2 AALTOLIIKKEIDEN YHDISTÄMINEN

Koko: px
Aloita esitys sivulta:

Download "2 AALTOLIIKKEIDEN YHDISTÄMINEN"

Transkriptio

1 1 AALTOLIIKKEIDEN YHDISTÄMINEN Kun aalto osuu väliaineen rajapintaan, se heijastuu siitä takaisin joko osittain tai kokonaan. Esimerkiksi äänen osuessa talon seinään se palaa takaisin kaikuna. Missä määrin ja miten takaisinheijastuminen tapahtuu riippuu rajapinnan ominaisuuksista. Väliaineen reunaa kohti etenevä aalto ja jo aikaisemmin väliaineen reunasta takaisin heijastunut aalto voivat esiintyä yhtä aikaa samassa tilassa. Tästä seuraa ilmiöitä, joita sanotaan interferenssiksi. Se miten kaksi (tai useampi) samanaikaista aaltoa poikkeuttaa väliaineen osasia määräytyy ns. superpositioperiaatteesta. Kun systeemissä on kaksi rajapintaa, kuten esimerkiksi molemmista päistään kiinnitetyssä kitaran kielessä, syntyy toistuvia heijastuksia ja osoittautuu, että systeemissä voi edetä vain tietyn taajuiset aallot. Näitä erityisiä taajuuksia ja niihin liittyviä aaltojen muotoja sanotaan systeemin normaalivärähdysmuodoiksi. Nyt tutkimme edellämainittuja ilmiöitä mekaanisten aaltojen tapauksessa. Interferenssi-ilmiöt ovat tärkeitä myös ei-mekaanisilla aalloilla ja valon tapaukseen palaamme tarkemmin myöhemmin..1 HEIJASTUMINEN JA LÄPÄISY Tutkitaan aallon heijastumista kahden väliaineen rajapinnasta käyttäen esimerkkinä köydessä etenevää poikittaista aaltoa. Tarkastellaan kahta erilaista tapausta. Kuvassa vasemmalla köyden pää on kiinnitetty, eikä se pääse liikkumaan aallon osuessa siihen. Kuvassa oikealla köyden pää on vapaa ja se pääsee liikkumaan aallon vaikutuksesta ylös-alas-suunnassa. Se ehto miten köysi on kiinnitetty on ns. rajapintaehto (rajaehto, reunaehto, boundary condition). Köyden rajapintaan (seinään, köyden päähän) saapuva pulssi heijastuu (kimpoaa takaisin). Jos pää on kiinnitetty, pulssi palaa takaisin ylösalaisin kääntyneenä. Tämä johtuu seinän köyteen kohdistamasta reaktiovoimasta, joka on yhtä suuri, mutta vastakkaissuuntainen kuin saapuvan pulssin seinään kohdistama voima. Pulssin ylösalaisin kääntyminen vastaa vaiheen siirtymistä 18 (puhutaan :n vaihe-siirrosta). Jos köyden pää on vapaa liikkumaan, siihen ei kohdistu ulkoisia voimia ja heijastunut pulssi ei käänny. Vaihesiirtoa ei siis tapahdu. Kun aalto kohtaa absoluuttisen jäykän seinän, kaikki aallon energia heijastuu takaisin. Yleensä rajapinnat eivät kuitenkaan ole absoluuttisen jäykkiä ja osa aallon energiasta pääsee rajapinnan toiselle puolelle. Osa aallosta siis läpäisee rajapinnan. Viereisessä kuvassa kaksi erivahvuista köyttä on liitetty toisiinsa. Köysien liitoskohta edustaa nyt rajapintaa, jota kohti pulssi saapuu kuvassa (a). Rajapinnassa osa pulssista heijastuu takaisin ja osa menee läpi. Mitä raskaampi jälkimmäinen köysi on sitä vähemmän menee läpi ja

2 3 äärettömän raskaan köyden tapauksessa tilanne vastaa jo edellisen esimerkin seinää. Periodisen aallon tapauksessa läpäisseen aallon - taajuus (tai f ) ei muutu (helppo ymmärtää) - nopeus v muuttuu, koska muuttuu - aallonpituus muuttuu yhtälön v / mukaisesti. Kuvassa (yllä) aalto saapuu "kevyemmästä" väliaineesta "raskaampaan", jolloin heijastuneessa aallossa havaitaan :n vaihesiirto (vrt. köysi kiinnitetty seinään). Jos aalto saapuu raskaammasta väliaineesta kevyempään, vaihesiirtoa ei havaita. Läpimennyt aalto ei koskaan koe vaihesiirtoa. Esimerkki: Köydessä etenee siniaalto y( x, t) Asin( kx t). Aaltoon aiheutetaan (tavalla tai toisella) yht äkkinen 18 asteen vaihesiirto. Osoita, että aalto kääntyy ylösalaisin. Ratkaisu: Vaihesiirto tarkoittaa: y( x, t) Asin( kxt ). Tässä eli 18 ja koska sin( ) sincos cossin saadaan y( x, t) Asin( kxt)cos( ) Acos( kx t)sin( ), mistä y( x, t) Asin( kx t) eli kääntynyt ylösalaisin alkuperäiseen verrattuna. Kuva piirretty ajanhetkellä t : 4. SUPERPOSITIOPERIAATE Jos useampia aaltoliikkeitä vaikuttaa samanaikaisesti määrättyyn väliaineen pisteeseen, niin pisteen poikkeama tasapainoasemasta saadaan laskemalla yhteen eri aaltoliikkeiden erikseen aiheuttamat poikkeamat. Resultanttiaalto on siis yksittäisten aaltojen summa ja jos esimerkiksi y1( xt,) ja y( xt,) edustavat kahden osa-aallon aaltofunktioita, niin kokonaisaaltofunktio on y (,) xt y(,) xt y(,) xt. (..1) tot 1 Matemaattisesti summautuvuusominaisuus on seurausta aaltoyhtälön (1..3) y 1 y x v t lineaarisuudesta. Lineaarisuus tässä tarkoittaa juuri sitä, että jos y1( xt,) ja y( xt,) ovat aaltoyhtälön ratkaisuja, niin myös niiden summa on ratkaisu. Tämä on helposti osoitettavissa sillä y1 1 y1 ja x v t ja laskemalla nämä yhteen saadaan y x 1 v y t y y 1 y 1 y x x v t v t josta 1 ( y 1 y) ( y 1 y). x v t Myös summa siis toteuttaa aaltoyhtälön. 1 1

3 5 Yksi superpositioperiaatteen seurauksista on se, että kahden aallon kohdatessa ne jatkavat kohtaamisen jälkeen matkaansa täysin muuttumattomina aivan kuin mitään ei olisi tapahtunut. Tässä tarkastelimme aaltojen ns. lineaarista superpositiota. Se on voimassa silloin, kun amplitudi on niin pieni, että väliaineen palauttava voima noudattaa Hooken lakia, ts. on lineaarinen poikkeaman funktio. Jos amplitudi kasvaa suureksi, väliaine menettää elastisuutensa ja superpositioperiaate ei enää ole voimassa. Tästä sinänsä seuraa hyvin mielenkiintoisia ilmiöitä. Esimerkiksi voimakkaan laser-valon vuorovaikuttaessa materian kanssa havaitaan erinäisiä epälineaarisia ilmiöitä. Tällainen ns. epälineaarinen optiikka on yksi modernin optiikan tärkeimmistä tutkimusalueista. Esimerkki: Laske kahden aallon y1( x, t) 1.sin( kxt) y( x, t).9sin( kxt1.rad) superpositio eli resultantti(summa-)aalto. Ratkaisu: Lasketaan summa y y1 y 1.sin( ).9sin( 1.), missä kx t sisältää paikka- ja aikariippuvuuden. Tunnetusti sin( ) sincos cossin, joten y 1.sin( ).9sin( )cos(1.).9cos( )sin(1.) sin( )[1..9cos(1.)] cos( ).9sin(1.) asin( ) bcos( ), missä a ja b ovat vakioita. Kun merkitään a Acos( ) ja b Asin( ) voidaan käyttää uudelleen edellä mainittua trigonometristä identiteettiä ja kirjoittaa y Asin( ), missä A a b ja arctan( b/ a). Tässä a 1..9cos(1.) ja b.9sin(1.).7573, joten A ja Vastaukseksi kirjoitamme: 6 y1.7sin( kx t.47rad).3 SEISOVA AALTOLIIKE Seisova aalto syntyy superpositioperiaatteen seurauksena silloin, kun annettu aalto esiintyy yhtä aikaa sekä eteenpäin menevänä että takaisin palaavana samassa tilassa samanaikaisesti. Tavallisesti tällainen tilanne havaitaan silloin, kun aalto jossakin etenemisensä pisteessä kokee heijastumisen. Tarkastellaan siis kahta vastakkaisiin suuntiin etenevää harmonista aaltoa, joilla on sama amplitudi, taajuus ja aallonpituus: Resultanttiaalloksi tulee 1 y1( x, t) Asin( kx t), (.3.1) y( x, t) Asin( kx t). (.3.) yxt (,) y(,) xt y(,) xt A[sin( kx t) sin( kx t)]. (.3.3) Kun tässä kirjoitetaan ja sovelletaan identiteettiä saadaan kx t ja kx t sin sin sin ( )cos ( ), 1 1 y( x, t) (Asin kx)cost, (.3.4) joka on seisova aalto. Aalto on esitetty kuvassa alla.

4 7 Suluissa oleva osa (Asin kx ) edustaa aallon ajasta riippumatonta amplitudia, joka riippuu vain paikasta x. Se kertoo, että kaikilla ajanhetkillä köysi muodostaa sinikäyrän, mutta toisin kuin etenevässä aallossa, sinikäyrä pysyy nyt paikoillaan. Se kylläkin värähtelee, hengittää, tekijän cos t mukaisesti. Kaikki köyden osaset värähtelevät harmonisesti samalla taajuudella. A A Solmut (N = node) Seisovan aallon amplitudi on nolla, kun sinkx, ts. kun kx x m, missä m, 1,, eli siis paikoissa x m. (.3.5) Näissä paikoissa poikkeama y on nolla kaikilla ajanhetkillä. Paikkoja sanotaan seisovan aallon solmupisteiksi (nodes, N) tai solmukohdiksi. Solmupisteiden välimatka on /. Solmupisteissä osa-aallot kumoavat aina toisensa. Kuvut (Antinode) Seisovan aallon amplitudilla on maksimi, kun sin( kx) 1, ts. kun kx x m, missä m, 1,, eli paikoissa 1 x m. (.3.6) 8 Näissä paikoissa, solmukohtien puolessa välissä /:n välein, osaaallot vahvistavat toisiaan ja synnyttävät ns. kuvut. Kupu maksimissa Seisovan aallon värähdellessä ajan funktiona sen poikkeama tasapainosta on maksimissaan, kun ajasta riippuva osa cos t saa maksimiarvonsa, ts. cos t 1. Näin käy, kun t t t m, missä nyt m,1,, T eli ajanhetkillä T t m. (.3.7) Köysi suorana Seisova aalto on kaikkialla nolla, kun cost, ts. kun siis kun 1 t m, missä m,1,, 1 T t m. (.3.8) Näillä ajanhetkillä köysi on täysin suora. Toisin kuin etenevät aallot, seisovat aallot eivät kuljeta energiaa. Tämä on helppo todeta esimerkiksi laskemalla aallon keskimääräinen teho lähtien hetkellisen teho lausekkeesta (1.5.3) ja käyttäen aaltofunktiona seisovaa aaltoa (.3.4). Esimerkki: Positiivisen x-akselin suuntaisen köyden toinen pää on kiinnitetty origoon ( x, y ). Köydessä etenee negatiivisen x- akselin suuntaan siniaalto nopeudella 84. m/s, amplitudilla 1.5 mm ja taajuudella 1 Hz. Tämä aalto heijastuu kiinnityspisteestä x. Heijastuneen ja tulevan aallon superpositiona syntyy seisova aalto.

5 9 (a) Esitä seisovan aallon aaltofunktio. (b) Paikallista ne köyden pisteet, jotka eivät liiku ollenkaan. (c) Paikallista ne köyden pisteet, jotka liikkuvat eniten ja laske vastaavat maksimipoikkeamat, -nopeudet ja -kiihtyvyydet. Ratkaisu: Alkuperäisen aallon ominaisuudet: 3 A m, 1 1 ( f ) 1s 754s 1 f 4s k 8.98m v v v 84.m/s v v 84.m/s.7m 1 f 1s (a) Seisova aalto (.3.4) y( x, t) (Asin kx)cost (3. 1 m)sin(8.98m x)cos(754s t) On vielä varmistettava, että tällä on solmu kohdassa x : 3 1 y(, t) (3.1 m)sin()cos(754s t), ts. solmu on!! (b) Köysi ei liiku solmukohdissa (.3.5) x m,.35m,.7m, 1.5m,... (c) Köysi liikkuu eniten kupukohdissa (.3.6) 1 xm.175m,.55m,.875m,... Kupukohdissa sin( kx) 1, joten y( t) Acos t v y( t) dy / dt Asint ay( t) dv y/ dt A cost Näiden maksimiarvot saadaan, kun cos t 1 ja sin t 1: 1 y A (pieni) m max v A.6m/s (suuri) y ay max A 171m/s (valtava, vrt. g) max 3 Lisäpohdintaa: Miten seisovan aallon yhtälö (.3.4) pitäisi kirjoittaa, jos köyden pää olisi kiinnitetty pisteeseen ( x x, y )? Vastaus: y( x, t) [Asin k( x x)]cos t..4 NORMAALIMUODOT Edellisessä tarkastelussa vain toinen köyden päistä oli kiinnitetty ja köysi oletettiin (periaatteessa) äärettömän pitkäksi. Tässä tapauksessa systeemiin sinänsä ei rajoittanut syntyvän seisovan aallon aallonpituutta. Olipa tulevan aallon aallonpituus mikä tahansa aina syntyy seisova aalto. Tarkastellaan nyt miten tilanne muuttuu, kun köyden molemmat päät on kiinnitetty. Molemmista päistä kiinnitettyjä köysiä esiintyy paljon musiikki instrumenteissa, esimerkiksi kitarassa. Kun kitaran kieli saatetaan värähtelemään aalto etenee edestakaisin heijastuen kiinnitetyistä päistä. Nytkin muodostuu seisova aalto eri suuntiin etenevien aaltojen superpositiona. Molemmista päistään kiinnitettyyn köyteen syntyvällä seisovalla aallolla täytyy olla solmupiste köyden molemmissa päissä. Toisaalta, edellisessä kappaleessa totesimme, että seisovan aallon solmupisteet ovat /:n päässä toisistaan. Tästä seuraa, että köyden pituuden L täytyy olla /, tai ( / ), tai 3( / ), jne.... Saamme siis ehdon L n, ( n 1,, 3, ). (.4.1)

6 31 Tämä tarkoittaa sitä, että jos köyden molemmat päät on kiinnitetty, köysi voi värähdellä vain ehdon (.4.1) mukaisilla aallonpituuksilla. Aallonpituudet ovat L n, ( n 1,, 3, ). (.4.) n Neljä ensimmäistä tämän yhtälön mukaista ns. normaalivärähdysmuotoa on esitetty kuvassa alla. Aallonpituuksia n vastaavat taajuudet saadaan puolestaan yhtälöstä v v n fn n ( n 1,, 3, ). (.4.3) L n 3 Matalin taajuus 1 ( f 1 ) vastaa suurinta aallonpituutta ja se saadaan, kun n 1. Tätä taajuutta sanotaan perustaajuudeksi (fundamental frequency). Kaikki muut taajuudet ovat perustaajuuden monikertoja 1, 3 1, 4 1,... ja niitä sanotaan harmonisiksi (harmonics) tai musiikkipiireissä yliääniksi (overtones). Perustaajuus 1 on ensimmäinen harmoninen, taajuus 1 on toinen harmoninen tai ensimmäinen yliääni, on kolmas harmoninen tai toinen yliääni, jne. Jos köysi on kiinnitetty pisteissä x ja x L, niin sen n : nnen seisovan aallon aaltofunktioksi tulee (katso.3.4) y ( x, t) A sin( k x)cos( t), (.4.4) n sw n n missä A sw on seisovan aallon amplitudi ( A), k n / n ja. n n Värähtelevän systeemin normaalimuoto (normal mode) on sellainen liike, missä systeemin kaikki hiukkaset värähtelevät harmonisesti samalla taajuudella siten, että kaikki hiukkaset ohittavat tasapainoasemansa samanaikaisesti ja toisaalta ovat poikkeamansa maksimissa samanaikaisesti. Molemmista päistä kiinnitetty köysi värähtelee siis normaalimuotoisesti ja esimerkiksi edellisen sivun kuva esittää normaalimuotoja arvoilla n 1,, 3 ja 4. Köydessä (esim. kitaran kielessä) eri normaalimuodot värähtelevät tavallisesti yhtäaikaa. Värähtely voi siis olla hyvinkin monimutkaista. Eri normaalimuotojen virittyminen värähtelemään riippuu alkuehdoista, ts. siitä miten kieli alun perin saatetaan värähtelemään.

7 33 Toisaalta mikä tahansa köyden liikemuoto voidaan esittää normaalimuotojen lineaarikombinaationa. Monimutkaisen värähtelyn purkamista eri normaalimuodoiksi sanotaan Fourieranalyysiksi. Edellisen sivun kuvassa (alakuvassa) L : n pituista kitaran kieltä näpäytetään etäisyydeltä L /4 vasemmasta reunasta. Kieleen syntyvä monimutkainen värähtely voidaan esittää sinimuotoisten normaalimuotojen kombinaationa (yläkuva). Esimerkki: Erään jättiläissellon kielen pituus on 5. m, lineaarinen massatiheys 4. g/m ja perustaajuus. Hz (alin ihmisen kuulema taajuus). Laske a) aallon nopeus kielessä ja kielen jännitys, b) toisen harmonisen taajuus ja aallonpituus ja c) kielen synnyttämän ääniaallon taajuus ja aallonpituus, kun kieli värähtelee perustaajuudellaan ja toisella harmonisellaan. Oleta äänen nopeudeksi ilmassa 344 m/s. Ratkaisu: Värähtelevästä kielestä on annettu seuraavat tiedot: L 5.m, kg/m ja f 1. Hz. a) Kielen pituus on 5. m, joten yhtälön (.4.) n L/ n mukaan perustaajuutta ( n 1) vastaava aallonpituus on 1. m. Nyt aallon nopeus kielessä saadaan laskemalla vf1.m.hz m/s 1 1 ja jännitys yhtälöstä (1.4.1) ratkaisemalla 3kg m F v N m s b) Toisen harmonisen ( n ) taajuus on yhtälön (.4.3) mukaan f v m/s 4.Hz f L 1.m 1 ja aallonpituus yhtälön (.4.) mukaan 34 L/ 5.m. c) Kieli hakkaa ilmaa sillä taajuudella, jolla se värähtelee, joten taajuus ilmassa on sama kuin kielessä. Perusvärähdys f 1. Hz Aallonpituus ilmassa v 344m/s 17.m f.hz Toinen harmoninen f 4. Hz Aallonpituus ilmassa v 344m/s 8.6m f 4.Hz.5 FOURIER-SARJOISTA Kappaleessa 1.1 totesimme, että mikä tahansa jaksollinen aalto (myös ei-harmoniset) voidaan esittää harmonisten sini- ja kosiniaaltojen lineaarikombinaationa. Jaksollisen aallon purkamista sen harmonisiin komponentteihin sanotaan Fourier-analyysiksi. Fourier-sarja: Olkoon y( xv t) mikä tahansa rajoitettu jaksollinen aalto, jonka aallonpituus on. Voidaan osoittaa (ei johdeta tässä), että sarja A Amcos m ( x t) Bmsin m ( x t) m1 v v (.5.1)

8 35 suppenee kohti funktiota y( xv t) kaikissa pisteissä, joissa funktio on jatkuva. Epäjatkuvuuskohdissa sarja suppenee kohti funktion toispuoleisten raja-arvojen keskiarvoa. Sarjassa harmonisten termien amplitudit A m ja periodin ( x x ) ulottuvista integraaleista x x B m saadaan yli A y( x) dx, (.5.) x Am y( x)cos m x dx L, (.5.3) x x Bm y( x)sin m x dx L. (.5.4) x Näissä yx ( ) yxt (, ). Jos siis funktio yx ( ) tunnetaan, amplitudit A, A m ja B m voidaan laskea ja Fourier-analyysi on suoritettu. Esimerkki: Tee Fourier-analyysi suorakaideaallolle, kun / x / 4 yx (,) 1, kun / 4 x/ 4, kun + / 4 x/ 36 Analyysi: Kannattaa valitan x /, jolloin integroimisväliksi tulee / /, ts. se sijoittuu symmetrisesti origon suhteen. Edelleen, koska yx ( ) on parillinen funktio ja sini-funktio on pariton, integraali (.5.4) on aina nolla. Riittää, kun laskemme integraalit (.5.) ja (.5.3). Siis ensin / /4 A y( x) dx dx 1 / /4 ja sitten / /4 Am y( x)cosm x dx cosm x dx. / Tässä hyödynnettiin tulon y cos... parillisuutta. Edelleen tulee 4 1 /4 Am sin m x sin m m m. Ensimmäisille Am -kertoimille saadaan: A 1, A1 1 1, 1 A, A 3 3, 1 A, A 4 5 5,... Jaksollinen suorakaideaalto voidan siis esittää harmonisten kosiniaaltojen summana (.5.1) 1 y( x, t) sin m cos m x t m1 m v 1 1 cos ( x t) cos 3 ( x t) v v cos5 ( xvt) cos7 ( xvt) 5 7

Kompleksiesitys: Harmoninen aalto esitetään usein kompleksimuodossa

Kompleksiesitys: Harmoninen aalto esitetään usein kompleksimuodossa Kompleksiesitys: Harmoninen aalto esitetään usein kompleksimuodossa 13 i( kx-w t) %, y = Ae joka Eulerin kaavalla avautuu muotoon y% = Acos( kx- wt) + iasin( kx-wt). Kompleksiesitys sisältää siis sekä

Lisätiedot

= 0.175m, 0.525m, 0.875m,...

= 0.175m, 0.525m, 0.875m,... 9 (a) Esitä seisovan aallon aaltofunktio. (b) Paikallista ne köyden pisteet, jotka eivät liiku ollenkaan. (c) Paikallista ne köyden pisteet, jotka liikkuvat eniten ja laske vastaavat maksimipoikkeamat,

Lisätiedot

YLEINEN AALTOLIIKEOPPI

YLEINEN AALTOLIIKEOPPI YLEINEN AALTOLIIKEOPPI KEVÄT 2017 1 Saana-Maija Huttula (saana.huttula@oulu.fi) Maanantai Tiistai Keskiviikko Torstai Perjantai Vk 8 Luento 1 Mekaaniset aallot 1 Luento 2 Mekaaniset aallot 2 Ääni ja kuuleminen

Lisätiedot

Luento 15: Mekaaniset aallot

Luento 15: Mekaaniset aallot Luento 15: Mekaaniset aallot Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot Ajankohtaista Luennon sisältö Mekaaniset aallot Eteneminen Aallon nopeus

Lisätiedot

Luento 15: Mekaaniset aallot. Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot

Luento 15: Mekaaniset aallot. Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot Luento 15: Mekaaniset aallot Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot 1 / 40 Luennon sisältö Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa

Lisätiedot

Ratkaisu: Vaatimus on, että muuttujat x ja t esiintyvät muodossa x-v t. On siis kirjoitettava,

Ratkaisu: Vaatimus on, että muuttujat x ja t esiintyvät muodossa x-v t. On siis kirjoitettava, 8 Ratkaisu: Vaatimus on, että muuttujat x ja t esiintyvät muodossa x-v t. On siis kirjoitettava 3 3 y = =, ( x- vt) + 1 ( x- t) + 1 missä siis v = m/s. Tulos on SI-yksiköissä, joten x ja y ovat metreinä

Lisätiedot

SEISOVA AALTOLIIKE 1. TEORIAA

SEISOVA AALTOLIIKE 1. TEORIAA 1 SEISOVA AALTOLIIKE MOTIVOINTI Työssä tutkitaan poikittaista ja pitkittäistä aaltoliikettä pitkässä langassa ja jousessa. Tarkastellaan seisovaa aaltoliikettä. Määritetään aaltoliikkeen etenemisnopeus

Lisätiedot

2 Mekaaninen aalto. Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium).

2 Mekaaninen aalto. Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium). 2 Mekaaninen aalto Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium). 1 Mekaanisten aaltojen vastakohtana ovat sähkömagneettiset allot, jotka kulkevat

Lisätiedot

Luento 15: Ääniaallot, osa 2

Luento 15: Ääniaallot, osa 2 Luento 15: Ääniaallot, osa 2 Aaltojen interferenssi Doppler Laskettuja esimerkkejä Luennon sisältö Aaltojen interferenssi Doppler Laskettuja esimerkkejä Aaltojen interferenssi Samassa pisteessä vaikuttaa

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys12 Kevät 21 Jukka Maalampi LUENTO 11 Mekaaninen aaltoliike alto = avaruudessa etenevä järjestäytynyt häiriö. alto altoja on kahdenlaisia: Poikittainen aalto - poikkeamat kohtisuorassa

Lisätiedot

1 PERUSKÄSITTEITÄ 1.1 AALTOJEN TYYPIT

1 PERUSKÄSITTEITÄ 1.1 AALTOJEN TYYPIT 1 1 PERUSKÄSITTEITÄ Luonto on täynnä aaltoja. Aaltoliikettä voi syntyä kimmoisissa systeemeissä, jotka poikkeutettuna tasapainotilastaan pyrkivät palaamaan siihen takaisin. Aalto etenee, kun poikkeama

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan

Lisätiedot

766329A Aaltoliike ja optiikka

766329A Aaltoliike ja optiikka 76639A Aaltoliike ja optiikka Seppo Alanko Oulun yliopisto Fysiikan laitos Kevät 5 Perustuu oppikirjoihin: H. D. Young and R. A. Freedman University Physics, Addison-Wesley th ed., and th ed., 4 F. L.

Lisätiedot

FYS03: Aaltoliike. kurssin muistiinpanot. Rami Nuotio

FYS03: Aaltoliike. kurssin muistiinpanot. Rami Nuotio FYS03: Aaltoliike kurssin muistiinpanot Rami Nuotio päivitetty 24.1.2010 Sisältö 1. Mekaaninen aaltoliike 2 1.1. Harmoninen voima 2 1.2. Harmoninen värähdysliike 2 1.3. Mekaaninen aalto 3 1.4. Mekaanisen

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 6 Yksinkertainen harmoninen liike yhteys ympyräliikkeeseen energia dynamiikka Värähdysliike Knight Ch 14 Heilahtelut pystysuunnassa ja gravitaation

Lisätiedot

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic

Lisätiedot

9 VALOAALTOJEN SUPERPOSITIO

9 VALOAALTOJEN SUPERPOSITIO 09 9 VALOAALTOJEN SUPERPOSITIO Edellisissä kappaleissa olemme tutkineet valon heijastumista peileissä ja taittumista linsseissä geometrisen optiikan approksimaation avulla Approksimaatiossa valon aaltoluonnetta

Lisätiedot

16 Ääni ja kuuleminen

16 Ääni ja kuuleminen 16 Ääni ja kuuleminen Ääni on väliaineessa etenevää pitkittäistä aaltoliikettä. Ihmisen kuuloalue 20 Hz 20 000 Hz. (Infraääni kuuloalue ultraääni) 1 2 Ääniaallon esittämistapoja: A = poikkeama-amplitudi

Lisätiedot

BM30A0240, Fysiikka L osa 4

BM30A0240, Fysiikka L osa 4 BM30A0240, Fysiikka L osa 4 Luennot: Heikki Pitkänen 1 Oppikirja: Young & Freedman: University Physics Luku 14 - Periodic motion Luku 15 - Mechanical waves Luku 16 - Sound and hearing Muuta - Diffraktio,

Lisätiedot

, tulee. Käyttämällä identiteettiä

, tulee. Käyttämällä identiteettiä 44 euraavaksi käytämme tilavuusmodulin B määritelmää (katso sivu 4) B =- dp /( dv / V ). Tässä dp on paineen muutos, joka nyt on pxt (,). aamme siten dv yxt (,) p(,) x t =- B =-B. (3.3.3) V x Kun tähän

Lisätiedot

- 3 välikoetta, jokaisessa 4 tehtävää, yht. 12 teht. - 6 pistettä yhdestä tehtävästä - max pisteet 72 (+ lisät harjoituksista)

- 3 välikoetta, jokaisessa 4 tehtävää, yht. 12 teht. - 6 pistettä yhdestä tehtävästä - max pisteet 72 (+ lisät harjoituksista) 1/2 KURSSIN ARVOSTELU - 3 välikoetta, jokaisessa 4 tehtävää, yht. 12 teht. - 6 pistettä yhdestä tehtävästä - max pisteet 72 (+ lisät harjoituksista) pisteet arvosana 00,00 35,25-35,50 41,25 1 1/2 maksimista

Lisätiedot

Luento 11: Periodinen liike

Luento 11: Periodinen liike Luento 11: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r Konseptitesti 1 Tehtävänanto Kuvassa on jouseen kytketyn massan sijainti ajan funktiona. Kuvaile

Lisätiedot

Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori!

Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! 6.1 Työ Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! Siirtymä s = r 2 r 1 Kun voiman kohteena olevaa kappaletta voidaan kuvata

Lisätiedot

Luento 13: Periodinen liike

Luento 13: Periodinen liike Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos Ajankohtaista

Lisätiedot

Tietoliikennesignaalit & spektri

Tietoliikennesignaalit & spektri Tietoliikennesignaalit & spektri 1 Tietoliikenne = informaation siirtoa sähköisiä signaaleja käyttäen. Signaali = vaihteleva jännite (tms.), jonka vaihteluun on sisällytetty informaatiota. Signaalin ominaisuuksia

Lisätiedot

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina 31.5.2012. T 6.1 (pakollinen): Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä.

Lisätiedot

16 ÄÄNI JA KUULEMINEN (Sound and Hearing)

16 ÄÄNI JA KUULEMINEN (Sound and Hearing) 8 16 ÄÄNI JA KUULEMINEN (Sound and Hearing) Ihmisen kannalta yksi tärkeimmistä luonnossa esiintyvistä aaltoilmiöistä muodostuu ilmassa etenevistä pitkittäisistä aalloista eli ääniaalloista (sound waves)

Lisätiedot

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen 3 VALON POLARISAATIO 3.1 Johdanto Mawellin htälöiden avulla voidaan johtaa aaltohtälö sähkömagneettisen säteiln etenemiselle väliaineessa. Mawellin htälöiden ratkaisusta seuraa aina, että valo on poikittaista

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

SIGNAALITEORIAN KERTAUSTA 1

SIGNAALITEORIAN KERTAUSTA 1 SIGNAALITEORIAN KERTAUSTA 1 1 (26) Fourier-muunnos ja jatkuva spektri Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka esittäminen graafisesti edellyttää 3D-kuvaajan piirtämisen. Yleensä

Lisätiedot

Luento 2. Jaksolliset signaalit

Luento 2. Jaksolliset signaalit Luento Jaksollisten signaalien Fourier-sarjat Viivaspektri S-.7. Signaalit ja järjestelmät 5 op KK ietoliikennelaboratorio Jaksollinen (periodinen) Jaksolliset signaalit Jaksonaika - / / Perusjakso Amplitudi

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1). H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika

Lisätiedot

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus värähtelytiheyden. 1 Funktiot ja aallot Aiemmin käsiteltiin funktioita ja miten niiden avulla voidaan kuvata fysiikan

Lisätiedot

3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta.

3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta. 3 Ääni ja kuulo 1 Mekaanisista aalloista ääni on ihmisen kannalta tärkein. Ääni on pitkittäistä aaltoliikettä, eli ilman (tai muun väliaineen) hiukkaset värähtelevät suuntaan joka on sama kuin aallon etenemissuunta.

Lisätiedot

9 VALOAALTOJEN SUPERPOSITIO

9 VALOAALTOJEN SUPERPOSITIO 09 9 VALOAALTOJEN SUPERPOSITIO Edellisissä kaaleissa olemme tutkineet valon heijastumista eileissä ja taittumista linsseissä geometrisen otiikan aroksimaation avulla Aroksimaatiossa valon aaltoluonnetta

Lisätiedot

Pakotettu vaimennettu harmoninen värähtelijä Resonanssi

Pakotettu vaimennettu harmoninen värähtelijä Resonanssi Pakotettu vaimennettu harmoninen värähtelijä Resonanssi Tällä luennolla tavoitteena Mikä on pakkovoiman aiheuttama vaikutus vaimennettuun harmoniseen värähtelijään? Mikä on resonanssi? Kertaus: energian

Lisätiedot

Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa

Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa Potentiaalikuoppa Luento 9 Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa U( x ) = U U( x ) = 0 0 kun x < 0 tai x > L, kun 0 x L. Kuopan kohdalla hiukkanen on vapaa,

Lisätiedot

Jaksollisen signaalin spektri

Jaksollisen signaalin spektri Jaksollisen signaalin spektri LuK-tutkielma Topi Suviaro 2257699 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 215 Sisältö Johdanto 2 1 Jaksollisuudesta 2 2 Spektristä 3 2.1 Symmetrian vaikutuksesta

Lisätiedot

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen)

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen) Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen Vapaaseen hiukkaseen ei vaikuta voimia, joten U(x = 0. Vapaan hiukkasen energia on sen liike-energia eli E=p /m. Koska hiukkasella on määrätty energia,

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Syksy 2009 Jukka Maalampi LUENTO 12 Aallot kahdessa ja kolmessa ulottuvuudessa Toistaiseksi on tarkasteltu aaltoja, jotka etenevät yhteen suuntaan. Yleisempiä tapauksia ovat

Lisätiedot

Aaltoliike ajan suhteen:

Aaltoliike ajan suhteen: Aaltoliike Aaltoliike on etenevää värähtelyä Värähdysliikkeen jaksonaika T on yhteen värähdykseen kuluva aika Värähtelyn taajuus on sekunnissa tapahtuvien värähdysten lukumäärä Taajuuden ƒ yksikkö Hz (hertsi,

Lisätiedot

Luento 14: Periodinen liike, osa 2. Vaimennettu värähtely Pakkovärähtely Resonanssi F t F r

Luento 14: Periodinen liike, osa 2. Vaimennettu värähtely Pakkovärähtely Resonanssi F t F r Luento 14: Periodinen liike, osa 2 Vaimennettu värähtely Pakkovärähtely Resonanssi θ F µ F t F r m g 1 / 20 Luennon sisältö Vaimennettu värähtely Pakkovärähtely Resonanssi 2 / 20 Vaimennettu värähtely

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle / MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,

Lisätiedot

Puheen akustiikan perusteita Mitä puhe on? 2.luento. Äänet, resonanssi ja spektrit. Äänen tuotto ja eteneminen. Puhe äänenä

Puheen akustiikan perusteita Mitä puhe on? 2.luento. Äänet, resonanssi ja spektrit. Äänen tuotto ja eteneminen. Puhe äänenä Puheen akustiikan perusteita Mitä puhe on? 2.luento Martti Vainio Äänet, resonanssi ja spektrit Fonetiikan laitos, Helsingin yliopisto Puheen akustiikan perusteita p.1/37 S-114.770 Kieli kommunikaatiossa...

Lisätiedot

3.1 PITKITTÄISEN AALLON NOPEUS JA ENERGIA

3.1 PITKITTÄISEN AALLON NOPEUS JA ENERGIA 37 3 ÄÄNI Yksi ihmisen kannalta tärkeimmistä luonnossa esiintyvistä aaltoilmiöistä muodostuu ilmassa etenevistä pitkittäisistä aalloista eli ääniaalloista (sound waves) Tarkastelemme nyt ääntä lähinnä

Lisätiedot

2. Fourier-sarjoista. Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu

2. Fourier-sarjoista. Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu 2. Fourier-sarjoista Fourier-analyysi: Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu Matemaattisen analyysin täkein työväline "Jokainen funktio" voidaan esittää harmonisten värähtelyjen, so.

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Meaniian jatourssi Fys10 Sysy 009 Jua Maalampi LUENTO 6 Harmonisen värähdysliieen energia Jousen potentiaalienergia on U ( x missä on jousivaio ja Dx on poieama tasapainosta. Valitaan origo tasapainopisteeseen,

Lisätiedot

Ihmiskorva havaitsee ääniaallot taajuusvälillä 20 Hz 20 khz.

Ihmiskorva havaitsee ääniaallot taajuusvälillä 20 Hz 20 khz. 3 Ääni ja kuulo 3.1 Intro e1 Mekaanisista aalloista ääni on ihmisen kannalta tärkein. Ääni on pitkittäistä aaltoliikettä, eli ilman (tai muun väliaineen) hiukkaset värähtelevät suuntaan joka on sama kuin

Lisätiedot

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot. 7 Sovelluksia 90 a) Koska sin saa kaikki välillä [,] olevat arvot, niin funktion f ( ) = sin pienin arvo on = ja suurin arvo on ( ) = b) Koska sin saa kaikki välillä [0,] olevat arvot, niin funktion f

Lisätiedot

läheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä?

läheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä? BM20A5840 - Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2017 1. Tunnemme vektorit a = [ 1 2 3 ] ja b = [ 2 1 2 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien

Lisätiedot

Luento 11: Periodinen liike

Luento 11: Periodinen liike Luento 11: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä θ F t m g F r Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä Johdanto Tarkastellaan

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

Värähdysliikkeet. q + f (q, q, t) = 0. q + f (q, q) = F (t) missä nopeusriippuvuus kuvaa vaimenemista ja F (t) on ulkoinen pakkovoima.

Värähdysliikkeet. q + f (q, q, t) = 0. q + f (q, q) = F (t) missä nopeusriippuvuus kuvaa vaimenemista ja F (t) on ulkoinen pakkovoima. Torstai 18.9.2014 1/17 Värähdysliikkeet Värähdysliikkeet ovat tyypillisiä fysiikassa: Häiriö oskillaatio Jaksollinen liike oskillaatio Yleisesti värähdysliikettä voidaan kuvata yhtälöllä q + f (q, q, t)

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Aalto köydessä Kohdassa x olevan ainehiukkasen poikkeama tasapainosta y ajan funktiona on y( x, t) Asin( kx t 0) Ketjusääntö: Ainehiukkasen

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 15.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinematiikka: asema, nopeus ja kiihtyvyys (Kirjan luvut 12.1-12.5, 16.1 ja 16.2) Osaamistavoitteet Ymmärtää

Lisätiedot

Useita oskillaattoreita yleinen tarkastelu

Useita oskillaattoreita yleinen tarkastelu Useita oskillaattoreita yleinen tarkastelu Useita riippumattomia vapausasteita q i, i =,..., n ja potentiaali vastaavasti U(q, q 2,..., q n). Tasapainoasema {q 0, q0 2,..., q0 n} q 0 Käytetään merkintää

Lisätiedot

15 MEKAANISET AALLOT (Mechanical Waves)

15 MEKAANISET AALLOT (Mechanical Waves) 3 15 MEKAANISET AALLOT (Mechaical Waves) Luoto o täyä aaltoja. Aaltoliikettä voi sytyä systeemeissä, jotka poikkeutettua tasapaiotilastaa pyrkivät palaamaa siihe takaisi. Aalto eteee, ku poikkeama (häiriö)

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

Normaaliryhmä. Toisen kertaluvun normaaliryhmä on yleistä muotoa

Normaaliryhmä. Toisen kertaluvun normaaliryhmä on yleistä muotoa Normaaliryhmä Toisen kertaluvun normaaliryhmä on yleistä muotoa x = u(t,x,y), y t I, = v(t,x,y), Funktiot u = u(t,x,y), t I ja v = v(t,x,y), t I ovat tunnettuja Toisen kertaluvun normaaliryhmän ratkaisu

Lisätiedot

4 Optiikka. 4.1 Valon luonne

4 Optiikka. 4.1 Valon luonne 4 Optiikka 4.1 Valon luonne 1 Valo on etenevää aaltoliikettä, joka syntyy sähkökentän ja magneettikentän yhteisvaikutuksesta. Jos sähkömagneettinen aalto (valoaalto) liikkuu x-akselin suuntaan, värähtelee

Lisätiedot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot 3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,

Lisätiedot

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi Tehtävä 1 Tornadon virtauskenttää voidaan approksimoida kaksiulotteisen nielun ja pyörteen summana Oleta, että nielun voimakkuus on m < ja pyörteen voimakkuus on > (a Määritä tornadon potentiaali- ja virtafunktiot

Lisätiedot

W el = W = 1 2 kx2 1

W el = W = 1 2 kx2 1 7.2 Elastinen potentiaalienergia Paitsi gravitaatioon, myös materiaalien deformaatioon (muodonmuutoksiin) liittyy systeemin rakenneosasten keskinäisiin paikkoihin liittyvää potentiaalienergiaa Elastinen

Lisätiedot

Luento 14: Ääniaallot ja kuulo

Luento 14: Ääniaallot ja kuulo Luento 14: Ääniaallot ja kuulo Pikajohdanto elastisuusteoriaan Ääniaallot Luennon sisältö Pikajohdanto elastisuusteoriaan Ääniaallot Miksi pikajohdanto? Osa ääniaaltojen käsittelystä perustuu elastisuusteoriaan

Lisätiedot

Äänen eteneminen ja heijastuminen

Äänen eteneminen ja heijastuminen Äänen ominaisuuksia Ääni on ilmamolekyylien tihentymiä ja harventumia. Aaltoliikettä ja värähtelyä. Värähtelevä kappale synnyttää ääntä. Pistemäinen äänilähde säteilee pallomaisesti ilman esteitä. Käytännössä

Lisätiedot

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x BM0A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 4, Kevät 017 Päivityksiä: 1. Ratkaise differentiaaliyhtälöt 3y + 4y = 0 ja 3y + 4y = e x.. Ratkaise DY (a) 3y 9y + 6y = e 10x (b) Mikä on edellisen

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alustavat hyvän vastauksen piirteet on suuntaa-antava kuvaus kokeen tehtäviin odotetuista vastauksista ja tarkoitettu ensisijaisesti

Lisätiedot

a(t) = v (t) = 3 2 t a(t) = 3 2 t < t 1 2 < 69 t 1 2 < 46 t < 46 2 = 2116 a(t) = v (t) = 50

a(t) = v (t) = 3 2 t a(t) = 3 2 t < t 1 2 < 69 t 1 2 < 46 t < 46 2 = 2116 a(t) = v (t) = 50 BM0A5810 - Differentiaalilaskenta ja sovellukset Harjoitus 1, Syksy 015 1. (a) Kiihtyvyys on nopeuden derivaatta, eli a(t) v (t) 3 t 1 + 1 Nyt on siis selvitettävä, milloin kiihtyvyys kasvaa itseisarvoltaan

Lisätiedot

Luento 18: Kertausluento

Luento 18: Kertausluento Luento 18: Kertausluento Värähdysliike Harmoninen värähtely Vaimennettu värähtely Pakkovärähtely Mekaaniset aallot Eteneminen Seisovat aallot Ääniaallot Luennon sisältö Värähdysliike Harmoninen värähtely

Lisätiedot

5.10. HIUKKANEN POTENTIAALIKUOPASSA

5.10. HIUKKANEN POTENTIAALIKUOPASSA 5.10. HIUKKANEN POTENTIAALIKUOPASSA eli miten reunaehdot ja normitus vaikuttavat aaltofunktioihin Yleensä Schrödingerin yhtälön ratkaiseminen matemaattisesti on hyvin työlästä ja edellyttää vahvaa matemaattista

Lisätiedot

havainnollistaa Dopplerin ilmiötä ja interferenssin aiheuttamaa huojuntailmiötä

havainnollistaa Dopplerin ilmiötä ja interferenssin aiheuttamaa huojuntailmiötä FYSP0 / K3 DOPPLERIN ILMIÖ Työn tavoitteita havainnollistaa Dopplerin ilmiötä ja interferenssin aiheuttamaa huojuntailmiötä harjoitella mittausarvojen poimimista Capstonen kuvaajalta sekä kerrata maksimiminimi

Lisätiedot

ja siis myös n= nk ( ). Tällöin dk l l

ja siis myös n= nk ( ). Tällöin dk l l Tästä havaitaan, että jos nopeus ei riipu aallonpituudesta, ts. ei ole dispersiota, vg = v p. Tilanne on tällainen esimerkiksi tyhjiössä, missä vg = v p = c. Dispersiivisessä väliaineessa v p = c/ n, missä

Lisätiedot

+ 0, (29.20) 32 SÄHKÖMAGNEETTISET AALLOT (Electromagnetic Waves) i c+ ε 0 dφ E / dt ja silmukan kohdalla vaikuttavan magneettivuon tiheyden

+ 0, (29.20) 32 SÄHKÖMAGNEETTISET AALLOT (Electromagnetic Waves) i c+ ε 0 dφ E / dt ja silmukan kohdalla vaikuttavan magneettivuon tiheyden 5 3 SÄHKÖMAGNEETTISET AALLOT (Electromagnetic Waves) Mitä valo on? Tämä kysymys on askarruttanut ihmisiä vuosisatojen ajan. Nykykäsityksen mukaan valo on luonteeltaan kaksijakoinen eli dualistinen. Valoa

Lisätiedot

Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen

Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen Valon luonne ja eteneminen Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen 1 Valonlähteitä Perimmiltään valon lähteenä toimii kiihtyvässä liikkeessä olevat sähkövaraukset Kaikki

Lisätiedot

Luvun 8 laskuesimerkit

Luvun 8 laskuesimerkit Luvun 8 laskuesimerkit Esimerkki 8.1 Heität pallon, jonka massa on 0.40 kg seinään. Pallo osuu seinään horisontaalisella nopeudella 30 m/s ja kimpoaa takaisin niin ikään horisontaalisesti nopeudella 20

Lisätiedot

Luento 2: Liikkeen kuvausta

Luento 2: Liikkeen kuvausta Luento 2: Liikkeen kuvausta Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Luennon sisältö Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Liikkeen ratkaisu kiihtyvyydestä

Lisätiedot

Esimerkki: Tarkastellaan korkeudella h ht () putoavaa kappaletta, jonka massa on m (ks. kuva).

Esimerkki: Tarkastellaan korkeudella h ht () putoavaa kappaletta, jonka massa on m (ks. kuva). 6 DIFFERENTIAALIYHTÄLÖISTÄ Esimerkki: Tarkastellaan korkeudella h ht () putoavaa kappaletta, jonka massa on m (ks. kuva). Newtonin II:n lain (ma missä Yhtälö dh dt m dh dt F) mukaan mg, on kiihtyvyys ja

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä 1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 9 Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa

Lisätiedot

Integroimistekniikkaa Integraalifunktio

Integroimistekniikkaa Integraalifunktio . Integroimistekniikkaa.. Integraalifunktio 388. Vertaa funktioiden ln ja ln, b) arctan ja arctan + k k, c) ln( + 2 ja ln( 2, missä a >, derivaattoja toisiinsa. Tutki funktioiden erotusta muuttujan eri

Lisätiedot

TRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT

TRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT 3.0.07 0 π TRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT π = π 3π π = π 5π 6π = 3π 7π TRIGONOMETRISET FUNKTIOT, MAA7 Tarkastellaan aluksi sini-funktiota ja lasketaan sin :n arvoja, kun saa arvoja 0:sta 0π :ään

Lisätiedot

1 WKB-approksimaatio. Yleisiä ohjeita. S Harjoitus

1 WKB-approksimaatio. Yleisiä ohjeita. S Harjoitus S-114.1427 Harjoitus 3 29 Yleisiä ohjeita Ratkaise tehtävät MATLABia käyttäen. Kirjoita ratkaisut.m-tiedostoihin. Tee tuloksistasi lyhyt seloste, jossa esität laskemasi arvot sekä piirtämäsi kuvat (sekä

Lisätiedot

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE Harmoninen voima on voima, jonka suuruus on suoraan verrannollinen poikkeamaan tasapainoasemasta

Lisätiedot

H7 Malliratkaisut - Tehtävä 1

H7 Malliratkaisut - Tehtävä 1 H7 Malliratkaisut - Tehtävä Eelis Mielonen 7. lokakuuta 07 a) Palautellaan muistiin Maclaurin sarjan määritelmä (Taylorin sarja origon ympäristössä): f n (0) f(x) = (x) n Nyt jos f(x) = ln( + x) saadaan

Lisätiedot

Trigonometriset funk4ot

Trigonometriset funk4ot Trigonometriset funk4ot Suorakulmainen kolmio sin() = a c cos() = b c hypotenuusa c tan() = sin() cos() = a b kulma b katee= a katee= a = c sin() b = c cos() cot() = cos() sin() = b a Trigonometriset funk4ot

Lisätiedot

Suhteellinen nopeus. Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää

Suhteellinen nopeus. Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää 3.5 Suhteellinen nopeus Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää P:n nopeus junassa istuvan toisen matkustajan suhteen on v P/B-x = 1.0 m/s Intuitio :

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u.

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u. DEE-00 Lineaariset järjestelmät Harjoitus, ratkaisuehdotukset Järjestelmien lineaarisuus ja aikainvarianttisuus Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 9 Tavoitteet Valon luonne ja eteneminen Dispersio Lähde: https: //www.flickr.com/photos/fastlizard4/5427856900/in/set-72157626537669172,

Lisätiedot

Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt

Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt Suoraviivainen liike integrointi Digress: vakio- vs. muuttuva kiihtyvyys käytännössä Kinematiikkaa yhdessä dimensiossa taustatietoa ELEC-A3110 Mekaniikka

Lisätiedot

6. Toisen ja korkeamman kertaluvun lineaariset

6. Toisen ja korkeamman kertaluvun lineaariset SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 51 6. Toisen ja korkeamman kertaluvun lineaariset differentiaaliyhtälöt Määritelmä 6.1. Olkoon I R avoin väli. Olkoot p i : I R, i = 0, 1, 2,..., n, ja q : I R jatkuvia

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle / Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle / 16. 18.5. Lineaariset differentiaaliyhtälöt, homogeeniset differentiaaliyhtälöt Tehtävä 1: a) Määritä differentiaaliyhtälön y 3y = 14e 4x

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1 763306A JOHDATUS SUHTLLISUUSTORIAAN Ratkaisut 3 Kevät 07. Fuusioreaktio. Lähdetään suoraan annetuista yhtälöistä nergia on suoraan yhtälön ) mukaan + m ) p P ) m + p 3) M + P 4) + m 5) Ratkaistaan seuraavaksi

Lisätiedot

Matemaattinen Analyysi

Matemaattinen Analyysi Vaasan yliopisto, kevät 01 / ORMS1010 Matemaattinen Analyysi. harjoitus, viikko 1 R1 ke 1 16 D11 (..) R to 10 1 D11 (..) 1. Määritä funktion y(x) MacLaurinin sarjan kertoimet, kun y(0) = ja y (x) = (x

Lisätiedot

4 Optiikka. 4.1 Valon luonne

4 Optiikka. 4.1 Valon luonne 4 Optiikka 4.1 Valon luonne 1 Valo on etenevää aaltoliikettä, joka syntyy sähkökentän ja magneettikentän yhteisvaikutuksesta. Jos sähkömagneettinen aalto (valoaalto) liikkuu x-akselin suuntaan, värähtelee

Lisätiedot