Luento 11: Periodinen liike

Koko: px
Aloita esitys sivulta:

Download "Luento 11: Periodinen liike"

Transkriptio

1 Luento 11: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r

2 Konseptitesti 1 Tehtävänanto Kuvassa on jouseen kytketyn massan sijainti ajan funktiona. Kuvaile massan liiketilaa pisteessä P. x(t) P t 1. v > 0, a > 0 2. v > 0, a < 0 3. v > 0, a = 0 4. v < 0, a > 0 5. v < 0, a < 0 6. v < 0, a = 0 7. v = 0, a 6= 0 8. v = 0, a = 0

3 Konseptitesti 1 Tehtävänanto Kuvassa on jouseen kytketyn massan sijainti ajan funktiona. Kuvaile massan liiketilaa pisteessä P. x(t) P t 1. v > 0, a > 0 2. v > 0, a < 0 3. v > 0, a = 0 4. v < 0, a > 0 5. v < 0, a < 0 6. v < 0, a = 0 7. v = 0, a 6= 0 8. v = 0, a = 0

4 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä

5 Johdanto Tarkastellaan jaksollista liikettä (periodic motion) eli värähtelyä (oscillation) Keskitytään harmoniseen (harmonic) värähtelyyn Kappaleella stabiili tasapainoasema Tasapainoaseman ympärillä palauttava voima Kun kappaletta poikkeutetaan, voima pyrkii palauttamaan sen Kappaleella kineettistä energiaa! ohittaa tasapainoaseman Voima tekee työtä kappaleen liikettä vastaan ja hidastaa sitä, kunnes liikesuunta vaihtuu! Värähdysliike tasapainoaseman ympärillä x 0

6 Käsitteet Amplitudi (amplitude) A Siirtymän maksimiarvo Jaksonaika (period) T Yhteen värähdykseen kulunut aika Taajuus (frequency) f Värähdysten lukumäärä aikayksikössä Kulmataajuus (angular frequency)! f = 1 T! = 2 f

7 Käsitteitä Vaimennettu (damped) värähtely Jos kappaleeseen vaikuttaa palauttavan voiman lisäksi häviöllinen voima, värähdysliikkeen energia pienenee ajan funktiona Pakkovärähtely (forced/driven oscillation) Kappaleeseen vaikuttaa palauttavan voiman lisäksi ajan suhteen periodinen voima, joka pakottaa kappaleen värähtelemään omalla taajuudellaan Näistä tarkemmin ensi viikolla

8 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä

9 Harmoninen värähtely Matemaattisesti yksinkertaisin värähtely Palauttava voima suoraan verrannollinen poikkeamaan tasapainoasemasta Esim jousi F = kx = ma = m d 2 x dt 2 =) d 2 x dt 2 + k m x = 0 Tämän toisen kertaluvun differentiaaliyhtälön yleinen ratkaisu on k > 0 =) x = A cos!t + B sin!t Ratkaisussa kaksi vakiota A ja B, joiden määräämiseen tarvitaan kaksi alkuehtoa, esim tieto sijainnista ja nopeudesta jollain ajanhetkellä

10 Harmoninen värähtely Yhtälö voidaan esittää myös muodossa x = A 0 cos(!t + ), koska A 0 cos(!t+ )=A 0 cos cos!t A 0 sin sin!t = A cos!t+b sin!t Värähtelijän nopeus Kiihtyvyys a = dv dt v = dx dt Sijoitetaan liikeyhtälöön = A! sin(!t + ) = A! 2 cos(!t + )=! 2 x! 2 x + k m x = 0 =)! = r k m

11 Harmoninen värähtely Kulmanopeus! määräytyy massasta ja jousivakiosta Lähtövaihe määräytyy kappaleen sijainnista kun t = 0

12 Amplitudin ja lähtövaiheen määritys Määritellään lähtövaihe ja amplitudi annetuista alkuarvoista Esim. annettu kappaleen siirtymä ja nopeus kun t = 0 x(t = 0) =x 0 = A cos v(t = 0) =v 0 =!A sin Kun yhtälöt jaetaan keskenään, saadaan apple v 0 =! tan =) = arctan x 0 v 0!x 0

13 Amplitudin ja lähtövaiheen määritys Vastaavasti saadaan liikkeen amplitudi potenssiin korotuksella v 2 0! 2 = A2 sin 2 x 2 0 = A 2 cos 2 yhteenlaskemalla saadaan x v 2 0! 2 = A2 sin 2 + cos 2 = A 2

14 Harmonisen värähtelijän energia Harmonisen värähtelijän mekaaninen energia vakio jos ei ulkoisia voimia E = 1 2 mv kx 2 = vakio Kohdassa x = A nopeus v = 0 =) K = 0 E = 1 2 ka2 Toisaalta tasapainoasemassa x = 0 =) U = 0 E = 1 2 mv 2 max

15 Harmonisen värähtelijän energia Sijoitetaan värähtelijän paikan ja nopeuden lausekkeet E = 1 2 m[!a sin (!t + )]2 + 1 k[a cos (!t + )] ka2 sin 2 (!t + )+cos 2 (!t + ) 2 1 = 2 ka2 missä k = m! 2

16 Nopeus paikan funktiona Kun amplitudi (tai kokonaisenergia) tunnetaan, voidaan energian säilymisyhtälöstä esimerkiksi nopeus paikan funktiona 1 2 mv kx2 = 1 2 ka2 =) v 2 = k m A2 x 2 =! 2 A 2 x 2 =) p v = ±! A 2 x 2

17 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä

18 Konseptitesti 2 Tehtävänanto Henkilö istuu keinussa. Henkilön istuessa paikallaan, keinu heilahtelee hiljalleen edestakaisin luonnollisella taajuudellaan. Jos keinussa istuukin kaksi ihmistä vierekkäin, mitä tapahtuu keinun heilumistaajuudelle verrattuna alkutilanteeseen? 1. Se kasvaa 2. Se ei muutu 3. Se pienenee

19 Konseptitesti 2 Tehtävänanto Henkilö istuu keinussa. Henkilön istuessa paikallaan, keinu heilahtelee hiljalleen edestakaisin luonnollisella taajuudellaan. Jos keinussa istuukin kaksi ihmistä vierekkäin, mitä tapahtuu keinun heilumistaajuudelle verrattuna alkutilanteeseen? 1. Se kasvaa 2. Se ei muutu 3. Se pienenee

20 Jousi pystysuorassa

21 Pystysuora värähtely Pystysuoran jousen pituus vapaasti riippuvana on ` Kun jousen varaan ripustettu massa m venyy jousi matkan Systeemi on tällöin tasapainossa eli nettovoima on nolla X F = k ` mg = 0 =) k ` = mg ` Tasapainoasemassa x = 0 Poikkeutetaan massa etäisyydelle x tasapainoaseman yläpuolelle X F = k ( ` x) mg = kx Poikkeutetaan massa etäisyydelle x tasapainoaseman yläpuolelle X F = k ( ` x) mg = kx Vastaavasti etäisyydellä x voimien summa on kx

22 Pystysuoran värähtelyn kulmataajuus Tasapainoasemasta poikkeutettu massa harmonisessa värähdysliikkeessä Erona vaakasuoraan liikkeeseen: jousi jo tasapainoasemassaan venynyt! = r k m Jos massa jousen päällä, painuu jousi kasaan tasapainoasemassaan Massan liike on silti harmonista värähtelyä kulmataajuudella! = r k m

23 Kiertoheiluri Kiertoheiluria kierrettäessä siihen kohdistuu poikkeutuskulmaan verrannollinen vääntömomentti = apple Verrannollisuusvakio apple on vääntöjousivakio (torsion constant) Kappaleen pyörimisliikkeen liikeyhtälö dl dt = missä L = I! = I d dt

24 Kiertoheilurin kulmataajuus Kiertoheilurin liikeyhtälö on siis dl dt = I d 2 dt 2 = = apple ) d 2 dt 2 + apple I = 0 Samanmuotoinen yhtälö kuin jousen tapauksessa Kiertoheilurin liikeyhtälön ratkaisu ja kulmataajuus r apple = 0 cos (!t + ) ja! = I

25 Matemaattinen heiluri Kappale heilahtelee massattoman langan varassa Maan vetovoiman aiheuttama palauttava voima on F T = mg sin mg (kulma pieni) Kappaleen tangentiaalikiihtyvyys on liikeyhtälö a T = L = L d 2 dt 2 ma T = ml d 2 dt 2 = F T = mg ) d 2 dt 2 + g L = 0 ~F t m~g ~F r

26 Matemaattisen heilurin kulmataajuus Harmonisen värähtelyn yhtälö, jossa värähtelykulmataajuus r g! = L Taajuus riippuu vain langan pituudesta, ei kappaleen massasta Yhtälö approksimaatio, mutta toimii hyvin jopa 15 heilahteluille ) virhe < 0.5% Yksinkertaista heiluria voidaan käyttää g:n mittaamiseen tai kellona

27 Fysikaalinen heiluri Fysikaalisella heilurilla (physical pendulum) on äärellinen koko Jäykkä kappale heilahtelee jonkin pisteensä O ympäri Painovoiman vaikutus redusoituu massakeskipisteeseen, jolloin painovoiman aiheuttama vääntömomentti O:n suhteen on ~ = ~ d ~w ) ~ = mgd sin ˆk

28 Fysikaalisen heilurin liikeyhtälö Kun kulma pieni, vääntömomentti on Kappaleen liikeyhtälö on tällöin mgd dl = di! = I d 2 = mgd =) dt dt dt2 d 2 dt + mgd = 2 0 r I mgd! = I I on hitausmomentti heilahdusakselin suhteen

29 Konseptitesti 3 Tehtävänanto Henkilö istuu keinussa. Henkilön istuessa paikallaan, keinu heilahtelee hiljalleen edestakaisin luonnollisella taajuudellaan. Jos henkilö istumisen sijaan seisoo keinussa, mitä tapahtuu keinun heilumistaajuudelle verrattuna alkutilanteeseen? 1. Se kasvaa 2. Se ei muutu 3. Se pienenee

30 Konseptitesti 3 Tehtävänanto Henkilö istuu keinussa. Henkilön istuessa paikallaan, keinu heilahtelee hiljalleen edestakaisin luonnollisella taajuudellaan. Jos henkilö istumisen sijaan seisoo keinussa, mitä tapahtuu keinun heilumistaajuudelle verrattuna alkutilanteeseen? 1. Se kasvaa 2. Se ei muutu 3. Se pienenee

31 Lokaalit minimit ja niiden approksimointi paraabelilla Luonnossa monet voimat eivät riipu lineaarisesti siirtymästä Pienet siirtymät voidaan approksimoida harmonisella värähtelyllä Lokaalin minimin ympäristössä kaikki funktiot voidaan kehittää Taylorin kaavan f (x) =f (x 0 )+f 0 (x 0 )(x x 0 ) +...= a ± bx ±... Ensimmäinen siirtymästä riippuva termi on lineaarinen Joissakin tapauksissa kerroin b = 0 tai b on hyvin pieni Tällöin värähtely ei ole harmonista

32 Esimerkki: van der Waals -voima van der Waals -voimakentän potentiaalienergia voidaan lausua muodossa " R0 12 # 6 R0 U = U 0 2 = r r " 12 # 6 r r U 0 2 R 0 R 0

33 Esimerkki jatkuu: Atomin värähtely Jos atomin etäisyys tasapainoasemasta on pieni (x R 0 ) Potenssilausekkeet voidaan kirjoittaa binomikehitelmän (1 + u) n = 1 + nu +...(u 1) avulla apple F = 12 U 0 R x x = 72 U 0 R 0 R 0 R0 2 x Atomi värähtelee lähes harmonisesti, koska F k = 72U 0 /R0 2. kx, missä

34 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä

35 Esimerkki 1 Harmonisen värähdysliikkeen amplitudi on m ja jaksonaika 4.0 s. Laske, kuinka suuri on a) partikkelin nopeus ja kiihtyvyys 0.5 s kuluttua siitä, kun se on ohittanut liikkeen ääriasennon ja b) nopeus ja kiihtyvyys liikkeen keskikohdassa.

36 Ratkaisu Värähdysliikkeen yhtälö on x Asin! t ". Valitaan 0. Ääriasennoissa x A 2 t T t n T A A t n T A, missä n 01,,2,... ja T on jaksonaika dx Ääriasennon jälkeen t 05, s t ta t v A cos! t" = dt = A cos # t A t$ = A cos( 2 n % T t )* 2 & ' = ( % A 2 2 t sin T )* T &' 8,9 cm s -1 ja 2 2 dv a A+ n dt 2 - ( 2, T. sin % )* 2 T t = A+ 2-2 cos ( t% = 014, m s. &', T. )* T &' -2 b) Keskikohdassa x Asin! t" 0 t n t nt 2 dx 2 v A cos! t" = A cos! n " = A 13 cm s -1 ja dt T dv a A+ n dt, T. sin! " 0.

37 Esimerkki 2 Ohut rengas on ripustettu renkaan läpi kulkevan teräväreunaisen tangon varaan, jolloin rengas voi heilahdella kosketuspisteen varassa. Määritä renkaan pienten värähtelyjen kulmataajuus ja jaksonaika. Renkaan paksuus d on pieni renkaan säteeseen R = 0.1 m verrattuna. Renkaan I CM = mr 2, koska koko massa R:n etäisyydellä I O = I CM + mr 2 = 2mR 2.

38 Ratkaisu Pyörimisen liikeyhtälö dl dt L I (kiinteä akseli) mgr sin mgr 2, missä d I mgr 0 2 dt 2 d mgr 0 2 dt I mgr mgr g I 2 2mR 2R 2 2R T 2 0,88 s g dl d d I I ja dt dt 2 dt 2

Luento 13: Periodinen liike

Luento 13: Periodinen liike Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos Ajankohtaista

Lisätiedot

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic

Lisätiedot

Luento 11: Periodinen liike

Luento 11: Periodinen liike Luento 11: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä θ F t m g F r Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä Johdanto Tarkastellaan

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan

Lisätiedot

BM30A0240, Fysiikka L osa 4

BM30A0240, Fysiikka L osa 4 BM30A0240, Fysiikka L osa 4 Luennot: Heikki Pitkänen 1 Oppikirja: Young & Freedman: University Physics Luku 14 - Periodic motion Luku 15 - Mechanical waves Luku 16 - Sound and hearing Muuta - Diffraktio,

Lisätiedot

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina 31.5.2012. T 6.1 (pakollinen): Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä.

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 6 Yksinkertainen harmoninen liike yhteys ympyräliikkeeseen energia dynamiikka Värähdysliike Knight Ch 14 Heilahtelut pystysuunnassa ja gravitaation

Lisätiedot

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE Harmoninen voima on voima, jonka suuruus on suoraan verrannollinen poikkeamaan tasapainoasemasta

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Meaniian jatourssi Fys10 Sysy 009 Jua Maalampi LUENTO 6 Harmonisen värähdysliieen energia Jousen potentiaalienergia on U ( x missä on jousivaio ja Dx on poieama tasapainosta. Valitaan origo tasapainopisteeseen,

Lisätiedot

BM30A0240, Fysiikka L osa 4. Värähtelyfysiikkaa. Luennot: Heikki Pitkänen

BM30A0240, Fysiikka L osa 4. Värähtelyfysiikkaa. Luennot: Heikki Pitkänen BM30A0240, Fysiikka L osa 4 Värähtelyfysiikkaa 1 Luennot: Heikki Pitkänen Oppikirja: Young & Freedman: University Physics Periodic motion Mechanical waves Sound and hearing Muuta - Diffraktio, interferenssi,

Lisätiedot

Luento 14: Periodinen liike, osa 2. Vaimennettu värähtely Pakkovärähtely Resonanssi F t F r

Luento 14: Periodinen liike, osa 2. Vaimennettu värähtely Pakkovärähtely Resonanssi F t F r Luento 14: Periodinen liike, osa 2 Vaimennettu värähtely Pakkovärähtely Resonanssi θ F µ F t F r m g 1 / 20 Luennon sisältö Vaimennettu värähtely Pakkovärähtely Resonanssi 2 / 20 Vaimennettu värähtely

Lisätiedot

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1). H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika

Lisätiedot

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE Harmoninen voima on voima, jonka suuruus on suoraan verrannollinen poikkeamaan tasapainoasemasta

Lisätiedot

Luento 18: Kertausluento

Luento 18: Kertausluento Luento 18: Kertausluento Värähdysliike Harmoninen värähtely Vaimennettu värähtely Pakkovärähtely Mekaaniset aallot Eteneminen Seisovat aallot Ääniaallot Luennon sisältö Värähdysliike Harmoninen värähtely

Lisätiedot

Theory Finnish (Finland)

Theory Finnish (Finland) Q1-1 Kaksi tehtävää mekaniikasta (10 pistettä) Lue yleisohjeet ennen tehtävien aloittamista. Osa A: Piilotettu kiekko (3,5 pistettä) Tässä tehtävässä käsitellään umpinaista puista sylinteriä, jonka säde

Lisätiedot

Pakotettu vaimennettu harmoninen värähtelijä Resonanssi

Pakotettu vaimennettu harmoninen värähtelijä Resonanssi Pakotettu vaimennettu harmoninen värähtelijä Resonanssi Tällä luennolla tavoitteena Mikä on pakkovoiman aiheuttama vaikutus vaimennettuun harmoniseen värähtelijään? Mikä on resonanssi? Kertaus: energian

Lisätiedot

Tehtävänä on määrittää fysikaalisen heilurin hitausmomentti heilahdusajan avulla.

Tehtävänä on määrittää fysikaalisen heilurin hitausmomentti heilahdusajan avulla. TYÖ 9d. FYSIKAALISEN HEILURIN HITAUSMOMENTTI Tehtävä Välineet Taustatietoja Tehtävänä on määrittää fysikaalisen heilurin hitausmomentti heilahdusajan avulla. Fysikaalisena heilurina on metrin teräsmittana,

Lisätiedot

Värähdysliikkeet. q + f (q, q, t) = 0. q + f (q, q) = F (t) missä nopeusriippuvuus kuvaa vaimenemista ja F (t) on ulkoinen pakkovoima.

Värähdysliikkeet. q + f (q, q, t) = 0. q + f (q, q) = F (t) missä nopeusriippuvuus kuvaa vaimenemista ja F (t) on ulkoinen pakkovoima. Torstai 18.9.2014 1/17 Värähdysliikkeet Värähdysliikkeet ovat tyypillisiä fysiikassa: Häiriö oskillaatio Jaksollinen liike oskillaatio Yleisesti värähdysliikettä voidaan kuvata yhtälöllä q + f (q, q, t)

Lisätiedot

KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1

KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1 KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1 Tässä materiaalissa on ensin helpompia laskuja, joiden avulla voi kerrata perusasioita, ja sen jälkeen muutamia vaikeampia laskuja. Laskujen jälkeen

Lisätiedot

Liikemäärän säilyminen Vuorovesivoimat Jousivoima

Liikemäärän säilyminen Vuorovesivoimat Jousivoima Liikemäärän säilyminen Vuorovesivoimat Jousivoima Tämän luennon tavoitteet Liikemäärän säilyminen Vuorovesivoimat ja binomiapproksimaatio gravitaatio jatkuu viime viikolta Jousivoima: mikä se on ja miten

Lisätiedot

Luku 8. Mekaanisen energian säilyminen. Konservatiiviset ja eikonservatiiviset. Potentiaalienergia Voima ja potentiaalienergia.

Luku 8. Mekaanisen energian säilyminen. Konservatiiviset ja eikonservatiiviset. Potentiaalienergia Voima ja potentiaalienergia. Luku 8 Mekaanisen energian säilyminen Konservatiiviset ja eikonservatiiviset voimat Potentiaalienergia Voima ja potentiaalienergia Mekaanisen energian säilyminen Teho Tavoitteet: Erottaa konservatiivinen

Lisätiedot

Voima ja potentiaalienergia II Energian kvantittuminen

Voima ja potentiaalienergia II Energian kvantittuminen Voima ja potentiaalienergia II Energian kvantittuminen Mene osoitteeseen presemo.helsinki.fi/kontro ja vastaa kysymyksiin Tavoitteena tällä luennolla Miten määritetään voima kun potentiaalienergia U(x,y,z)

Lisätiedot

Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori!

Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! 6.1 Työ Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! Siirtymä s = r 2 r 1 Kun voiman kohteena olevaa kappaletta voidaan kuvata

Lisätiedot

Luento 14: Periodinen liike, osa 2

Luento 14: Periodinen liike, osa 2 Luento 14: Periodinen liike, osa 2 Vaimennettu värähtely Pakkovärähtely Resonanssi F ~ µ ~F t F ~ d ~F r m~g Ajankohtaista Poimintoja palautekyselystä Oli mukava luento. Mukavaa että luennoitsija mahdollisti

Lisätiedot

- suurempi voima aiheuttaa nopeampaa liikettä kuin pieni voima - samanlainen voima aiheuttaa samalle kappaleelle aina samanlaisen vaikutuksen

- suurempi voima aiheuttaa nopeampaa liikettä kuin pieni voima - samanlainen voima aiheuttaa samalle kappaleelle aina samanlaisen vaikutuksen 3 Dynamiikka 3.1 Voima (force) - Jos työnnät jotain kevyttä kappaletta, se alkaa liikkua - jos työnnät sitä kovemmin, se liikkuu nopeammin Kyseinen suure on voima - suurempi voima aiheuttaa nopeampaa liikettä

Lisätiedot

Luento 15: Mekaaniset aallot

Luento 15: Mekaaniset aallot Luento 15: Mekaaniset aallot Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot Ajankohtaista Luennon sisältö Mekaaniset aallot Eteneminen Aallon nopeus

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,

Lisätiedot

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike 1 / 29 Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle / Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle / 16. 18.5. Lineaariset differentiaaliyhtälöt, homogeeniset differentiaaliyhtälöt Tehtävä 1: a) Määritä differentiaaliyhtälön y 3y = 14e 4x

Lisätiedot

= vaimenevan värähdysliikkeen taajuus)

= vaimenevan värähdysliikkeen taajuus) Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 7: MEKAANINEN VÄRÄHTELIJÄ Teoriaa Vaimeneva värähdysliike y ŷ ŷ ŷ t T Kuva. Vaimeneva värähdysliike ajan funktiona.

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti

Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti Kertausta Ympyrärataa kiertävälle kappaleelle on määritelty käsitteet kulmanopeus ja kulmakiihtyvyys seuraavasti: ω = dθ dt dω ja α = dt Eli esimerkiksi

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten)

Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten) Noste Ympyräliike I Luennon tavoitteet Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten) Aloitetaan ympyräliikettä Keskeisvoiman

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 2-3 Vääntömomentti Oletus: Voimat tasossa, joka on kohtisuorassa pyörimisakselia vastaan. Oven kääntämiseen tarvitaan eri suuruinen voima

Lisätiedot

Esimerkki 1 Ratkaise differentiaaliyhtälö

Esimerkki 1 Ratkaise differentiaaliyhtälö Esimerkki 1 Ratkaise differentiaaliyhtälö x 2 y xy =1/x. 1 / K. Tuominen kimmo.i.tuominen@helsinki.fi MApu II 1/20 20 Esimerkki 2 Ratkaise differentiaaliyhtälö x(ln y)y y ln x =0. 2 / K. Tuominen kimmo.i.tuominen@helsinki.fi

Lisätiedot

Luento 3: Käyräviivainen liike

Luento 3: Käyräviivainen liike Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike 2015-09-14 13:50:32 1/40 luentokalvot_03_combined.pdf (#36) Luennon

Lisätiedot

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r Vuka HT 4 Tehtävä. Lyhyenä alustuksena tehtävään johdetaan keskeiskiihtyvyys tasaisessa pyörimisessä. Meillä on ympyräradalla liikkuva kappale joka pyörii vakiokulmanopeudella ω dϕ säteellä r origosta.

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain

Lisätiedot

H7 Malliratkaisut - Tehtävä 1

H7 Malliratkaisut - Tehtävä 1 H7 Malliratkaisut - Tehtävä Eelis Mielonen 7. lokakuuta 07 a) Palautellaan muistiin Maclaurin sarjan määritelmä (Taylorin sarja origon ympäristössä): f n (0) f(x) = (x) n Nyt jos f(x) = ln( + x) saadaan

Lisätiedot

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1 infoa Viikon aiheet Tentti ensi viikolla ma 23.0. klo 9.00-3.00 Huomaa, alkaa tasalta! D0 (Sukunimet A-) E204 (Sukunimet S-Ö) Mukaan kynä ja kumi. Ei muuta materiaalia. Tentissä kaavakokoelma valmiina.

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista

Lisätiedot

Normaaliryhmä. Toisen kertaluvun normaaliryhmä on yleistä muotoa

Normaaliryhmä. Toisen kertaluvun normaaliryhmä on yleistä muotoa Normaaliryhmä Toisen kertaluvun normaaliryhmä on yleistä muotoa x = u(t,x,y), y t I, = v(t,x,y), Funktiot u = u(t,x,y), t I ja v = v(t,x,y), t I ovat tunnettuja Toisen kertaluvun normaaliryhmän ratkaisu

Lisätiedot

5.10. HIUKKANEN POTENTIAALIKUOPASSA

5.10. HIUKKANEN POTENTIAALIKUOPASSA 5.10. HIUKKANEN POTENTIAALIKUOPASSA eli miten reunaehdot ja normitus vaikuttavat aaltofunktioihin Yleensä Schrödingerin yhtälön ratkaiseminen matemaattisesti on hyvin työlästä ja edellyttää vahvaa matemaattista

Lisätiedot

Luento 9: Potentiaalienergia

Luento 9: Potentiaalienergia Luento 9: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Laskettuja esimerkkejä Luennon sisältö Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta

Lisätiedot

Nyt kerrataan! Lukion FYS5-kurssi

Nyt kerrataan! Lukion FYS5-kurssi Nyt kerrataan! Lukion FYS5-kurssi Vaakasuora heittoliike Heittoliikettä voidaan tarkastella erikseen vaaka- ja pystysuunnassa v=(v x,v y ) Jos ilmanvastausta ei oteta huomioon (yleensä ei), vaakasuunnalle

Lisätiedot

Luento 5: Käyräviivainen liike

Luento 5: Käyräviivainen liike Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike Ajankohtaista Konseptitesti 1 Kysymys Viereisessä kuvassa leppäkerttu istuu karusellissa,

Lisätiedot

Massakeskipiste Kosketusvoimat

Massakeskipiste Kosketusvoimat Massakeskipiste Kosketusvoimat Luennon tavoitteet Kosketusvoimia Kitka Tukivoima Jännitys Jousivoima Massakeskipisteen käsite ja sillä laskeminen (Resonanssi tiedottaa tarjoavansa kahvia luentotauolla)

Lisätiedot

Luento 15: Mekaaniset aallot. Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot

Luento 15: Mekaaniset aallot. Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot Luento 15: Mekaaniset aallot Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot 1 / 40 Luennon sisältö Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa

Lisätiedot

Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä

Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä Tekijä: Mikko Laine Tekijän sähköpostiosoite: miklaine@student.oulu.fi Koulutusohjelma: Fysiikka Mittausten suorituspäivä: 04.02.2013 Työn

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

FYSA220/K2 (FYS222/K2) Vaimeneva värähtely

FYSA220/K2 (FYS222/K2) Vaimeneva värähtely FYSA/K (FYS/K) Vaimeneva värähtely Työssä tutkitaan vaimenevaa sähköistä värähysliikettä. Erityisesti pyritään havainnollistamaan kelan inuktanssin, konensaattorin kapasitanssin ja ohmisen vastuksen suuruuksien

Lisätiedot

Fononit. Värähtelyt lineaarisessa atomiketjussa Dispersiorelaatio Kaksi erilaista atomia ketjussa Fononit kolmessa dimensiossa

Fononit. Värähtelyt lineaarisessa atomiketjussa Dispersiorelaatio Kaksi erilaista atomia ketjussa Fononit kolmessa dimensiossa Fononit Värähtelyt lineaarisessa atomiketjussa Dispersiorelaatio Kaksi erilaista atomia ketjussa Fononit kolmessa dimensiossa Atomien lämpövärähtely Mikä on atomien värähtelyn taajuus ja amplitudi? Tarkastellaan

Lisätiedot

Luento 5: Käyräviivainen liike

Luento 5: Käyräviivainen liike Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike Ajankohtaista Konseptitesti 1 http://presemo.aalto.fi/mekaniikka2017 Kysymys Sotalaivasta

Lisätiedot

Liike pyörivällä maapallolla

Liike pyörivällä maapallolla Liike pyörivällä maapallolla Voidaan olettaa: Maan pyöriminen tasaista Maan rataliikkeen näennäisvoimat tasapainossa Auringon vetovoiman kanssa Riittää tarkastella Maan tasaisesta pyörimisestä akselinsa

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 10.1 Tee-se-itse putkimies ei saa vesiputken kiinnitystä auki putkipihdeillään, joten hän päättää lisätä vääntömomenttia jatkamalla pihtien vartta siihen tiukasti sopivalla

Lisätiedot

Luento 9: Pyörimisliikkeen dynamiikkaa

Luento 9: Pyörimisliikkeen dynamiikkaa Luento 9: Pyörimisliikkeen dynamiikkaa Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Harjoituksia ja laskettuja esimerkkejä ELEC-A3110 Mekaniikka (5 op) Sami

Lisätiedot

tutustua kiertoheilurin teoriaan ja toimintaan harjoitella mittauspöytäkirjan itsenäistä tekemistä sekä työselostuksen laatimista

tutustua kiertoheilurin teoriaan ja toimintaan harjoitella mittauspöytäkirjan itsenäistä tekemistä sekä työselostuksen laatimista FYSP102 / 2 KIERTOHEILURI Työn tavoitteita tutustua kiertoheilurin teoriaan ja toimintaan harjoitella mittauspöytäkirjan itsenäistä tekemistä sekä työselostuksen laatimista Kiertoheiluri on aihe, joka

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.3.2016 Susanna Hurme Rotaatioliikkeen liike-energia, teho ja energiaperiaate (Kirjan luku 18) Osaamistavoitteet Ymmärtää, miten liike-energia määritetään kiinteän

Lisätiedot

Useita oskillaattoreita yleinen tarkastelu

Useita oskillaattoreita yleinen tarkastelu Useita oskillaattoreita yleinen tarkastelu Useita riippumattomia vapausasteita q i, i =,..., n ja potentiaali vastaavasti U(q, q 2,..., q n). Tasapainoasema {q 0, q0 2,..., q0 n} q 0 Käytetään merkintää

Lisätiedot

Dissipatiiviset voimat

Dissipatiiviset voimat Dissipatiiviset voimat Luennon tavoitteena Mitä on energian dissipaatio? Ilmanvastus ja muita vastusvoimia, analyyttinen käsittely Toinen tärkeä differentiaaliyhtälö: eksponentiaalinen vaimeneminen Vaimennettu

Lisätiedot

Luku 7 Työ ja energia. Muuttuvan voiman tekemä työ Liike-energia

Luku 7 Työ ja energia. Muuttuvan voiman tekemä työ Liike-energia Luku 7 Työ ja energia Muuttuvan voiman tekemä työ Liike-energia Tavoitteet: Selittää työn käsite Mallittaa voiman tekemä työ Mallittaa liike-energian ja työn keskinäinen riippuvuus Esitiedot Newtonin lait

Lisätiedot

Kiihtyvyys a on paikan x toinen aikaderivaatta 2

Kiihtyvyys a on paikan x toinen aikaderivaatta 2 . HARMONINEN VÄRÄHDYSLIIKE 9. HARMONISEN LIIKKEEN TEORIAA Jos kappaleeseen (massapisteeseen m) vaikuttava voima (F ) on suoraan verrannollinen kappaleen poikkeamaan (x) tasapainoasemasta ( x 0), voima

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.3.2016 Susanna Hurme Rotaatioliikkeen kinetiikka: hitausmomentti ja liikeyhtälöt (Kirjan luvut 17.1, 17.2 ja 17.4) Osaamistavoitteet Ymmärtää hitausmomentin

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys12 Kevät 21 Jukka Maalampi LUENTO 11 Mekaaninen aaltoliike alto = avaruudessa etenevä järjestäytynyt häiriö. alto altoja on kahdenlaisia: Poikittainen aalto - poikkeamat kohtisuorassa

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1 / 18

Lisätiedot

W el = W = 1 2 kx2 1

W el = W = 1 2 kx2 1 7.2 Elastinen potentiaalienergia Paitsi gravitaatioon, myös materiaalien deformaatioon (muodonmuutoksiin) liittyy systeemin rakenneosasten keskinäisiin paikkoihin liittyvää potentiaalienergiaa Elastinen

Lisätiedot

Ei-inertiaaliset koordinaatistot

Ei-inertiaaliset koordinaatistot orstai 25.9.2014 1/17 Ei-inertiaaliset koordinaatistot Tarkastellaan seuraavaa koordinaatistomuunnosta: {x} = (x 1, x 2, x 3 ) {y} = (y 1, y 2, y 3 ) joille valitaan kantavektorit: {x} : (î, ĵ, ˆk) {y}

Lisätiedot

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x BM0A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 4, Kevät 017 Päivityksiä: 1. Ratkaise differentiaaliyhtälöt 3y + 4y = 0 ja 3y + 4y = e x.. Ratkaise DY (a) 3y 9y + 6y = e 10x (b) Mikä on edellisen

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Mikro- ja nanotekniikan laitos Syksy 2016 1 / 21 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia

Lisätiedot

Luento 3: Käyräviivainen liike

Luento 3: Käyräviivainen liike Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luennon sisältö Kertausta viime viikolta Käyräviivainen liike

Lisätiedot

Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt

Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt Suoraviivainen liike integrointi Digress: vakio- vs. muuttuva kiihtyvyys käytännössä Kinematiikkaa yhdessä dimensiossa taustatietoa ELEC-A3110 Mekaniikka

Lisätiedot

KIERTOHEILURI JA HITAUSMOMENTTI

KIERTOHEILURI JA HITAUSMOMENTTI 1 KIERTOHEILURI JA HITAUSMOMENTTI MOTIVOINTI Tutustutaan kiertoheiluriin käytännössä. Mitataan hitausmomentin vaikutus värähtelyyn. Tutkitaan mitkä tekijät vaikuttavat järjestelmän hitausmomenttiin. Vahvistetaan

Lisätiedot

Luento 10: Työ, energia ja teho

Luento 10: Työ, energia ja teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho Ajankohtaista Konseptitesti 1 Kysymys Ajat pyörällä ylös jyrkkää mäkeä. Huipulle vie kaksi polkua, toinen kaksi kertaa pidempi kuin

Lisätiedot

YLEINEN AALTOLIIKEOPPI

YLEINEN AALTOLIIKEOPPI YLEINEN AALTOLIIKEOPPI KEVÄT 2017 1 Saana-Maija Huttula (saana.huttula@oulu.fi) Maanantai Tiistai Keskiviikko Torstai Perjantai Vk 8 Luento 1 Mekaaniset aallot 1 Luento 2 Mekaaniset aallot 2 Ääni ja kuuleminen

Lisätiedot

tutustua kiertoheilurin teoriaan ja toimintaan

tutustua kiertoheilurin teoriaan ja toimintaan FYSP102 / 2 KIERTOHEILURI Työn tavoitteita tutustua kiertoheilurin teoriaan ja toimintaan harjoitella mittauspöytäkirjan itsenäistä tekemistä sekä työselostuksen laatimista Kiertoheiluri on aihe, joka

Lisätiedot

nopeammin. Havaitaan, että kussakin tapauksessa kuvaaja (t, ϕ)-koordinaatistossa on nouseva suora.

nopeammin. Havaitaan, että kussakin tapauksessa kuvaaja (t, ϕ)-koordinaatistossa on nouseva suora. nopeammin. Havaitaan, että kussakin tapauksessa kuvaaja (t, ϕ)-koordinaatistossa on nouseva suora. Teimme mittaukset käyttäen Pascon pyörimisliikelaitteistoa (ME-895) ja Logger Promittausohjelmaa. Kuva

Lisätiedot

dt 2. Nämä voimat siis kumoavat toisensa, jolloin saadaan differentiaaliyhtälö

dt 2. Nämä voimat siis kumoavat toisensa, jolloin saadaan differentiaaliyhtälö Mathematican version 8 mukainen. (25.10.2012 SKK) Tavallinen heiluri Otetaan tarkastelun kohteeksi tavallinen yksinkertainen heiluri. Tämä koostuu kitkattomaan niveleen kiinnitetystä (massattomasta) varresta

Lisätiedot

Luento 2: Liikkeen kuvausta

Luento 2: Liikkeen kuvausta Luento 2: Liikkeen kuvausta Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Luennon sisältö Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Liikkeen ratkaisu kiihtyvyydestä

Lisätiedot

Luento 10. Potentiaali jatkuu, voiman konservatiivisuus, dynamiikan ja energiaperiaatteen käyttö, reaalinen jousi

Luento 10. Potentiaali jatkuu, voiman konservatiivisuus, dynamiikan ja energiaperiaatteen käyttö, reaalinen jousi Luento 10 Potentiaali jatkuu, voiman konservatiivisuus, dynamiikan ja energiaperiaatteen käyttö, reaalinen jousi Tällä luennolla tavoitteena: Gravitaatio jatkuu Konservatiivinen voima Mitä eroa on energia-

Lisätiedot

Luento 7: Pyörimisliikkeen dynamiikkaa

Luento 7: Pyörimisliikkeen dynamiikkaa Luento 7: Pyörimisliikkeen dynamiikkaa Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Harjoituksia ja laskettuja esimerkkejä 1 / 37 Luennon sisältö Johdanto

Lisätiedot

Luento 6: Liikemäärä ja impulssi

Luento 6: Liikemäärä ja impulssi Luento 6: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Laskettuja esimerkkejä Luennon sisältö Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste

Lisätiedot

3.4 Liike-energiasta ja potentiaalienergiasta

3.4 Liike-energiasta ja potentiaalienergiasta Työperiaatteeksi (the work-energy theorem) kutsutaan sitä että suljetun systeemin liike-energian muutos Δ on voiman systeemille tekemä työ W Tämä on yksi konservatiivisen voiman erityistapaus Työperiaate

Lisätiedot

kertausta Esimerkki I

kertausta Esimerkki I tavoitteet kertausta osaat määrittää jäykän kappaleen hitausmomentin laskennallisesti ymmärrät kuinka vierimisessä eteneminen ja pyöriminen kytekytyvät osaat soveltaa energiaperiaatetta vierimisongelmiin

Lisätiedot

Luento 11: Potentiaalienergia. Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia

Luento 11: Potentiaalienergia. Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia Luento 11: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia 1 / 22 Luennon sisältö Potentiaalienergia Konservatiiviset voimat

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Täydennä kuhunkin kohtaan yhtälöstä puuttuva suure tai vakio alla olevasta taulukosta. Anna vastauksena kuhunkin kohtaan ainoastaan

Lisätiedot

Epähomogeenisen yhtälön ratkaisu

Epähomogeenisen yhtälön ratkaisu Epähomogeenisen yhtälön ratkaisu Lause Olkoot a = a(x), b = b(x) ja f = f(x) jatkuvia funktioita välillä I R ja olkoot y 1 = y 1 (x) ja y 2 = y 2 (x) eräs homogeeniyhtälön y + a(x)y + b(x)y = 0 ratkaisujen

Lisätiedot

Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa

Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa Potentiaalikuoppa Luento 9 Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa U( x ) = U U( x ) = 0 0 kun x < 0 tai x > L, kun 0 x L. Kuopan kohdalla hiukkanen on vapaa,

Lisätiedot

Luento 7: Pyörimisliikkeen dynamiikkaa

Luento 7: Pyörimisliikkeen dynamiikkaa Luento 7: Pyörimisliikkeen dynamiikkaa Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Laskettuja esimerkkejä Luennon sisältö Johdanto Vääntömomentti Hitausmomentti

Lisätiedot

Värähtelevä jousisysteemi

Värähtelevä jousisysteemi Mathematican version 8 mukainen. (5.10.01 SKK) Värähtelevä jousisysteemi Jousen puristumista ja venymistä voidaan kuvata varsin yksinkertaisella matemaattisella mallilla m d x k x, d t missä x on jousen

Lisätiedot

Tarkastellaan tilannetta, jossa kappale B on levossa ennen törmäystä: v B1x = 0:

Tarkastellaan tilannetta, jossa kappale B on levossa ennen törmäystä: v B1x = 0: 8.4 Elastiset törmäykset Liike-energia ja liikemäärä säilyvät elastisissa törmäyksissä Vain konservatiiviset voimat vaikuttavat 1D-tilanteessa kappaleiden A ja B törmäykselle: 1 2 m Av 2 A1x + 1 2 m Bv

Lisätiedot

5.9 Voiman momentti (moment of force, torque)

5.9 Voiman momentti (moment of force, torque) 5.9 Voiman momentti (moment of force, torque) Voiman momentti määritellään ristitulona M = r F missä r on voiman F vaikutuspisteen paikkavektori tarkasteltavan pisteen suhteen Usean voiman tapauksessa

Lisätiedot

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto Fysiikan perusteet Voimat ja kiihtyvyys Antti Haarto.05.01 Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure

Lisätiedot

dl = F k dl. dw = F dl = F cos. Kun voima vaikuttaa kaarevalla polulla P 1 P 2, polku voidaan jakaa infinitesimaalisen pieniin siirtymiin dl

dl = F k dl. dw = F dl = F cos. Kun voima vaikuttaa kaarevalla polulla P 1 P 2, polku voidaan jakaa infinitesimaalisen pieniin siirtymiin dl Kun voima vaikuttaa kaarevalla polulla P 2, polku voidaan jakaa infinitesimaalisen pieniin siirtymiin dl Kukin siirtymä dl voidaan approksimoida suoraviivaiseksi, jolloin vastaava työn elementti voidaan

Lisätiedot

E p1 = 1 e 2. e 2. E p2 = 1. Vuorovaikutusenergian kolme ensimmäistä termiä on siis

E p1 = 1 e 2. e 2. E p2 = 1. Vuorovaikutusenergian kolme ensimmäistä termiä on siis 763343A IINTEÄN AINEEN FYSIIA Ratkaisut 3 evät 2017 1. Tehtävä: CsCl muodostuu Cs + - ja Cl -ioneista, jotka asettuvat tilakeskeisen rakenteen vuoropaikoille (kuva). Laske tämän rakenteen Madelungin vakion

Lisätiedot

Luento 9: Potentiaalienergia

Luento 9: Potentiaalienergia Luento 9: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Laskettuja esimerkkejä ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2015 Mikro- ja nanotekniikan

Lisätiedot

Luento 11: Potentiaalienergia

Luento 11: Potentiaalienergia Luento 11: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia Ajankohtaista Konseptitesti 1 Kysymys Levossa oleva kappale lähtee

Lisätiedot

SEISOVA AALTOLIIKE 1. TEORIAA

SEISOVA AALTOLIIKE 1. TEORIAA 1 SEISOVA AALTOLIIKE MOTIVOINTI Työssä tutkitaan poikittaista ja pitkittäistä aaltoliikettä pitkässä langassa ja jousessa. Tarkastellaan seisovaa aaltoliikettä. Määritetään aaltoliikkeen etenemisnopeus

Lisätiedot