Lineaarinen yhtälöryhmä
|
|
- Urho Ranta
- 5 vuotta sitten
- Katselukertoja:
Transkriptio
1 Lineaarinen yhtälöryhmä 1 / 39
2 Lineaarinen yhtälö Määritelmä 1 Lineaarinen yhtälö on muotoa a 1 x 1 + a 2 x a n x n = b, missä a i, b R, i = 1,..., n ovat tunnettuja ja x i R, i = 1,..., n ovat tuntemattomia. Yhtälön toteuttavaa lukujonoa (x 1, x 2,..., x n ) sanotaan yhtälön ratkaisuksi ja kaikkien ratkaisujen joukkoa sanotaan yhtälön ratkaisujoukoksi. Jos b = 0, yhtälö on homogeeninen ja sillä on aina triviaaliratkaisu x 1 = x 2 = = x n = 0. 2 / 39
3 Lineaarinen yhtälö Esimerkki 1 Ovatko seuraavat yhtälöt lineaarisia? Miksi? a) x 1 + x 2 = 100x 3 + 9, b) x2 2 4x 5 = 0, c) e x 1 = 4, d) 3x 1 + (log 3) 3 x 2 = 0, e) x 1 x 2 = 5. 3 / 39
4 Lineaarinen yhtälö Ratkaisu a) x 1 + x 2 = 100x x 1 + x 2 100x 3 = 9 eli yhtälö on lineearinen b) x 2 2 4x 5 = 0; x 2 on toisessa potenssissa, joten yhtälö ei ole lineaarinen. c) e x 1 = 4 x 1 log(e) = log 4 x 1 = log 4 eli alkuperäinen yhtälö ei ole linearinen, mutta siitä saadaan muokattua yhtäpitävä lineaarinen yhtälö. d) 3x 1 + (log 3) 3 x 2 = 0; muuttujien kertoimet ovat reaalilukuja, joten yhtälö on lineaarinen. e) x 1 x 2 = 5; muuttujilla on kertoimena toinen muuttuja, joten yhtälö ei ole lineaarinen. 4 / 39
5 Lineaarinen yhtälö Esimerkki 2 a) Yhtälö 2x = 8 voidaan ratkaista kertomalla puolittain luvulla, jolloin saadaan x = b) Yhtälö 2x 1 + 3x 2 = 1 voidaan kirjoittaa muodossa x 2 = 1 3 (1 2x 1) (tai muodossa x 1 = 1 2 (1 3x 2)). Tämä on suoran yhtälö, jonka kulmakerroin on 2/3 ja se leikkaa x 2 -akselin kohdassa 1/3. Yleinen ratkaisu on x 1 = t ja x 2 = 1 (1 2t), 3 missä t R on vapaa muuttuja. Ratkaisuja on siis ääretön määrä. Esimerkiksi x 1 = 1 ja x 2 = 1 on yksi ratkaisu. c) Yhtälö 3x 1 + 6x 2 + x 3 = 4 määrää tason avaruuteen R 3. Myös tällä yhtälöllä on ääretön määrä ratkaisuja: x 1 = t, x 2 = s ja x 3 = 4 3t 6s, t, s R. 5 / 39
6 Lineaarinen yhtälöryhmä 2 x x 1 (a) Yhtälön x 2 = 1/3 (2/3)x 1 kuvaaja (Esim. 2 b)) (b) Yhtälön x 3 = 4 3x 1 6x 2 kuvaaja (Esim. 2 c)) 6 / 39
7 Lineaarinen yhtälöryhmä Määritelmä 2 Lineaarinen yhtälöryhmä on muotoa a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2. a k1 x 1 + a k2 x a kn x n = b k, missä a ij, b i R, i = 1,..., k, j = 1,... n, ovat tunnettuja ja x i R, i = 1,..., n ovat tuntemattomia. Yhtälöryhmän toteuttavaa lukujonoa (x 1, x 2,..., x n ) sanotaan yhtälöryhmän ratkaisuksi ja kaikkien ratkaisujen joukkoa sanotaan yhtälöryhmän ratkaisujoukoksi. Jos b 1 = b 2 = = b k = 0, yhtälöryhmä on homogeeninen ja sillä on aina triviaaliratkaisu x 1 = x 2 = = x n = 0. 7 / 39
8 Lineaarinen yhtälöryhmä Esimerkki 3 Ratkaise yhtälöparit a) { x1 2x 2 = 1 x 1 + 3x 2 = 3 b) { x1 2x 2 = 1 x 1 + 2x 2 = 3 { x1 2x 2 = 1 c). x 1 + 2x 2 = 1 Tulkitse ratkaisut geometrisesti. Ratkaisu a) Lasketaan yhtälöt yhteen, jolloin saadaan x 2 = 2. Sijottamalla tämä ylempään yhtälöön ja ratkaisemalla tästä yhtälöstä x 1 saadaan x 1 = 3. Täten yhtälöparilla on tasan yksi ratkaisu { x1 = 3 x 2 = 2. Geometrinen tulkinta: Kaksi erisuuntaista suoraa, jotka leikkaavat pisteessä (x 1, x 2 ) = (3, 2). 8 / 39
9 Lineaarinen yhtälöryhmä Ratkaisu b) Laskemalla yhtälöt yhteen saadaan 0 = 2. Tämä ei pidä paikkaansa, joten yhtälöparilla ei ole ratkaisua. Geometrinen tulkinta:kaksi saman suuntaista suoraa, jotka eivät leikkaa. Ratkaisu c) Lasketaan yhtälöt yhteen, jolloin saadaan 0 = 0. Tämä on aina tosi, joten yhtälöillä ääretön määrä ratkaisuja. Geometrinen tulkinta: Saman suoran kaksi eri esitystapaa, jolloin leikkauspisteitä on ääretön määrä. 9 / 39
10 Lineaarinen yhtälöryhmä Esimerkki 4 Yhtälöparin { ax1 + bx 2 = e cx 1 + dx 2 = f ratkaisu on suorien ax 1 + bx 2 = e ja cx 1 + dx 2 = f leikkauspiste.leikkauspiste on yksikäsitteinen täsmälleen silloin kun suorat eivät ole yhdensuuntaiset, toisin sanoen (b 0, d 0) a b c d eli ad bc 0. Jos ad bc = 0, niin suorat ovat yhdensuuntaiset. Tällöin ne eivät leikkaa, eli yhtälöparilla ei ole ratkaisua, tai ne ovat sama suora, jolloin yhtälöparilla on äärettömän monta ratkaisua, sillä jokainen (x 1, x 2 ), joka kuuluu suoralle, on ratkaisu. 10 / 39
11 Lineaarinen yhtälöryhmä 11 / 39
12 Lineaarinen yhtälöryhmä Esimerkki 5 Ratkaise yhtälöryhmä x 1 2x 2 + x 3 = 0 2x 2 8x 3 = 0. 4x 1 + 7x 2 3x 3 = 3 Lisäämällä 1. yhtälö luvulla 4 kerrottuna 3. yhtälöön saadaan x 1 2x 2 + x 3 = 0 2x 2 8x 3 = 0. x 2 + x 3 = 3 12 / 39
13 Lineaarinen yhtälöryhmä Esimerkki 5 Kun kerrotaan 2. rivi puolella (jaetaan kahdella), niin saadaan x 1 2x 2 + x 3 = 0 x 2 4x 3 = 0. x 2 + x 3 = 3 Edelleen, kun lisätään 2. rivi kolmanteen, saadaan x 1 2x 2 + x 3 = 0 x 2 4x 3 = 0. 3x 3 = 3 13 / 39
14 Lineaarinen yhtälöryhmä Esimerkki 5 Kun kerrotaan 3. rivi luvulla 1 3, niin saadaan x 1 2x 2 + x 3 = 0 x 2 4x 3 = 0. x 3 = 1 Edelleen, kun lisätään 3. rivi luvulla 1 kerrottuna 1. riviin ja lisätään 3. rivi luvulla 4 kerrottuna 2. riviin, saadaan x 1 2x 2 = 1 x 2 = 4. x 3 = 1 14 / 39
15 Lineaarinen yhtälöryhmä Esimerkki 5 Kun lopuksi lisätään 2. rivi luvulla 2 kerrottuna 1. riviin, niin saadaan x 1 = 7 x 2 = 4. x 3 = 1. Tarkistetaan ratkaisu: 7 2 ( 4) 1 = 0 2 ( 4) 8 ( 1) = 0. 4 ( 7) + 7 ( 4) 3 ( 1) = / 39
16 Gaussin ja Jordanin eliminointimenetelmä: Se on menetelmä lineaarisen yhtälöryhmän ratkaisemiseksi. Sitä käytetään myöhemmin myös käänteismatriisin määräämisessä. Ideana on tiettyjä rivioperaatioita käyttäen muokata yhtälöryhmää niin, että se on helpompi ratkaista. Rivioperaatiot eivät muuta yhtälöryhmän ratkaisuja, vaan alkuperäisellä ja muokatulla yhtälöryhmällä on samat ratkaisut. 16 / 39
17 Lineaarinen yhtälöryhmä voidaan ratkaista käyttämällä seuraavia operaatioita: P ij : vaihdetaan yhtälöt i ja j keskenään. M i (c): kerrotaan yhtälö i luvulla c 0. A ij (c): kerrotaan yhtälö i luvulla c R ja lisätään se yhtälöön j, missä i j. 17 / 39
18 Miten operaatiot vaikuttavat yhtälöryhmän ratkaisuihin? Määritelmä 3 Kaksi yhtälöryhmää (merkitään A ja B) ovat ekvivalentit, jos yhtälöryhmä A saadaan yhtälöryhmästä B tekemällä äärellisen määrän rivioperaatioita. 18 / 39
19 Lause 1 Ekvivalenteilla yhtälöryhmillä on samat ratkaisut. Todistus. Jos kahden yhtälön paikkaa vaihdetaan keskenään eli suoritetaan rivioperaatio P ij, on selvä, että se ei vaikuta yhtälöryhmän ratkaisuihin. Jos yhtälöä kerrotaan puolittain luvulla c R\{0}, se ei muuta yhtälön ratkaisuja. Täten rivioperaatio M i (c) ei vaikuta yhtälöryhmän ratkaisuihin. Rivioperaation A ij (c) perustelu sivuutetaan. 19 / 39
20 Koska rivioperaatiot vaikuttavat vain kertoimiin a ij ja b i, on kätevää kirjoittaa yhtälöryhmä a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2. a k1 x 1 + a k2 x a kn x n = b k laajennettuna kerroinmatriisina a 11 a 12 a 1n b 1 a 21 a 22 a 2n b a k1 a k2 a kn b k Eli jätetään muuttujat (x:t) ja välimerkit (+:t) kirjoittamatta (muistetaan kuitenkin niiden paikat), korvataan =-merkit pystysuoralla viivalla ja lisätään sulut. 20 / 39
21 Esimerkki 6 Muodosta yhtälöryhmän a) x 1 2x 2 + x 3 = 0 2x 2 8x 3 = 8 4x 1 + 5x 2 + 9x 3 = 9 b) 2x 1 x 2 = 5 x 1 + x 3 = 5 3x 1 x 2 x 3 = 0 laajennettu kerroinmatriisi. Miten voit ratkaista yhtälöryhmät käyttämällä laajennettua kerroinmatriisia? Etsi yhtälöryhmien ratkaisujoukot. 21 / 39
22 Ratkaisu a) Yhtälöryhmän laajennettu kerroinmatriisi on x 1 2x 2 + x 3 = 0 2x 2 8x 3 = 8 4x 1 + 5x 2 + 9x 3 = / 39
23 Ratkaisu a) Nyt A 13(4) A 23(3) A (2) A 32 (4) A 31 (7) , joten ratkaisu on (x 1, x 2, x 3 ) = (29, 16, 3) R 3 (ei muita ratkaisuja). M 2( 1 2 ) 23 / 39
24 Ratkaisu b) Yhtälöryhmän laajennettu kerroinmatriisi on 2x 1 x 2 = 5 x 1 + x 3 = 5 3x 1 x 2 x 3 = / 39
25 Ratkaisu b) Nyt P A 13 ( 3) A 12 ( 2) A 23 (1) M 3 ( 1 2 ) M 2( 1) A 32(1) A 31( 1) , joten ratkaisu on (x 1, x 2, x 3 ) = (0, 5, 5) R 3 (ei muita ratkaisuja). 25 / 39
26 Määritelmä 4 Matriisia kutsutaan redusoiduksi porrasmatriisiksi, jos siinä on pelkät nollarivit ovat alimmaisina, jokaisen rivin ensimmäinen nollasta eroava luku on 1 ja sen ylä- ja alapuolella on pelkkiä nollia, ylemmän rivin ensimmäinen 1 on alemman rivin ensimmäisen 1:sen vasemmalla puolella. 26 / 39
27 Ennakkotehtävä seuraavalle luentokerralle Tehtävä Ovatko seuraavat laajennetut kerroinmatriisit redusoituja porrasmatriiseja? (a) (b) (c) Mitkä ovat laajennettujen kerroinmatriisien esittämien yhtälöryhmien ratkaisut? 27 / 39
28 Ennakkotehtävän ratkaisu Kaikki kerroinmatriisit ovat redusoituja porrasmatriiseja, sillä jos niissä on nollarivejä, ne ovat alimmaisina, niissä jokaisen rivin ensimmäinen nollasta eroava luku on 1 ja sen ylä- ja alapuolella on pelkkiä nollia, niissä ylemmän rivin ensimmäinen 1 on alemman rivin ensimmäisen 1:sen vasemmalla puolella. 28 / 39
29 Ennakkotehtävän ratkaisu (a) Laajennettu kerroinmatriisi yhtälömuodossa on x 1 = 5 x 2 = 2 x 3 = 4 eli tässä on yksikäsitteinen ratkaisu. (b) Laajennettu kerroinmatriisi yhtälömuodossa on x 1 = 0 x 2 + 2x 3 = 0, 0 = 1 joten viimeinen yhtälö on epätosi ja näin yhtälöryhmällä ei ole ratkaisua. 29 / 39
30 Ennakkotehtävän ratkaisu (c) Laajennettu kerroinmatriisi yhtälömuodossa on x 1 + 6x 2 + 4x 5 = 2 x 1 = 2 6x 2 4x 5 x 3 + 3x 5 = 1 x 3 = 1 3x 5 x 4 + 5x 5 = 2 x 4 = 2 5x 5 x 1 = 2 6s 4t x 2 = s R x 3 = 1 3t. x 4 = 2 5t x 5 = t R Tämä ratkaisu vektorimuodossa esitettynä on (x 1, x 2, x 3, x 4, x 5 ) = ( 2 6s 4t, s, 1 3t, 2 5t, t) = ( 2, 0, 1, 2, 0) + s( 1, 1, 0, 0, 0) + t( 1, 0, 1, 5, 1), missä s, t R. 30 / 39
31 Redusoidun porrasmatriisin ratkaisujen lukumäärä: (1) d d d n x 1 = d 1 x 2 = d 2. x n = d n. eli yksikäsitteinen ratkaisu. (2) Jokin riveistä on 0 0 c, missä c 0. Tällöin saadaan yhtälö 0 = c, mikä on ristiriita, joten yhtälöryhmällä ei ole ratkaisua. (3) Kun tapaukset (1) ja (2) eivät esiinny, niin epätriviaaleja yhtälöitä on vähemmän kuin tuntemattomia ja yhtälöryhmällä on äärettömän monta ratkaisua. 31 / 39
32 Gaussin ja Jordanin eliminointimenetelmä: 1. Kirjoita yhtälöryhmä laajennettuna kerroinmatriisina. 2. Muuta kerroinmatriisi rivioperaatioilla redusoiduksi porrasmatriisiksi. 3. Lue ratkaisu redusoidusta porrasmatriisista kirjoittamalla se takaisin yhtälöryhmäksi. 32 / 39
33 Esimerkki 7 Ratkaise Gaussin ja Jordanin eliminointimenetelmällä yhtälö x 1 + x 2 2x 3 + x 4 + 3x 5 = 1 2x 1 x 2 + 2x 3 + 2x 4 + 6x 5 = 2 3x 1 + 2x 2 4x 3 3x 4 9x 5 = / 39
34 Ratkaisu Yhtälöryhmän laajennettu kerroinmatriisi on x 1 + x 2 2x 3 + x 4 + 3x 5 = 1 2x 1 x 2 + 2x 3 + 2x 4 + 6x 5 = 2 3x 1 + 2x 2 4x 3 3x 4 9x 5 = / 39
35 Ratkaisu Nyt A 13 ( 3) A 12 ( 2) M 2 ( 1 3 ) A 21 ( 1) A 23 (1) M 3 ( 1 6 ) / 39
36 Ratkaisu A 31 ( 1) Tämä laajennettu kerroinmatriisi vastaa yhtälöryhmää x 1 = 1 x 1 = 1 x 1 = 1 x 2 = 2s x 2 2x 3 = 0 x 2 = 2x 3 x 3 = s R. x 4 + 3x 5 = 0 x 4 = 3x 5 x 4 = 3t x 5 = t R Tämä ratkaisu vektorimuodossa esitettynä on (x 1, x 2, x 3, x 4, x 5 ) = (1, 2s, s, 3t, t) = (1, 0, 0, 0, 0) + s(0, 2, 1, 0, 0) + t(0, 0, 0 3, 1), missä s, t R.. 36 / 39
37 Esimerkki 8 Miten yhtälöryhmän x 1 + ax 3 = b + 1 2x 1 + x 2 + 4ax 3 = 4b + 2 3x 2 5ax 3 = 5b 1 ratkaisujen lukumäärä riippuu vakioista a ja b? 37 / 39
38 Ratkaisu Laajennettu kerroinmatriisi on 1 0 a b a b a 4b + 2 A 12( 2) 0 1 2a 2b 0 3 5a 5b a 5b a b A 23 (3) 0 1 2a 2b A 31( 1) A 0 0 a b 1 32 ( 2) 0 0 a b 1 38 / 39
39 Ratkaisu Jos a 0, niin yhtälöryhmällä on yksikäsitteinen ratkaisu x 1 = 2 x 2 = 2 x 3 = b 1 a. Jos a = 0 ja b 1, niin yhtälöryhmällä ei ole ratkaisua. Jos a = 0 ja b = 1, niin yhtälöryhmällä on äärettömän monta ratkaisua x 1 = 2 x 2 = 2 x 3 R. 39 / 39
Gaussin ja Jordanin eliminointimenetelmä
1 / 25 : Se on menetelmä lineaarisen yhtälöryhmän ratkaisemiseksi. Sitä käytetään myöhemmin myös käänteismatriisin määräämisessä. Ideana on tiettyjä rivioperaatioita käyttäen muokata yhtälöryhmää niin,
Lisätiedot802118P Lineaarialgebra I (4 op)
802118P Lineaarialgebra I (4 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Lineaarialgebra I Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M206 Kurssin kotisivu
Lisätiedot5 Lineaariset yhtälöryhmät
5 Lineaariset yhtälöryhmät Edellisen luvun lopun esimerkissä päädyttiin yhtälöryhmään, jonka ratkaisemisesta riippui, kuuluuko tietty vektori eräiden toisten vektorien virittämään aliavaruuteen Tämäntyyppisiä
LisätiedotEnnakkotehtävän ratkaisu
Ennakkotehtävän ratkaisu Ratkaisu [ ] [ ] 1 3 4 3 A = ja B =. 1 4 1 1 [ ] [ ] 4 3 12 12 1 0 a) BA = =. 1 + 1 3 + 4 0 1 [ ] [ ] [ ] 1 0 x1 x1 b) (BA)x = =. 0 1 x 2 x [ ] [ ] [ 2 ] [ ] 4 3 1 4 9 5 c) Bb
LisätiedotVektoreiden virittämä aliavaruus
Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden
LisätiedotMatriisien tulo. Matriisit ja lineaarinen yhtälöryhmä
Matriisien tulo Lause Olkoot A, B ja C matriiseja ja R Tällöin (a) A(B + C) =AB + AC, (b) (A + B)C = AC + BC, (c) A(BC) =(AB)C, (d) ( A)B = A( B) = (AB), aina, kun kyseiset laskutoimitukset on määritelty
Lisätiedot1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät
1 1 LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT Muotoa 11 Lineaariset yhtälöryhmät (1) a 1 x 1 + a x + + a n x n b oleva yhtälö on tuntemattomien x 1,, x n lineaarinen yhtälö, jonka kertoimet ovat luvut a 1,,
Lisätiedot2.5. Matriisin avaruudet ja tunnusluvut
2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja
Lisätiedotx 2 x 3 x 1 x 2 = 1 2x 1 4 x 2 = 3 x 1 x 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili
6 4 2 x 2 x 3 15 10 5 0 5 15 5 3 2 1 1 2 3 2 0 x 2 = 1 2x 1 0 4 x 2 = 3 x 1 x 5 2 5 x 1 10 x 1 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili Sisältö
LisätiedotKäänteismatriisin ominaisuuksia
Käänteismatriisin ominaisuuksia Lause 1.4. Jos A ja B ovat säännöllisiä ja luku λ 0, niin 1) (A 1 ) 1 = A 2) (λa) 1 = 1 λ A 1 3) (AB) 1 = B 1 A 1 4) (A T ) 1 = (A 1 ) T. Tod.... Ortogonaaliset matriisit
LisätiedotLineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
LisätiedotYhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2
Lisätiedot10 Matriisit ja yhtälöryhmät
10 Matriisit ja yhtälöryhmät Tässä luvussa esitellään uusi tapa kirjoittaa lineaarinen yhtälöryhmä matriisien avulla käyttäen hyväksi matriisikertolaskua sekä sarakevektoreita Pilkotaan sitä varten yhtälöryhmän
Lisätiedot3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a
LisätiedotYhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =
LisätiedotKurssin loppuosassa tutustutaan matriiseihin ja niiden käyttöön yhtälöryhmien ratkaisemisessa.
7 Matriisilaskenta Kurssin loppuosassa tutustutaan matriiseihin ja niiden käyttöön yhtälöryhmien ratkaisemisessa. 7.1 Lineaariset yhtälöryhmät Yhtälöryhmät liittyvät tilanteisiin, joissa on monta tuntematonta
Lisätiedot3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21
Lisätiedot802120P MATRIISILASKENTA (5 op)
802120P MARIIILAKENA (5 op) Oulun yliopisto Matemaattiset tieteet 2015 ero Vedenjuoksu 1 Alkusanat ämä luentomoniste pohjautuu osaksi Esa Järvenpään (2011) ja osaksi Hanna Kiilin (2014) kurssin Lineaarialgebra
LisätiedotLineaariset yhtälöryhmät ja matriisit
Lineaariset yhtälöryhmät ja matriisit Lineaarinen yhtälöryhmä a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. a m1 x 1 + a m2 x 2 + + a mn x n = b m, (1) voidaan esittää
Lisätiedot1 Matriisit ja lineaariset yhtälöryhmät
1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n
LisätiedotVektorit, suorat ja tasot
, suorat ja tasot 1 / 22 Koulussa vektori oli nuoli, jolla oli suunta ja suuruus eli pituus. Siirretään vektori siten, että sen alkupää on origossa. Tällöin sen kärki on pisteessä (x 1, x 2 ). Jos vektorin
LisätiedotKahden suoran leikkauspiste ja välinen kulma (suoraparvia)
Kahden suoran leikkauspiste ja välinen kulma (suoraparvia) Piste x 0, y 0 on suoralla, jos sen koordinaatit toteuttavat suoran yhtälön. Esimerkki Olkoon suora 2x + y + 8 = 0 y = 2x 8. Piste 5,2 ei ole
Lisätiedot2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio
x = x 2 = 5/2 x 3 = 2 eli Ratkaisu on siis x = (x x 2 x 3 ) = ( 5/2 2) (Tarkista sijoittamalla!) 5/2 2 Tämä piste on alkuperäisten tasojen ainoa leikkauspiste Se on myös piste/vektori jonka matriisi A
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
Lisätiedot802120P Matriisilaskenta (5 op)
802120P Matriisilaskenta (5 op) Marko Leinonen Matemaattiset tieteet Syksy 2016 1 / 220 Luennoitsija: Marko Leinonen marko.leinonen@oulu.fi MA333 Kurssilla käytetään Noppaa (noppa.oulu.fi) Luentomoniste
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotJohdatus lineaarialgebraan
Johdatus lineaarialgebraan Lotta Oinonen ja Johanna Rämö 6. joulukuuta 2012 Helsingin yliopisto Matematiikan ja tilastotieteen laitos 2012 Sisältö 1 Avaruus R n 4 1 Avaruuksien R 2 ja R 3 vektorit.....................
LisätiedotLiittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.
Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla
LisätiedotLU-hajotelma. Esimerkki 1 Matriisi on yläkolmiomatriisi ja matriisi. on alakolmiomatriisi. 3 / 24
LU-hajotelma 1 / 24 LU-hajotelma Seuravassa tarkastellaan kuinka neliömatriisi voidaan esittää kahden kolmiomatriisin tulona. Käytämme alkeismatriiseja tälläisen esityksen löytämiseen. Edellä mainittua
LisätiedotKannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:
8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden
LisätiedotVapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Luentokalvot 5 1
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotJAKSO 2 KANTA JA KOORDINAATIT
JAKSO 2 KANTA JA KOORDINAATIT Kanta ja dimensio Tehtävä Esittele vektoriavaruuden kannan määritelmä vapauden ja virittämisen käsitteiden avulla ja anna vektoriavaruuden dimension määritelmä Esittele Lause
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 23.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Käytännön asioita Ensimmäiset tehtävät olivat sujuneet hyvin. Kansilehdet on oltava mukana tehtäviä palautettaessa,
LisätiedotMatriisilaskenta. Harjoitusten 3 ratkaisut (Kevät 2019) 1. Olkoot AB = ja 2. Osoitetaan, että matriisi B on matriisin A käänteismatriisi.
Matriisilaskenta Harjoitusten ratkaisut (Kevät 9). Olkoot ja A = B = 5. Osoitetaan, että matriisi B on matriisin A käänteismatriisi. Tapa Käänteismatriisin määritelmän nojalla riittää osoittaa, että AB
LisätiedotKäy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä
Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä (vihkon palautus kokeeseen tullessa) Koe Mahdolliset testit
LisätiedotLineaarialgebra ja matriisilaskenta I. LM1, Kesä /218
Lineaarialgebra ja matriisilaskenta I LM1, Kesä 2012 1/218 Avaruuden R 2 vektorit Määritelmä (eli sopimus) Avaruus R 2 on kaikkien reaalilukuparien joukko; toisin sanottuna R 2 = { (a, b) a R ja b R }.
LisätiedotTekijä Pitkä matematiikka
K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π
Lisätiedoty=-3x+2 y=2x-3 y=3x+2 x = = 6
MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+
LisätiedotKäänteismatriisi 1 / 14
1 / 14 Jokaisella nollasta eroavalla reaaliluvulla on käänteisluku, jolla kerrottaessa tuloksena on 1. Seuraavaksi tarkastellaan vastaavaa ominaisuutta matriiseille ja määritellään käänteismatriisi. Jokaisella
LisätiedotVanhoja koetehtäviä. Analyyttinen geometria 2016
Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 4.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Viimeiset harjoitukset on palautettava torstaina 13.6. Laskaripisteensä ja läsnäolonsa voi kukin tarkistaa
LisätiedotA = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla:
11 Determinantti Neliömatriisille voidaan laskea luku, joka kertoo muun muassa, onko matriisi kääntyvä vai ei Tätä lukua kutsutaan matriisin determinantiksi Determinantilla on muitakin sovelluksia, mutta
Lisätiedot1 Kertaus. Lineaarinen optimointitehtävä on muotoa:
1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n
LisätiedotOsittaistuenta Gaussin algoritmissa: Etsitään 1. sarakkeen itseisarvoltaan suurin alkio ja vaihdetaan tämä tukialkioiksi (eli ko. rivi 1. riviksi).
Liukuluvut Tietokonelaskuissa käytetään liukulukuja: mikä esittää lukua ± α α α M β k ± ( M α i β i )β k, i= β on järjestelmän kantaluku, α α M liukuluvun mantissa, α,, α M lukuja,,,, β, siten että α Esimerkki
LisätiedotLineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila
Lineaarialgebra ja matriisilaskenta II Syksy 29 Laskuharjoitus (9. - 3..29) Ratkaisuehdotuksia Vesa Ala-Mattila Tehtävä. Olkoon V vektoriavaruus. Todistettava: jos U V ja W V ovat V :n aliavaruuksia, niin
LisätiedotMS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45
MS-A3/A5 Matriisilaskenta Laskuharjoitus 2 / vko 45 Tehtävä (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 2i = 2, b) z 2i < 2, c) /z
LisätiedotJohdatus lineaarialgebraan
Johdatus lineaarialgebraan Osa I Jokke Häsä, Lotta Oinonen, Johanna Rämö 11. syyskuuta 2016 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 1 Vektoriavaruuksien R 2 ja R 3 vektorit........................
LisätiedotJohdatus lineaarialgebraan
Johdatus lineaarialgebraan Osa I Jokke Häsä, Lotta Oinonen, Johanna Rämö 9 heinäkuuta 2013 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 1 Avaruuksien R 2 ja R 3 vektorit 4 11 Kaksiulotteisen
LisätiedotMS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon
Lisätiedot5 OMINAISARVOT JA OMINAISVEKTORIT
5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 13.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/12 Käytännön asioita Kesäkuun tentti: ke 19.6. klo 17-20, päärakennuksen sali 1. Anna palautetta kurssisivulle ilmestyvällä
Lisätiedot7 Vapaus. 7.1 Vapauden määritelmä
7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan
LisätiedotVille Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007
Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear
Lisätiedot6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio
6 Vektoriavaruus R n 6.1 Lineaarikombinaatio Määritelmä 19. Vektori x œ R n on vektorien v 1,...,v k œ R n lineaarikombinaatio, jos on olemassa sellaiset 1,..., k œ R, että x = i v i. i=1 Esimerkki 30.
LisätiedotSijoitusmenetelmä. 1.2. Yhtälöpari
MAB Yhtälöpari Yhtälöpari Yhtälöparilla tarkoitetaan tilannetta, missä on kaksi htälöä, joiden tät toteutua htä aikaa Tämä on sama asia kuin että kstään, missä pisteessä tai missä pisteissä htälöitä vastaavat
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 6.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Kertausta: Kääntyvien matriisien lause Lause 1 Oletetaan, että A on n n -neliömatriisi. Seuraavat ehdot ovat yhtäpitäviä.
LisätiedotNumeeriset menetelmät
Numeeriset menetelmät Luento 4 To 15.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 4 To 15.9.2011 p. 1/38 p. 1/38 Lineaarinen yhtälöryhmä Lineaarinen yhtälöryhmä matriisimuodossa Ax = b
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 17.5.2017 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Martina Aaltonen, martina.aaltonen@helsinki.fi, 1/18 Siirry istumaan jonkun viereen. Kaikilla on
Lisätiedot1 Lineaariavaruus eli Vektoriavaruus
1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus
LisätiedotMatematiikka B2 - TUDI
Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus
LisätiedotTalousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi
Talousmatematiikan perusteet: Luento 11 Lineaarikuvaus Matriisin aste Käänteismatriisi Viime luennolla Käsittelimme matriisien peruskäsitteitä ja laskutoimituksia Vakiolla kertominen, yhteenlasku ja vähennyslasku
LisätiedotNumeeriset menetelmät TIEA381. Luento 3. Kirsi Valjus. Jyväskylän yliopisto. Luento 3 () Numeeriset menetelmät / 45
Numeeriset menetelmät TIEA381 Luento 3 Kirsi Valjus Jyväskylän yliopisto Luento 3 () Numeeriset menetelmät 20.3.2013 1 / 45 Luennon 3 sisältö Luku 2: Epälineaarisen yhtälön ratkaiseminen Polynomin reaaliset
Lisätiedot2 Yhtälöitä ja epäyhtälöitä
2 Yhtälöitä ja epäyhtälöitä 2.1 Ensimmäisen asteen yhtälö ja epäyhtälö Muuttujan x ensimmäisen asteen yhtälöksi sanotaan yhtälöä, joka voidaan kirjoittaa muotoon ax + b = 0, missä vakiot a ja b ovat reaalilukuja
LisätiedotMS-A0004/A0006 Matriisilaskenta
4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin
LisätiedotDeterminantti 1 / 30
1 / 30 on reaaliluku, joka on määritelty neliömatriiseille Determinantin avulla voidaan esimerkiksi selvittää, onko matriisi kääntyvä a voidaan käyttää käänteismatriisin määräämisessä ja siten lineaarisen
LisätiedotAiheet. Kvadraattinen yhtälöryhmä. Kvadraattinen homogeeninen YR. Vapaa tai sidottu matriisi. Vapauden tutkiminen. Yhteenvetoa.
Yhtälöryhmän ratkaisujen lukumäärä, L8 Esimerkki kvadraattinen Haluamme ratkaista n 4x + y z = x + y + z = 5 x + y + z = 4 4 x 4 + y x y z = + z 5 4 = 5 4 Esimerkki kvadraattinen Yhtälöryhmä on kvadraattinen,
LisätiedotLineaarialgebra I. Oulun yliopisto Matemaattisten tieteiden laitos Esa Järvenpää Kirjoittanut Tuula Ripatti
Lineaarialgebra I Oulun yliopisto Matemaattisten tieteiden laitos 2011 Esa Järvenpää Kirjoittanut Tuula Ripatti 2 1 Lineaarinen yhtälöryhmä 11 Esimerkki (a) Ratkaise yhtälö 5x = 7 Kerrotaan yhtälö puolittain
LisätiedotYmpyrän yhtälö
Ympyrän yhtälö ANALYYTTINEN GEOMETRIA MAA4 On melko selvää, että origokeskisen ja r-säteisen ympyrän yhtälö voidaan esittää muodossa x 2 + y 2 = r 2. Vastaavalla tavalla muodostetaan ympyrän yhtälö, jonka
LisätiedotJohdatus lineaarialgebraan
Johdatus lineaarialgebraan Osa I Jokke Häsä, Lotta Oinonen, Johanna Rämö 27. marraskuuta 2015 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 1 Vektoriavaruuksien R 2 ja R 3 vektorit........................
Lisätiedot802320A LINEAARIALGEBRA OSA I
802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä
LisätiedotMatriisi-vektori-kertolasku, lineaariset yhtälöryhmät
Matematiikan peruskurssi K3/P3, syksy 25 Kenrick Bingham 825 Toisen välikokeen alueen ydinasioita Alla on lueteltu joitakin koealueen ydinkäsitteitä, joiden on hyvä olla ensiksi selvillä kokeeseen valmistauduttaessa
LisätiedotLineaariset kongruenssiyhtälöryhmät
Lineaariset kongruenssiyhtälöryhmät LuK-tutkielma Jesse Salo 2309369 Matemaattisten tieteiden laitos Oulun yliopisto Sisältö Johdanto 2 1 Kongruensseista 3 1.1 Kongruenssin ominaisuuksia...................
Lisätiedot( 3) ( 5) ( 7) ( 2) ( 6) ( 4) Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 105 Päivitetty
Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 15 Päivitetty 19..6 31 Tapa 1 Ratkaistaan yhtälöryhmä käyttämällä sijoituskeinoa. x y+ z = x y + 3z = 3x 4y+ z = Ratkaistaan yhtälöstä (1) muuttuja
LisätiedotInsinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut
Insinöörimatematiikka D, 06 laskuharjoituksien esimerkkiratkaisut Alla olevat esimerkkiratkaisut ovat melko ksitiskohtaisia Tenttivastauksissa ei leensä tarvitse muistaa lauseiden, määritelmien, esimerkkien
LisätiedotDierentiaaliyhtälöistä
Dierentiaaliyhtälöistä Markus Kettunen 4. maaliskuuta 2009 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun yksikäsitteisyydestä.....................
LisätiedotLineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä)
Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe 26.10.2017 Ratkaisuehdotus 1. (35 pistettä) (a) Seuraavat matriisit on saatu eräistä yhtälöryhmistä alkeisrivitoimituksilla. Kuinka monta ratkaisua yhtälöryhmällä
LisätiedotDifferentiaaliyhtälöt II, kevät 2017 Harjoitus 5
Differentiaaliyhtälöt II, kevät 27 Harjoitus 5 Heikki Korpela 26. huhtikuuta 27 Tehtävä 2. Määrää seuraavan autonomisen systeemin kriittiset pisteet, ratakäyrät ja luonnostele systeemin aikakehitys: (t)
Lisätiedotja piirrä sitä vastaavat kaksi käyrää ja tarkista ratkaisusi kuvastasi.
Harjoituksia yhtälöryhmistä ja matriiseista 1. Ratkaise yhtälöpari (F 1 ja F 2 ovat tuntemattomia) cos( ) F 1 + cos( ) F 2 = 0 sin( ) F 1 + sin( ) F 2 = -1730, kun = -50 ja = -145. 2. Ratkaise yhtälöpari
LisätiedotKompleksiluvut., 15. kesäkuuta /57
Kompleksiluvut, 15. kesäkuuta 2017 1/57 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja
LisätiedotLINEAARIALGEBRA I. Hannu Honkasalo. Helsingin yliopiston matematiikan laitos v w u ...
LINEAARIALGEBRA I Hannu Honkasalo v w u h w A v Helsingin yliopiston matematiikan laitos 003 SISÄLTÖ 1 Lineaariset yhtälöryhmät ja matriisit 11 Lineaariset yhtälöryhmät 1 1 Matriisit ja matriisitoimitukset
LisätiedotKäänteismatriisin. Aiheet. Käänteismatriisin ominaisuuksia. Rivioperaatiot matriisitulona. Matriisin kääntäminen rivioperaatioiden avulla
Käänteismatriisi, L5 1 Tässä kalvosarjassa käsittelemme neliömatriiseja. Ilman asian jatkuvaa toistamista oletamme seuraavassa, että kaikki käsittelemämme matriisit ovat neliömatriiseja. Määritelmä. Olkoon
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 2 Lisää osamurtoja Tutkitaan jälleen rationaalifunktion P(x)/Q(x) integrointia. Aiemmin käsittelimme tapauksen, jossa nimittäjä voidaan esittää muodossa Q(x) = a(x x
LisätiedotSovitaan ensin merkintätavoista. Ratkaisemme ensin yksinkertaisen yhtälöparin. 5y = 10. x = 3 x = 1
Vaasan yliopiston julkaisuja, opetusmonisteita 31 2 MATRIISILASKENTAA Matriisilaskentaa 2.1 Yhtälöryhmät Sec:la1-YhtRyhmat 2.1.1 Rivioperaatiot Ssec:la1-Rivioper Sovitaan ensin merkintätavoista. Ratkaisemme
LisätiedotDeterminantit. Kaksirivinen determinantti. Aiheet. Kaksirivinen determinantti. Kaksirivinen determinantti. Kolmirivinen determinantti
Determinantit 1 2 2-matriisin ( A = on det(a) = a 11 a 12 a 21 a 22 a 11 a 12 a 21 a 22 ) = a 11a 22 a 12 a 21. 1 2 2-matriisin on det(a) = Esim. Jos A = ( a 11 a 12 a 21 a 22 A = a 11 a 12 a 21 a 22 )
LisätiedotTalousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi
Talousmatematiikan perusteet: Luento 10 Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Lineaarikuvaus Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta, jossa käytetään
LisätiedotOppimistavoitematriisi
Oppimistavoitematriisi Lineaarialgebra ja matriisilaskenta I Arvosanaan 1 2 riittävät Arvosanaan 5 riittävät Yhtälöryhmät (YR) Osaan ratkaista ensimmäisen asteen yhtälöitä ja yhtälöpareja Osaan muokata
LisätiedotHuippu Kertaus Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
YHTÄLÖITÄ ALOITA PERUSTEISTA A. Luku on yhtälön ratkaisu, jos luku toteuttaa yhtälön. a) Sijoitetaan luku = yhtälöön. 6 = 0 0 = 0 Yhtälö on tosi, joten = on yhtälön ratkaisu. Vastaus: on b) Sijoitetaan
LisätiedotTekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.
Tekijä Pitkä matematiikka 5 7..017 37 Pisteen (x, y) etäisyys pisteestä (0, ) on ( x 0) + ( y ). Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Merkitään etäisyydet yhtä suuriksi ja ratkaistaan
LisätiedotKaksirivisen matriisin determinantille käytämme myös merkintää. a 11 a 12 a 21 a 22. = a 11a 22 a 12 a 21. (5.1) kaksirivine
Vaasan yliopiston julkaisuja 97 5 DETERMINANTIT Ch:Determ Sec:DetDef 5.1 Determinantti Tämä kappale jakautuu kolmeen alakappaleeseen. Ensimmäisessä alakappaleessa määrittelemme kaksi- ja kolmiriviset determinantit.
LisätiedotTekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).
Tekijä Pitkä matematiikka 4 9.12.2016 212 Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Vastaus esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4) 213 Merkitään pistettä
LisätiedotDemo 1: Simplex-menetelmä
MS-C2105 Optimoinnin perusteet Malliratkaisut 3 Ehtamo Demo 1: Simplex-menetelmä Muodosta lineaarisen tehtävän standardimuoto ja ratkaise tehtävä taulukkomuotoisella Simplex-algoritmilla. max 5x 1 + 4x
LisätiedotNumeeriset menetelmät
Numeeriset menetelmät Luento 3 Ti 13.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 3 Ti 13.9.2011 p. 1/37 p. 1/37 Epälineaariset yhtälöt Newtonin menetelmä: x n+1 = x n f(x n) f (x n ) Sekanttimenetelmä:
Lisätiedot3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h
HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)
Lisätiedot