot

VAIHTOVIRTAPIIRI. 1 Työn tavoitteet

VAIHTOVIRTAPIIRI. 1 Työn tavoitteet Oulun yliopisto Fysiikan opetuslaboratorio Sähkö- ja magnetismiopin laboratoriotyöt AHTOTAP Työn tavoitteet aihtovirran ja jännitteen suunta vaihtelee ajan funktiona. Esimerkiksi Suomessa käytettävä verkkovirta

Lisätiedot

Trigonometriset funktiot

Trigonometriset funktiot Peruskäsitteet Y-peilaus X-peilaus Pistepeilaus Muistikulmat Muistikolmio 1 Muistikolmio 2 Jaksollisuus Esimerkki 5.A Esimerkki 5.B1 Esimerkki 5.B2 Esimerkki 5C.1 Esimerkki 5C.2 (1/2) (2/2) Muunnelmia

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA SMG-2100: SÄHKÖTEKNIIKKA Vaihtosähkön teho kompleksinen teho S pätöteho P loisteho Q näennäisteho S Käydään läpi sinimuotoisiin sähkösuureisiin liittyviä tehotermejä. Määritellään kompleksinen teho, jonka

Lisätiedot

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike 1 / 29 Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat

Lisätiedot

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina 31.5.2012. T 6.1 (pakollinen): Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä.

Lisätiedot

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77 Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty.5.07 Kertaus K. a) sin 0 = 0,77 b) cos ( 0 ) = cos 0 = 0,6 c) sin 50 = sin (80 50 ) = sin 0 = 0,77 d) tan 0 = tan (0 80 ) = tan 0 =,9 e)

Lisätiedot

Ratkaise tehtävä 1 ilman teknisiä apuvälineitä! 1. a) Yhdistä oikea funktio oikeaan kuvaajaan. (2p)

Ratkaise tehtävä 1 ilman teknisiä apuvälineitä! 1. a) Yhdistä oikea funktio oikeaan kuvaajaan. (2p) Matematiikan TESTI 3, Maa7 Trigonometriset funktiot RATKAISUT Sievin lukio II jakso/07 VASTAA JOKAISEEN TEHTÄVÄÄN! MAOL/LIITE/taulukot.com JA LASKIN ON SALLITTU ELLEI TOISIN MAINITTU! TARKISTA TEHTÄVÄT

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ 76336A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät 217 1. Koordinaatiston muunnosmatriisi (a) y' P r α φ ' Tarkastellaan, mitä annettu muunnos = cos φ + y sin φ, y = sin φ + y cos φ, (1a) (1b) tekee

Lisätiedot

Pakotettu vaimennettu harmoninen värähtelijä Resonanssi

Pakotettu vaimennettu harmoninen värähtelijä Resonanssi Pakotettu vaimennettu harmoninen värähtelijä Resonanssi Tällä luennolla tavoitteena Mikä on pakkovoiman aiheuttama vaikutus vaimennettuun harmoniseen värähtelijään? Mikä on resonanssi? Kertaus: energian

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 1 / versio 8. syyskuuta 2015 Johdanto (ti) Merkinnät ja yksiköt Kenttä- ja lähdesuureet Maxwellin yhtälöt ja väliaineyhtälöt Aallot ja osoittimet

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 6 Yksinkertainen harmoninen liike yhteys ympyräliikkeeseen energia dynamiikka Värähdysliike Knight Ch 14 Heilahtelut pystysuunnassa ja gravitaation

Lisätiedot

Luento 3: Käyräviivainen liike

Luento 3: Käyräviivainen liike Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luennon sisältö Kertausta viime viikolta Käyräviivainen liike

Lisätiedot

Lineaarialgebra MATH.1040 / trigonometriaa

Lineaarialgebra MATH.1040 / trigonometriaa Lineaarialgebra MATH.1040 / trigonometriaa 1 Aste, 1 (engl. degree) Täsi kierros on 360 (360 astetta). Yksi aste jaetaan 60 kulmaminuuttiin (1 = 60 ) ja ksi kulmaminuutti jaetaan 60 kulmasekuntiin (1 =

Lisätiedot

Koordinaatistot 1/6 Sisältö ESITIEDOT: reaaliluvut

Koordinaatistot 1/6 Sisältö ESITIEDOT: reaaliluvut Koordinaatistot 1/6 Sisältö Koordinaatiston ja koordinaattien käsite Geometrisissa tehtävissä ja siten mös monissa kätännön ongelmissa on usein tarpeen ilmoittaa pisteiden sijainti jonkin kiinteän vertailussteemin

Lisätiedot

LUKU 10. Yhdensuuntaissiirto

LUKU 10. Yhdensuuntaissiirto LUKU hdensuuntaissiirto Olkoot (M, N) suunnistettu pinta, p M ja v p R 3 p annettu vektori pisteessä p (vektorin v p ei tarvitse olla pinnan M tangenttivektori). Tällöin vektori (v p N(p)) N(p) on vektorin

Lisätiedot

a(t) = v (t) = 3 2 t a(t) = 3 2 t < t 1 2 < 69 t 1 2 < 46 t < 46 2 = 2116 a(t) = v (t) = 50

a(t) = v (t) = 3 2 t a(t) = 3 2 t < t 1 2 < 69 t 1 2 < 46 t < 46 2 = 2116 a(t) = v (t) = 50 BM0A5810 - Differentiaalilaskenta ja sovellukset Harjoitus 1, Syksy 015 1. (a) Kiihtyvyys on nopeuden derivaatta, eli a(t) v (t) 3 t 1 + 1 Nyt on siis selvitettävä, milloin kiihtyvyys kasvaa itseisarvoltaan

Lisätiedot

Jaksollisen signaalin spektri

Jaksollisen signaalin spektri Jaksollisen signaalin spektri LuK-tutkielma Topi Suviaro 2257699 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 215 Sisältö Johdanto 2 1 Jaksollisuudesta 2 2 Spektristä 3 2.1 Symmetrian vaikutuksesta

Lisätiedot

Sähköstatiikka ja magnetismi Sähkömagneetinen induktio

Sähköstatiikka ja magnetismi Sähkömagneetinen induktio Sähköstatiikka ja magnetismi Sähkömagneetinen induktio Antti Haarto.05.013 Magneettivuo Magneettivuo Φ on magneettivuon tiheyden B ja sen läpäisemän pinta-alavektorin A pistetulo Φ B A BAcosθ missä θ on

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 12 1 Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan

Lisätiedot

Kolmiot, L1. Radiaani. Kolmiolauseet. Aiheet. Kulmayksiköt, aste. Radiaani. Suorakulmainen kolmio. Kolmiolauseet

Kolmiot, L1. Radiaani. Kolmiolauseet. Aiheet. Kulmayksiköt, aste. Radiaani. Suorakulmainen kolmio. Kolmiolauseet Kolmiot, L1 Kulmayksiköt 1 Aste, 1 (engl. degree) Kun kellon viisari kiertyy yhden kierroksen, sanomme, että se kääntyy 360 (360 astetta). Ajatus täyden kierroksen jakamisesta 360 asteeseen, juontaa kaldealaiseen

Lisätiedot

Kertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0,

Kertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0, Kertausosa. a),6 60 576 Peruuttaessa pyörähdyssuunta on vastapäivään. Kulma on siis,4 60 864 a) 576 864 0,88m. a) α b 0,6769... 0,68 (rad) r,m 8cm β,90...,9 (rad) 4cm a) α 0,68 (rad) β,9 (rad). a) 5,0

Lisätiedot

Sähkötekniikan perusteita. Pekka Rantala Syksy 2016

Sähkötekniikan perusteita. Pekka Rantala Syksy 2016 Sähkötekniikan perusteita Pekka Rantala Syksy 2016 Sisältö 1. Sähköasennuksia sääteleviä säännöksiä 2. Sähkötekniikan perusteita 3. 3-vaihejärjestelmä 4. Muutamia perusjuttuja 1. Sähköasennuksia sääteleviä

Lisätiedot

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r Vuka HT 4 Tehtävä. Lyhyenä alustuksena tehtävään johdetaan keskeiskiihtyvyys tasaisessa pyörimisessä. Meillä on ympyräradalla liikkuva kappale joka pyörii vakiokulmanopeudella ω dϕ säteellä r origosta.

Lisätiedot

Testaa taitosi 1. 2. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on

Testaa taitosi 1. 2. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on Testaa taitosi. Laske lausekkeen 60 cos80 sin arvo. Päättele sinin ja kosinin arvot yksikköympyrästä. y x. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on y y. x x. Määritä

Lisätiedot

C 2. + U in C 1. (3 pistettä) ja jännite U C (t), kun kytkin suljetaan ajanhetkellä t = 0 (4 pistettä). Komponenttiarvot ovat

C 2. + U in C 1. (3 pistettä) ja jännite U C (t), kun kytkin suljetaan ajanhetkellä t = 0 (4 pistettä). Komponenttiarvot ovat S-87.2 Tentti 6..2007 ratkaisut Vastaa kaikkiin neljään tehtävään! C 2 I J 2 C C U C Tehtävä atkaise virta I ( pistettä), siirtofunktio F(s) = Uout ( pistettä) ja jännite U C (t), kun kytkin suljetaan

Lisätiedot

BM30A0240, Fysiikka L osa 4

BM30A0240, Fysiikka L osa 4 BM30A0240, Fysiikka L osa 4 Luennot: Heikki Pitkänen 1 Oppikirja: Young & Freedman: University Physics Luku 14 - Periodic motion Luku 15 - Mechanical waves Luku 16 - Sound and hearing Muuta - Diffraktio,

Lisätiedot

Läpäisyehto: Kokeesta saatava 5. Uusintakoe: Arvosana määräytyy yksin uusintakokeen perusteella.

Läpäisyehto: Kokeesta saatava 5. Uusintakoe: Arvosana määräytyy yksin uusintakokeen perusteella. MAA7 Trigonometriset funktiot Arvosanan perusteet: koe 70 %, harjoitustehtävä 10 %, tuntitestit 20 %, lisäksi oppimisen ja työskentelyn havainnointi opettajan harkinnan mukaan (ks. OPS 6.2). Muu arviointi:

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.11 SÄHKÖTKNIIKKA JA KTONIIKKA Kimmo Silvonen Tentti.1.11: tehtävät 1,3,5,6,1. 1. välikoe: tehtävät 1,,3,4,5.. välikoe: tehtävät 6,7,8,9,1. Saat vastata vain neljään tehtävään/koe. Sallitut: Kako,

Lisätiedot

S SÄHKÖTEKNIIKKA Kimmo Silvonen

S SÄHKÖTEKNIIKKA Kimmo Silvonen S-55.103 SÄHKÖTKNKKA 7.5.004 Kimmo Silvonen Tentti: tehtävät 1,3,5,7,9 1. välikoe: tehtävät 1,,3,4,5. välikoe: tehtävät 6,7,8,9,10 Oletko muistanut vastata palautekyselyyn? Voit täyttää lomakkeen nyt.

Lisätiedot

Ei-inertiaaliset koordinaatistot

Ei-inertiaaliset koordinaatistot orstai 25.9.2014 1/17 Ei-inertiaaliset koordinaatistot Tarkastellaan seuraavaa koordinaatistomuunnosta: {x} = (x 1, x 2, x 3 ) {y} = (y 1, y 2, y 3 ) joille valitaan kantavektorit: {x} : (î, ĵ, ˆk) {y}

Lisätiedot

Liikemäärän säilyminen Vuorovesivoimat Jousivoima

Liikemäärän säilyminen Vuorovesivoimat Jousivoima Liikemäärän säilyminen Vuorovesivoimat Jousivoima Tämän luennon tavoitteet Liikemäärän säilyminen Vuorovesivoimat ja binomiapproksimaatio gravitaatio jatkuu viime viikolta Jousivoima: mikä se on ja miten

Lisätiedot

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 51384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 1. Tutkitaan mikroliuskajohtoa, jonka substraattina on kvartsi (ε r 3,8) ja jonka paksuus (h) on,15 mm. a) Mikä on liuskan leveyden w oltava, jotta ominaisimpedanssi

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA. Kompleksilukujen hyödyntäminen vaihtosähköpiirien

SMG-2100: SÄHKÖTEKNIIKKA. Kompleksilukujen hyödyntäminen vaihtosähköpiirien SMG-100: SÄHKÖTEKNIIKKA Kompleksilukujen hyödyntäminen vaihtosähköpiirien analyysissä Osoitin Trigonometrinen muoto Polaarimuoto Kompleksilukujen peruslaskutoimitukset Viime luennolla esitettiin, että

Lisätiedot

Kompleksiluvut., 15. kesäkuuta /57

Kompleksiluvut., 15. kesäkuuta /57 Kompleksiluvut, 15. kesäkuuta 2017 1/57 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.1100 SÄHKÖTKNIIKKA A KTONIIKKA Tentti 0.1.006: tehtävät 1,3,4,6,8 1. välikoe: tehtävät 1,,3,4,5. välikoe: tehtävät 6,7,8,9,10 Saat vastata vain neljään tehtävään/koe; ne sinun pitää itse valita! Kimmo

Lisätiedot

Sähkötekniikka. NBIELS12 Vaihtosähköpiirit Jussi Hurri syksy 2014

Sähkötekniikka. NBIELS12 Vaihtosähköpiirit Jussi Hurri syksy 2014 Sähkötekniikka NBIELS12 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella vaihtovirtaa!

Lisätiedot

IMPEDANSSIMITTAUKSIA. 1 Työn tavoitteet

IMPEDANSSIMITTAUKSIA. 1 Työn tavoitteet 1 IMPEDANSSIMITTAUKSIA 1 Työn tavoitteet Tässä työssä tutustut vaihtojännitteiden ja virtojen sekä vaihtovirtapiirissä olevien komponenttien impedanssien suuruuksien eli vaihtovirtavastusten mittaamiseen.

Lisätiedot

TRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT

TRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT 3.0.07 0 π TRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT π = π 3π π = π 5π 6π = 3π 7π TRIGONOMETRISET FUNKTIOT, MAA7 Tarkastellaan aluksi sini-funktiota ja lasketaan sin :n arvoja, kun saa arvoja 0:sta 0π :ään

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 10: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali.

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 10: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali. MS-A25/MS-A26 Differentiaali- ja integraalilaskenta 2 Luento 1: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät

Lisätiedot

LASKIN ON SALLITTU ELLEI TOISIN MAINITTU! TARKISTA TEHTÄVÄT KOKEEN JÄLKEEN JA ANNA PISTEESI RUUTUUN!

LASKIN ON SALLITTU ELLEI TOISIN MAINITTU! TARKISTA TEHTÄVÄT KOKEEN JÄLKEEN JA ANNA PISTEESI RUUTUUN! Matematiikan TESTI 4, Maa7 Trigonometriset funktiot ATKAISUT Sievin lukio II jakso/017 VASTAA JOKAISEEN TEHTÄVÄÄN! MAOL/LIITE/taulukot.com JA LASKIN ON SALLITTU ELLEI TOISIN MAINITTU! TAKISTA TEHTÄVÄT

Lisätiedot

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa 1 / 31 Luennon sisältö Suhteellinen translaatioliike

Lisätiedot

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa

Lisätiedot

Sini- ja kosinifunktio

Sini- ja kosinifunktio Sini- ja kosinifunktio Trigonometriset funktio voidaan määritellä muun muassa potenssisarjana tai yksikköympyrän avulla. Yksikköympyrään pohjautuvassa määritelmässä sini- ja kosinifunktion muuttujana pidetään

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan määrittää

Lisätiedot

S SÄHKÖTEKNIIKKA Kimmo Silvonen

S SÄHKÖTEKNIIKKA Kimmo Silvonen S55.103 SÄHKÖTKNKK 21.12.2000 Kimmo Silvonen Tentti: tehtävät 1,3,4,8,9 1. välikoe: tehtävät 1,2,3,4,5 2. välikoe: tehtävät,7,8,9,10 Oletko jo ehtinyt vastata palautekyselyyn Voit täyttää lomakkeen nyt.

Lisätiedot

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Pyörimisliikkeestä Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia Luennon sisältö Suhteellinen translaatioliike

Lisätiedot

Jonot. Lukujonolla tarkoitetaan ääretöntä jonoa reaalilukuja a n R, kun indeksi n N. Merkitään. (a n ) n N = (a n ) n=1 = (a 1, a 2, a 3,... ).

Jonot. Lukujonolla tarkoitetaan ääretöntä jonoa reaalilukuja a n R, kun indeksi n N. Merkitään. (a n ) n N = (a n ) n=1 = (a 1, a 2, a 3,... ). Jonot Lukujonolla tarkoitetaan ääretöntä jonoa reaalilukuja a n R, kun indeksi n N. Merkitään (a n ) n N = (a n ) n=1 = (a 1, a 2, a 3,... ). Lukujonon täsmällinen tulkinta on funktio f : N R, jolle f

Lisätiedot

Luento 2. Jaksolliset signaalit

Luento 2. Jaksolliset signaalit Luento Jaksollisten signaalien Fourier-sarjat Viivaspektri S-.7. Signaalit ja järjestelmät 5 op KK ietoliikennelaboratorio Jaksollinen (periodinen) Jaksolliset signaalit Jaksonaika - / / Perusjakso Amplitudi

Lisätiedot

ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen.

ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen. ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen. X.X.2015 Tehtävä 1 Bipolaaritransistoria käytetään alla olevan kuvan mukaisessa kytkennässä, jossa V CC = 40 V ja kuormavastus

Lisätiedot

Liike pyörivällä maapallolla

Liike pyörivällä maapallolla Liike pyörivällä maapallolla Voidaan olettaa: Maan pyöriminen tasaista Maan rataliikkeen näennäisvoimat tasapainossa Auringon vetovoiman kanssa Riittää tarkastella Maan tasaisesta pyörimisestä akselinsa

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 17. marraskuuta 2016 Tasoaallot, osa 2 (Ulaby 7.3, 7.5, 7.6) Tasoaallon polarisaatio Virranahtoilmiö Tehotiheys ja Poyntingin vektori 2 (18)

Lisätiedot

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

SÄHKÖENERGIATEKNIIIKKA. Harjoitus - luento 7. Tehtävä 1

SÄHKÖENERGIATEKNIIIKKA. Harjoitus - luento 7. Tehtävä 1 SÄHKÖENERGIATEKNIIIKKA Harjoitus - luento 7 Tehtävä 1 Bipolaaritransistoria käytetään alla olevan kuvan mukaisessa kytkennässä, jossa V CC = 40 V ja kuormavastus R L = 10 ς. Kyllästysalueella kollektori-emitterijännite

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 215 1 / 2 Moninkertaisten

Lisätiedot

Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten)

Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten) Noste Ympyräliike I Luennon tavoitteet Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten) Aloitetaan ympyräliikettä Keskeisvoiman

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017 763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 207. Nelinopeus ympyräliikkeessä On siis annettu kappaleen paikkaa kuvaava nelivektori X x µ : Nelinopeus U u µ on määritelty kaavalla x µ (ct,

Lisätiedot

4 TOISEN ASTEEN YHTÄLÖ

4 TOISEN ASTEEN YHTÄLÖ Huippu Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 7.4.016 4 TOISEN ASTEEN YHTÄLÖ POHDITTAVAA 1. Merkitään toisen neliön sivun pituutta kirjaimella x. Tällöin toisen neliön sivun pituus on

Lisätiedot

S Signaalit ja järjestelmät

S Signaalit ja järjestelmät dsfsdfs S-72.1110 Työ 2 Ryhmä 123: Tiina Teekkari EST 12345A Teemu Teekkari TLT 56789B Selostus laadittu 1.1.2007 Laboratoriotyön suoritusaika 31.12.2007 klo 08:15 11:00 Esiselostuksen laadintaohje Täytä

Lisätiedot

SATE2010 Dynaaminen kenttäteoria syksy /6 Laskuharjoitus 6 / Siirtojohdot ja transientit häviöttömissä siirtojohdoissa

SATE2010 Dynaaminen kenttäteoria syksy /6 Laskuharjoitus 6 / Siirtojohdot ja transientit häviöttömissä siirtojohdoissa ATE2010 Dynaaminen kenttäteoria syksy 2011 1 /6 Tehtävä 1. 0,67 m pitkä häviötön siirtojohdon (50 Ω) päässä on kuorma Z L = (100 - j50) Ω. iirtojohtoa syötetään eneraattorilla (e (t) = 10sin(ωt + 30º)

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 217 Antti Rasila (Aalto-yliopisto)

Lisätiedot

Matemaattisen analyysin tukikurssi

Matemaattisen analyysin tukikurssi Matemaattisen analyysin tukikurssi 12. Kurssikerta Petrus Mikkola 5.12.2016 Tämän kerran asiat Sini-ja kosifunktio Yksikköympyrä Tangentti- ja kotangenttifunktio Trigonometristen funktioiden ominaisuuksia

Lisätiedot

R = Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen on tällöin jännitteenjako = 1

R = Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen on tällöin jännitteenjako = 1 Fysiikan mittausmenetelmät I syksy 206 Laskuharjoitus 4. Merkitään kaapelin resistanssin ja kuormaksi kytketyn piirin sisäänmenoimpedanssia summana R 000.2 Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.00 SÄHKÖTKNKKA JA KTONKKA Tentti 5.5.008: tehtävät,3,4,6,9. välikoe: tehtävät,,3,4,5. välikoe: tehtävät 6,7,8,9,0 Saat vastata vain neljään tehtävään/koe; ne sinun pitää itse valita! Kimmo Silvonen.

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Teho vaihtosähköpiireissä ja symmetriset kolmivaihejärjestelmät Luennon keskeinen termistö ja tavoitteet Kompleksinen teho S ja näennästeho S Loisteho

Lisätiedot

Varatun hiukkasen liike

Varatun hiukkasen liike Luku 15 Varatun hiukkasen liike SM-kentässä Tarkastellaan lopuksi varatun hiukkasen liikettä sähkömagneettisessa kentässä. Liikeyhtälö on tullut esiin useaan otteeseen kurssin aikana aiemminkin. Yleisesti

Lisätiedot

2.3 Voiman jakaminen komponentteihin

2.3 Voiman jakaminen komponentteihin Seuraavissa kappaleissa tarvitaan aina silloin tällöin taitoa jakaa voima komponentteihin sekä myös taitoa suorittaa sille vastakkainen operaatio eli voimien resultantin eli kokonaisvoiman laskeminen.

Lisätiedot

Luento 3: Käyräviivainen liike

Luento 3: Käyräviivainen liike Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike 2015-09-14 13:50:32 1/40 luentokalvot_03_combined.pdf (#36) Luennon

Lisätiedot

Kompleksiluvut signaalin taajuusjakauman arvioinnissa

Kompleksiluvut signaalin taajuusjakauman arvioinnissa Kompleksiluvut signaalin taajuusjakauman arvioinnissa Vierailuluento IMA-kurssilla Heikki Huttunen Lehtori, TkT Signaalinkäsittely, TTY heikki.huttunen@tut.fi Department of Signal Processing Fourier-muunnos

Lisätiedot

Luento 5: Käyräviivainen liike

Luento 5: Käyräviivainen liike Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike Ajankohtaista Konseptitesti 1 Kysymys Viereisessä kuvassa leppäkerttu istuu karusellissa,

Lisätiedot

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE Harmoninen voima on voima, jonka suuruus on suoraan verrannollinen poikkeamaan tasapainoasemasta

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 6.3.08 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

Tfy Fysiikka IIB Mallivastaukset

Tfy Fysiikka IIB Mallivastaukset Tfy-.14 Fysiikka B Mallivastaukset 14.5.8 Tehtävä 1 a) Lenin laki: Muuttuvassa magneettikentässä olevaan virtasilmukkaan inusoitunut sähkömotorinen voima on sellainen, että siihen liittyvän virran aiheuttama

Lisätiedot

Todista, että jokaisella parittoman asteen reaalikertoimisella polynomilla on ainakin yksi reaalinen nollakohta. VASTAUS: ...

Todista, että jokaisella parittoman asteen reaalikertoimisella polynomilla on ainakin yksi reaalinen nollakohta. VASTAUS: ... 4 Alkeisfunktiot 41 Potenssifunktio 42 Polynomit ja rationaalifunktiot 102 Todista, että jokaisella parittoman asteen reaalikertoimisella polynomilla on ainakin yksi reaalinen nollakohta 103 Olkoon p()

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

Elektroniikan kaavoja 1 Elektroniikan Perusteet 25.03.1998 I1 I2 VAIHTOVIRROILLA. Z = R + j * X Z = R*R + X*X

Elektroniikan kaavoja 1 Elektroniikan Perusteet 25.03.1998 I1 I2 VAIHTOVIRROILLA. Z = R + j * X Z = R*R + X*X TASAVOLLA Sähkökenttä, potentiaali, potentiaaliero, jännite, varaus, virta, vastus, teho Positiivinen Negatiivinen e e e e e Sähkövaraus e =,602 * 0 9 [As] w e Siirrettäessä varausta sähkökentässä täytyy

Lisätiedot

Äärettömät raja-arvot

Äärettömät raja-arvot Äärettömät raja-arvot Määritelmä Funktion f oikeanpuoleinen raja-arvo pisteessä x 0 on + mikäli kaikilla R > 0 löytyy sellainen δ > 0 että f (x) > R aina kun x 0 < x < x 0 + δ. Funktion f oikeanpuoleinen

Lisätiedot

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a) Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman

Lisätiedot

Radiaanit. Kun kulman α suuruus nyt mitataan tämän kaaren pituutena, saadaan kulmaan arvo radiaaneissa.

Radiaanit. Kun kulman α suuruus nyt mitataan tämän kaaren pituutena, saadaan kulmaan arvo radiaaneissa. Radiaanit Kulmia mitataan matematiikassa paitsi asteissa, myös radiaaneissa. Radiaanien taustaideana on, että kun kulmaa α asetetaan yksikköympyrään, kulmien kylkien välille muodostuu ympyrän kehälle kaari

Lisätiedot

Lukujoukot. Luonnollisten lukujen joukko N = {1, 2, 3,... }.

Lukujoukot. Luonnollisten lukujen joukko N = {1, 2, 3,... }. Lukujoukot Luonnollisten lukujen joukko N = {1, 2, 3,... }. N 0 = {0, 1, 2, 3,... } = N {0}. Kokonaislukujen joukko Z = {0, 1, 1, 2, 2,... }. Rationaalilukujen joukko Q = {p/q p Z, q N}. Reaalilukujen

Lisätiedot

Trigonometriaa ja solve-komento GeoGebralla

Trigonometriaa ja solve-komento GeoGebralla Trigonometriaa ja solve-komento GeoGebralla Valitse yläreunasta Näytä-valikosta CAS ja Piirtoalue. CAS-on laskinohjelma, piirtoalueen avulla saat kuviot näkyville tarvittaessa. Harjoitellaan ensiksi CAS-ikkunan

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.00 SÄHKÖTKNIIKKA JA KTONIIKKA Tentti 4.5.2009: tehtävät,,4,6,9. välikoe: tehtävät,2,,4,5 2. välikoe: tehtävät 6,7,8,9,0 Saat vastata vain neljään tehtävään/koe. Sallitut: Kako, (gr.) laskin, (MAO)..

Lisätiedot

SMG-1100: PIIRIANALYYSI I. Verkkojen taajuusriippuvuus: suo(dat)timet

SMG-1100: PIIRIANALYYSI I. Verkkojen taajuusriippuvuus: suo(dat)timet SMG-00: PIIRIANALYYSI I Verkkojen taajuusriippuvuus: suo(dat)timet alipäästösuodin ylipäästösuodin kaistanpäästösuodin kaistanestosuodin jännitevahvistus rajataajuus kaistanleveys resonanssi Suotimet:

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI.

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI. VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Oskari Uitto i78966 Lauri Karppi j82095 SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI Sivumäärä: 14 Jätetty tarkastettavaksi: 25.02.2008 Työn

Lisätiedot

Tekijä MAA2 Polynomifunktiot ja -yhtälöt = Vastaus a)

Tekijä MAA2 Polynomifunktiot ja -yhtälöt = Vastaus a) K1 a) Tekijä MAA Polynomifunktiot ja -yhtälöt 6.8.016 ( + + ) + ( ) = + + + = + + + = + 4 b) 4 4 ( 5 + ) ( 5 + 1) = 5 + + 5 + 1 4 = + + + 4 = + 5 5 1 1 Vastaus a) 4 + b) 4 + 1 K a) f ( ) = + 1 f () = +

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 29.3.2016 Susanna Hurme Yleisen tasoliikkeen kinematiikka: absoluuttinen ja suhteellinen liike, rajoitettu liike (Kirjan luvut 16.4-16.7) Osaamistavoitteet Ymmärtää,

Lisätiedot

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s.

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s. 7. KSS: Sähkömagnetismi (FOTON 7: PÄÄKOHDAT). MAGNETSM Magneettiset vuoovaikutukset, Magneettikenttä B = magneettivuon tiheys (yksikkö: T = Vs/m ), MAO s. 67, Fm (magneettikenttää kuvaava vektoisuue; itseisavona

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 9 / versio 9. marraskuuta 2015 Tasoaallot, osa 2 (Ulaby 7.3, 7.5, 7.6) Tasoaallon polarisaatio Virranahtoilmiö Tehotiheys ja Poyntingin vektori

Lisätiedot

Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x 1 ja x 2 on voimassa ehto:

Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x 1 ja x 2 on voimassa ehto: 4 Reaalifunktiot 4. Funktion monotonisuus Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x ja x on voimassa ehto: "jos x < x, niin f (x

Lisätiedot

3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 1. Tsunamin synty. 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.

3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 1. Tsunamin synty. 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut. Akustiikan perussuureita, desibelit. 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 1 Tsunamin synty 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 2 1 Tasoaallon synty 3.1.2013

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1 / 18

Lisätiedot

3 TOISEN ASTEEN POLYNOMIFUNKTIO

3 TOISEN ASTEEN POLYNOMIFUNKTIO 3 TOISEN ASTEEN POLYNOMIFUNKTIO POHDITTAVAA 1. Kuvasta voidaan arvioida, että frisbeegolfkiekko käy noin 9 metrin korkeudella ja se lentää noin 40 metrin päähän. Vastaus: Frisbeegolfkiekko käy n. 9 m:n

Lisätiedot