3.1 PITKITTÄISEN AALLON NOPEUS JA ENERGIA

Koko: px
Aloita esitys sivulta:

Download "3.1 PITKITTÄISEN AALLON NOPEUS JA ENERGIA"

Transkriptio

1 37 3 ÄÄNI Yksi ihmisen kannalta tärkeimmistä luonnossa esiintyvistä aaltoilmiöistä muodostuu ilmassa etenevistä pitkittäisistä aalloista eli ääniaalloista (sound waves) Tarkastelemme nyt ääntä lähinnä ilmassa, mutta yleisesti ottaen ääni voi edetä myös muissa kaasuissa, nesteissä ja myös kiinteissä aineissa Tässä kappaleessa tarkastelemme ensin yleisesti pitkittäisten aaltojen ominaisuuksia ja tämän jälkeen keskitymme ääniaaltoihin ja erilaisiin kuulemiseen liittyviin ilmiöihin 31 PITKITTÄISEN AALLON NOPEUS JA ENERGIA Kuten poikittaisen aallon tapauksessa myös pitkittäisen aallon nopeus riippuu väliaineen fysikaalisista ominaisuuksista Tarkastellaan nyt pitkittäisen aallon nopeutta sylinterissä olevassa nesteessä (tai kaasussa) Johto on täysin analoginen kappaleessa 14 esitetyn johdon kanssa Nesteen tiheys olkoon r ja sylinterin poikkipinta-ala A Tasapainotilanteessa neste on levossa ja vakiopaineessa p Hetkellä t 0 mäntään kohdistetaan voima ( D p ) A ja mäntä lähtee liikkeelle vakionopeudella v y Syntyy pulssi, joka etenee kuvassa oikealle nopeudella v

2 38 Tilanne ajanhetkellä t on esitetty kuvassa (b) Pisteen P vasemmalla puolella nesteen nopeus on v y ja oikealla puolella vielä nolla Mäntä on liikkunut matkan v ja piste P matkan v t y t Sovelletaan nytkin impulssiteoreemaa Liikkuvaan nesteosaan vaikuttava voima on ( D p) A ja sen aiheuttama liikemäärän muutos, ajassa t, on ( rvta) v y - 0, missä ( rv ta) on nesteosan massa Tulee siis ( D p) At ( rvta) v y Kirjoitetaan seuraavaksi liikkuvaan nesteosaan kohdistuva lisäpaine D p nesteen tilavuusmodulin B (bulk modulus tai modulus of compression eli puristuvuuskerroin) avulla Aineen tilavuusmoduli B (Pa N/m ) kertoo miten paljon paine muuttuu ( D p ), kun suhteellista tilavuutta muutetaan ( D V / V ) Se määritellään yhtälöllä ædv ö D p-bç è V ø Alkuperäinen tilavuus Av t on pienentynyt määrällä -( Avyt) vy D p- B B At v v Tulee v y B At ( rvta) vy, v ja kun tästä ratkaistaan v, saadaan Av y t, joten B v (311) r Pitkittäisen aallon nopeus nesteessä (kaasussa) riippuu siis nesteen tilavuusmodulista B ja tiheydestä r

3 39 Pitkittäisen aallon nopeus kiinteässä aineessa saadaan myös yhtälöstä (311), kunhan nesteen tilavuusmoduli korvataan kiinteän aineen kimmomodulilla Y (Young s modulus): v Y r (31) Kannattaa huomata nopeuskaavojen (141), (311) ja (31) samankaltaisuus Kaikkien kaavojen osoittajassa esiintyy väliaineen kimmoisuutta kuvaava ominaisuus, joka kertoo palauttavan voiman suuruudesta Nimittäjissä kaikilla on väliaineen hitautta kuvaava ominaisuus Vastaavaa analogiaa voidaan käyttää myös pitkittäisen aallon energiansiirtonopeuteen Kappaleessa 15 johdimme köydessä etenevän poikittaisen aallon keskimääräiselle teholle lausekkeen 1 m F w A, Pav missä F on köyden jännitysvoima (edustaa kimmoisuutta) ja m massa pituusyksikköä kohti (edustaa hitautta) Vastaava suure pitkittäisille aalloille nesteissä tai kaasuissa on keskimääräinen teho pinta-alayksikköä kohti eli intensiteetti I, joka saadaan korvaamalla m r ja F B : 1 r Bw A, (313) josta kiinteille aineille korvaamalla B Y : 1 I ry w A (314) Esimerkki: Laivan kaikuluotain käyttää vedessä eteneviä ääniaaltoja Laske äänen nopeus ja aallonpituus 6 Hz:n taajuiselle äänelle vedessä Veden ( 0 C) tilavuusmoduli on B Pa ja tiheys r kg/m3 I

4 Ratkaisu: N/m Nm B 1480 m/s v kg/m kg r v m/s l m 564 m f 6 1/s Esimerkki: Matalahkon puheäänen taajuus on noin 100 Hz ja intensiteetti noin W/m Laske äänen nopeus ja amplitudi, kun ilman tilavuusmoduli on Pa ja tiheys 10 kg/m3 Ratkaisu: Nopeus: B N/m m m v kg/m 3 s s r Amplitudi yhtälöstä (313): I A r B (p f ) Tässä: I W/m r 10 kg/m3 B N/m f 100 1/s joilla A m 019 m m!! (aika pieni) Yksikkötarkastelu: W/m Ws /m Js/m Nms m m kg kg kg N 1 kg m s m3 m s m 4s

5 41 3 ÄÄNEN NOPEUS IDEAALIKAASUSSA Yhtälö (311) v ( B / r )1/ pätee pitkittäisille aalloille kaasuissa Tarkastellaan nyt miten yhtälöä voidaan kehittää ideaalikaasuissa Tilavuusmodulin B tarkka (infinitesimaalinen) määritelmä on dp B -V, dv joten nyt on selvitettävä miten ideaalikaasun paine riippuu tilavuudesta Oletetaan, että äänen eteneminen ideaalikaasussa on adiabaattinen prosessi, ts lämmön vaihtoa puristumisten ja laajentumisten aikana ei ehdi tapahtua Näissä olosuhteissa paineen p ja tilavuuden V välillä vallitsee yhteys (tarkemmin termofysiikan kurssilla) pv g vakio, (31) missä g C p / CV on ominaislämpökapasiteettien (vakiopaineessa ja vakiotilavuudessa) laaduton suhde Derivoimaalla V:n suhteen dp g V + g pv g -1 0, dv josta dp g pv g -1 gp dv Vg V Tilavuusmodulille saamme B g p ja äänen nopeudeksi tulee v gp r Edelleen ideaalikaasun tilanyhtälöstä saamme tiheydelle pv nrt r m RT M m pm, V RT (3)

6 jonka avulla päädytään yhtälöön 4 g RT, (33) M missä R on yleinen kaasuvakio, M moolimassa ja T lämpötila Esimerkki: Laske äänen nopeus ilmassa ( 0 C), kun ilman moolimassa on 88 g/mol ja g 140 Ratkaisu: g RT v M missä g 140 R 8315 J mol-1 K-1 T 93 K (0 C) M kg/mol J tulee v m/s kg v 33 ÄÄNIAALLOT Luonnon äänet leviävät äänilähteestä kaikkiin suuntiin moninaisilla amplitudella Yksinkertaiset ääniaallot ovat kuitenkin sinimuotoisia (harmonisia) aaltoja, joilla on yksikäsitteinen taajuus, amplitudi ja aallonpituus Ihminen havaitsee ääntä taajuusalueella 0 Hz 0000 Hz Aluetta sanotaan kuuloalueeksi (audible range) Kuuloalueen yläpuolinen taajuusalue on ultraäänialue (ultrasonic) ja alapuolinen infraäänialue (infrasonic) Tarkastellaan ideaalista positiivisen x-akselin suuntaan etenevää ääniaaltoa ja kirjoitetaan sen aaltofunktio muodossa

7 43 y( x, t) Asin( kx- w t) (331) Tässä on muistettava, että ääni on pitkittäistä aaltoliikettä ja poikkeamat tapahtuvat aallon etenemissuunnassa Kaavassa (331) poikkeama-akseli y on siis samansuuntainen x-akselin kanssa Amplitudi A on ilmaosasten poikkeama-amplitudi Ääniaaltoja voidaan kuvata myös paineen vaihteluina ilmanpaineen p a molemmin puolin Ihminen kuulee nimenomaan paineen vaihtelut, joten on hyödyllistä esittää (331) niiden avulla Kuvatkoon pxt (,) äänen paineen vaihtelua pa : n ympäristössä, ts kokonaispaine on pa + pxt (,) Sitä, miten paineen vaihtelu pxt (,) ja hiukkasten poikkeamat yxt (,) riippuvat toisistaan, selvitellään viereisen kuvan avulla Kuvitteellinen ilmassa oleva sylinteri on x-akselin suuntainen ja sen poikkipinta-ala on S Tasapainotilassa sylinterin pituus on D x Kohdalle tuleva ääniaalto siirtää sylinterin vasemman pään paikasta x paikkaan y 1 ja oikean pään paikasta x+d x paikkaan y Sylinterin tilavuus V SD x muuttuu määrän V D V Sy ( - y1) [ yx ( +Dxt,)- yxt (,)], Dx josta D V [ yx ( +Dxt,)- yxt (,)] V Dx Muutokset ovat pieniä ja rajalla, kun D x 0, saamme dv yx ( +Dxt,)- yxt (,) yxt (,) lim (33) V D x 0 D x x

8 44 Seuraavaksi käytämme tilavuusmodulin B määritelmää (katso sivu 41) B - dp /( dv / V ) Tässä dp on paineen muutos, joka nyt on pxt (,) Saamme siten dv yxt (,) p(,) x t - B -B (333) V x Kun tähän sijoitetaan (331) y( x, t) Asin( kx- w t), tulee p( x, t) -BkAcos( kx - w t) Käyttämällä identiteettiä sin( a - p / ) -cosa tulos saadaan muotoon p( x, t) BkAsin( kx -wt - p / ) (334) Seuraavassa kuvassa ilmaosasten poikkeamat yxt (,) ja paineen vaihtelut pxt (,) äänessä on piirretty samaan kuvaan (ajan hetki kiinnitetty) Havaitaan, että käyrien vaihe-ero on 1/4 aallonpituudesta Kun poikkeamalla on maksimi, paine on nollassa (tasapainoarvossaan p a ) ja päinvastoin, ts kun paine on maksimissa, poikkeama on nollassa Tuloksesta (334) nähdään, että painevaihtelun maksimiarvo on pmax BkA (335) Tämä on ns paineamplitudi (pressure amplitude)

9 Esimerkki: Sivulla 40 laskimme tavallisen puheäänen amplitudiksi 019 m m Laske vastaava paineamplitudi Ratkaisu: Tunnetaan: B N/m A m v 344 m/s f 100 1/s Lasketaan: w BfA pmax BkA B A p N/m 0050 Pa v v Korva on herkkä paineen vaihteluille Vertaa tulosta ilman paineen tasapainoarvoon pa Pa (1013 bar) ÄÄNEN INTENSITEETTI Aallon intensiteetti I (intensity) on keskimääräinen energia, jonka aalto kuljettaa pinta-alayksikön läpi aikayksikössä: J/(m s) Intensiteetti on siis teho pinta-alayksikköä kohti: W/m Ääniallon intensiteetille ilmassa pätee sama yhtälö (313) mikä muillekin kaasuille tai nesteille, ts 1 r Bw A, (341) I missä r on tiheys Korva havaitsee paineen vaihtelut, joten käyttökelpoisempi esitysmuoto saadaan paineamplitudin pmax avulla Koska w v k, A pmax /( Bk ) ja v B / r, intensiteetille (341) saadaan B pmax pmax 1 1 æ pmax ö I r B (kv ) ç rb (34) r B rb è Bk ø

10 46 Lisäksi voidaan osoittaa, että pistemäisestä äänilähteestä lähtevän äänen intensiteetti on kääntäen verrannollisena etäisyyden neliöön Tämä on seurausta energian säilymislaista seuraavasti: Olkoon tasaisesti kaikkiin suuntiin lähettävän pistelähteen ääniteho P Etäisyydellä r1 teho on jakautunut kuvitellun r1 - säteisen pallon pintaalalle 4p r1 Intensiteetti etäisyydellä r1 on siten I1 teho P pinta-ala 4p r1 Vastaavalla tavalla todetaan, että intensiteetti etäisyydellä r on I P /(4p r ) Molemmissa tapauksissa teho P on sama, joten Tästä seuraa 4p r1 I1 4p r I I1 r I r1 (343) Intensiteetti I millä tahansa etäisyydellä r on kääntäen verrannollinen r :een Desibeliasteikko Korva on herkkä hyvin laajalle intensiteettiskaalalle, aina heikosta 10-1 W/m :stä valtavaan yhteen W/m:iin Tämän vuoksi on järkevää käyttää intensiteetille logaritmista asteikkoa Äänen intensiteettitaso b (sound intensity level) määritellään

11 47 b (10dB)log I, I0 (344) missä vertailuintensiteetiksi I 0 on valittu 10-1 W/m, joka vastaa suurinpiirtein ihmisen kuulokynnystä (threshold of hearing) taajuudella 1000 Hz Kaavassa I on tutkittavan äänen intensiteetti ja log tarkoittaa 10-kantaista logaritmia Desibeli (db) on (1/10)-osa yksiköstä beli, joka on nimetty puhelimen keksijän Aleksander Graham Bell in mukaan Kuulokynnystä (1000 Hz) vastaavan äänen intensiteetti on 10-1 W/m ja se vastaa intensiteettitasoa on 0 db Intensiteetti 1 W/m vastaa intensiteettitasoa 10 db, joka on kuulemisen kipukynnys (threshold of pain) Esimerkki: Sivulla 45 laskimme, että tavallisessa puheäänessä paineen vaihtelu on luokkaa 0050 Pa Laske intensiteetti, kun ilman tiheys on 10 kg/m3 ja tilavuusmoduli Pa Mikä on vastaava intensiteettitaso? Ratkaisu: pmax Intensiteettiyhtälöön (34) I rb sijoitetaan pmax 0050 Pa B N/m r 10 kg/m3 ja lasketaan: I N m W/m 4 m kgn Intensiteettitaso (344):stä I db b (10dB)log (10dB) log -1 I

12 Esimerkki: Kuinka paljon intensiteettitaso muuttuu, kun etäisyys pistelähteestä kaksinkertaistuu? Ratkaisu: Olkoot etäisyydet r1 ja r r1, joten (343):sta I æ r1 ö 1 ç I1 è r ø 4 ja intensiteettitason muutos on é é I I ù I /I ù Db b - b1 (10dB) ê log - log 1 ú (10dB) êlog 0 ú I0 I0 û I1 / I 0 û ë ë é I ù (10dB) ê log ú (10dB) éëlog(4-1 ) ùû I1 û ë -(10dB)log 4 -(10dB) db SEISOVAT ÄÄNIAALLOT JA NORMAALIMUODOT PILLISSÄ Kaasussa (nesteessä) etenevää pitkittäistä aaltoa voidaan kuvata joko paineen vaihteluina tai kaasuhiukkasten (osasten) poikkeamana tasapainosta Kappaleessa 33 osoitimme, että kun paineella on maksimi, niin poikkeama on nollassa ja päinvastoin Tämän perusteella on ilmeistä, että seisovan ääniaallon tapauksessa käy niin, että kun paineella on kupukohta niin poikkeamalla on solmukohta ja päinvastoin, ts paineen solmukohdassa poikkeamalla on kupu Pohditaan seisovan aallon olemusta putkessa olevassa kaasussa Putken päät voivat olla avoimia tai suljettuja Putken sisällä putken päähän saapuva ääniaalto heijastuu takaisin putkeen ja muodostaa siellä jo olevan aallon kanssa seisovan aallon (vrt kappale 3) On kaksi mahdollisuutta:

13 49 1 Jos heijastuminen tapahtuu suljetusta putken päästä, hiukkasten poikkeamat ovat (pakostakin) nollia ja putken päässä on poikkeaman solmukohta ja paineen kupukohta Jos heijastuminen tapahtuu avoimesta putken päästä, paine on ulkoilman paine, ts putken päässä paineella on solmukohta ja poikkeamalla kupukohta Lisäksi muistetaan, että seisovassa aallossa kuvut ja solmut esiintyvät l / :n välein Esimerkki: Kovaääninen (speaker) on suunnattu kohti seinää (ks kuva) Millä etäisyyksillä seinästä kovaäänisen ja seinän välissä ääntä ei kuulla? Kovaäänisen lähettämän äänen taajuus on 00 Hz ja äänen nopeus ilmassa 344 m/s Ratkaisu: Korva kuulee paineen vaihtelun, ei ilmaosasten poikkeamia On siis etsittävä kovaäänisen ja seinän välissä olevassa ilmapatsaassa (ks kuva) esiintyvän seisovan aallon paineen solmukohdat Näissä kohdissa paine ei vaihtele, joten ääntä ei kuulla Huomaa, että kuvassa yllä symbolit N (solmu) ja A (kupu) viittaavat ilmaosasten poikkeamiin, ei paineen vaihteluihin Paine käyttäytyy viereisen kuvan mukaisesti Suljetussa päässä (siis seinässä) paineella on kupu Tässä aallonpituus on v 344 m/s l 17 m, f 00 1/s joten kuvan perusteella ääntä ei kuulu kohdissa: 1 solmu l / m seinästä, solmu 3l / 4 19 m seinästä, 3 solmu 5l / 4 15 m seinästä, jne

14 50 Urkupillit ja puhallinsoittimet Pitkittäisten seisovien aaltojen tärkeä sovellutusalue on puhallinsoittimet ja erilaiset (urku)pillit Urkupillejä on periaatteessa kahdenlaisia: avoimia ja suljettuja Vasemmanpuoleinen kuvasarja alla esittää avoimia pillejä ja oikeanpuoleinen suljettuja Avoimessa pillissä molemmat päät (huomaa myös vasen pää) ovat avoimia Suljetussa pillissä toinen pää on suljettu ja toinen on avoin Kuvissa punaiset käyrät esittävät ilmahiukkasten poikkeamia Kuten edellä todettiin pillin avoimessa päässä poikkeamalla on kupu ja suljetussa päässä solmu On huomattava, että käyrät ovat puhtaasti matemaattisia esityksiä Todellisuudessa ilmaosasten poikkeamat ovat pitkittäisesti pillin suunnassa, ei poikittain niin kuin käyrät on piirretty Seisovassa aaltoliikkeessä solmukohdan etäisyys viereisestä kupukohdasta on l / 4 Suljetun pillin pisin mahdollinen aallonpituus, kuva (a) oikealla, on siten l 4L, missä L on pillin pituus Vastaavaksi taajuudeksi laskemme f1 v / l v /(4 L )

15 51 Vastaavat tarkastelut johtavat tuloksiin: Avoin pilli: L (351) ln, ( n 1,, 3,K ) n v f n n ( n 1,, 3,K ) (35) L Suljettu pilli: 4L (353) ln, ( n 1, 3, 5,K ) n v fn n ( n 1, 3, 5,K ) (354) 4L Avoimella pillillä arvo n 1 vastaa perustaajuutta, n toista harmonista (ensimmäistä yliääntä) jne Myös suljetulla pillillä n 1 vastaa perustaajuutta, mutta nyt parilliset harmoniset puuttuvat Vain parittomat harmoniset 3 f 1, 5 f 1 jne ovat mahdollisia Esimerkki: Suljetun urkupillin perustaajuus on 0 Hz Pillin toisen yliäänen taajuus on sama kuin erään avoimen pillin toisen yliäänen taajuus Kuinka pitkiä pillit ovat? Äänen nopeus ilmassa on 344 m/s Ratkaisu: Suljetun pillin pituus LS : v 344 m/s v n 1 : f1 1 Þ LS m 39 cm 4 f /s 4 LS 5v (n 5) Suljetun toinen yliääni: f5 4 LS 3v Avoimen toinen yliääni: f3 (n 3) LA Yhtä suuret, joten 5v 3v Þ LA LS LS m 47 cm 4 LS LA

, tulee. Käyttämällä identiteettiä

, tulee. Käyttämällä identiteettiä 44 euraavaksi käytämme tilavuusmodulin B määritelmää (katso sivu 4) B =- dp /( dv / V ). Tässä dp on paineen muutos, joka nyt on pxt (,). aamme siten dv yxt (,) p(,) x t =- B =-B. (3.3.3) V x Kun tähän

Lisätiedot

= 0.175m, 0.525m, 0.875m,...

= 0.175m, 0.525m, 0.875m,... 9 (a) Esitä seisovan aallon aaltofunktio. (b) Paikallista ne köyden pisteet, jotka eivät liiku ollenkaan. (c) Paikallista ne köyden pisteet, jotka liikkuvat eniten ja laske vastaavat maksimipoikkeamat,

Lisätiedot

3 ÄÄNI. Sovelletaan nytkin impulssiteoreemaa. Liikkuvaan nesteosaan vaikuttava A ja sen aiheuttama liikemäärän muutos, on nesteosan massa.

3 ÄÄNI. Sovelletaan nytkin impulssiteoreemaa. Liikkuvaan nesteosaan vaikuttava A ja sen aiheuttama liikemäärän muutos, on nesteosan massa. 37 3 ÄÄNI Yksi ihmisen kannalta tärkeimmistä luonnossa esiintyvistä aaltoilmiöistä muodostuu ilmassa etenevistä pitkittäisistä aalloista eli ääniaalloista (sound waves). Tarkastelemme nyt ääntä lähinnä

Lisätiedot

16 ÄÄNI JA KUULEMINEN (Sound and Hearing)

16 ÄÄNI JA KUULEMINEN (Sound and Hearing) 8 16 ÄÄNI JA KUULEMINEN (Sound and Hearing) Ihmisen kannalta yksi tärkeimmistä luonnossa esiintyvistä aaltoilmiöistä muodostuu ilmassa etenevistä pitkittäisistä aalloista eli ääniaalloista (sound waves)

Lisätiedot

16 Ääni ja kuuleminen

16 Ääni ja kuuleminen 16 Ääni ja kuuleminen Ääni on väliaineessa etenevää pitkittäistä aaltoliikettä. Ihmisen kuuloalue 20 Hz 20 000 Hz. (Infraääni kuuloalue ultraääni) 1 2 Ääniaallon esittämistapoja: A = poikkeama-amplitudi

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Syksy 2009 Jukka Maalampi LUENTO 12 Aallot kahdessa ja kolmessa ulottuvuudessa Toistaiseksi on tarkasteltu aaltoja, jotka etenevät yhteen suuntaan. Yleisempiä tapauksia ovat

Lisätiedot

Luento 14: Ääniaallot ja kuulo

Luento 14: Ääniaallot ja kuulo Luento 14: Ääniaallot ja kuulo Pikajohdanto elastisuusteoriaan Ääniaallot Luennon sisältö Pikajohdanto elastisuusteoriaan Ääniaallot Miksi pikajohdanto? Osa ääniaaltojen käsittelystä perustuu elastisuusteoriaan

Lisätiedot

Luento 15: Ääniaallot, osa 2

Luento 15: Ääniaallot, osa 2 Luento 15: Ääniaallot, osa 2 Aaltojen interferenssi Doppler Laskettuja esimerkkejä Luennon sisältö Aaltojen interferenssi Doppler Laskettuja esimerkkejä Aaltojen interferenssi Samassa pisteessä vaikuttaa

Lisätiedot

Luento 14: Ääniaallot ja kuulo

Luento 14: Ääniaallot ja kuulo Luento 14: Ääniaallot ja kuulo Pikajohdanto elastisuusteoriaan Ääniaallot Luennon sisältö Pikajohdanto elastisuusteoriaan Ääniaallot Miksi pikajohdanto? Osa ääniaaltojen käsittelystä perustuu elastisuusteoriaan

Lisätiedot

3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta.

3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta. 3 Ääni ja kuulo 1 Mekaanisista aalloista ääni on ihmisen kannalta tärkein. Ääni on pitkittäistä aaltoliikettä, eli ilman (tai muun väliaineen) hiukkaset värähtelevät suuntaan joka on sama kuin aallon etenemissuunta.

Lisätiedot

2.1 Ääni aaltoliikkeenä

2.1 Ääni aaltoliikkeenä 2. Ääni Äänen tutkimusta kutsutaan akustiikaksi. Akustiikassa tutkitaan äänen tuottamista, äänen ominaisuuksia, soittimia, musiikkia, puhetta, äänen etenemistä ja kuulemisen fysiologiaa. Ääni kuljettaa

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Aalto köydessä Kohdassa x olevan ainehiukkasen poikkeama tasapainosta y ajan funktiona on y( x, t) Asin( kx t 0) Ketjusääntö: Ainehiukkasen

Lisätiedot

YLEINEN AALTOLIIKEOPPI

YLEINEN AALTOLIIKEOPPI YLEINEN AALTOLIIKEOPPI KEVÄT 2017 1 Saana-Maija Huttula (saana.huttula@oulu.fi) Maanantai Tiistai Keskiviikko Torstai Perjantai Vk 8 Luento 1 Mekaaniset aallot 1 Luento 2 Mekaaniset aallot 2 Ääni ja kuuleminen

Lisätiedot

Luento 16: Ääniaallot ja kuulo

Luento 16: Ääniaallot ja kuulo Luento 16: Ääniaallot ja kuulo Pikajohdanto elastisuusteoriaan* Ääniaallot* Aaltojen interferenssi Doppler* Laskettuja esimerkkejä Ajankohtaista Luennon sisältö Pikajohdanto elastisuusteoriaan* Ääniaallot*

Lisätiedot

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt 766328A Termofysiikka Harjoitus no. 2, ratkaisut (syyslukukausi 204). Kun sylinterissä oleva n moolia ideaalikaasua laajenee reversiibelissä prosessissa kolminkertaiseen tilavuuteen 3,lämpötilamuuttuuprosessinaikanasiten,ettäyhtälö

Lisätiedot

SEISOVA AALTOLIIKE 1. TEORIAA

SEISOVA AALTOLIIKE 1. TEORIAA 1 SEISOVA AALTOLIIKE MOTIVOINTI Työssä tutkitaan poikittaista ja pitkittäistä aaltoliikettä pitkässä langassa ja jousessa. Tarkastellaan seisovaa aaltoliikettä. Määritetään aaltoliikkeen etenemisnopeus

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys12 Kevät 21 Jukka Maalampi LUENTO 11 Mekaaninen aaltoliike alto = avaruudessa etenevä järjestäytynyt häiriö. alto altoja on kahdenlaisia: Poikittainen aalto - poikkeamat kohtisuorassa

Lisätiedot

Aaltoliike ajan suhteen:

Aaltoliike ajan suhteen: Aaltoliike Aaltoliike on etenevää värähtelyä Värähdysliikkeen jaksonaika T on yhteen värähdykseen kuluva aika Värähtelyn taajuus on sekunnissa tapahtuvien värähdysten lukumäärä Taajuuden ƒ yksikkö Hz (hertsi,

Lisätiedot

Ihmiskorva havaitsee ääniaallot taajuusvälillä 20 Hz 20 khz.

Ihmiskorva havaitsee ääniaallot taajuusvälillä 20 Hz 20 khz. 3 Ääni ja kuulo 3.1 Intro e1 Mekaanisista aalloista ääni on ihmisen kannalta tärkein. Ääni on pitkittäistä aaltoliikettä, eli ilman (tai muun väliaineen) hiukkaset värähtelevät suuntaan joka on sama kuin

Lisätiedot

766329A Aaltoliike ja optiikka

766329A Aaltoliike ja optiikka 76639A Aaltoliike ja optiikka Seppo Alanko Oulun yliopisto Fysiikan laitos Kevät 5 Perustuu oppikirjoihin: H. D. Young and R. A. Freedman University Physics, Addison-Wesley th ed., and th ed., 4 F. L.

Lisätiedot

Luento 16: Ääniaallot ja kuulo

Luento 16: Ääniaallot ja kuulo Luento 16: Ääniaallot ja kuulo Pikajohdanto elastisuusteoriaan* Ääniaallot* Aaltojen interferenssi Doppler* Laskettuja esimerkkejä 1 / 48 Luennon sisältö Pikajohdanto elastisuusteoriaan* Ääniaallot* Aaltojen

Lisätiedot

Luento 15: Mekaaniset aallot

Luento 15: Mekaaniset aallot Luento 15: Mekaaniset aallot Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot Ajankohtaista Luennon sisältö Mekaaniset aallot Eteneminen Aallon nopeus

Lisätiedot

Ratkaisu: Vaatimus on, että muuttujat x ja t esiintyvät muodossa x-v t. On siis kirjoitettava,

Ratkaisu: Vaatimus on, että muuttujat x ja t esiintyvät muodossa x-v t. On siis kirjoitettava, 8 Ratkaisu: Vaatimus on, että muuttujat x ja t esiintyvät muodossa x-v t. On siis kirjoitettava 3 3 y = =, ( x- vt) + 1 ( x- t) + 1 missä siis v = m/s. Tulos on SI-yksiköissä, joten x ja y ovat metreinä

Lisätiedot

Luvun 12 laskuesimerkit

Luvun 12 laskuesimerkit Luvun 12 laskuesimerkit Esimerkki 12.1 Mikä on huoneen sisältämän ilman paino, kun sen lattian mitat ovat 4.0m 5.0 m ja korkeus 3.0 m? Minkälaisen voiman ilma kohdistaa lattiaan? Oletetaan, että ilmanpaine

Lisätiedot

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3 76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15

Lisätiedot

Luento 15: Mekaaniset aallot. Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot

Luento 15: Mekaaniset aallot. Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot Luento 15: Mekaaniset aallot Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot 1 / 40 Luennon sisältö Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa

Lisätiedot

m h = Q l h 8380 J = J kg 1 0, kg Muodostuneen höyryn osuus alkuperäisestä vesimäärästä on m h m 0,200 kg = 0,

m h = Q l h 8380 J = J kg 1 0, kg Muodostuneen höyryn osuus alkuperäisestä vesimäärästä on m h m 0,200 kg = 0, 76638A Termofysiikka Harjoitus no. 9, ratkaisut syyslukukausi 014) 1. Vesimäärä, jonka massa m 00 g on ylikuumentunut mikroaaltouunissa lämpötilaan T 1 110 383,15 K paineessa P 1 atm 10135 Pa. Veden ominaislämpökapasiteetti

Lisätiedot

REAKTIOT JA ENERGIA, KE3. Kaasut

REAKTIOT JA ENERGIA, KE3. Kaasut Kaasut REAKTIOT JA ENERGIA, KE3 Kaasu on yksi aineen olomuodosta. Kaasujen käyttäytymistä kokeellisesti tutkimalla on päädytty yksinkertaiseen malliin, ns. ideaalikaasuun. Määritelmä: Ideaalikaasu on yksinkertainen

Lisätiedot

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ] 766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan

Lisätiedot

KULJETUSSUUREET Kuljetussuureilla tai -ominaisuuksilla tarkoitetaan kaasumaisen, nestemäisen tai kiinteän väliaineen kykyä siirtää ainetta, energiaa, tai jotain muuta fysikaalista ominaisuutta paikasta

Lisätiedot

FYS03: Aaltoliike. kurssin muistiinpanot. Rami Nuotio

FYS03: Aaltoliike. kurssin muistiinpanot. Rami Nuotio FYS03: Aaltoliike kurssin muistiinpanot Rami Nuotio päivitetty 24.1.2010 Sisältö 1. Mekaaninen aaltoliike 2 1.1. Harmoninen voima 2 1.2. Harmoninen värähdysliike 2 1.3. Mekaaninen aalto 3 1.4. Mekaanisen

Lisätiedot

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus värähtelytiheyden. 1 Funktiot ja aallot Aiemmin käsiteltiin funktioita ja miten niiden avulla voidaan kuvata fysiikan

Lisätiedot

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille]

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] A) p 1, V 1, T 1 ovat paine tilavuus ja lämpötila tilassa 1 p 2, V 2, T 2 ovat paine tilavuus ja

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan

Lisätiedot

ln2, missä ν = 1mol. ja lopuksi kaasun saama lämpömäärä I pääsäännön perusteella.

ln2, missä ν = 1mol. ja lopuksi kaasun saama lämpömäärä I pääsäännön perusteella. S-114.42, Fysiikka III (S 2. välikoe 4.11.2002 1. Yksi mooli yksiatomista ideaalikaasua on alussa lämpötilassa 0. Kaasu laajenee tilavuudesta 0 tilavuuteen 2 0 a isotermisesti, b isobaarisesti ja c adiabaattisesti.

Lisätiedot

DEE Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 2 ratkaisuiksi

DEE Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 2 ratkaisuiksi DEE-4000 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen ratkaisuiksi Yleistä asiaa lämmönjohtumisen yleiseen osittaisdifferentiaaliyhtälöön liittyen Lämmönjohtumisen yleinen osittaisdifferentiaaliyhtälön

Lisätiedot

3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 1. Tsunamin synty. 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.

3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 1. Tsunamin synty. 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut. Akustiikan perussuureita, desibelit. 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 1 Tsunamin synty 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 2 1 Tasoaallon synty 3.1.2013

Lisätiedot

Kompleksiesitys: Harmoninen aalto esitetään usein kompleksimuodossa

Kompleksiesitys: Harmoninen aalto esitetään usein kompleksimuodossa Kompleksiesitys: Harmoninen aalto esitetään usein kompleksimuodossa 13 i( kx-w t) %, y = Ae joka Eulerin kaavalla avautuu muotoon y% = Acos( kx- wt) + iasin( kx-wt). Kompleksiesitys sisältää siis sekä

Lisätiedot

1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta

1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta 766328A Termofysiikka Harjoitus no. 5, ratkaisut syyslukukausi 204). Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta E n n + ) ω, n 0,, 2,... 2 a) Oskillaattorin partitiofunktio

Lisätiedot

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina 31.5.2012. T 6.1 (pakollinen): Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä.

Lisätiedot

2 AALTOLIIKKEIDEN YHDISTÄMINEN

2 AALTOLIIKKEIDEN YHDISTÄMINEN 1 AALTOLIIKKEIDEN YHDISTÄMINEN Kun aalto osuu väliaineen rajapintaan, se heijastuu siitä takaisin joko osittain tai kokonaan. Esimerkiksi äänen osuessa talon seinään se palaa takaisin kaikuna. Missä määrin

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

y 2 h 2), (a) Näytä, että virtauksessa olevan fluidialkion tilavuus ei muutu.

y 2 h 2), (a) Näytä, että virtauksessa olevan fluidialkion tilavuus ei muutu. Tehtävä 1 Tarkastellaan paineen ajamaa Poisseuille-virtausta kahden yhdensuuntaisen levyn välissä Levyjen välinen etäisyys on 2h Nopeusjakauma raossa on tällöin u(y) = 1 dp ( y 2 h 2), missä y = 0 on raon

Lisätiedot

FYSA242 Statistinen fysiikka, Harjoitustentti

FYSA242 Statistinen fysiikka, Harjoitustentti FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella

Lisätiedot

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 1 IDEAALIKAASU Ideaalikaasu Koostuu pistemäisistä hiukkasista Ei vuorovaikutuksia hiukkasten välillä Hiukkasten liike satunnaista Hiukkasten

Lisätiedot

9 VALOAALTOJEN SUPERPOSITIO

9 VALOAALTOJEN SUPERPOSITIO 09 9 VALOAALTOJEN SUPERPOSITIO Edellisissä kappaleissa olemme tutkineet valon heijastumista peileissä ja taittumista linsseissä geometrisen optiikan approksimaation avulla Approksimaatiossa valon aaltoluonnetta

Lisätiedot

1 PERUSKÄSITTEITÄ 1.1 AALTOJEN TYYPIT

1 PERUSKÄSITTEITÄ 1.1 AALTOJEN TYYPIT 1 1 PERUSKÄSITTEITÄ Luonto on täynnä aaltoja. Aaltoliikettä voi syntyä kimmoisissa systeemeissä, jotka poikkeutettuna tasapainotilastaan pyrkivät palaamaan siihen takaisin. Aalto etenee, kun poikkeama

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle / MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,

Lisätiedot

Lämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi.

Lämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi. Lämpöoppi Termodynaaminen systeemi Tilanmuuttujat (suureet) Lämpötila T (K) Absoluuttinen asteikko eli Kelvinasteikko! Paine p (Pa, bar) Tilavuus V (l, m 3, ) Ainemäärä n (mol) Eristetty systeemi Ei ole

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

Luento 2: Liikkeen kuvausta

Luento 2: Liikkeen kuvausta Luento 2: Liikkeen kuvausta Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Luennon sisältö Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Liikkeen ratkaisu kiihtyvyydestä

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain

Lisätiedot

Nopeus, kiihtyvyys ja liikemäärä Vektorit

Nopeus, kiihtyvyys ja liikemäärä Vektorit Nopeus, kiihtyvyys ja liikemäärä Vektorit Luento 2 https://geom.mathstat.helsinki.fi/moodle/course/view.php?id=360 Luennon tavoitteet: Vektorit tutuiksi Koordinaatiston valinta Vauhdin ja nopeuden ero

Lisätiedot

= 1 kg J kg 1 1 kg 8, J mol 1 K 1 373,15 K kg mol 1 1 kg Pa

= 1 kg J kg 1 1 kg 8, J mol 1 K 1 373,15 K kg mol 1 1 kg Pa 766328A Termofysiikka Harjoitus no. 8, ratkaisut syyslukukausi 2014 1. 1 kg nestemäistä vettä muuttuu höyryksi lämpötilassa T 100 373,15 K ja paineessa P 1 atm 101325 Pa. Veden tiheys ρ 958 kg/m 3 ja moolimassa

Lisätiedot

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa.

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Valintakoe 2016/FYSIIKKA Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Boltzmannin vakio 1.3805 x 10-23 J/K Yleinen kaasuvakio 8.315 JK/mol

Lisätiedot

Akustiikka ja toiminta

Akustiikka ja toiminta Akustiikka ja toiminta Äänitiede on kutsumanimeltään akustiikka. Sana tulee Kreikan kielestä akoustos, joka tarkoittaa samaa kuin kuulla. Tutkiessamme värähtelyjä ja säteilyä, voimme todeta että värähtely

Lisätiedot

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0 Juuri 8 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 8.9.07 Kertaus K. a) 6 4 64 0, 0 0 0 0 b) 5 6 = 5 6 = =, 0 c) d) K. a) b) c) d) 4 4 4 7 4 ( ) 7 7 7 7 87 56 7 7 7 6 6 a a a, a > 0 6 6 a

Lisätiedot

Yleistä äänestä. Ääni aaltoliikkeenä. (lähde

Yleistä äänestä. Ääni aaltoliikkeenä. (lähde Yleistä äänestä (lähde www.paroc.fi) Ääni aaltoliikkeenä Ilmaääntä voidaan ajatella paineen vaihteluna ilmassa. Sillä on aallonpituus, taajuus ja voimakkuus. Ääni etenee lähteestä kohteeseen väliainetta

Lisätiedot

2 Mekaaninen aalto. Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium).

2 Mekaaninen aalto. Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium). 2 Mekaaninen aalto Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium). 1 Mekaanisten aaltojen vastakohtana ovat sähkömagneettiset allot, jotka kulkevat

Lisätiedot

7.4 PERUSPISTEIDEN SIJAINTI

7.4 PERUSPISTEIDEN SIJAINTI 67 7.4 PERUSPISTEIDEN SIJAINTI Optisen systeemin peruspisteet saadaan systeemimatriisista. Käytetään seuraavan kuvan merkintöjä: Kuvassa sisäänmenotaso on ensimmäisen linssin ensimmäisessä pinnassa eli

Lisätiedot

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta. K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy

Lisätiedot

Luvun 8 laskuesimerkit

Luvun 8 laskuesimerkit Luvun 8 laskuesimerkit Esimerkki 8.1 Heität pallon, jonka massa on 0.40 kg seinään. Pallo osuu seinään horisontaalisella nopeudella 30 m/s ja kimpoaa takaisin niin ikään horisontaalisesti nopeudella 20

Lisätiedot

Puheen akustiikan perusteita Mitä puhe on? 2.luento. Äänet, resonanssi ja spektrit. Äänen tuotto ja eteneminen. Puhe äänenä

Puheen akustiikan perusteita Mitä puhe on? 2.luento. Äänet, resonanssi ja spektrit. Äänen tuotto ja eteneminen. Puhe äänenä Puheen akustiikan perusteita Mitä puhe on? 2.luento Martti Vainio Äänet, resonanssi ja spektrit Fonetiikan laitos, Helsingin yliopisto Puheen akustiikan perusteita p.1/37 S-114.770 Kieli kommunikaatiossa...

Lisätiedot

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. TYÖ 36b. ILMANKOSTEUS Tehtävä Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. Välineet Taustatietoja

Lisätiedot

Integroimalla ja käyttämällä lopuksi tilanyhtälöä saadaan T ( ) ( ) H 5,0 10 J + 2,0 10 0,50 1,0 10 0,80 Pa m 70 kj

Integroimalla ja käyttämällä lopuksi tilanyhtälöä saadaan T ( ) ( ) H 5,0 10 J + 2,0 10 0,50 1,0 10 0,80 Pa m 70 kj S-4.35 Fysiikka (ES) entti 3.8.. ääritä yhden haikaasumoolin (O) (a) sisäenergian, (b) entalian muutos tilanmuutoksessa alkutilasta =, bar, =,8 m3 loutilaan =, bar, =,5 m3. ärähtelyn vaausasteet voidaan

Lisätiedot

= 84. Todennäköisin partitio on partitio k = 6,

= 84. Todennäköisin partitio on partitio k = 6, S-435, Fysiikka III (ES) entti 43 entti / välikoeuusinta I Välikokeen alue Neljän tunnistettavissa olevan hiukkasen mikrokanonisen joukon mahdolliset energiatasot ovat, ε, ε, 3ε, 4ε,, jotka kaikki ovat

Lisätiedot

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0 Kertaus K. a) 6 4 64 0, 0 0 0 0 b) 5 6 = 5 6 = =, 0 c) d) 4 4 4 7 4 ( ) 7 7 7 7 87 56 7 7 7 K. a) b) c) d) 6 6 a a a, a > 0 6 6 a a a a, a > 0 5 5 55 5 5 5 5 5 5 5 5 5 5 a a a a a ( a ) a a a, a > 0 K.

Lisätiedot

havainnollistaa Dopplerin ilmiötä ja interferenssin aiheuttamaa huojuntailmiötä

havainnollistaa Dopplerin ilmiötä ja interferenssin aiheuttamaa huojuntailmiötä FYSP0 / K3 DOPPLERIN ILMIÖ Työn tavoitteita havainnollistaa Dopplerin ilmiötä ja interferenssin aiheuttamaa huojuntailmiötä harjoitella mittausarvojen poimimista Capstonen kuvaajalta sekä kerrata maksimiminimi

Lisätiedot

Ilman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella:

Ilman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella: ILMANKOSTEUS Ilmankosteus tarkoittaa ilmassa höyrynä olevaa vettä. Veden määrä voidaan ilmoittaa höyryn tiheyden avulla. Veden osatiheys tarkoittaa ilmassa olevan vesihöyryn massaa tilavuusyksikköä kohti.

Lisätiedot

4. Kontrollitilavuusajattelu ja massan säilyminen. KJR-C2003 Virtausmekaniikan perusteet

4. Kontrollitilavuusajattelu ja massan säilyminen. KJR-C2003 Virtausmekaniikan perusteet 4. Kontrollitilavuusajattelu ja massan säilyminen KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten partikkelisysteemiin liittyvän suuren säilyminen esitetään tarkastelualueen taseena ja miten massan

Lisätiedot

Termodynamiikan suureita ja vähän muutakin mikko rahikka

Termodynamiikan suureita ja vähän muutakin mikko rahikka Termodynamiikan suureita ja vähän muutakin mikko rahikka 2006 m@hyl.fi 1 Lämpötila Suure lämpötila kuvaa kappaleen/systeemin lämpimyyttä (huono ilmaisu). Ihmisen aisteilla on hankala tuntea lämpötilaa,

Lisätiedot

2.2 Ääni aaltoliikkeenä

2.2 Ääni aaltoliikkeenä 2.1 Äänen synty Siirrymme tarkastelemaan akustiikkaa eli äänioppia. Ääni on ilman tai nesteen paineen vaihteluita (pitkittäistä aaltoliikettä). Kiinteissä materiaaleissa ääni voi edetä poikittaisena aaltoliikkeenä.

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen KEMA221 2009 PUHTAAN AINEEN FAASIMUUTOKSET ATKINS LUKU 4 1 PUHTAAN AINEEN FAASIMUUTOKSET Esimerkkejä faasimuutoksista? Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen Faasi = aineen

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 28. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta 2016 1 / 22 Hieman kertausta

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2

Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2 766328A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 24). Klassisen ideaalikaasun partitiofunktio on luentojen mukaan Z N! [Z (T, V )] N, (9.) missä yksihiukkaspartitiofunktio Z (T, V ) r e βɛr.

Lisätiedot

ja siis myös n= nk ( ). Tällöin dk l l

ja siis myös n= nk ( ). Tällöin dk l l Tästä havaitaan, että jos nopeus ei riipu aallonpituudesta, ts. ei ole dispersiota, vg = v p. Tilanne on tällainen esimerkiksi tyhjiössä, missä vg = v p = c. Dispersiivisessä väliaineessa v p = c/ n, missä

Lisätiedot

- 3 välikoetta, jokaisessa 4 tehtävää, yht. 12 teht. - 6 pistettä yhdestä tehtävästä - max pisteet 72 (+ lisät harjoituksista)

- 3 välikoetta, jokaisessa 4 tehtävää, yht. 12 teht. - 6 pistettä yhdestä tehtävästä - max pisteet 72 (+ lisät harjoituksista) 1/2 KURSSIN ARVOSTELU - 3 välikoetta, jokaisessa 4 tehtävää, yht. 12 teht. - 6 pistettä yhdestä tehtävästä - max pisteet 72 (+ lisät harjoituksista) pisteet arvosana 00,00 35,25-35,50 41,25 1 1/2 maksimista

Lisätiedot

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE Harmoninen voima on voima, jonka suuruus on suoraan verrannollinen poikkeamaan tasapainoasemasta

Lisätiedot

Teddy 7. harjoituksen malliratkaisu syksy 2011

Teddy 7. harjoituksen malliratkaisu syksy 2011 Teddy 7. harjoituksen malliratkaisu syksy 2011 1. Systeemin käyttäytymistä faasirajalla kuvaa Clapeyronin yhtälönä tunnettu keskeinen relaatio dt = S m. (1 V m Koska faasitasapainossa reaktion Gibbsin

Lisätiedot

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1). H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 26. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 26. syyskuuta 2016 1 / 14 Hieman kertausta

Lisätiedot

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33:

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33: 1.2 T=12000 K 10 2 T=12000 K 1.0 Wien R-J 10 0 Wien R-J B λ (10 15 W/m 3 /sterad) 0.8 0.6 0.4 B λ (10 15 W/m 3 /sterad) 10-2 10-4 10-6 10-8 0.2 10-10 0.0 0 200 400 600 800 1000 nm 10-12 10 0 10 1 10 2

Lisätiedot

Insinöörimatematiikka A

Insinöörimatematiikka A Insinöörimatematiikka A Demonstraatio 3, 3.9.04 Tehtävissä 4 tulee käyttää Gentzenin järjestelmää kaavojen johtamiseen. Johda kaava φ (φ ) tyhjästä oletusjoukosta. ) φ ) φ φ 3) φ 4) φ (E ) (E ) (I, ) (I,

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 Emppu Salonen Lasse Laurson Toni Mäkelä Touko Herranen Luento 2: kineettistä kaasuteoriaa Pe 24.2.2017 1 Aiheet tänään 1. Maxwellin ja Boltzmannin

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1 763306A JOHDATUS SUHTLLISUUSTORIAAN Ratkaisut 3 Kevät 07. Fuusioreaktio. Lähdetään suoraan annetuista yhtälöistä nergia on suoraan yhtälön ) mukaan + m ) p P ) m + p 3) M + P 4) + m 5) Ratkaistaan seuraavaksi

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

Kuuloaisti. Korva ja ääni. Melu

Kuuloaisti. Korva ja ääni. Melu Kuuloaisti Ääni aaltoliikkeenä Tasapainoaisti Korva ja ääni Äänen kulku Korvan sairaudet Melu Kuuloaisti Ääni syntyy värähtelyistä. Taajuus mitataan värähtelyt/sekunti ja ilmaistaan hertseinä (Hz) Ihmisen

Lisätiedot

Kitka ja Newtonin lakien sovellukset

Kitka ja Newtonin lakien sovellukset Kitka ja Newtonin lakien sovellukset Haarto & Karhunen Tavallisimpia voimia: Painovoima G Normaalivoima, Tukivoima Jännitysvoimat Kitkavoimat Voimat yleisesti F f T ja s f k N Vapaakappalekuva Kuva, joka

Lisätiedot

+ 0, (29.20) 32 SÄHKÖMAGNEETTISET AALLOT (Electromagnetic Waves) i c+ ε 0 dφ E / dt ja silmukan kohdalla vaikuttavan magneettivuon tiheyden

+ 0, (29.20) 32 SÄHKÖMAGNEETTISET AALLOT (Electromagnetic Waves) i c+ ε 0 dφ E / dt ja silmukan kohdalla vaikuttavan magneettivuon tiheyden 5 3 SÄHKÖMAGNEETTISET AALLOT (Electromagnetic Waves) Mitä valo on? Tämä kysymys on askarruttanut ihmisiä vuosisatojen ajan. Nykykäsityksen mukaan valo on luonteeltaan kaksijakoinen eli dualistinen. Valoa

Lisätiedot

Differentiaalilaskennan tehtäviä

Differentiaalilaskennan tehtäviä Differentiaalilaskennan tehtäviä DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona 2. Derivoimiskaavat 2.1

Lisätiedot

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. TYÖ 36b. ILMANKOSTEUS Tehtävä Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. Välineet Taustatietoja

Lisätiedot

Shrödingerin yhtälön johto

Shrödingerin yhtälön johto Shrödingerin yhtälön johto Tomi Parviainen 4. maaliskuuta 2018 Sisältö 1 Schrödingerin yhtälön johto tasaisessa liikkeessä olevalle elektronille 1 2 Schrödingerin yhtälöstä aaltoyhtälöön kiihtyvässä liikkeessä

Lisätiedot

(µ 2 sg 2 a 2 t )r2. t = a t

(µ 2 sg 2 a 2 t )r2. t = a t Fysiikan valintakokeen 11.6.2013 klo 10-13 ratkaisut 1. Auto lähtee levosta hetkellä t = 0 ympyrän muotoiselle vaakasuoralle radalle tasaisella tangenttikiihtyvyydellä a t = 2,34 m/s 2. Oleta, että tien

Lisätiedot

Vedetään kiekkoa erisuuruisilla voimilla! havaitaan kiekon saaman kiihtyvyyden olevan suoraan verrannollinen käytetyn voiman suuruuteen

Vedetään kiekkoa erisuuruisilla voimilla! havaitaan kiekon saaman kiihtyvyyden olevan suoraan verrannollinen käytetyn voiman suuruuteen 4.3 Newtonin II laki Esim. jääkiekko märällä jäällä: pystysuuntaiset voimat kumoavat toisensa: jään kiekkoon kohdistama tukivoima n on yhtäsuuri, mutta vastakkaismerkkinen kuin kiekon paino w: n = w kitka

Lisätiedot

Käyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on

Käyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on 766328A ermofysiikka Harjoitus no. 3, ratkaisut (syyslukukausi 201) 1. (a) ilavuus V (, P ) riippuu lämpötilasta ja paineesta P. Sen differentiaali on ( ) ( ) V V dv (, P ) dp + d. P Käyttämällä annettua

Lisätiedot

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1 76628A Termofysiikka Harjoitus no. 4, ratkaisut (syyslukukausi 204). (a) Systeemi koostuu neljästä identtisestä spin- -hiukkasesta. Merkitään ylöspäin olevien spinien lukumäärää n:llä. Systeemin mahdolliset

Lisätiedot

Äänen eteneminen ja heijastuminen

Äänen eteneminen ja heijastuminen Äänen ominaisuuksia Ääni on ilmamolekyylien tihentymiä ja harventumia. Aaltoliikettä ja värähtelyä. Värähtelevä kappale synnyttää ääntä. Pistemäinen äänilähde säteilee pallomaisesti ilman esteitä. Käytännössä

Lisätiedot