Lineaarinen yhtälöryhmä

Koko: px
Aloita esitys sivulta:

Download "Lineaarinen yhtälöryhmä"

Transkriptio

1 Lineaarinen yhtälöryhmä 1 / 39

2 Lineaarinen yhtälö Määritelmä 1 Lineaarinen yhtälö on muotoa a 1 x 1 + a 2 x a n x n = b, missä a i, b R, i = 1,..., n ovat tunnettuja ja x i R, i = 1,..., n ovat tuntemattomia. Yhtälön toteuttavaa lukujonoa (x 1, x 2,..., x n ) sanotaan yhtälön ratkaisuksi ja kaikkien ratkaisujen joukkoa sanotaan yhtälön ratkaisujoukoksi. Jos b = 0, yhtälö on homogeeninen ja sillä on aina triviaaliratkaisu x 1 = x 2 = = x n = 0. 2 / 39

3 Lineaarinen yhtälö Esimerkki 1 Ovatko seuraavat yhtälöt lineaarisia? Miksi? a) x 1 + x 2 = 100x 3 + 9, b) x2 2 4x 5 = 0, c) e x 1 = 4, d) 3x 1 + (log 3) 3 x 2 = 0, e) x 1 x 2 = 5. 3 / 39

4 Lineaarinen yhtälö Ratkaisu a) x 1 + x 2 = 100x x 1 + x 2 100x 3 = 9 eli yhtälö on lineearinen b) x 2 2 4x 5 = 0; x 2 on toisessa potenssissa, joten yhtälö ei ole lineaarinen. c) e x 1 = 4 x 1 log(e) = log 4 x 1 = log 4 eli alkuperäinen yhtälö ei ole linearinen, mutta siitä saadaan muokattua yhtäpitävä lineaarinen yhtälö. d) 3x 1 + (log 3) 3 x 2 = 0; muuttujien kertoimet ovat reaalilukuja, joten yhtälö on lineaarinen. e) x 1 x 2 = 5; muuttujilla on kertoimena toinen muuttuja, joten yhtälö ei ole lineaarinen. 4 / 39

5 Lineaarinen yhtälö Esimerkki 2 a) Yhtälö 2x = 8 voidaan ratkaista kertomalla puolittain luvulla, jolloin saadaan x = b) Yhtälö 2x 1 + 3x 2 = 1 voidaan kirjoittaa muodossa x 2 = 1 3 (1 2x 1) (tai muodossa x 1 = 1 2 (1 3x 2)). Tämä on suoran yhtälö, jonka kulmakerroin on 2/3 ja se leikkaa x 2 -akselin kohdassa 1/3. Yleinen ratkaisu on x 1 = t ja x 2 = 1 (1 2t), 3 missä t R on vapaa muuttuja. Ratkaisuja on siis ääretön määrä. Esimerkiksi x 1 = 1 ja x 2 = 1 on yksi ratkaisu. c) Yhtälö 3x 1 + 6x 2 + x 3 = 4 määrää tason avaruuteen R 3. Myös tällä yhtälöllä on ääretön määrä ratkaisuja: x 1 = t, x 2 = s ja x 3 = 4 3t 6s, t, s R. 5 / 39

6 Lineaarinen yhtälöryhmä 2 x x 1 (a) Yhtälön x 2 = 1/3 (2/3)x 1 kuvaaja (Esim. 2 b)) (b) Yhtälön x 3 = 4 3x 1 6x 2 kuvaaja (Esim. 2 c)) 6 / 39

7 Lineaarinen yhtälöryhmä Määritelmä 2 Lineaarinen yhtälöryhmä on muotoa a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2. a k1 x 1 + a k2 x a kn x n = b k, missä a ij, b i R, i = 1,..., k, j = 1,... n, ovat tunnettuja ja x i R, i = 1,..., n ovat tuntemattomia. Yhtälöryhmän toteuttavaa lukujonoa (x 1, x 2,..., x n ) sanotaan yhtälöryhmän ratkaisuksi ja kaikkien ratkaisujen joukkoa sanotaan yhtälöryhmän ratkaisujoukoksi. Jos b 1 = b 2 = = b k = 0, yhtälöryhmä on homogeeninen ja sillä on aina triviaaliratkaisu x 1 = x 2 = = x n = 0. 7 / 39

8 Lineaarinen yhtälöryhmä Esimerkki 3 Ratkaise yhtälöparit a) { x1 2x 2 = 1 x 1 + 3x 2 = 3 b) { x1 2x 2 = 1 x 1 + 2x 2 = 3 { x1 2x 2 = 1 c). x 1 + 2x 2 = 1 Tulkitse ratkaisut geometrisesti. Ratkaisu a) Lasketaan yhtälöt yhteen, jolloin saadaan x 2 = 2. Sijottamalla tämä ylempään yhtälöön ja ratkaisemalla tästä yhtälöstä x 1 saadaan x 1 = 3. Täten yhtälöparilla on tasan yksi ratkaisu { x1 = 3 x 2 = 2. Geometrinen tulkinta: Kaksi erisuuntaista suoraa, jotka leikkaavat pisteessä (x 1, x 2 ) = (3, 2). 8 / 39

9 Lineaarinen yhtälöryhmä Ratkaisu b) Laskemalla yhtälöt yhteen saadaan 0 = 2. Tämä ei pidä paikkaansa, joten yhtälöparilla ei ole ratkaisua. Geometrinen tulkinta:kaksi saman suuntaista suoraa, jotka eivät leikkaa. Ratkaisu c) Lasketaan yhtälöt yhteen, jolloin saadaan 0 = 0. Tämä on aina tosi, joten yhtälöillä ääretön määrä ratkaisuja. Geometrinen tulkinta: Saman suoran kaksi eri esitystapaa, jolloin leikkauspisteitä on ääretön määrä. 9 / 39

10 Lineaarinen yhtälöryhmä Esimerkki 4 Yhtälöparin { ax1 + bx 2 = e cx 1 + dx 2 = f ratkaisu on suorien ax 1 + bx 2 = e ja cx 1 + dx 2 = f leikkauspiste.leikkauspiste on yksikäsitteinen täsmälleen silloin kun suorat eivät ole yhdensuuntaiset, toisin sanoen (b 0, d 0) a b c d eli ad bc 0. Jos ad bc = 0, niin suorat ovat yhdensuuntaiset. Tällöin ne eivät leikkaa, eli yhtälöparilla ei ole ratkaisua, tai ne ovat sama suora, jolloin yhtälöparilla on äärettömän monta ratkaisua, sillä jokainen (x 1, x 2 ), joka kuuluu suoralle, on ratkaisu. 10 / 39

11 Lineaarinen yhtälöryhmä 11 / 39

12 Lineaarinen yhtälöryhmä Esimerkki 5 Ratkaise yhtälöryhmä x 1 2x 2 + x 3 = 0 2x 2 8x 3 = 0. 4x 1 + 7x 2 3x 3 = 3 Lisäämällä 1. yhtälö luvulla 4 kerrottuna 3. yhtälöön saadaan x 1 2x 2 + x 3 = 0 2x 2 8x 3 = 0. x 2 + x 3 = 3 12 / 39

13 Lineaarinen yhtälöryhmä Esimerkki 5 Kun kerrotaan 2. rivi puolella (jaetaan kahdella), niin saadaan x 1 2x 2 + x 3 = 0 x 2 4x 3 = 0. x 2 + x 3 = 3 Edelleen, kun lisätään 2. rivi kolmanteen, saadaan x 1 2x 2 + x 3 = 0 x 2 4x 3 = 0. 3x 3 = 3 13 / 39

14 Lineaarinen yhtälöryhmä Esimerkki 5 Kun kerrotaan 3. rivi luvulla 1 3, niin saadaan x 1 2x 2 + x 3 = 0 x 2 4x 3 = 0. x 3 = 1 Edelleen, kun lisätään 3. rivi luvulla 1 kerrottuna 1. riviin ja lisätään 3. rivi luvulla 4 kerrottuna 2. riviin, saadaan x 1 2x 2 = 1 x 2 = 4. x 3 = 1 14 / 39

15 Lineaarinen yhtälöryhmä Esimerkki 5 Kun lopuksi lisätään 2. rivi luvulla 2 kerrottuna 1. riviin, niin saadaan x 1 = 7 x 2 = 4. x 3 = 1. Tarkistetaan ratkaisu: 7 2 ( 4) 1 = 0 2 ( 4) 8 ( 1) = 0. 4 ( 7) + 7 ( 4) 3 ( 1) = / 39

16 Gaussin ja Jordanin eliminointimenetelmä: Se on menetelmä lineaarisen yhtälöryhmän ratkaisemiseksi. Sitä käytetään myöhemmin myös käänteismatriisin määräämisessä. Ideana on tiettyjä rivioperaatioita käyttäen muokata yhtälöryhmää niin, että se on helpompi ratkaista. Rivioperaatiot eivät muuta yhtälöryhmän ratkaisuja, vaan alkuperäisellä ja muokatulla yhtälöryhmällä on samat ratkaisut. 16 / 39

17 Lineaarinen yhtälöryhmä voidaan ratkaista käyttämällä seuraavia operaatioita: P ij : vaihdetaan yhtälöt i ja j keskenään. M i (c): kerrotaan yhtälö i luvulla c 0. A ij (c): kerrotaan yhtälö i luvulla c R ja lisätään se yhtälöön j, missä i j. 17 / 39

18 Miten operaatiot vaikuttavat yhtälöryhmän ratkaisuihin? Määritelmä 3 Kaksi yhtälöryhmää (merkitään A ja B) ovat ekvivalentit, jos yhtälöryhmä A saadaan yhtälöryhmästä B tekemällä äärellisen määrän rivioperaatioita. 18 / 39

19 Lause 1 Ekvivalenteilla yhtälöryhmillä on samat ratkaisut. Todistus. Jos kahden yhtälön paikkaa vaihdetaan keskenään eli suoritetaan rivioperaatio P ij, on selvä, että se ei vaikuta yhtälöryhmän ratkaisuihin. Jos yhtälöä kerrotaan puolittain luvulla c R\{0}, se ei muuta yhtälön ratkaisuja. Täten rivioperaatio M i (c) ei vaikuta yhtälöryhmän ratkaisuihin. Rivioperaation A ij (c) perustelu sivuutetaan. 19 / 39

20 Koska rivioperaatiot vaikuttavat vain kertoimiin a ij ja b i, on kätevää kirjoittaa yhtälöryhmä a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2. a k1 x 1 + a k2 x a kn x n = b k laajennettuna kerroinmatriisina a 11 a 12 a 1n b 1 a 21 a 22 a 2n b a k1 a k2 a kn b k Eli jätetään muuttujat (x:t) ja välimerkit (+:t) kirjoittamatta (muistetaan kuitenkin niiden paikat), korvataan =-merkit pystysuoralla viivalla ja lisätään sulut. 20 / 39

21 Esimerkki 6 Muodosta yhtälöryhmän a) x 1 2x 2 + x 3 = 0 2x 2 8x 3 = 8 4x 1 + 5x 2 + 9x 3 = 9 b) 2x 1 x 2 = 5 x 1 + x 3 = 5 3x 1 x 2 x 3 = 0 laajennettu kerroinmatriisi. Miten voit ratkaista yhtälöryhmät käyttämällä laajennettua kerroinmatriisia? Etsi yhtälöryhmien ratkaisujoukot. 21 / 39

22 Ratkaisu a) Yhtälöryhmän laajennettu kerroinmatriisi on x 1 2x 2 + x 3 = 0 2x 2 8x 3 = 8 4x 1 + 5x 2 + 9x 3 = / 39

23 Ratkaisu a) Nyt A 13(4) A 23(3) A (2) A 32 (4) A 31 (7) , joten ratkaisu on (x 1, x 2, x 3 ) = (29, 16, 3) R 3 (ei muita ratkaisuja). M 2( 1 2 ) 23 / 39

24 Ratkaisu b) Yhtälöryhmän laajennettu kerroinmatriisi on 2x 1 x 2 = 5 x 1 + x 3 = 5 3x 1 x 2 x 3 = / 39

25 Ratkaisu b) Nyt P A 13 ( 3) A 12 ( 2) A 23 (1) M 3 ( 1 2 ) M 2( 1) A 32(1) A 31( 1) , joten ratkaisu on (x 1, x 2, x 3 ) = (0, 5, 5) R 3 (ei muita ratkaisuja). 25 / 39

26 Määritelmä 4 Matriisia kutsutaan redusoiduksi porrasmatriisiksi, jos siinä on pelkät nollarivit ovat alimmaisina, jokaisen rivin ensimmäinen nollasta eroava luku on 1 ja sen ylä- ja alapuolella on pelkkiä nollia, ylemmän rivin ensimmäinen 1 on alemman rivin ensimmäisen 1:sen vasemmalla puolella. 26 / 39

27 Ennakkotehtävä seuraavalle luentokerralle Tehtävä Ovatko seuraavat laajennetut kerroinmatriisit redusoituja porrasmatriiseja? (a) (b) (c) Mitkä ovat laajennettujen kerroinmatriisien esittämien yhtälöryhmien ratkaisut? 27 / 39

28 Ennakkotehtävän ratkaisu Kaikki kerroinmatriisit ovat redusoituja porrasmatriiseja, sillä jos niissä on nollarivejä, ne ovat alimmaisina, niissä jokaisen rivin ensimmäinen nollasta eroava luku on 1 ja sen ylä- ja alapuolella on pelkkiä nollia, niissä ylemmän rivin ensimmäinen 1 on alemman rivin ensimmäisen 1:sen vasemmalla puolella. 28 / 39

29 Ennakkotehtävän ratkaisu (a) Laajennettu kerroinmatriisi yhtälömuodossa on x 1 = 5 x 2 = 2 x 3 = 4 eli tässä on yksikäsitteinen ratkaisu. (b) Laajennettu kerroinmatriisi yhtälömuodossa on x 1 = 0 x 2 + 2x 3 = 0, 0 = 1 joten viimeinen yhtälö on epätosi ja näin yhtälöryhmällä ei ole ratkaisua. 29 / 39

30 Ennakkotehtävän ratkaisu (c) Laajennettu kerroinmatriisi yhtälömuodossa on x 1 + 6x 2 + 4x 5 = 2 x 1 = 2 6x 2 4x 5 x 3 + 3x 5 = 1 x 3 = 1 3x 5 x 4 + 5x 5 = 2 x 4 = 2 5x 5 x 1 = 2 6s 4t x 2 = s R x 3 = 1 3t. x 4 = 2 5t x 5 = t R Tämä ratkaisu vektorimuodossa esitettynä on (x 1, x 2, x 3, x 4, x 5 ) = ( 2 6s 4t, s, 1 3t, 2 5t, t) = ( 2, 0, 1, 2, 0) + s( 1, 1, 0, 0, 0) + t( 1, 0, 1, 5, 1), missä s, t R. 30 / 39

31 Redusoidun porrasmatriisin ratkaisujen lukumäärä: (1) d d d n x 1 = d 1 x 2 = d 2. x n = d n. eli yksikäsitteinen ratkaisu. (2) Jokin riveistä on 0 0 c, missä c 0. Tällöin saadaan yhtälö 0 = c, mikä on ristiriita, joten yhtälöryhmällä ei ole ratkaisua. (3) Kun tapaukset (1) ja (2) eivät esiinny, niin epätriviaaleja yhtälöitä on vähemmän kuin tuntemattomia ja yhtälöryhmällä on äärettömän monta ratkaisua. 31 / 39

32 Gaussin ja Jordanin eliminointimenetelmä: 1. Kirjoita yhtälöryhmä laajennettuna kerroinmatriisina. 2. Muuta kerroinmatriisi rivioperaatioilla redusoiduksi porrasmatriisiksi. 3. Lue ratkaisu redusoidusta porrasmatriisista kirjoittamalla se takaisin yhtälöryhmäksi. 32 / 39

33 Esimerkki 7 Ratkaise Gaussin ja Jordanin eliminointimenetelmällä yhtälö x 1 + x 2 2x 3 + x 4 + 3x 5 = 1 2x 1 x 2 + 2x 3 + 2x 4 + 6x 5 = 2 3x 1 + 2x 2 4x 3 3x 4 9x 5 = / 39

34 Ratkaisu Yhtälöryhmän laajennettu kerroinmatriisi on x 1 + x 2 2x 3 + x 4 + 3x 5 = 1 2x 1 x 2 + 2x 3 + 2x 4 + 6x 5 = 2 3x 1 + 2x 2 4x 3 3x 4 9x 5 = / 39

35 Ratkaisu Nyt A 13 ( 3) A 12 ( 2) M 2 ( 1 3 ) A 21 ( 1) A 23 (1) M 3 ( 1 6 ) / 39

36 Ratkaisu A 31 ( 1) Tämä laajennettu kerroinmatriisi vastaa yhtälöryhmää x 1 = 1 x 1 = 1 x 1 = 1 x 2 = 2s x 2 2x 3 = 0 x 2 = 2x 3 x 3 = s R. x 4 + 3x 5 = 0 x 4 = 3x 5 x 4 = 3t x 5 = t R Tämä ratkaisu vektorimuodossa esitettynä on (x 1, x 2, x 3, x 4, x 5 ) = (1, 2s, s, 3t, t) = (1, 0, 0, 0, 0) + s(0, 2, 1, 0, 0) + t(0, 0, 0 3, 1), missä s, t R.. 36 / 39

37 Esimerkki 8 Miten yhtälöryhmän x 1 + ax 3 = b + 1 2x 1 + x 2 + 4ax 3 = 4b + 2 3x 2 5ax 3 = 5b 1 ratkaisujen lukumäärä riippuu vakioista a ja b? 37 / 39

38 Ratkaisu Laajennettu kerroinmatriisi on 1 0 a b a b a 4b + 2 A 12( 2) 0 1 2a 2b 0 3 5a 5b a 5b a b A 23 (3) 0 1 2a 2b A 31( 1) A 0 0 a b 1 32 ( 2) 0 0 a b 1 38 / 39

39 Ratkaisu Jos a 0, niin yhtälöryhmällä on yksikäsitteinen ratkaisu x 1 = 2 x 2 = 2 x 3 = b 1 a. Jos a = 0 ja b 1, niin yhtälöryhmällä ei ole ratkaisua. Jos a = 0 ja b = 1, niin yhtälöryhmällä on äärettömän monta ratkaisua x 1 = 2 x 2 = 2 x 3 R. 39 / 39

Gaussin ja Jordanin eliminointimenetelmä

Gaussin ja Jordanin eliminointimenetelmä 1 / 25 : Se on menetelmä lineaarisen yhtälöryhmän ratkaisemiseksi. Sitä käytetään myöhemmin myös käänteismatriisin määräämisessä. Ideana on tiettyjä rivioperaatioita käyttäen muokata yhtälöryhmää niin,

Lisätiedot

802118P Lineaarialgebra I (4 op)

802118P Lineaarialgebra I (4 op) 802118P Lineaarialgebra I (4 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Lineaarialgebra I Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M206 Kurssin kotisivu

Lisätiedot

5 Lineaariset yhtälöryhmät

5 Lineaariset yhtälöryhmät 5 Lineaariset yhtälöryhmät Edellisen luvun lopun esimerkissä päädyttiin yhtälöryhmään, jonka ratkaisemisesta riippui, kuuluuko tietty vektori eräiden toisten vektorien virittämään aliavaruuteen Tämäntyyppisiä

Lisätiedot

Ennakkotehtävän ratkaisu

Ennakkotehtävän ratkaisu Ennakkotehtävän ratkaisu Ratkaisu [ ] [ ] 1 3 4 3 A = ja B =. 1 4 1 1 [ ] [ ] 4 3 12 12 1 0 a) BA = =. 1 + 1 3 + 4 0 1 [ ] [ ] [ ] 1 0 x1 x1 b) (BA)x = =. 0 1 x 2 x [ ] [ ] [ 2 ] [ ] 4 3 1 4 9 5 c) Bb

Lisätiedot

Vektoreiden virittämä aliavaruus

Vektoreiden virittämä aliavaruus Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden

Lisätiedot

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä Matriisien tulo Lause Olkoot A, B ja C matriiseja ja R Tällöin (a) A(B + C) =AB + AC, (b) (A + B)C = AC + BC, (c) A(BC) =(AB)C, (d) ( A)B = A( B) = (AB), aina, kun kyseiset laskutoimitukset on määritelty

Lisätiedot

1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät

1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät 1 1 LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT Muotoa 11 Lineaariset yhtälöryhmät (1) a 1 x 1 + a x + + a n x n b oleva yhtälö on tuntemattomien x 1,, x n lineaarinen yhtälö, jonka kertoimet ovat luvut a 1,,

Lisätiedot

2.5. Matriisin avaruudet ja tunnusluvut

2.5. Matriisin avaruudet ja tunnusluvut 2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja

Lisätiedot

x 2 x 3 x 1 x 2 = 1 2x 1 4 x 2 = 3 x 1 x 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili

x 2 x 3 x 1 x 2 = 1 2x 1 4 x 2 = 3 x 1 x 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili 6 4 2 x 2 x 3 15 10 5 0 5 15 5 3 2 1 1 2 3 2 0 x 2 = 1 2x 1 0 4 x 2 = 3 x 1 x 5 2 5 x 1 10 x 1 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili Sisältö

Lisätiedot

Käänteismatriisin ominaisuuksia

Käänteismatriisin ominaisuuksia Käänteismatriisin ominaisuuksia Lause 1.4. Jos A ja B ovat säännöllisiä ja luku λ 0, niin 1) (A 1 ) 1 = A 2) (λa) 1 = 1 λ A 1 3) (AB) 1 = B 1 A 1 4) (A T ) 1 = (A 1 ) T. Tod.... Ortogonaaliset matriisit

Lisätiedot

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

10 Matriisit ja yhtälöryhmät

10 Matriisit ja yhtälöryhmät 10 Matriisit ja yhtälöryhmät Tässä luvussa esitellään uusi tapa kirjoittaa lineaarinen yhtälöryhmä matriisien avulla käyttäen hyväksi matriisikertolaskua sekä sarakevektoreita Pilkotaan sitä varten yhtälöryhmän

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =

Lisätiedot

Kurssin loppuosassa tutustutaan matriiseihin ja niiden käyttöön yhtälöryhmien ratkaisemisessa.

Kurssin loppuosassa tutustutaan matriiseihin ja niiden käyttöön yhtälöryhmien ratkaisemisessa. 7 Matriisilaskenta Kurssin loppuosassa tutustutaan matriiseihin ja niiden käyttöön yhtälöryhmien ratkaisemisessa. 7.1 Lineaariset yhtälöryhmät Yhtälöryhmät liittyvät tilanteisiin, joissa on monta tuntematonta

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

802120P MATRIISILASKENTA (5 op)

802120P MATRIISILASKENTA (5 op) 802120P MARIIILAKENA (5 op) Oulun yliopisto Matemaattiset tieteet 2015 ero Vedenjuoksu 1 Alkusanat ämä luentomoniste pohjautuu osaksi Esa Järvenpään (2011) ja osaksi Hanna Kiilin (2014) kurssin Lineaarialgebra

Lisätiedot

Lineaariset yhtälöryhmät ja matriisit

Lineaariset yhtälöryhmät ja matriisit Lineaariset yhtälöryhmät ja matriisit Lineaarinen yhtälöryhmä a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. a m1 x 1 + a m2 x 2 + + a mn x n = b m, (1) voidaan esittää

Lisätiedot

1 Matriisit ja lineaariset yhtälöryhmät

1 Matriisit ja lineaariset yhtälöryhmät 1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n

Lisätiedot

Vektorit, suorat ja tasot

Vektorit, suorat ja tasot , suorat ja tasot 1 / 22 Koulussa vektori oli nuoli, jolla oli suunta ja suuruus eli pituus. Siirretään vektori siten, että sen alkupää on origossa. Tällöin sen kärki on pisteessä (x 1, x 2 ). Jos vektorin

Lisätiedot

Kahden suoran leikkauspiste ja välinen kulma (suoraparvia)

Kahden suoran leikkauspiste ja välinen kulma (suoraparvia) Kahden suoran leikkauspiste ja välinen kulma (suoraparvia) Piste x 0, y 0 on suoralla, jos sen koordinaatit toteuttavat suoran yhtälön. Esimerkki Olkoon suora 2x + y + 8 = 0 y = 2x 8. Piste 5,2 ei ole

Lisätiedot

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio x = x 2 = 5/2 x 3 = 2 eli Ratkaisu on siis x = (x x 2 x 3 ) = ( 5/2 2) (Tarkista sijoittamalla!) 5/2 2 Tämä piste on alkuperäisten tasojen ainoa leikkauspiste Se on myös piste/vektori jonka matriisi A

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

802120P Matriisilaskenta (5 op)

802120P Matriisilaskenta (5 op) 802120P Matriisilaskenta (5 op) Marko Leinonen Matemaattiset tieteet Syksy 2016 1 / 220 Luennoitsija: Marko Leinonen marko.leinonen@oulu.fi MA333 Kurssilla käytetään Noppaa (noppa.oulu.fi) Luentomoniste

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Lotta Oinonen ja Johanna Rämö 6. joulukuuta 2012 Helsingin yliopisto Matematiikan ja tilastotieteen laitos 2012 Sisältö 1 Avaruus R n 4 1 Avaruuksien R 2 ja R 3 vektorit.....................

Lisätiedot

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij. Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla

Lisätiedot

LU-hajotelma. Esimerkki 1 Matriisi on yläkolmiomatriisi ja matriisi. on alakolmiomatriisi. 3 / 24

LU-hajotelma. Esimerkki 1 Matriisi on yläkolmiomatriisi ja matriisi. on alakolmiomatriisi. 3 / 24 LU-hajotelma 1 / 24 LU-hajotelma Seuravassa tarkastellaan kuinka neliömatriisi voidaan esittää kahden kolmiomatriisin tulona. Käytämme alkeismatriiseja tälläisen esityksen löytämiseen. Edellä mainittua

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Luentokalvot 5 1

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

JAKSO 2 KANTA JA KOORDINAATIT

JAKSO 2 KANTA JA KOORDINAATIT JAKSO 2 KANTA JA KOORDINAATIT Kanta ja dimensio Tehtävä Esittele vektoriavaruuden kannan määritelmä vapauden ja virittämisen käsitteiden avulla ja anna vektoriavaruuden dimension määritelmä Esittele Lause

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 23.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Käytännön asioita Ensimmäiset tehtävät olivat sujuneet hyvin. Kansilehdet on oltava mukana tehtäviä palautettaessa,

Lisätiedot

Matriisilaskenta. Harjoitusten 3 ratkaisut (Kevät 2019) 1. Olkoot AB = ja 2. Osoitetaan, että matriisi B on matriisin A käänteismatriisi.

Matriisilaskenta. Harjoitusten 3 ratkaisut (Kevät 2019) 1. Olkoot AB = ja 2. Osoitetaan, että matriisi B on matriisin A käänteismatriisi. Matriisilaskenta Harjoitusten ratkaisut (Kevät 9). Olkoot ja A = B = 5. Osoitetaan, että matriisi B on matriisin A käänteismatriisi. Tapa Käänteismatriisin määritelmän nojalla riittää osoittaa, että AB

Lisätiedot

Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä

Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä (vihkon palautus kokeeseen tullessa) Koe Mahdolliset testit

Lisätiedot

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218 Lineaarialgebra ja matriisilaskenta I LM1, Kesä 2012 1/218 Avaruuden R 2 vektorit Määritelmä (eli sopimus) Avaruus R 2 on kaikkien reaalilukuparien joukko; toisin sanottuna R 2 = { (a, b) a R ja b R }.

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

Käänteismatriisi 1 / 14

Käänteismatriisi 1 / 14 1 / 14 Jokaisella nollasta eroavalla reaaliluvulla on käänteisluku, jolla kerrottaessa tuloksena on 1. Seuraavaksi tarkastellaan vastaavaa ominaisuutta matriiseille ja määritellään käänteismatriisi. Jokaisella

Lisätiedot

Vanhoja koetehtäviä. Analyyttinen geometria 2016

Vanhoja koetehtäviä. Analyyttinen geometria 2016 Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 4.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Viimeiset harjoitukset on palautettava torstaina 13.6. Laskaripisteensä ja läsnäolonsa voi kukin tarkistaa

Lisätiedot

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla:

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla: 11 Determinantti Neliömatriisille voidaan laskea luku, joka kertoo muun muassa, onko matriisi kääntyvä vai ei Tätä lukua kutsutaan matriisin determinantiksi Determinantilla on muitakin sovelluksia, mutta

Lisätiedot

1 Kertaus. Lineaarinen optimointitehtävä on muotoa:

1 Kertaus. Lineaarinen optimointitehtävä on muotoa: 1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n

Lisätiedot

Osittaistuenta Gaussin algoritmissa: Etsitään 1. sarakkeen itseisarvoltaan suurin alkio ja vaihdetaan tämä tukialkioiksi (eli ko. rivi 1. riviksi).

Osittaistuenta Gaussin algoritmissa: Etsitään 1. sarakkeen itseisarvoltaan suurin alkio ja vaihdetaan tämä tukialkioiksi (eli ko. rivi 1. riviksi). Liukuluvut Tietokonelaskuissa käytetään liukulukuja: mikä esittää lukua ± α α α M β k ± ( M α i β i )β k, i= β on järjestelmän kantaluku, α α M liukuluvun mantissa, α,, α M lukuja,,,, β, siten että α Esimerkki

Lisätiedot

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila Lineaarialgebra ja matriisilaskenta II Syksy 29 Laskuharjoitus (9. - 3..29) Ratkaisuehdotuksia Vesa Ala-Mattila Tehtävä. Olkoon V vektoriavaruus. Todistettava: jos U V ja W V ovat V :n aliavaruuksia, niin

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A3/A5 Matriisilaskenta Laskuharjoitus 2 / vko 45 Tehtävä (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 2i = 2, b) z 2i < 2, c) /z

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa I Jokke Häsä, Lotta Oinonen, Johanna Rämö 11. syyskuuta 2016 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 1 Vektoriavaruuksien R 2 ja R 3 vektorit........................

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa I Jokke Häsä, Lotta Oinonen, Johanna Rämö 9 heinäkuuta 2013 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 1 Avaruuksien R 2 ja R 3 vektorit 4 11 Kaksiulotteisen

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon

Lisätiedot

5 OMINAISARVOT JA OMINAISVEKTORIT

5 OMINAISARVOT JA OMINAISVEKTORIT 5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 13.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/12 Käytännön asioita Kesäkuun tentti: ke 19.6. klo 17-20, päärakennuksen sali 1. Anna palautetta kurssisivulle ilmestyvällä

Lisätiedot

7 Vapaus. 7.1 Vapauden määritelmä

7 Vapaus. 7.1 Vapauden määritelmä 7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan

Lisätiedot

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear

Lisätiedot

6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio

6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio 6 Vektoriavaruus R n 6.1 Lineaarikombinaatio Määritelmä 19. Vektori x œ R n on vektorien v 1,...,v k œ R n lineaarikombinaatio, jos on olemassa sellaiset 1,..., k œ R, että x = i v i. i=1 Esimerkki 30.

Lisätiedot

Sijoitusmenetelmä. 1.2. Yhtälöpari

Sijoitusmenetelmä. 1.2. Yhtälöpari MAB Yhtälöpari Yhtälöpari Yhtälöparilla tarkoitetaan tilannetta, missä on kaksi htälöä, joiden tät toteutua htä aikaa Tämä on sama asia kuin että kstään, missä pisteessä tai missä pisteissä htälöitä vastaavat

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 6.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Kertausta: Kääntyvien matriisien lause Lause 1 Oletetaan, että A on n n -neliömatriisi. Seuraavat ehdot ovat yhtäpitäviä.

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 4 To 15.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 4 To 15.9.2011 p. 1/38 p. 1/38 Lineaarinen yhtälöryhmä Lineaarinen yhtälöryhmä matriisimuodossa Ax = b

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 17.5.2017 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Martina Aaltonen, martina.aaltonen@helsinki.fi, 1/18 Siirry istumaan jonkun viereen. Kaikilla on

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

Matematiikka B2 - TUDI

Matematiikka B2 - TUDI Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

Talousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi

Talousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi Talousmatematiikan perusteet: Luento 11 Lineaarikuvaus Matriisin aste Käänteismatriisi Viime luennolla Käsittelimme matriisien peruskäsitteitä ja laskutoimituksia Vakiolla kertominen, yhteenlasku ja vähennyslasku

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 3. Kirsi Valjus. Jyväskylän yliopisto. Luento 3 () Numeeriset menetelmät / 45

Numeeriset menetelmät TIEA381. Luento 3. Kirsi Valjus. Jyväskylän yliopisto. Luento 3 () Numeeriset menetelmät / 45 Numeeriset menetelmät TIEA381 Luento 3 Kirsi Valjus Jyväskylän yliopisto Luento 3 () Numeeriset menetelmät 20.3.2013 1 / 45 Luennon 3 sisältö Luku 2: Epälineaarisen yhtälön ratkaiseminen Polynomin reaaliset

Lisätiedot

2 Yhtälöitä ja epäyhtälöitä

2 Yhtälöitä ja epäyhtälöitä 2 Yhtälöitä ja epäyhtälöitä 2.1 Ensimmäisen asteen yhtälö ja epäyhtälö Muuttujan x ensimmäisen asteen yhtälöksi sanotaan yhtälöä, joka voidaan kirjoittaa muotoon ax + b = 0, missä vakiot a ja b ovat reaalilukuja

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

Determinantti 1 / 30

Determinantti 1 / 30 1 / 30 on reaaliluku, joka on määritelty neliömatriiseille Determinantin avulla voidaan esimerkiksi selvittää, onko matriisi kääntyvä a voidaan käyttää käänteismatriisin määräämisessä ja siten lineaarisen

Lisätiedot

Aiheet. Kvadraattinen yhtälöryhmä. Kvadraattinen homogeeninen YR. Vapaa tai sidottu matriisi. Vapauden tutkiminen. Yhteenvetoa.

Aiheet. Kvadraattinen yhtälöryhmä. Kvadraattinen homogeeninen YR. Vapaa tai sidottu matriisi. Vapauden tutkiminen. Yhteenvetoa. Yhtälöryhmän ratkaisujen lukumäärä, L8 Esimerkki kvadraattinen Haluamme ratkaista n 4x + y z = x + y + z = 5 x + y + z = 4 4 x 4 + y x y z = + z 5 4 = 5 4 Esimerkki kvadraattinen Yhtälöryhmä on kvadraattinen,

Lisätiedot

Lineaarialgebra I. Oulun yliopisto Matemaattisten tieteiden laitos Esa Järvenpää Kirjoittanut Tuula Ripatti

Lineaarialgebra I. Oulun yliopisto Matemaattisten tieteiden laitos Esa Järvenpää Kirjoittanut Tuula Ripatti Lineaarialgebra I Oulun yliopisto Matemaattisten tieteiden laitos 2011 Esa Järvenpää Kirjoittanut Tuula Ripatti 2 1 Lineaarinen yhtälöryhmä 11 Esimerkki (a) Ratkaise yhtälö 5x = 7 Kerrotaan yhtälö puolittain

Lisätiedot

Ympyrän yhtälö

Ympyrän yhtälö Ympyrän yhtälö ANALYYTTINEN GEOMETRIA MAA4 On melko selvää, että origokeskisen ja r-säteisen ympyrän yhtälö voidaan esittää muodossa x 2 + y 2 = r 2. Vastaavalla tavalla muodostetaan ympyrän yhtälö, jonka

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa I Jokke Häsä, Lotta Oinonen, Johanna Rämö 27. marraskuuta 2015 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 1 Vektoriavaruuksien R 2 ja R 3 vektorit........................

Lisätiedot

802320A LINEAARIALGEBRA OSA I

802320A LINEAARIALGEBRA OSA I 802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä

Lisätiedot

Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät

Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät Matematiikan peruskurssi K3/P3, syksy 25 Kenrick Bingham 825 Toisen välikokeen alueen ydinasioita Alla on lueteltu joitakin koealueen ydinkäsitteitä, joiden on hyvä olla ensiksi selvillä kokeeseen valmistauduttaessa

Lisätiedot

Lineaariset kongruenssiyhtälöryhmät

Lineaariset kongruenssiyhtälöryhmät Lineaariset kongruenssiyhtälöryhmät LuK-tutkielma Jesse Salo 2309369 Matemaattisten tieteiden laitos Oulun yliopisto Sisältö Johdanto 2 1 Kongruensseista 3 1.1 Kongruenssin ominaisuuksia...................

Lisätiedot

( 3) ( 5) ( 7) ( 2) ( 6) ( 4) Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 105 Päivitetty

( 3) ( 5) ( 7) ( 2) ( 6) ( 4) Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 105 Päivitetty Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 15 Päivitetty 19..6 31 Tapa 1 Ratkaistaan yhtälöryhmä käyttämällä sijoituskeinoa. x y+ z = x y + 3z = 3x 4y+ z = Ratkaistaan yhtälöstä (1) muuttuja

Lisätiedot

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut Insinöörimatematiikka D, 06 laskuharjoituksien esimerkkiratkaisut Alla olevat esimerkkiratkaisut ovat melko ksitiskohtaisia Tenttivastauksissa ei leensä tarvitse muistaa lauseiden, määritelmien, esimerkkien

Lisätiedot

Dierentiaaliyhtälöistä

Dierentiaaliyhtälöistä Dierentiaaliyhtälöistä Markus Kettunen 4. maaliskuuta 2009 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun yksikäsitteisyydestä.....................

Lisätiedot

Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä)

Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä) Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe 26.10.2017 Ratkaisuehdotus 1. (35 pistettä) (a) Seuraavat matriisit on saatu eräistä yhtälöryhmistä alkeisrivitoimituksilla. Kuinka monta ratkaisua yhtälöryhmällä

Lisätiedot

Differentiaaliyhtälöt II, kevät 2017 Harjoitus 5

Differentiaaliyhtälöt II, kevät 2017 Harjoitus 5 Differentiaaliyhtälöt II, kevät 27 Harjoitus 5 Heikki Korpela 26. huhtikuuta 27 Tehtävä 2. Määrää seuraavan autonomisen systeemin kriittiset pisteet, ratakäyrät ja luonnostele systeemin aikakehitys: (t)

Lisätiedot

ja piirrä sitä vastaavat kaksi käyrää ja tarkista ratkaisusi kuvastasi.

ja piirrä sitä vastaavat kaksi käyrää ja tarkista ratkaisusi kuvastasi. Harjoituksia yhtälöryhmistä ja matriiseista 1. Ratkaise yhtälöpari (F 1 ja F 2 ovat tuntemattomia) cos( ) F 1 + cos( ) F 2 = 0 sin( ) F 1 + sin( ) F 2 = -1730, kun = -50 ja = -145. 2. Ratkaise yhtälöpari

Lisätiedot

Kompleksiluvut., 15. kesäkuuta /57

Kompleksiluvut., 15. kesäkuuta /57 Kompleksiluvut, 15. kesäkuuta 2017 1/57 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja

Lisätiedot

LINEAARIALGEBRA I. Hannu Honkasalo. Helsingin yliopiston matematiikan laitos v w u ...

LINEAARIALGEBRA I. Hannu Honkasalo. Helsingin yliopiston matematiikan laitos v w u ... LINEAARIALGEBRA I Hannu Honkasalo v w u h w A v Helsingin yliopiston matematiikan laitos 003 SISÄLTÖ 1 Lineaariset yhtälöryhmät ja matriisit 11 Lineaariset yhtälöryhmät 1 1 Matriisit ja matriisitoimitukset

Lisätiedot

Käänteismatriisin. Aiheet. Käänteismatriisin ominaisuuksia. Rivioperaatiot matriisitulona. Matriisin kääntäminen rivioperaatioiden avulla

Käänteismatriisin. Aiheet. Käänteismatriisin ominaisuuksia. Rivioperaatiot matriisitulona. Matriisin kääntäminen rivioperaatioiden avulla Käänteismatriisi, L5 1 Tässä kalvosarjassa käsittelemme neliömatriiseja. Ilman asian jatkuvaa toistamista oletamme seuraavassa, että kaikki käsittelemämme matriisit ovat neliömatriiseja. Määritelmä. Olkoon

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 2 Lisää osamurtoja Tutkitaan jälleen rationaalifunktion P(x)/Q(x) integrointia. Aiemmin käsittelimme tapauksen, jossa nimittäjä voidaan esittää muodossa Q(x) = a(x x

Lisätiedot

Sovitaan ensin merkintätavoista. Ratkaisemme ensin yksinkertaisen yhtälöparin. 5y = 10. x = 3 x = 1

Sovitaan ensin merkintätavoista. Ratkaisemme ensin yksinkertaisen yhtälöparin. 5y = 10. x = 3 x = 1 Vaasan yliopiston julkaisuja, opetusmonisteita 31 2 MATRIISILASKENTAA Matriisilaskentaa 2.1 Yhtälöryhmät Sec:la1-YhtRyhmat 2.1.1 Rivioperaatiot Ssec:la1-Rivioper Sovitaan ensin merkintätavoista. Ratkaisemme

Lisätiedot

Determinantit. Kaksirivinen determinantti. Aiheet. Kaksirivinen determinantti. Kaksirivinen determinantti. Kolmirivinen determinantti

Determinantit. Kaksirivinen determinantti. Aiheet. Kaksirivinen determinantti. Kaksirivinen determinantti. Kolmirivinen determinantti Determinantit 1 2 2-matriisin ( A = on det(a) = a 11 a 12 a 21 a 22 a 11 a 12 a 21 a 22 ) = a 11a 22 a 12 a 21. 1 2 2-matriisin on det(a) = Esim. Jos A = ( a 11 a 12 a 21 a 22 A = a 11 a 12 a 21 a 22 )

Lisätiedot

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Talousmatematiikan perusteet: Luento 10 Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Lineaarikuvaus Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta, jossa käytetään

Lisätiedot

Oppimistavoitematriisi

Oppimistavoitematriisi Oppimistavoitematriisi Lineaarialgebra ja matriisilaskenta I Arvosanaan 1 2 riittävät Arvosanaan 5 riittävät Yhtälöryhmät (YR) Osaan ratkaista ensimmäisen asteen yhtälöitä ja yhtälöpareja Osaan muokata

Lisätiedot

Huippu Kertaus Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Huippu Kertaus Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty YHTÄLÖITÄ ALOITA PERUSTEISTA A. Luku on yhtälön ratkaisu, jos luku toteuttaa yhtälön. a) Sijoitetaan luku = yhtälöön. 6 = 0 0 = 0 Yhtälö on tosi, joten = on yhtälön ratkaisu. Vastaus: on b) Sijoitetaan

Lisätiedot

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Tekijä Pitkä matematiikka 5 7..017 37 Pisteen (x, y) etäisyys pisteestä (0, ) on ( x 0) + ( y ). Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Merkitään etäisyydet yhtä suuriksi ja ratkaistaan

Lisätiedot

Kaksirivisen matriisin determinantille käytämme myös merkintää. a 11 a 12 a 21 a 22. = a 11a 22 a 12 a 21. (5.1) kaksirivine

Kaksirivisen matriisin determinantille käytämme myös merkintää. a 11 a 12 a 21 a 22. = a 11a 22 a 12 a 21. (5.1) kaksirivine Vaasan yliopiston julkaisuja 97 5 DETERMINANTIT Ch:Determ Sec:DetDef 5.1 Determinantti Tämä kappale jakautuu kolmeen alakappaleeseen. Ensimmäisessä alakappaleessa määrittelemme kaksi- ja kolmiriviset determinantit.

Lisätiedot

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Tekijä Pitkä matematiikka 4 9.12.2016 212 Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Vastaus esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4) 213 Merkitään pistettä

Lisätiedot

Demo 1: Simplex-menetelmä

Demo 1: Simplex-menetelmä MS-C2105 Optimoinnin perusteet Malliratkaisut 3 Ehtamo Demo 1: Simplex-menetelmä Muodosta lineaarisen tehtävän standardimuoto ja ratkaise tehtävä taulukkomuotoisella Simplex-algoritmilla. max 5x 1 + 4x

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 3 Ti 13.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 3 Ti 13.9.2011 p. 1/37 p. 1/37 Epälineaariset yhtälöt Newtonin menetelmä: x n+1 = x n f(x n) f (x n ) Sekanttimenetelmä:

Lisätiedot

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)

Lisätiedot