ε y = v ε z = w γ yz = v z + w γ xz = u e = ε x + ε y + ε z. y ε y x 2 = 2 γ xy x y, y 2 = 2 γ yz z ε z y z, z x x ε x z 2 = 2 γ zx

Koko: px
Aloita esitys sivulta:

Download "ε y = v ε z = w γ yz = v z + w γ xz = u e = ε x + ε y + ε z. y ε y x 2 = 2 γ xy x y, y 2 = 2 γ yz z ε z y z, z x x ε x z 2 = 2 γ zx"

Transkriptio

1 ÄÙ Ù ½ Ê ÒØ Ò Ñ Ò Ò Ø Ó ÙÖ Ú Ó Ó ÐÑ ½º½ à ÑÑÓØ ÓÖ Ò Ô ÖÙ Ý ØÐ Ø ÅÙÓ ÓÒÑÙÙØÓ Ø ε = u, ε = v, ε z = w z, ½º½µ γ = u + v, γ z = v z + w, γ z = u z + w, ½º¾µ Ù Ø ÐÐ Ò Ò Ø Ð ÚÙÙ Ò ÑÙÙØÓ e = ε + ε + ε z. ½º µ Ø Ò ÓÔ ÚÙÙ ÓØ 2 ε ε 2 = 2 γ, ½º µ 2 ε z ε z 2 = 2 γ z z, ½º µ Ø 2 ε z ε z 2 = 2 γ z z ( γ z γ z + γ ) z = 2 2 ε z, ( γz γ z + γ ) = 2 2 ε z z, ( γz z γ z + γ ) z = 2 2 ε z. ½ ½º µ ½º µ ½º µ ½º µ

2 ¾ ÄÍÃÍ ½º Ê ÒØ Ò Ñ Ò Ò Ø Ó ÙÖ Ú Ó Ó ÐÑ Ð Ø ØØÝ ÀÓÓ Ò Ð ε = E [σ ν(σ + σ z )], γ = G τ, ε = E [σ ν(σ + σ z )], γ z = G τ z, ½º½¼µ ε z = E [σ z ν(σ + σ )], γ z = G τ z. Ä Ñ Ò Ú ÓØ Ð Ù ÙÑÓ ÙÙÐ Gµ µ = G = E 2( + ν), λ = νe ( + ν)( 2ν). ½º½½µ Ì Ð ÚÙÙ ÒÑÙÙØÓ ÖÖÓ Ò K = ( λ + 2G 3 ). ½º½¾µ Ð Ø ØÝ ÀÓÓ Ò Ð σ = λe + 2Gε, σ = λe + 2Gε, σ z = λe + 2Gε z, τ = Gγ, τ z = Gγ z, τ z = Gγ z. ½º½ µ ½º½ µ ½º½ µ ½º½ µ Ì Ó ÒÒ ØÝ Ø Ð σ = σ = E ν 2(ε + νε ), ½º½ µ E ν 2(ε + νε ), ½º½ µ τ = Gγ. ½º½ µ Ì Ô ÒÓ ÓØ Ì Ô ÒÓ ÓØ Ö ÙÒ ÐÐ σ + τ + τ z z + f =, τ + σ + τ z z + f =, τ z + τ z + σ z z + f z =. σ n + τ n + τ z n z = t, ½º¾¼µ ½º¾½µ ½º¾¾µ τ n + σ n + τ z n z = t, ½º¾ µ τ z n + τ z n + σ z n z = t z.

3 ½º½º à ÑÑÓØ ÓÖ Ò Ô ÖÙ Ý ØÐ Ø Î ÖØÙ Ð Ò ØÝ Ò Ô Ö Ø ( σ + τ + τ ) z z + f δudv + Ù Ò Ð Ù V V V ( τ + σ + τ ) z z + f δv dv + ( τz + τ z + σ ) z z + f z δw dv + S t [( t + t )δu + ( t + t )δv + ( t z + t z )δw] ds =. Î ÖØÙ Ð Ò ØÝ Ò Ý ØÐ V ( f + g + h ) dv = z S (fn + gn + hn z ) ds. (σ δε + σ δε + σ z δε z + τ δγ + τ z δγ z + τ z δγ z )dv V (f δu + f δv + f z δw)dv ( t δu + t δv + t z δw)ds =. V S t ½º¾ µ ½º¾ µ ½º¾ µ ÅÙÓ ÓÒÑÙÙØÓ Ò Ö ÒÒ ØÝ Ø Ò ÙÒ Ø ÓÒ U = Ũ = 4G V [σ 2 + σ2 + σ2 z ν + ν (σ + σ + σ z ) 2 + 2(τ 2 + τ2 z + τ2 z )]dv. ½º¾ µ ÈÓØ ÒØ Ð Ò Ö Π = U + V. ½º¾ µ ÅÙÓ ÓÒÑÙÙØÓ Ò Ö U = G V [ε 2 + ε2 + ε2 z + νe2 2ν + 2 (γ2 + γ2 z + γ2 z )]dv. ½º¾ µ ÍÐ Ó Ø Ò ÙÓÖÑ Ò ÔÓØ ÒØ Ð V = V (f u + f v + f z w)dv S t ( t u + t v + t z w)ds. ½º ¼µ ÃÓÑÔÐ Ñ ÒØ Ö Ò Ò Ò Ö Ṽ = Π = Ũ + Ṽ, S u (ūt + vt + wt z )ds, ½º ½µ ½º ¾µ

4 ÄÍÃÍ ½º Ê ÒØ Ò Ñ Ò Ò Ø Ó ÙÖ Ú Ó Ó ÐÑ t = n σ + n τ + n z τ z, t = n τ + n σ + n z τ z, ½º µ t z = n τ z + n τ z + n z σ z. ½º¾ ½º¾º½ Î Ô ÚÒØ ÓÙÐÓÑ Ò Ø ÓÖ ÎÒØ ÙÐÑ ϕ ÚÒØÝÑ θ ÑÔÝÖÔÓ Ð Ù ÐÐ M z = θ = dϕ dz. γ(r) = dϕ dz r = θr, τr d = 2π R τ = Gγ = Gθr, τr 2 dr, ½º µ ½º µ ½º µ ½º µ ÑÔÝÖÔÙØ ÐÐ I p = M z = Gθ2π R r 2 d = 2π r 3 dr = GθI p, R I p = π 2 (b4 a 4 ), ½º µ r 3 dr = π R4 2. ½º µ ½º ¼µ b ÙÐ Ó a º Ì Ô ÒÓÝ ØÐ ÂÓ GI p ÓÒ Ú Ó Ò Ò τ ma = GθR = MR I p. dm dz + m =, d dz (GI dϕ p dz ) + m =. d 2 ϕ GI p + m(z) =. dz2 ½º ½µ ½º ¾µ ½º µ ½º Î Ô Ø ÖØÝÚ Ô M z = Mº ¾º à ÒÒ Ø ØÝ Ô ϕ = º

5 ½º¾º Î Ô ÚÒØ ½º¾º¾ Ð Ñ ÒØØ Ñ Ò Ø ÐÑ ÅÙÓ ÓÒÑÙÙØÓ Ò Ö ÍÐ Ó Ø Ò ÚÓ Ñ Ò ÔÓØ ÒØ Ð U = 2 GI v(ϕ ) 2 dz. L V = m(z)ϕ(z)dz i M i ϕ(z i ). à ÖØÝÑÒ ÒØ ÖÔÓÐ Ø Ó ϕ(s) =( s)ϕ + sϕ 2 =N (s)ϕ + N 2 (s)ϕ 2 Ð [ ϕ(s) = N (s) N 2 (s) ] { ϕ ϕ 2 }, U e = L 2 GI vθ 2 dz, θ = ϕ = dϕ dz = dϕ ds ds dz = dϕ ds L, ½º ¼µ [ ϕ = N ϕ + N 2ϕ 2 = ] { } ϕ. ½º ½µ L L ϕ 2 ÅÙÓ ÓÒÑÙÙØÓ Ò Ö U e = 2 LGI v [ ϕ ] [ GI v ϕ L 2 GIv L GIv L GI v L ] { ϕ ϕ 2 } = 2 ϕet K e ϕ e. ½º ¾µ Ð Ñ ÒØ Ò e Ó ÙÙ V e = L e m(z)ϕ(z)dz M i ϕ(z i ), i M i Ô Ø ÚÒØ ÑÓÑ ÒØØ ÙÓÖÑ Ô Ø z i Ö ³ Ò δ¹ ÙÒ Ø Ó m i = M i δ(z z i ), ½º µ δ(z) = ÙÒ z δ(z)dz =. Ð Ñ ÒØ Ò e [ V e = ϕ ] Le ϕ 2 z L z L ( m(z) + m i )dz

6 ÄÍÃÍ ½º Ê ÒØ Ò Ñ Ò Ò Ø Ó ÙÖ Ú Ó Ó ÐÑ s τ z d ds α β d n β α n n τ z ÃÙÚ ½º½ ÈÓ Ð Ù Ò Ö ÙÒ ÝÖº Ð f e = Ë ÙÚ Ò ÔÓØ ÒØ Ð Ò Ö [ V e = { f f 2 } = ϕ ϕ 2 ] { f L e Π = z L z L f 2 E Π e. e= } ϕ et f e, ( m(z) + m i )dz ½º¾º Ë ÒØ Î Ò Òس Ò ÚÒØ Ë ÖØÝÑØ u = (θz), v = (θz), w = θψ(,). ½º ¼µ Ä Ù ÒÒ ØÝ Ø ( w τ z = G + u ) ( ) ψ = Gθ z, ( w τ z = G + v ) ( ) ψ = Gθ z +. ½º ½µ Ì Ô ÒÓ Ó Ø ½º¾¾µ Ê ÙÒ ØÓ 2 ψ ψ 2 =. τ z n + τ z n =, ( ) ( ) ψ ψ cos α + + cos β =, n = cos α = d dn = d ds, n = cos β = d dn = d ds, ½º ¾µ ½º µ

7 ½º¾º Î Ô ÚÒØ Ä Ù ÚÓ Ñ Ø Q Q ψ d dn + ψ d dn d ds + ( d ds ) =, Q = dψ dn d 2 ds (2 + 2 ) =. τ z d, Q = τ z d, ÚÒØ ÑÓÑ ÒØØ ÚÒØ Ý ÝÝ I v = I p + M v = ( τ z + τ z )d, ( ψ + ψ ) d, I p = ( )d. ½º ¼µ ½º¾º ÎÓ Ñ Ñ Ò Ø ÐÑ ÂÒÒ ØÝ Ù Ø Ó φ = φ(,) Ø Ò ÓÔ ÚÙÙ ØÓ Ê ÙÒ ØÓ ÎÒØ ÑÓÑ ÒØØ ÓÒØ ÐÓÔÓ Ð Ù ÐÐ dφ ds τ z = φ, τ z = φ. 2 φ φ 2 = 2Gθ. ½º ½µ ½º ¾µ =, φ = vakioreunalla. ½º µ M v = 2 M v = 2φd + φ(,)d. n 2φ i i. i= ½º¾º Ö Ò Ñ Ò Ø ÐÑ Ö Ò ÔÔÖÓ Ñ Ø Ó ÑÓÐ ÝÝÐ ÑÙÓ Ó h = ÓÒ Ð ÚÐ φ 2 (φ m+ φ m ), 2h φ ¹½ ¼ ½, 2 φ 2 h 2(φ m+ 2φ m + φ m ),

8 ÄÍÃÍ ½º Ê ÒØ Ò Ñ Ò Ò Ø Ó ÙÖ Ú Ó Ó ÐÑ k = ÑÓÐ ÝÝÐ ÑÙÓ Ó 2 φ 2 k 2(φ n+ 2φ n + φ n ), h 2 2 φ 2 2, ½º ¼µ k 2 2 φ 2 2. ½º ½µ Ä ÔÐ Ò ÓÔ Ö ØØÓÖ Ò Ö Ò ÑÓÐ ÝÝÐ k = = h = h 2 φ 4. ½º ¾µ ½º¾º ÈÓØ ÒØ Ð Ò Ö Ò Ñ Ò Ñ Ò Ô Ö Ø ÈÓØ ÒØ Ð Ò Ö Π = 2 GLθ2 [ ( ψ ) 2 ( ) ] ψ d M v Lθ. ½º µ ÃÝÖ ØÝÑ ÙÒ Ø ÓÒ ψ(,) Ø ÐÑ ψ = n a i ψ i (,). i= Ä Ò Ö Ò Ò Ý ØÐ ÖÝ Ñ n B ij a j + C i =, i =,2,...,n, j= B ij = C i = ( ψi ψ j + ψ i ( ψ ) i + ψ i d. ) ψ j d, ÎÒØ Ý ÝÝ I v = ) ( ψ ψ d n I v = I p + a i C i. i=

9 ½º¾º Î Ô ÚÒØ Ì ÙÐÙ Ó ½º½ ËÙÓÖ ÔÓ Ð Ù º b/t k ½ ¼º½ ¼ ½º¾º ÃÓÑÔÐ Ñ ÒØ Ö Ò Ò Ö Ò Ñ Ò Ñ Ò Ô Ö ØØ ÅÓ Ó ØÙ ÓÑÔÐ Ñ ÒØ Ö Ò Ò Ö Ò Ð Ù Π c = L 2G ÂÒÒ ØÝ ÙÒ Ø ÓÒ Ø ÐÑ [ ( φ ) 2 + ( ) ] φ 2 d + λ Mv 2 φd. φ (,) = λ L n b i φ i (,), i= ½º ¼µ φ i = Ö ÙÒ ÐÐ º Ó Ø ÎÒØ ÑÓÑ ÒØØ δ Π c (b i ) = ½º ½µ n D ij b j 2GE i =, i =,...,n, ½º ¾µ j= D ij = M v = ( φi φ j + φ i E i = φ i d. ) φ j d, ( ) n 2λ b i E i = GIv θ. L i= ½º µ ËÙ λ L ÓÒ ÚÒØÝÑÒ Ð ÖÚÓ θ ÚÒØ Ý ÝÝ ÓÒ I v = M v Gθ = 2 G n b i E i. i=

10 ½¼ ÄÍÃÍ ½º Ê ÒØ Ò Ñ Ò Ò Ø Ó ÙÖ Ú Ó Ó ÐÑ 2c c c c φ : I vc I va I vb 2 ÃÙÚ ½º¾ ̹ÔÓ Ð Ù º ½º¾º ÇÖØÓ ÓÒ Ð Ø ÒÒ ØÝ ÒØØ ma I v = I va + I vb + I vc. c/4 Ò Ð ÚÝ ÐÐ ÚÝ Ý ÐÐ φ¹ ÙÒ Ø ÓÒ ÐØ ÚÙÙ : τ 2 z + τ2 z = I va = (2V a) 2 a, a Ú Ö Ó Ø ØÙÒ Ó Ò Ô ÒØ ¹ Ð V a ÔÓ Ð Ù ÐØ Ò ÑÙÖØÓÚ Ú ÒÑÙÓØÓ Ò φ¹ ÙÑÔ Ö Ò Ø Ð ÚÙÙ Ø ÒØ Ò Ó ÙÙ Ø I vc º Î Ö Ó Ø ØÙÐÐ ÐÙ ÐÐ ÙÓÖ Ø Ò ÒÒ ØÝ ÒØØ Ý¹ ÝÝ I vb º ËÙÓÖ ÔÓ Ð Ù ÐÐ I v = kbt 3 t ÐÝ Ý ÑÑÒ ÚÙÒ Ñ ØØ º È Ö Ñ ØÖ Ò k ÖÚÓ ÓÒ Ø ÙÐÙ Ó ½º½º ËÙÙÖ Ò Ð Ù ÒÒ ØÝ τ ma = M a + M b = M ( v Iva + I ) vb, ½º½¼¼µ W va W vb I v W va W vb M a = I va I v M v, M b = I vb I v M v, ½º½¼½µ ÈÓ Ð Ù Ò ÚÒØ Ú ØÙ W va = M a τ a = 2V a. ½º½¼¾µ W v M v τ ma = t b ÓÒ Ú Ö Ó Ø ØÙÒ ÚÝ Ý Ò ÙÙÖ Ò Ð Ú Ý º I v I va W va + I vb W vb = I vb W vb = k k t b, I v 2V a + k, t b a k ½º½¼ µ ½º½¼ µ

11 ½º º ÃÓØ ÐÓÔÓ Ð Ù Ò Ú Ô ÚÒØ ½½ ½º ÃÓØ ÐÓÔÓ Ð Ù Ò Ú Ô ÚÒØ Ä Ù ÒÒ ØÝ τ zs ÎÒØ ÑÓÑ ÒØØ ÅÓÒ ÓÒØ ÐÓ Ò Ò ÔÓ Ð Ù q i i τ zs = 2Gθ e + M v = ds t m k= k i 42 ds t q k s ik + 3 t ds t. t 3 ds Gθ. ½º½¼ µ ½º½¼ µ ds t = 2 igθ, i =,2,...,n. ½º½¼ µ ÎÒØ ÑÓÑ ÒØØ M v = 2 φd = 2 i q i i. ½º½¼ µ ½º ÚÓ Ò ÔÓ Ð Ù ÆÓÖÑ Ð ÒÒ ØÝ [ dw (z) σ z (s,z) = E dz Ë ØÓÖ Ð Ò Ò ÓÓÖ Ò ØØ ω d2 u(z) dz 2 ω (s) = (s) d2 v(z) dz 2 P(s) ] (s) d2 ϕ(z) dz 2 ω (s). ½º½¼ µ P h (τ)dτ, ½º½½¼µ dω = r ds = i j k d d ½º½½½µ =( )d ( )d, dω = ( )d ( )d, ω = ω B ( B ) + ( B ) + C. ½º½½¾µ ½º½½ µ ÂÒÒ ØÝ Ö ÙÐØ ÒØ Ø N(z) = σ z (s,z)d, ½º½½ µ

12 ½¾ ÄÍÃÍ ½º Ê ÒØ Ò Ñ Ò Ò Ø Ó ÙÖ Ú Ó Ó ÐÑ M (z) = (s)σ z (s,z)d, M (z) = d = t(s)dsº ÈÓ Ô ÒØ ÙÙÖ Ø (s)σ z (s,z)d, B(z) = ω(s)σ z (s,z)d, I = 2 d, I = 2 d, I = d, I ω = ω d, I ω = ω d, I ω = ω 2 d, S = d, S = È ÓÓÖ Ò Ø ØÓ I = d =, S = d, S ω = ω d. d =, S = d =. ½º½½ µ ½º½½ µ ½º½½ µ ½º½½ µ ½º½½ µ ½º½¾¼µ ½º½¾½µ ÎÒØ S ω S ω = ω (s)d =, I ω I ω = (s)ω (s)d =, ½º½¾¾µ I ω I ω = (s)ω (s)d =. È ÓÓÖ Ò Ø ØÓ ÆÓÖÑ Ð ÒÒ ØÝ N(z) = E dw (z), ½º½¾ µ dz M (z) = EI d 2 v(z) dz 2, ½º½¾ µ M (z) = EI d 2 u(z) dz 2, ½º½¾ µ B(z) = EI ω d 2 ϕ(z) dz 2. ½º½¾ µ σ z (s,z) = N(z) + M (z) I (s) M (z) (s) + B(z) ω (s). ½º½¾ µ I I ω

13 ½º º ÚÓ Ò ÔÓ Ð Ù ½ ¾ ½ s S ω (s) ÂÓ Ú Ò M ω Ò Ò τ ω > ÓÒ s¹ ÓÓÖ Ò Ø Ò ÙÙÒØ Ò Ò ÃÙÚ ½º S ω º ÎÒØ [ I I I I ] { B B } = { ωb d ω B d } ½º½¾ µ Ä Ù ÒÒ ØÝ tτ ω = E(s) d2 w dz 2 + ES (s) d3 u dz 3 + ES (s) d3 v dz 3 + ES ω(s) d3 ϕ dz 3, s (s) = t(s)ds, s s S (s) = (s)t(s)ds, S (s) = (s)t(s)ds, s s s S ω (s) = ω (s)t(s)ds. s tτ ω = N (s) + M S (s) I s M S (s) I ½º½¾ µ ½º½ ¼µ B S ω (s) I ω, ½º½ ½µ Ã Ò Ð Ò Ö Ò ÙÒ Ø ÓÒ ØÙÐÓÒ ÒØ Ö Ð f(s)g(s)t ds = bt 6 [f (2g + g 2 ) + f 2 (g + 2g 2 )]. ½º½ ¾µ È Ý ÝÝ ÓÓÖ Ò Ø ØÓ d 3 u Q = τ ω td = EI dz 3 = dm dz, Q = Ä Ù ÚÙÓ ÎÒØ ÑÓÑ ÒØØ M ω = τ ω t == N (s) τ ω t dω = EI ω d 3 ϕ dz 3 = db dz. S (s) I τ ω td = EI d 3 v dz 3 = dm dz. ½º½ µ ½º½ µ Q S (s) Q S ω(s)m ω. ½º½ µ I I ω M z = M v + M ω. ½º½ µ

14 ½ ÄÍÃÍ ½º Ê ÒØ Ò Ñ Ò Ò Ø Ó ÙÖ Ú Ó Ó ÐÑ M M + M z M M + M z Q Q ÃÙÚ ½º Ì ÚÙØÙ ÑÓÑ ÒØØ Ò M M Ñ Ö ÒÒ Øº ÎÒÒ Ò Ö ÒØ Ð Ý ØÐ Ê Ø Ù d 4 ϕ EI ω dz 4 + GI d 2 ϕ v dz 2 + m =, d 4 ϕ dz 4 k2d2 ϕ dz 2 = f(z), k2 = GI v EI ω. ϕ(z) = C + C 2 z + C 3 sinhkz + C 4 cosh kz + ϕ. ½º½ µ ½º½ µ ½º½ µ Ê ÙÐØ ÒØ Ø M v = GI v dϕ dz = GI v ( C 2 + C 3 k cosh kz + C 4 k sinhkz + dϕ ), ½º½ ¼µ dz d 2 ( ϕ B = EI ω dz 2 = GI v C 3 sinhkz + C 4 cosh kz + d 2 ) ϕ k 2 dz 2, ½º½ ½µ M ω = db dz = GI v ( C 3 k cosh kz + C 4 k sinhkz + k 2 d 3 ϕ dz 3 ). ½º½ ¾µ ÃÓ ÓÒ ÚÒØ ÑÓÑ ÒØØ ( M z = M v + M ω = GI v C 2 + dϕ dz d 3 ) ϕ k 2 dz 3. ½º½ µ ÎÒØ ÑÓÑ ÒØØ ÙÓÖÑ ÙÚ ½º m(z) = q ( ) q ( ). Ö Ø Ý ØÝ Ö Ø Ù ½º Ì Ò ÙÓÖÑ m(z) = m ϕ = m 2 GI v z 2. ¾º Ä Ò Ö Ø ÙØÙÒÙØ ÙÓÖÑ m(z) = m z L ϕ = m z 3. 6L GI v

15 ½º º ÚÓ Ò ÔÓ Ð Ù ½ q q m ÃÙÚ ½º Ë ÙÚ Ò ÙØÙÒ Ø ÙÓÖÑ Ø q q ÚÒØ ÑÓÑ ÒØØ m º È Ø Ñ Ò Ò ÚÒØ ÑÓÑ ÒØØ M Ó z = a ϕ =, kun z < a, ϕ = M kgi v [sinh k(z a) k(z a)], kun z > a. º È Ø Ñ Ò Ò ÑÓÑ ÒØØ Ó z = a ϕ =, kun z < a, ϕ = B GI v [cosh k(z a) ], kun z > a. ½º½ ¼µ ÎÒÒ Ò Ö ÒØ Ð Ý ØÐ Ò Ø Ö Ø ÐÙ ½º ÃÙÒ kl >,...,2 Ö Ø Ø Ò GI v d 2 ϕ dz 2 = m. ½º½ ½µ ¾º ÃÙÒ kl <.5 Ö Ø Ø Ò EI ω d 4 ϕ dz 4 = m. ½º½ ¾µ º ÃÙÒ.5 < kl < (2) Ö Ø Ø Ò Ý ØÐ d 4 ϕ dz 4 ϕ k2d2 dz 2 = m. EI ω ½º½ µ

16 ½ ÄÍÃÍ ½º Ê ÒØ Ò Ñ Ò Ò Ø Ó ÙÖ Ú Ó Ó ÐÑ ½º º½ Â Ø ÙÚ ÚÒØ ÙÚ ÎÒØÝÑ Ò ÑÓÑ ÒØØ Ò ÚÐ Ø Ý ØÐ Ø θ k =ak B + a k 2 B 2 + α k, θ k 2 =ak 2 B + a k 22 B 2 + α k 2, k ÓÒ Ó ÙÚ Ò ÒÙÑ ÖÓ a = GI v L [ ] kl tanh kl, a 2 = [ ] kl GI v L sinhkl, a 2 = [ ] kl GI v L sinhkl, a 22 = [ GI v L ÂÓ Ô Ø z = a ÓÒ Ô Ø Ñ Ò Ò ÚÒØ ÑÓÑ ÒØØ M Ò Ò α = M GI v [ b L sinh kb sinh kl kl tanh kl ], α 2 = M GI v [ a L sinhka sinh kl Ì Ø ÙØÙÒ Ò ÚÒØ ÑÓÑ ÒØØ ÙÓÖÑ Ò Ø Ô Ù α = m [ L GI v 2 kl tanh kl ], α 2 = m [ L 2 GI v 2 kl tanh kl 2 Ø Ò ÓÔ ÚÙÙ ØÓ ØÙ ÐÐ k Ó ÚÐ Ò k k Ð ØÓ ]. ]. ]. θ (k ) k = θ (k) k. ½º º¾ Ð Ø ÙÓÖÑ Ø Ê ÙÐØ ÒØ Ø Ô Ô Ø ÙÚÙÙ Ø Ô Ò ÚÐ ÐÐ N = i P i, N = i P i i P i, i P i M = i M = i M = i i P i, M = i i P i, ½º½ ¼µ B = i ω i P i, B = i ω i P i. ÈÓ Ð Ù Ò Ø Ó Ú ÙØØ Ú Ò ÑÓÑ ÒØ Ò M (s) ÙØØ Ñ ÑÓÑ ÒØ Ò ÑÙÙØÓ B = r(s) M (s). ½º½ ½µ ÍÐÓ Ò Ô Ú ÙØØ Ú Ò ÚÓ Ñ Ò P ÙÚ ½º µ ÙØØ Ñ Ô Ø ÙÚÙÙ B = 2PΩ MCD, ½º½ ¾µ Ω MCD ÓÒ ÐÙ Ò MCD Ô ÒØ ¹ Ð º

17 ½º º ÚÓ Ò ÔÓ Ð Ù ½ M = P a z D a r cosα α r C α P M = Pa M (ω = ) ÃÙÚ ½º Ë ÙÚ Ò Ð Ò ÙÙÒØ Ò Ò Ô Ø ÚÓ Ñ ÙÐÓ Ò Ô º P ϕ t ϕ P(, ) C C ÃÙÚ ½º Ì Ó Ò Ý Ò Ð ÚÝÒ ØÙ Ñ ØÓ ÓÒ Ö ÙÒ Ø ÓÚ Ø Ò Ú Ð ÐРغ ½º º Ç ØØÙ ÚÒØ Ã Ø ÐÐ Ò Ò Ð ØÓ w = dw dz =, N = ES ω d 2 ϕ dz 2, B = EI ω d 2 ϕ dz 2, σ z = E d2 ϕ dz 2 ω = B I ω ω. ½º½ µ Ã Ø ØÓÒ Ð ØÓ N =,

18 ½ ÄÍÃÍ ½º Ê ÒØ Ò Ñ Ò Ò Ø Ó ÙÖ Ú Ó Ó ÐÑ D C ȳ B α ÃÙÚ ½º È Ò Ð ØÙ ØØÙ ÙÚ º σ z = Eω b d 2 ϕ dz 2, ω b (s) = ω (s) S ω, I ωb = ωb 2 t ds, B = ω b σ z t ds. ÎÒÒ Ò Ø Ô ÒÓÝ ØÐ ÑÓÐ ÑÑ Ø Ô Ù d 2 ϕ EI ω dz 2 GI d 2 ϕ v dz 2 = m. ½º½ ¼µ ½º½ ½µ ½º½ ¾µ ½º º Ò Ú Ô Ù Ø Ò Ó ØØÙ ÚÒØ Ì ÚÙØÙ Ò ÚÒÒ Ò Ø Ô ÒÓÝ ØÐ Ø d 4 v EI dz 4 + d 4 ϕ EI ω dz 4 = p ȳ, ½º½ µ ÅÙÙÒÒÓ Ú [ d 4 v EI ω dz 4 + d 4 ϕ EI ω dz 4 GI d 2 ϕ v dz 2 = m. ȳ ] [ ][ cos α sin α = sinα cos α ]. ȳ D ȳ B = sin α( D B ) + cos α( D B ) =. ȳ ω D d =. I ω = ω D = ω B ( D B ) + ( D B ) + C.

19 ½º º ÃÓØ ÐÓ ÙÚ ½ v s = hϕ q 2 q 3 n q h r s z 2 3 q i ÃÙÚ ½º ÃÓØ ÐÓÔÓ Ð Ù º ω B dsin α + ω B dcos α + (I sin α I cos α)( D B ) + ( I sin α + I cos α)( D B ) =. ØÐ Ø D B = ωb dcos 2 α ω B dsin αcos α I cos 2 α + I sin 2 α 2I sinαcos α, ½º½ ¼µ D B = ωb dsin αcos α ω B dsin 2 α I cos 2 α + I sin 2 α 2I sin α cos α. ½º½ ½µ ÂÓ (,) ÓÒ Ô ÓÓÖ Ò Ø ØÓ Ò Ò I = º ½º ÃÓØ ÐÓ ÙÚ Ä Ù ÚÙÓ q = q a + q + q v. ½º½ ¾µ Ø Ò ÓÔ ÚÙÙ ØÓ G ÓÒ Ú Óµ ds q t = q ads t, ½º½ µ Ð Ù ÚÙÓ q a Ô Ý ÝÝ ÓÓÖ Ò Ø ØÓ q a (s) = dn dz (s) Q I S (s) Q I S (s) M ω I ω S ω (s), i ds q i t m k = k i s ik ds q k = t i q a t ds, i =,...,n.

20 ¾¼ ÄÍÃÍ ½º Ê ÒØ Ò Ñ Ò Ò Ø Ó ÙÖ Ú Ó Ó ÐÑ ÃÓØ ÐÓÒ ÔÐ Ò Ø Ó s w s ds = θ s s h(s)ds q(s) ds = θˆω(s), t i ds q i t m k = k i q(s) = qv Gθ, ds q k = 2Ω i, i =,...,n. t s ik ÎÒØ Ò Ñ ˆω(s)(s)t(s) ds =, ˆω(s)(s)t(s) ds =, ˆω(s)t(s)ds =. Ò ÖØ ÓØ ÐÓ ÙÚ Ò Ø ÓÖ d 4 ϕ EIˆω dz 4 GI d 2 ϕ v dz 2 = m(z), Iˆω = ˆω 2 (s)t(s)ds. ½º½ ¼µ ½º½ ½µ Ø Ò ÓÔ ÚÙÙ ØÓ ÂÓ I = = B + ds q t + q a = M ω I ω S ω, q ads t =, ˆωt ds. S ω ½º½ ¾µ ½º½ µ ˆωB d ˆωB d, = B. I I ˆω = ˆω B ( B ) + ( B ) + ω. Ë ØÓÖ Ð Ò Ò Ø ØØ Ò Ò ÑÓÑ ÒØØ ÙÒ M ω /I ω = º Ä Ù ÚÙÓ Sˆω = S ω q = (q a + q), q = q v + q a + q. ½º Ç Ù Ò Ð Ø Ò Ô ÖÙ Ý ØÐ Ø Ë ÖØÝÑØ ÅÙÓ ÓÒÑÙÙØÓ ÓÑÔÓÒ ÒØ Ø u = zw, z w, ε = u = zw,, v = zw, z w.

21 ½º º Ç Ù Ò Ð Ø Ò Ô ÖÙ Ý ØÐ Ø ¾½ Q M M M σ M M σ τ M τ M M = zσ dz τ z Q M = M = zτ dz zσ dz z Q M τ z M = zτ dz Q = τ z dz ÃÙÚ ½º½¼ ÂÒÒ ØÝ Ö ÙÐØ ÒØ Øº ÃÝÖ ØÝÑØ ÚÒØÝÑ ε = v = zw,, γ = u + v = 2zw,. ½º¾¼¼µ ½º¾¼½µ κ = w,, κ = w,, κ = w,. ½º¾¼¾µ Ê ÙÐØ ÒØ Ø M = h/2 zσ dz, M = h/2 zσ dz ja M = h/2 zτ dz, ½º¾¼ µ h/2 h/2 h/2 Q = h/2 τ z dz ja Q = h/2 τ z dz. ½º¾¼ µ Ì Ô ÒÓÝ ØÐ Ø h/2 h/2 Q + Q + p =, Q = M + M, Q = M + M, ½º¾¼ µ ½º¾¼ µ ½º¾¼ µ 2 M 2 Á ÓØÖÓÓÔÔ Ò ÑÑÓ Ò Ò Ò ÓÒ Ø ØÙØ Ú Ø Ý ØÐ Ø M + 2 M 2 + p =. ½º¾¼ µ σ = σ = E ν 2(ε + νε ), ½º¾¼ µ E ν 2(ε + νε ), ½º¾½¼µ

22 ¾¾ ÄÍÃÍ ½º Ê ÒØ Ò Ñ Ò Ò Ø Ó ÙÖ Ú Ó Ó ÐÑ Ä Ø Ò ÓÒ Ø ØÙØ Ú Ø Ý ØÐ Ø τ = Gγ, G = ½º¾½½µ E 2( + ν). ½º¾½¾µ M = D(κ + νκ ), M = D(νκ + κ ), M = D( ν)κ, M = D(w, + νw, ), M = D(νw, + w, ), M = D( ν)w,, ½º¾½ µ ½º¾½ µ ½º¾½ µ ½º¾½ µ ½º¾½ µ ½º¾½ µ Ø ÚÙØÙ Ý ÝÝ ÂÒÒ ØÝ ÓÑÔÓÒ ÒØ Ø D = Eh 3 2( ν 2 ). ½º¾½ µ σ = z 2 h 3M, σ = z 2 h 3M, τ = z 2 h 3M. ½º¾¾¼µ Ä Ù ÚÓ Ñ Ø Ä ÔÐ Ò ÓÔ Ö ØØÓÖ ÅÓÑ ÒØØ ÙÑÑ Ö ÒØ Ð Ý ØÐ Ó Ò Q = D ( 2 ) w w 2 Q = D ( 2 ) w w 2 2 ( ) = 2 ( ) ( ) 2. M = M + M + ν Q = M, Q = M. 4 w = p D = D ( 2 w), = D ( 2 w), ½º¾¾½µ ½º¾¾¾µ ½º¾¾ µ = D 2 w, ½º¾¾ µ ½º¾¾ µ ½º¾¾ µ 2 M = p, 2 w = M D. ½º¾¾ µ Ä Ù ÒÒ ØÝ Ø Ò Ñ Ñ ÖÚÓØ Ä Ù ÚÓ Ñ Q n Ö ÙÒ ÐÐ n = vakio (τ z ) ma = 3 Q 2 h, (τ z) ma = 3 Q 2 h. ½º¾¾ µ

23 ½º º Ç Ù Ò Ð Ø Ò Ô ÖÙ Ý ØÐ Ø ¾ ds ds n s M ns M ns ds M ns M ns + M ns s ds (M ns + M ns M ns + M s ds)ds ns s ds ÃÙÚ ½º½½ ÃÓÖÚ Ð Ù ÚÓ Ñ Ö ÙÒ ÐÐ ÓÒ ÒÓÖÑ Ð ÓÒ nº ÓÖÚ Ð Ù ÚÓ Ñ Ö ÙÒ ÐÐ n = vakio Q n = M n n + M ns s, ½º¾¾ µ Ê ÙÒ ÐÐ Ú Ó V n = Q n + M ns s = M n n + 2 M ns s. ½º¾ ¼µ V = M + 2 M { 3 } w = D 3 + (2 ν) 3 w 2,, ½º¾ ½µ Ö ÙÒ ÐÐ ÓÒ Ú Ó V = M + 2 M { 3 } w = D 3 + (2 ν) 3 w 2. ÃÙÚ Ò ½º½¾ Ú Ô Ø ØÙ ØÙÒ Ð Ø Ò ÙÓÖ ÙÐÑ Ò ÒÙÖ Ò ÚÓ Ñ. ½º¾ ¾µ R = 2M = 2D( ν) 2 w. ½º¾ µ Ä Ø Ò Ø Ô ÒÓÝ ØÐ 4 w w w 4 = p(,) D. ½º¾ µ Ê ÙÒ ÓØ ½º ÂÝ Ø ÒÒ Ø ØÝÐÐ Ö ÙÒ ÐÐ = aµ w(a,) =, w, (a,) =. ½º¾ µ

24 ¾ ÄÍÃÍ ½º Ê ÒØ Ò Ñ Ò Ò Ø Ó ÙÖ Ú Ó Ó ÐÑ d d d d d M d M (M + M d)d M M ÃÙÚ ½º½¾ µ ÃÓÖÚ Ð Ù ÚÓ Ñ Ò ÑÙÓ Ó Ø Ñ Ò Ò Ö ÙÒ ÐÐ Ú Ó µ ÒÙÖ ¹ ÚÓ Ñ º M = ÃÙÚ ½º½ µ ÂÝ Ø ØÙ ØØÙ Ö ÙÒ µ Ú Ô Ø ØÙ ØØÙ Ö ÙÒ º ¾º Î Ô Ø ØÙ ØÙÐÐ Ö ÙÒ ÐÐ = aµ w(a,) =, M (a,) = D[w, (a,) + νw, (a,)] =. ½º¾ µ ½º¾ µ ÂÓ Ú Ô Ø ØÙ ØØÙ Ö ÙÒ = aµ ÔÝ ÝÝ ÙÓÖ Ò w, (a,) =. ½º¾ µ º Î Ô ÐÐ Ö ÙÒ ÐÐ M (a,) = 2 w 2 + ν 2 w =, kun = a, 2 ½º¾ µ V (a,) = 3 w 3 + (2 ν) 3 w =, kun = a. 2 ½º¾ ¼µ

25 ½º º Ç Ù Ò Ð Ø Ò Ô ÖÙ Ý ØÐ Ø ¾ c b ÃÙÚ ½º½ µ Î Ô Ö ÙÒ µ Ð Ù ÙØÙ µ ÑÑÓ Ò Ò ÒÒ ØÝ º M v d V V M M M v + M v M V V w, ϕ() ÃÙÚ ½º½ à ÒÒ ØÝ Ö ÙÒ Ô Ð Òº º Ä Ù ÙØÙ ÐÐ w(a, ) V (a,) =. =, ½º¾ ½µ ½º¾ ¾µ º ÂÓÙ Ø Ú ØÙ ÒØ ØÖ Ò Ð Ø Ó¹ ÖÖ ÓÙ ÐÐ M = c w, kun = a, ½º¾ µ V = bw, kun = a. º Ê ÙÒ Ô Ð ÙÚ ½º½ EI d4 v d 4 = q,

26 ¾ ÄÍÃÍ ½º Ê ÒØ Ò Ñ Ò Ò Ø Ó ÙÖ Ú Ó Ó ÐÑ ÃÙÚ ½º½ µ Î Ô Ø ØÙ ØØÙ µ ÒÒ Ø ØØÝ µ Ú Ô Ð Ø Ò ÒÙÖ º M M M M ϕ s M n M nt ϕ n t ÃÙÚ ½º½ Ì ÚÙØÙ ÑÓÑ ÒØØ ÚÒØ ÑÓÑ ÒØØ Ð Ù ϕº GI v d 2 ϕ d 2 + m =, q() = V (a,) ja m() = M (a,), Ö ÙÒ ÐÐ = a w(a,) = v(), w(a, ) = ϕ(). º ÃÙÚ Ò ½º½ Ú Ô Ø ØÙ ØÙÒ Ð Ø Ò ÒÙÖ R = 2M = 2D( ν) 2 w ½º¾ ¼µ Ð Ô Ò ÓÓÖ Ò Ø Ò z ÙÙÒØ Ò ÙÚ ½º½ º ÅÓÑ ÒØØ Ò ÑÙÙÒÒÓ Ú Ø M n M t M nt = cos 2 ϕ sin 2 ϕ 2sin ϕcos ϕ sin 2 ϕ cos 2 ϕ 2sin ϕcos ϕ sin ϕcos ϕ sin ϕcos ϕ cos 2 ϕ sin 2 ϕ M M M, ½º¾ ½µ

27 ½º º Æ Ú Ö Ò Ö Ø Ù ¾ M n + M t = M + M. ½º¾ ¾µ ÈÑÓÑ ÒØ Ø È ÙÙÒÒ Ø tan 2ϕ = M,2 = M + M 2 2M M M, ± 2 (M M ) 2 + 4M 2. ½º¾ µ tan ϕ = M M M = M M M. ½º Æ Ú Ö Ò Ö Ø Ù Ì ÔÙÑ w(,) = a mn sinα m sin β n, m= n= α m = mπ a ja β n = nπ b.  ÙØÙÒÙØ ÙÓÖÑ p(,) m= n= ÖØÓ Ñ Ò a b Ì ÔÙÑ Ò Ö Ò ÖØÓ Ñ Ø p(,) = b mn sinα m sin β n, b mn = 4 p(,)sin α m sin β n dd. ab a mn = b mn ( m 2 ) 2, m,n =,2,.... Dπ 4 a 2 + n2 b 2 ½º Ä ÚÝÒ Ö Ø ÙÑ Ò Ø ÐÑ Ì ÔÙÑ ÃÙÓÖÑ p(,) ÖØÓ Ñ Ò dy n () d w(,) = Y n ()sin α n, α n = nπ a. n= p(,) = p n () = 2 a a p n ()sin α n n= p(,)sin α n d. Y n () = ( n + B n α n )cosh α n + (C n + D n α n )sinh α n, ½º¾ ¼µ ½º¾ ½µ ½º¾ ¾µ = α n [( n + D n + B n α n )sinh α n + (C n + B n + D n α n )cosh α n ], ½º¾ µ

28 ¾ ÄÍÃÍ ½º Ê ÒØ Ò Ñ Ò Ò Ø Ó ÙÖ Ú Ó Ó ÐÑ d 2 Y n () d 2 = α 2 n[( n + 2D n + B n α n )cosh α n + (C n + 2B n + D n α n )sinh α n ], d 3 Y n () d 3 ØÝ Ö Ø Ù = α 3 n[( n + 3D n + B n α n )sinh α n + (C n + 3B n + D n α n )cosh α n ]. Q n () = D Ȳ n ( t)p n (t)dt = 2α 3 nd [α n ( t)cosh α n ( t) sinh α n ( t)]p n (t)dt. ÃÓ ÓÒ Ö Ø Ù w(,) = (Y n () + Q n ())sin α n. n= ½º º½ Ä ÚÝÒ Ö Ø Ù Ø Ô Ù p(, ) = p() Q n = p n α 4 nd, p n() = 2 a a p()sin α n d. ÂÓ Ø Ò ÚÓ sin(a ± b) = sin acos b ± cos asin b, cos(a ± b) = cos acos b sinasin b, sin d = sin cos, ½º¾ ¼µ ½º¾ ½µ sin lim =. ½º¾ ¾µ ½º ½º º½ Î Ô Ø ØÙ ØØÙ Ð ØØ Ø Ð Ò Ù Ø Ò ÝÑÑ ØÖ Ò Ò ÙÓÖÑ ØÙ Ì ÔÙÑ ÃÙÓÖÑ ØÙ p(,) ÖØÓ Ñ Ò w(,) = Y n ()sin α n, α n = nπ a. n= p(,) = p n ()sin α n n= a p n () = 2 p(,)sin α n d. a ½º¾ µ

29 ½º º Î Ô Ø ØÙ ØØÙ Ð ØØ Ø ¾ p c c u a d d w, (, ) = z, w ÃÙÚ ½º½ ËÝÑÑ ØÖ Ò Ò Ô Ð ÙÓÖÑ º Ì ÔÙÑ Ð ÐÐ ÓÐ Ú Ø Ú Ú ÙÓÖÑ Ø p() p n w(,) = 4Dα 3 ( + α n )e αn sin α n, α n = nπ n a n=, kun. Ì ÔÙÑ Ò ÑÙÙÒÒÓ Ì ÔÙÑ Ò Ð Ù w(,β) = 2 π w(,)cos β d, p n (β) Ȳ n (β) = D(α 2 n + β 2 ) 2, n =,2,.... w(,) = 2 π n= p n (β) D(α 2 n + β2 ) 2 cos β dβ sin α n. ËÝÑÑ ØÖ Ò Ò Ô Ð ÙÓÖÑ Ì Ò Ò ÙÓÖÑ p ÙÓÖ Ø u c u + c, dº Ì ÔÙÑ Ò Ð Ù w(,) = 2p a 4 π 5 D n= n 5 sin α nusin α n csin α n ½º¾ ¼µ {2 [(2 + α n d)cosh α n α n sinhα n ]e αnd}, d, w(,) = 2p a 4 π 5 D n= n 5 sin α nusin α n csin α n ½º¾ ½µ {[(2 + α n )sinh α n d α n dcosh α n d]e αn }, d.

30 ¼ ÄÍÃÍ ½º Ê ÒØ Ò Ñ Ò Ò Ø Ó ÙÖ Ú Ó Ó ÐÑ Î Ú ÙÓÖÑ w(,) = P a 3 π 4 D n= n 4 sin α nusin α n csin α n ½º¾ ¾µ {[2 + α n ]e αn },. È Ø ÙÓÖÑ w(,) = Fa2 2π 3 D n= n 3 sin α nusin α n ½º¾ µ {( + α n )e αn },. ½º º¾ Ð Ò Ù Ø Ò ÒØ ÝÑÑ ØÖ Ò Ò ÙÓÖÑ w(,β) = p(,β) = 2 π 2 π w(,)sin β d, p(,)sin β d. Ì ÔÙÑ w(,) = 2 π Ȳ n (β) = n= p n D(α 2 n + β 2 ) 2. p n (β) D(α 2 n + β 2 ) 2 sinβ dβ sin α n. ÒØ ÝÑÑ ØÖ Ò Ò Ô Ð ÙÓÖÑ Ì Ò Ò ÙÓÖÑ p ÙÓÖ Ø u c u + c d ÙÓÖÑ p ÙÓÖ Ø u c u + c, d u dº Ì ÔÙÑ Ò Ð Ù w(,) = 2p oa 4 π 5 D n= n 5 sinα nusin α n csin α n {2 (2 + α n )e αn [(2 + α n d)sinh α n α n cosh α n ]e αnd}, d, w(,) = 2p oa 4 π 5 D n= n 5 sinα nusin α n csin α n {[(cosh α n d )(2 + α n ) α n dsinh α n d]e αn }, d.

31 ½º º Î Ô Ø ØÙ ØØÙ Ð ØØ Ø ½ c p p c u d d z ÃÙÚ ½º½ ÒØ ÝÑÑ ØÖ Ò Ò Ô Ð ÙÓÖÑ º c c p p d d d d c c u v v ÃÙÚ ½º¾¼ ÒØ ÝÑÑ ØÖ Ø Ô Ð ÙÓÖÑ Ø Ú Ô Ø ØÙ ØÙÐÐ Ð ØØ Ø ÐÐ º È Ð ÙÓÖÑ Ø p p ÙÓÖ Ø = 2c, = 2d Ô Ø Ò (u,v) (u, v) ÃÙÚ Ò ½º¾¼ ÙÓÖÑ ØÙ Ø Ô Ù Ò Ö Ø Ù Ò ÙÔ ÖÔÓÒÓ Ñ ÐÐ º Ì ÔÙÑ w(,) = 4p a 4 π 5 D n= n 5 sin α nusin α n csin α n {[(2 + α n v)sinh α n d α n dcosh α n d]sinh α n α n sinhα n dcosh α n } e αnv ½º¾ ¼µ, v d,

32 ¾ ÄÍÃÍ ½º Ê ÒØ Ò Ñ Ò Ò Ø Ó ÙÖ Ú Ó Ó ÐÑ w(,) = 4p oa 4 π 5 D n= n 5 sinα nusin α n csin α n 2 {2 {[2 + α n(v + d)]sinh α n α n cosh α n }e αn(v+d) + [cosh α n (v d)(2 + α n ) α n (v d)sinh α n (v d)]e αn }, v d v + d ½º¾ ½µ w(,) = 4p a 4 π 5 D n= n 5 sinα nusinα n csin α n { sinhα n v sinhα n d(2 + α n ) α n v cosh α n v sinhα n d ½º¾ ¾µ α n dcosh α n dsinh α n v } e αn, v + d. È Ø ÙÓÖÑ F Ó (u,v) Ô Ø ÙÓÖÑ F Ó (u, v) Ì ÔÙÑ w(,) = Fa2 π 3 D n= n 3 sinα nusin α n ½º¾ µ [( + α n v)sinh α n α n cosh α n ]e αnv, v, w(,) = Fa2 π 3 D n= n 3 sin α nusin α n [( + α n )sinh α n v α n v cosh α n v]e αn, v. ½º º Î Ô Ø ØÙ ØØÙ ÔÙÓÐ Ö Ø Ò Ð ØØ Ø Ì ÔÙÑ ÓÒ w = w + w Ñ w ÓÒ Ú Ô Ø ØÙ ØÙÒ Ö ØØ ÑÒ Ð ØØ Ø Ò Ö Ø Ù w ÓÒ ÓÑÓ Ò Ò Ý ØÐ Ò Ö Ø Ù w (,) = (C n + D n α n )e αn sin α n. n=

33 Ä Ø ÓÙÖ Ö¹ Ö Ø ÂÓ f() ÓÒ Ô ÐÓ ØØ Ò Ø ÙÚ ÚÐ ÐÐ ( L,L) ÐÐ ÓÒ Ö ÐÐ Ò Ò ÑÖ Ö ÖÚÓ Ó Ø Ò Ò ÚÓ Ò ØØ ØÐÐ ÚÐ ÐÐ ÓÙÖ Ö¹ Ö ÖØÓ Ñ Ò f() = 2 a + a n = L b n = L L L L L n= f()cos nπ L f()sin nπ L [ a n cos nπ L + b n sin nπ ] L d, n =,,2,3,..., º¾µ d, n =,2,3,.... º µ º½µ È Ö ÐÐ Ò ÓÐÐ Ò ÙÒ Ø ÓÒ f( ) = f() ÓÙÖ Ö¹ Ö Ò ÖØÓ Ñ Ø a n = 2 L L f()cos nπ L d, n =,,2,..., b n =. º µ È Ö ØØÓÑ Ò ÓÐÐ Ò ÙÒ Ø ÓÒ f( ) = f() ÓÙÖ Ö¹ Ö Ò ÖØÓ Ñ Ø b n = 2 L Ã Ó Ò Ö Ò ÖØÓ Ñ Ø L f()sin nπ L d, n =,2,..., a n =. º µ p mn = 4 ab b a p(,)sin mπ a nπ sin b dd. º µ

34 ÄÍÃÍ º ÓÙÖ Ö¹ Ö Ø

35 Ä Ø ÓÙÖ Ö¹ÑÙÙÒÒÓ È Ö ØØÓÑ Ò ÙÒ Ø ÓÒ f() = f( ) ÓÙÖ Ö¹ Ò ÑÙÙÒÒÓ ÒØ ÑÙÙÒÒÓ ÓÚ Ø 2 f(α) = f(ξ)sin αξ dξ, π 2 f() = π f(α)sin αdα. º½µ ÅÙÙÒÒÓ Ò ÐÐÝØÝ Ò ÓÒ ØØ ½º f() ÓÒ Ô ÐÓ ØØ Ò Ø ÙÚ Ó ÐÐ Ö ÐÐ ÐÐ ÚÐ ÐÐ ¾º f() ÓÒ ÓÐÙÙØØ Ø ÒØ ÖÓ ØÙÚ Ð f() d < M <. º¾µ È Ö ÐÐ Ò ÙÒ Ø ÓÒ f( ) = f() Ó Ò ÑÙÙÒÒÓ ÓÒ Ú Ø Ú Ø 2 f(α) = f(ξ)cos αξ dξ, π 2 f() = π f(α)cos αdα. º µ ËÝÑÑ ØÖ Ò ÙÒ Ø ÓÒ f ØÓ Ò Ö Ú Ø Ò ÑÙÙÒÒÓ ÓÒ f, (α) = α 2 f(α). º µ

36 ÄÍÃÍ º ÓÙÖ Ö¹ÑÙÙÒÒÓ Ì ÙÐÙ Ó º½ ÓÙÖ Ö¹ Ò ÑÙÙÒÒÓ f() f(α) f =, < < a, f =, a < < 2 + 2, R > 2 ( ) 2, R > π cos αa 2 α π 2 π 2 e α π 2 αe α arctan, R > π 2 α e α 4 ln ( + c)2 + 2 ( c) (c ) (c + ) 2 + 2, R >, sin β, β > π 2 e k, k > c + i R π 4 (2 k)e k, k > π 4 k e k, k > π 4 k 4 [2 (2 + k)e k ], k > π 2 k 2 ( e k ), k > π 2 α e α sin αc 2πe α sin αc π 2 2 ln α + β α β π α 2 α 2 + k 2 π α 3 2 (α 2 + k 2 ) 2 π α 2 (α 2 + k 2 ) 2 π 2 α(α 2 + k 2 ) 2 π 2 α(α 2 + k 2 )

37 Ì ÙÐÙ Ó º¾ ÓÙÖ Ö¹ Ó Ò ÑÙÙÒÒÓ f() f(α) f =, < < a, f =, a < < 2 + 2, R > π sin αa 2 α π 2 e α 2 2 ( ) 2, R > π 2 αe α 2 ln 2 + z 2 π 2 + 2, >, z > 2 α (e α e αz ) c (c ) c + 2πe α (c + ) sinαc, R > Ic (c ) (c + ) πe α cosαc, R > Ic π 2 k e k, k > π 4 k ( k)e k, k > π 4 k 3 ( + k)e k, k > π 2 α 2 + k 2 π α 2 2 (α 2 + k 2 ) 2 π 2 (α 2 + k 2 ) 2 ( ) 2 π 2 arctan 2 2 α e α sinα

B(kL) B(0) B B. L/b < 2

B(kL) B(0) B B. L/b < 2 Ê ÒØ Ò Ñ Ò Ò Ø Ó ÙÖ ÐÙ ÒØÓÑÓÒ Ø Å Ö Ù ÌÙÓÑ Ð B(kL) B() ½º¼ ¼º ¼º ¼º ¼º ¼º ¼º ¼º ¼º¾ ¼º½ ¼ ¼º½ Ð Ù ÚÓ Ñ ÚÒØ ¼º¾ ¼º ¼º ¼º ½ Ý Ø ØØÝ ÚÒØ ÔÙ ÚÒØ M m B B B ¾ kl 4 ½¼ ¾¼ ¼ L/b < 2 b ¼ ¼ ½¼¼ Ë ÐØ ½ à ÑÑÓØ ÓÖ

Lisätiedot

M Pv + q = 0, M = EIκ = EIv, (EIv ) + Pv = q. v(x) = Asin kx + B cos kx + Cx + D + v p. P kr = π2 EI L n

M Pv + q = 0, M = EIκ = EIv, (EIv ) + Pv = q. v(x) = Asin kx + B cos kx + Cx + D + v p. P kr = π2 EI L n ÄÙ Ù ½ ËØ Ð Ù Ú Ó Ó ÐÑ ½º½ ÈÙÖ Ø ØØÙ Ø ÚÙØ ØØÙ ÙÚ Ì Ô ÒÓ ÓØ Q v + q =, M = Q, ½º½µ ÑÑÓ ÐÐ ÙÚ ÐÐ M v + q =, M = EIκ = EIv, (EIv ) + v = q. ½º¾µ ½º µ ½º µ EI = Ú Ó ÆÙÖ Ù ÚÓ Ñ v (4) + k v = q EI, k = EI,

Lisätiedot

a x a y I xi y i I xyi x i I xyi + y i I yi

a x a y I xi y i I xyi x i I xyi + y i I yi Ê ÒØ Ò Ñ Ò Ò ÓÚ ÐÐÙØÙ Ú Ó Ó ÐÑ º ØÓÙ Ó ÙÙØ ¾¼½¾ ÄÙ Ù ½ Ê ÒØ Ò Ñ Ò Ò ÓÚ ÐÐÙØÙ Ú Ó Ó ÐÑ Ó ½ ½º½ à ÖÖÓ Ø ÐÓ ÎÒØ [ Ixi I xi I xi ÂÓ ÐÐ Ô ÖØ ÐÐ ÔØ Ii ][ a x a ] = [ xi I xi i I xi x i I xi + i I i ]. ½º½µ I

Lisätiedot

el. konsentraatio p puolella : n p = N c e (E cp E F ) el. konsentraatio n puolella : n n = N c e (E cn E F ) n n n p = e (Ecp Ecn) V 0 = kt q ln (

el. konsentraatio p puolella : n p = N c e (E cp E F ) el. konsentraatio n puolella : n n = N c e (E cn E F ) n n n p = e (Ecp Ecn) V 0 = kt q ln ( ÈÙÓÐ Ó ÓÑÔÓÒ ÒØØ Ò Ô ÖÙ Ø Ø À Ì Øº ½º È ÖÖ ÔÒ¹ÔÙÓÐ Ó Ð ØÓ Ò Ò Ö ÚÝ Ñ ÐÐ ÙÒ ÙÐ Ó Ò Ò ÒØØ ÓÒ ÒÓÐÐ º ÂÓ ÓÒØ Ø ÔÓØ ÒØ Ð Ò V 0 Ý ØÐ µ ÃÙÚ Ò ÚÙÐÐ µ Ù ÓÚ ÖØ Ý ØÐ Ø Ô¹ Ò¹ØÝÝÔ Ø Ò Ñ Ø Ö Ð Ò Ò Ö Ø ÓØ Ô¹ÔÙÓÐ ÐÐ ÙÙÖ

Lisätiedot

ÍÐ ÓØ ÐÓ Ò Ô ÖØÓ ÃÙÒ Ô ÖÖ ØÒ Ð Ó ÙÐ ÓÒ ÝÑ ÓÒ Ò ØØ Ú Ñ ÐÐ Ñ ØÓ Ø ØÝÝÔ ÐÐ Ø Ú Ò Ð Ò ÙÙÖ ÓÚ ÐØÙ Ò Ö Ð Ò Ô ÖØÑ Ò Ñº Ó Ñ ÐÐ ÒÒ Ø Ò ½¼ Ü ½¼ Ñ ÐÙ ½¼ Ñ Ø Ö Ù

ÍÐ ÓØ ÐÓ Ò Ô ÖØÓ ÃÙÒ Ô ÖÖ ØÒ Ð Ó ÙÐ ÓÒ ÝÑ ÓÒ Ò ØØ Ú Ñ ÐÐ Ñ ØÓ Ø ØÝÝÔ ÐÐ Ø Ú Ò Ð Ò ÙÙÖ ÓÚ ÐØÙ Ò Ö Ð Ò Ô ÖØÑ Ò Ñº Ó Ñ ÐÐ ÒÒ Ø Ò ½¼ Ü ½¼ Ñ ÐÙ ½¼ Ñ Ø Ö Ù ØÙغ Ø Ò ÐÐ Ò Ò ÝÐ ÓÔ ØÓ Ì ÑÔ Ö Ò È Ð Ó ÐÑÓ ÒØ ÍÐ ÓØ ÐÓ Ò Ô ÖØÓ ÒØØ ÈÙ ÒØØ ºÔÙ Ç ÐÑ ØÓØ Ò ÍÐ ÓØ ÐÓ Ò Ô ÖØÓ ÃÙÒ Ô ÖÖ ØÒ Ð Ó ÙÐ ÓÒ ÝÑ ÓÒ Ò ØØ Ú Ñ ÐÐ Ñ ØÓ Ø ØÝÝÔ ÐÐ Ø Ú Ò Ð Ò ÙÙÖ ÓÚ ÐØÙ Ò Ö Ð Ò Ô ÖØÑ Ò Ñº

Lisätiedot

Symmetriatasot. y x. Lämmittimet

Symmetriatasot. y x. Lämmittimet Ì Ò ÐÐ Ò Ò ÓÖ ÓÙÐÙ ¹ÖÝ ÑĐ» ËÓÚ ÐÐ ØÙÒ Ø ÖÑÓ ÝÒ Ñ Ò Ð ÓÖ ØÓÖ Ó ÅÍÁËÌÁÇ ÆÓ»Ì ÊÅǹ ¹¾¼¼¼ ÔÚÑ ½¼º Ñ Ð ÙÙØ ¾¼¼¼ ÇÌËÁÃÃÇ Ø Ú ÒعØÙÐÓ ÐÑ Ð ØØ Ò ¹Ñ ÐÐ ÒÒÙ Ò ÖØ Ø ØÙØ ØÙÐÓ ÐÑ Ð Ø Ñ ÐÐ Ø Ä ÌÁ ̵ ÂÙ Ú Ó Ð ¹ÂÙÙ Ð

Lisätiedot

ÈÖÓ Ð Ø Ø ÌÙÖ Ò Ò ÓÒ Ø ÅÖ Ø ÐÑ ÈÖÓ Ð Ø Ò Ò ÌÙÖ Ò Ò ÓÒ Å ÓÒ ÖÒÐ Ò Ò Ô Ø ÖÑ Ò Ø Ò Ò ÌÙÖ Ò Ò ÓÒ Ó Ô Ø ÖÑ Ò Ø Ø ÐØ ÙØ ÙØ Ò ÓÐ ÓÒ ØØÓ ¹ Ð º ÂÓ Ò Å Ò Ö Ò Ý

ÈÖÓ Ð Ø Ø ÌÙÖ Ò Ò ÓÒ Ø ÅÖ Ø ÐÑ ÈÖÓ Ð Ø Ò Ò ÌÙÖ Ò Ò ÓÒ Å ÓÒ ÖÒÐ Ò Ò Ô Ø ÖÑ Ò Ø Ò Ò ÌÙÖ Ò Ò ÓÒ Ó Ô Ø ÖÑ Ò Ø Ø ÐØ ÙØ ÙØ Ò ÓÐ ÓÒ ØØÓ ¹ Ð º ÂÓ Ò Å Ò Ö Ò Ý ÈÖÓ Ð Ø Ø Ð ÓÖ ØÑ Ø Î Ñ Ø ÐÐÒ ÔÖÓ Ð Ø Ð ÓÖ ØÑ º ÌÐÐ Ð ÓÖ ØÑ ÖÚ Ø Ò Ø Ø ØÒ ÓÐ Ó ØÙÐÓ Ò ÑÙ Ò Ö Ù ÙØ Òº ÖÓÒ Ô Ø ÖÑ Ò Ñ Ò ÓÒ ØØ ÒÝØ Ø Ö Ø ÐÐ ÖÓ Ú Ò Ð ÒØ ØÓ Ø Ø Ò ÙÙ ÐÐ ÖÚ Ù ÐÐ Ø ÖÚ ØØ º Ä ÓÒ Ö ØØ Ø ØÓ ÒÒ ÝÝ

Lisätiedot

À Ö Ö Ð Ù Ø ÅÖ Ø ÐÑ ÙÒ Ø Ó : Æ Æ Ñ (Ò) = O(ÐÓ Ò) ÓÒ Ø Ð ÓÒ ØÖÙÓ ØÙÚ Ó ÐÐ Ò Ò ÙÒ Ø Ó Ó ÙÚ Ñ Ö ÓÒÓÒ ½ Ò (Ò) Ò ÒÖ ØÝ ÐÐ ÓÒ Ð ØØ Ú Ø Ð O( (Ò))º Ä Ù Å Ø Ø

À Ö Ö Ð Ù Ø ÅÖ Ø ÐÑ ÙÒ Ø Ó : Æ Æ Ñ (Ò) = O(ÐÓ Ò) ÓÒ Ø Ð ÓÒ ØÖÙÓ ØÙÚ Ó ÐÐ Ò Ò ÙÒ Ø Ó Ó ÙÚ Ñ Ö ÓÒÓÒ ½ Ò (Ò) Ò ÒÖ ØÝ ÐÐ ÓÒ Ð ØØ Ú Ø Ð O( (Ò))º Ä Ù Å Ø Ø Ì ÔÙÑ ØØÓÑÙÙ Ì Ó Ø ÐÐÒ ÓÒ ÐÑ ÓØ ÓÚ Ø Ô Ö ØØ Ö Ø Ú ÑÙØØ Ó Ò Ö Ø Ù Ú Ø Ò Ò Ô Ð ÓÒ Ø Ø Ð ØØ Ö Ø Ù ÓÐ ÝØÒÒ ÐÚÓÐÐ Ò Òº Í ÑÑ Ø ÓÐ ØØ Ú Ø ØØ ÆȹØÝ ÐÐ Ø ÔÖÓ Ð Ñ Ø ÓÚ Ø Ø ÔÙÑ ØØÓÑ ÒØÖ Ø Ð µ ÑÙØØ ØØ ÓÐ ØÓ Ø ØØÙº

Lisätiedot

Kuvan piirto. Pelaaja. Maailman päivitys. Syötteen käsittely

Kuvan piirto. Pelaaja. Maailman päivitys. Syötteen käsittely ØÙغ Ø Ò ÐÐ Ò Ò ÝÐ ÓÔ ØÓ Ì ÑÔ Ö Ò È Ð Ó ÐÑÓ ÒØ È Ð Ó ÐÑ Ò Ö ÒÒ ÒØØ ÈÙ ÒØØ ºÔÙ Ç ÐÑ ØÓØ Ò Ò Ø ÐРؽ ؾ Ø È Ð Ó ÐÑ Ò Ô ÖÙ Ö ÒÒ Ì ØÓ ÓÒ Ô Ð Ò ÝØ Ñ Ò ÓÒ Ñ ÐÐ Ó Ø Ò ÙÚ ØØ ÐÐ Ø Ñ ÐÑ Ø ÚÓ ÓÐÐ Ú Ò Ý Ò ÖØ Ò Ò Ð

Lisätiedot

Ð ØÖÓÒ Ò Ú Ø Ò Ô ÓÒ Ö Ø Ð ØÖÓÒ Ò Ò Ú Ð ÙÒ ÝÐ ÓÔ ØÓ ÖÑ Ò ØÙØ ÑÙ ¹ Ð ØÓ ½ ¼¹ÐÙÚÙÐÐ Ù Ø Ó ÐÙ Ð ØÖÓÒ Ô Ð ºËº ÓÙ Ð Ø ½ ¾ Ñ Ö Ú Ø Ö Ò Ñ Ò ÓÒ Ò ÚÙÓÖÓÚ ÙØÙ Ø

Ð ØÖÓÒ Ò Ú Ø Ò Ô ÓÒ Ö Ø Ð ØÖÓÒ Ò Ò Ú Ð ÙÒ ÝÐ ÓÔ ØÓ ÖÑ Ò ØÙØ ÑÙ ¹ Ð ØÓ ½ ¼¹ÐÙÚÙÐÐ Ù Ø Ó ÐÙ Ð ØÖÓÒ Ô Ð ºËº ÓÙ Ð Ø ½ ¾ Ñ Ö Ú Ø Ö Ò Ñ Ò ÓÒ Ò ÚÙÓÖÓÚ ÙØÙ Ø ØÙغ Ø Ò ÐÐ Ò Ò ÝÐ ÓÔ ØÓ Ì ÑÔ Ö Ò È Ð Ó ÐÑÓ ÒØ È Ð Ó ÐÑÓ ÒÒ Ò ØÓÖ ÒØØ ÈÙ ÒØØ ºÔÙ Ç ÐÑ ØÓØ Ò Ð ØÖÓÒ Ò Ú Ø Ò Ô ÓÒ Ö Ø Ð ØÖÓÒ Ò Ò Ú Ð ÙÒ ÝÐ ÓÔ ØÓ ÖÑ Ò ØÙØ ÑÙ ¹ Ð ØÓ ½ ¼¹ÐÙÚÙÐÐ Ù Ø Ó ÐÙ Ð ØÖÓÒ Ô Ð ºËº ÓÙ Ð

Lisätiedot

ÁÒ Ù Ø Ú Ø ØÝÝÔ Ø º Ñ Ö ÒÖ ÔÙÙÒ ÑÖ Ø ÐÑ Ú ØØ Ø Ò ÒÖ ÔÙÙ ÓÒ Ó Ó ØÝ Ø ÓÐÑÙ Ó ÓÒ Ð Ó ÓÒ Ú Ò Ó Ð ÔÙÙ ÓÚ Ø ÑÝ ÒÖ ÔÙ Ø º Ë ÚÓ Ò Ö Ó ØØ ÙÓÖ Ò Ø Ò ÖÝÌÖ ÑÔØÝ Æ

ÁÒ Ù Ø Ú Ø ØÝÝÔ Ø º Ñ Ö ÒÖ ÔÙÙÒ ÑÖ Ø ÐÑ Ú ØØ Ø Ò ÒÖ ÔÙÙ ÓÒ Ó Ó ØÝ Ø ÓÐÑÙ Ó ÓÒ Ð Ó ÓÒ Ú Ò Ó Ð ÔÙÙ ÓÚ Ø ÑÝ ÒÖ ÔÙ Ø º Ë ÚÓ Ò Ö Ó ØØ ÙÓÖ Ò Ø Ò ÖÝÌÖ ÑÔØÝ Æ ÁÒ Ù Ø Ú Ø ØÝÝÔ Ø º º ÁÒ Ù Ø Ú Ø ØÝÝÔ Ø Ø ¹ÑÖ ØØ ÐÝ º¾µ ÚÓ Ú Ø Ø ÑÝ Ø Ò ÑÖ Ø ÐØÚ Æ Ñ ÒØÝ ÑÝ ³ ³¹Ñ Ö Ò Ó ÐÐ ÔÙÓÐ ÐÐ º Ë Ò ÓÐ ÐÐ ØØÝ ØÝÔ ¹ÐÝ ÒØ º½µº ¾ ÁÒ Ù Ø Ú Ø ØÝÝÔ Ø º Ñ Ö ÒÖ ÔÙÙÒ ÑÖ Ø ÐÑ Ú ØØ Ø Ò ÒÖ

Lisätiedot

p q = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 + (z 1 z 2 ) 2. x 1 y 1 z 1 x 2 y 2 z 2

p q = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 + (z 1 z 2 ) 2. x 1 y 1 z 1 x 2 y 2 z 2 º ÅÓÒ ÙÐÓØØ Ø Ö ÒØ Ð Ð ÒØ º½ Â Ø ÙÚÙÙ Ó ØØ Ö Ú Ø Ø Ù Ò ÑÙÙØØÙ Ò ÙÒ Ø Ó Ò Ö ÒØ Ð Ð ÒØ ÐÑÔ Ø Ð ÓÒ Ò Ô Ò ÙÒ Ø Ó T(x, y, z.t) ÄÑÔ Ø Ð Ö ÒØØ ÐÑÓ ØØ Ñ Ò ÙÙÒØ Ò ÐÑÔ Ø Ð Ú ÚÓ Ñ ÑÑ Ò Ù Ò Ð ÐÑÔ Ø Ð Ö ÒØØ ½½ ÃÓÓÖ

Lisätiedot

Ì Ð Ú Ø ÚÙÙ ÐÙÓ Ø Á ÅÖ Ø ÐÑ ÇÐ ÓÓÒ : Æ Ê ÙÒ Ø Óº Ì Ð Ú Ø ÚÙÙ ÐÙÓ Ø ËÈ ( (Ò)) ÆËÈ ( (Ò)) ÑÖ Ø ÐÐÒ ÙÖ Ú Ø ËÈ ( (Ò)) ÓÒ Ò Ò ÐØ Ò Ä ÓÙ Ó ÓØ ÚÓ Ò ØÙÒÒ Ø Ø

Ì Ð Ú Ø ÚÙÙ ÐÙÓ Ø Á ÅÖ Ø ÐÑ ÇÐ ÓÓÒ : Æ Ê ÙÒ Ø Óº Ì Ð Ú Ø ÚÙÙ ÐÙÓ Ø ËÈ ( (Ò)) ÆËÈ ( (Ò)) ÑÖ Ø ÐÐÒ ÙÖ Ú Ø ËÈ ( (Ò)) ÓÒ Ò Ò ÐØ Ò Ä ÓÙ Ó ÓØ ÚÓ Ò ØÙÒÒ Ø Ø Ì Ð Ú Ø ÚÙÙ Á ÅÖ Ø ÐÑ ÇÐ ÓÓÒ Å Ø ÖÑ Ò Ø Ò Ò ÌÙÖ Ò Ò ÓÒ Ó ÔÝ ØÝÝ ÐÐ Ý ØØ Ðк Å Ò Ø Ð Ú Ø ÚÙÙ ÓÒ ÙÒ Ø Ó : Æ Æ Ñ (Ò) ÓÒ Å Ò Ð Ñ Ò ÑÙ Ø Ô Ó Ò Ñ Ñ ÐÙ ÙÑÖ ÙÒ Ø Ö Ø ÐÐ Ò Ò Ò Ô ØÙ Ý ØØ Øº ÂÓ Å Ò Ø Ð Ú Ø ÑÙ ÓÒ

Lisätiedot

Ð ØÖÓÒ Ø Ñ ÙÚÐ Ò Ø Ì ÑÙ Ê ÒØ ¹ Ó À Ð Ò ¾ º ÐÓ ÙÙØ ½ Ë Ò ÙÔ Ò ÝÒÒ Ò Ñ Ò Ö À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ Ì ØÓ Ò ØØ ÐÝØ Ø Ò Ð ØÓ Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Å Ù Ö Ø ÐÑØ ¾ ¾º½ ÆÝ Ý Ø Ñ Ù Ö Ø ÐÑØ º º º º º º º º º º º º º º º º

Lisätiedot

Ë ÐØ ½ ÂÓ ÒØÓ ½ ½º½ È ÖÙ ØØ Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ Ò ÖØ Ø Ö ÒÒ Ñ ÐÐ Ø º º º º º º º º º º º º º º

Ë ÐØ ½ ÂÓ ÒØÓ ½ ½º½ È ÖÙ ØØ Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ Ò ÖØ Ø Ö ÒÒ Ñ ÐÐ Ø º º º º º º º º º º º º º º Ê ÒØ Ò Ø Ð ÙÙ Ø ÓÖ ÐÙ ÒØÓÑÓÒ Ø Å Ö Ù ÌÙÓÑ Ð ϕ v N N Ë ÐØ ½ ÂÓ ÒØÓ ½ ½º½ È ÖÙ ØØ Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ Ò ÖØ Ø Ö ÒÒ Ñ ÐÐ Ø º º º º º º º º º º º º º

Lisätiedot

Ë ÐØ ½ ÂÓ ÒØÓ ½ ½º½ È ÖÙ ØØ Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ Ò ÖØ Ø Ö ÒÒ Ñ ÐÐ Ø º º º º º º º º º º º º º º

Ë ÐØ ½ ÂÓ ÒØÓ ½ ½º½ È ÖÙ ØØ Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ Ò ÖØ Ø Ö ÒÒ Ñ ÐÐ Ø º º º º º º º º º º º º º º Ê ÒØ Ò Ø Ð ÙÙ Ø ÓÖ ÐÙ ÒØÓÑÓÒ Ø Å Ö Ù ÌÙÓÑ Ð ϕ v N N Ë ÐØ ½ ÂÓ ÒØÓ ½ ½º½ È ÖÙ ØØ Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ Ò ÖØ Ø Ö ÒÒ Ñ ÐÐ Ø º º º º º º º º º º º º º

Lisätiedot

È Ú Ö Ù ÆÈ ÁÁ Ë ÑÓ Ò Ó Ò Ý ÝÑÝ ÚÙØ ØØ Ò ØÝ Ø ÙÒ ËØ Ô Ò ÓÓ Ä ÓÒ Ä Ú Ò ØØ Ð ÚØ ÆȹØÝ ÐÐ ÝÝ Ò ØØ Òº µ º Ù Ø ÙÙØ ¾¼¼ ¾»

È Ú Ö Ù ÆÈ ÁÁ Ë ÑÓ Ò Ó Ò Ý ÝÑÝ ÚÙØ ØØ Ò ØÝ Ø ÙÒ ËØ Ô Ò ÓÓ Ä ÓÒ Ä Ú Ò ØØ Ð ÚØ ÆȹØÝ ÐÐ ÝÝ Ò ØØ Òº µ º Ù Ø ÙÙØ ¾¼¼ ¾» È Ú Ö Ù ÆÈ Á à РÐÙÓ Ø È ÆÈ ÒÝØØÚØ ØÝ Ò Ö Ð ÐØ Ë ÐÚ Ø È ÆȺ µ È ÓÒ Ð ÐÙÓ Ó Ð ÓÒ ÙÙÐÙÑ Ò Ò Ð Ò ÚÓ Ò Ö Ø Ø ÔÓÐÝÒÓÑ Ø ÖÑ Ò Ø ÐÐ ÌÙÖ Ò Ò ÓÒ ÐÐ º µ ÆÈ ÓÒ Ð ÐÙÓ Ó Ð ÓÒ ÙÙÐÙÑ Ò Ò Ð Ò ÚÓ Ò Ú Ö Ó ÔÓÐÝÒÓÑ Ð Ð ÓÒ

Lisätiedot

T 2. f T (x)e i2π k T x dx. c k e i2π k T x = x dx. c k e i2π k T x = k Z. f T (x) =

T 2. f T (x)e i2π k T x dx. c k e i2π k T x = x dx. c k e i2π k T x = k Z. f T (x) = º ÓÙÖÖ¹ÑÙÙÒÒÓ ÓÙÖÖ Ò ÒØÖÐ Ð Ù ¹ ÓÐÐ Ò ÙÒ Ø ÓÒ f(x) PC(R) º½ ÓÙÖÖ¹ Ò ÐÝÝ º ÒÐ Òµ ÅÖ Ø ÐÐÒ T ¹ ÓÐÐ Ò Ò ÙÒ Ø Ó f T (x) = f(x), T 2 < x < T 2, ÃÓÑÔÐ Ò Ò ÓÙÖÖ¹ÖÖÓ Ò c k = 1 T T 2 T 2 f T (x)e i2π k T x dx.

Lisätiedot

d 00 = 0, d i0 = i, 1 i m, d 0j

d 00 = 0, d i0 = i, 1 i m, d 0j ¾º¾º ÁÌÇÁÆÌÁ Ì ÁË Æ Ä Ëà ÅÁÆ Æ ¾ º ÇÔ Ö Ø Ó ÓÒÓ ÌÌÈÈÈÌÄÌÅÈÈ Ò Ù Ø¹Öݹ¹ Ò¹¹¹Ø Ö Ø º ÇÔ Ö Ø Ó Ò ÐÙ ØØ ÐÓ Ò Ù ØÖÝ d ǫ ÒØ ÖÝ ǫ e ÒÙ ØÖÝ u ǫ ÒØ Ö Ý y s Ò ØÖÝ s ǫ ÒØ Ö ǫ t ÒØÖÝ ǫ e ÒØ Ö Ø ¾º¾ ØÓ ÒØ Ø ÝÝ Ò Ð

Lisätiedot

Ä ÒÒ Ò Ú Ø ÚÙ٠̺ à ÖÚ º º¾¼¼ ̺ à ÖÚ µ Ä ÒÒ Ò Ú Ø ÚÙÙ º º¾¼¼ ½»

Ä ÒÒ Ò Ú Ø ÚÙ٠̺ à ÖÚ º º¾¼¼ ̺ à ÖÚ µ Ä ÒÒ Ò Ú Ø ÚÙÙ º º¾¼¼ ½» Ä ÒÒ Ò Ú Ø ÚÙ٠̺ à ÖÚ º º¾¼¼ ̺ à ÖÚ µ Ä ÒÒ Ò Ú Ø ÚÙÙ º º¾¼¼ ½» Î Ø ÚÙÙ Ò Ñ ØØ Ñ Ò Ò Ì Ö Ø ÐÐ Ò ÓØ Ò ÐØ º Å Ø Ò Ô Ð ÓÒ ÌÙÖ Ò Ò ÓÒ ÙÐÙØØ ØÙÒÒ Ø Ò Ò Á Ä Ø Ò Ð Ò ØÙÒÒ Ø Ú ÌÙÖ Ò Ò ÓÒ Ô Ù Ó Ð Ö Øصº Ä Ø Ò

Lisätiedot

F(x) = P(X x), x R. F(x) = 1º

F(x) = P(X x), x R. F(x) = 1º ËÁË ÄÌ Ö ØØ Ý ÙÐÓØØ ÙÑ ½¼ º½ Ö ØØ ØÙÒÒ ÑÙÙØØÙ º º º º º º º º º º º º º º º º º º ½¼ º¾ ÖÒÓÙÐÐ Ò Ó Ø ÒÓÑ ÙÑ º º º º º º º º º º º º º º º ½¼ º¾º½  ÙÑ Ò ÝÑÑ ØÖ º º º º º º º º º º º º º º º º º º º ½½

Lisätiedot

(a,b)(c,d) = (ac bd,ad + bc).

(a,b)(c,d) = (ac bd,ad + bc). ÃÓÑÔÐ ÐÙÚÙ Ø ½ ½º ÂÓ ÒØÓ ØÐ ÐÐ x + 1 = 0 ÓÐ Ö Ø Ù Ö Ð ÐÙ Ù Ò ÓÙ Ó Ó Ó Ò Ö Ð ÐÙ¹ ÚÙÒ ØÓ Ò Ò ÔÓØ Ò ÓÒ ÔÓ Ø Ú Ò Òº ÂÓØØ ØÐÐ Ý ØÐ ÐÐ Ø Ò Ö Ø Ù Ñ Ò ØÝØÝÝ Ð ÒØ Ö Ð ÐÙ Ù Ò ÓÙ Ó Ð ÑÐÐ Ò ÙÙ Ð Ó Ñ Ö ØÒ Ø¹ Ø ØÓ Ø

Lisätiedot

q(x) = T n (x, x 0 ) p(x) =

q(x) = T n (x, x 0 ) p(x) = ÎÁÁ Ì ÝÐÓÖ Ò Ð Ù ÎÁÁ Ì ÝÐÓÖ Ò ÔÓÐÝÒÓÑ Ø Ì ÝÐÓÖ Ò Ð Ù Ì ÐÙÚÙ Ø Ö Ø ÐÐ Ò ÙÒ Ø Ó Ø ÓØ ÓÚ Ø ÒÒ ØÙÒ Ô Ø Ò x 0 ÝÑÔÖ ¹ Ø Ö ØØÚÒ Ð Ø Ð Ö ØØÚÒ ÑÓÒØ ÖØ Ø ÙÚ Ø µ Ö ÚÓ ØÙÚ ÅÖ Ø ÐÑ ÎÁÁ ½ ÙÒ Ø ÓÒ f : D f R D f R Ó ÓÒ

Lisätiedot

ÓÑ ØÖ Ò Ø Ò Ø ØÓÖ ÒØ Ø Ã ÙÖ Ú Ø ÐØÚØ Ø ØÓÖ ÒØ Ø Ô ÖÙ ØÙÚ Ø Ñ ÒØÝÝÔ¹ Ô Ò Ò ÖÓØ ÐÐ Ò Ú ÖÙÙ Ø Ó Ó Ò ÐÐ ÓÒ Ô Ò ÑÔ Ó Ò Ò ÐÐ Ú Ð Ô Ò ÑÔ Ó Ò º ÒÑ Ö Ø ØÒ Ö Ö

ÓÑ ØÖ Ò Ø Ò Ø ØÓÖ ÒØ Ø Ã ÙÖ Ú Ø ÐØÚØ Ø ØÓÖ ÒØ Ø Ô ÖÙ ØÙÚ Ø Ñ ÒØÝÝÔ¹ Ô Ò Ò ÖÓØ ÐÐ Ò Ú ÖÙÙ Ø Ó Ó Ò ÐÐ ÓÒ Ô Ò ÑÔ Ó Ò Ò ÐÐ Ú Ð Ô Ò ÑÔ Ó Ò º ÒÑ Ö Ø ØÒ Ö Ö ØÙغ Ø Ò ÐÐ Ò Ò ÝÐ ÓÔ ØÓ Ì ÑÔ Ö Ò È Ð Ó ÐÑÓ ÒØ È Ð Ó ÐÑÓ ÒÒ Ý ÝÐÐ Ø ØÓÖ ÒØ Ø ÒØØ ÈÙ ÒØØ ºÔÙ Ç ÐÑ ØÓØ Ò ÓÑ ØÖ Ò Ø Ò Ø ØÓÖ ÒØ Ø Ã ÙÖ Ú Ø ÐØÚØ Ø ØÓÖ ÒØ Ø Ô ÖÙ ØÙÚ Ø Ñ ÒØÝÝÔ¹ Ô Ò Ò ÖÓØ ÐÐ Ò Ú ÖÙÙ Ø Ó Ó Ò ÐÐ

Lisätiedot

139/ /11034 = 0.58

139/ /11034 = 0.58 ÄÙ Ù ÂÓ ÒØÓ Ø Ð ØÓÐÐ Ò ÔØØ ÐÝÝÒ º½ Ì Ð ØÓÐÐ Ò ÓÒ ÐÑ Ò ÐÙÓÒÒ Ì Ð ØÓÐÐ Ò Ñ ÐÐ ÒØ Ñ Ò Ò ÔØØ ÐÝ ØØ Ð Ú ÒØÓ Ò Ú Ø ÐÙ ÔÚ ÖÑÙÙØØ º ÓÐ Ø ØÒ ÐÚ ØØ ØÙÓÐÐ Ø Ø ÚÓ Ò Ø¹ Ø Ñ ØÒ Ø ÑÐÐ Ø Ø Ø Ø ÐРغ Ì Ð ØÓØ Ø Ò ÓÒ ÓÑ

Lisätiedot

x 1 x 2 x n u 1 + v 1 u 2 + v 2 u n + v n λu 1 λu 2 λu n

x 1 x 2 x n u 1 + v 1 u 2 + v 2 u n + v n λu 1 λu 2 λu n ÇÈÌÁÅÇÁÆÆÁÆ È ÊÍËÌ Ì Ã Ó ÊÙÓØ Ð Ò Ò ¾ º ÝÝ ÙÙØ ¾¼¼ ¾ ÂÓ ÒØÓ ÃÙÖ Ò Ø ÚÓ ØØ Ò ÓÒ ØÙØÙ ØÙØØ Ø Ú ÐÐ ÑÔ Ò ÓÔØ ÑÓ ÒØ ¹ Ð ÓÖ ØÑ Ò Ò Ò ÝØØ Ò ÓÚ ÐÐÙØÙ º ÃÙÖ Ñ Ø Ö Ð ÒØÙÙ Ò Ð Ò Ö Ó Òº ÐÙ ÐÝ Ý Ø ÖÖ Ø Ò Ñ ØÖ Ð Ö Ø

Lisätiedot

Ä ÒÒ Ò Ú Ø ÚÙ٠̺ à ÖÚ ¾º º¾¼¼ ̺ à ÖÚ µ Ä ÒÒ Ò Ú Ø ÚÙÙ ¾º º¾¼¼ ½»

Ä ÒÒ Ò Ú Ø ÚÙ٠̺ à ÖÚ ¾º º¾¼¼ ̺ à ÖÚ µ Ä ÒÒ Ò Ú Ø ÚÙÙ ¾º º¾¼¼ ½» Ä ÒÒ Ò Ú Ø ÚÙ٠̺ à ÖÚ ¾º º¾¼¼ ̺ à ÖÚ µ Ä ÒÒ Ò Ú Ø ÚÙÙ ¾º º¾¼¼ ½» ÃÙÖ Ò ÐØ Ø ÐØÙ ÐØ ½ ¾ Î Ø ÚÙÙ Ò Ñ ØØ Ñ Ò Ò ÄÙÓ È ÄÙÓ ÆÈ ÆȹØÝ ÐÐ ÝÝ ÆȹØÝ ÐÐ ÔÖÓ Ð ÑÓ Ì Ð Ú Ø ÚÙÙ ÄÙÓ ÈËÈ Ë Ú Ø Ò Ð Ù Ñ Ö ÈËÈ ¹ØÝ ÐÐ Ø

Lisätiedot

Ì ÑÔ Ö Ò ÝÐ ÓÔ ØÓ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ÆÁ Å Ä ÊÇ ÓÙÖ Ö¹ÑÙÙÒÒÓ Ø ÈÖÓ Ö Ù ¹ØÙØ ÐÑ º Å Ø Ñ Ø ÀÙ Ø ÙÙ ¾¼¼ Ì Ú Ø ÐÑ ÌÙØ ÐÑ Ò Ò ÓÒ ÓÙÖ Ö¹ÑÙÙÒÒÓ Ò ØØ Ð

Ì ÑÔ Ö Ò ÝÐ ÓÔ ØÓ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ÆÁ Å Ä ÊÇ ÓÙÖ Ö¹ÑÙÙÒÒÓ Ø ÈÖÓ Ö Ù ¹ØÙØ ÐÑ º Å Ø Ñ Ø ÀÙ Ø ÙÙ ¾¼¼ Ì Ú Ø ÐÑ ÌÙØ ÐÑ Ò Ò ÓÒ ÓÙÖ Ö¹ÑÙÙÒÒÓ Ò ØØ Ð Ì ÅÈ Ê Æ ÄÁÇÈÁËÌÇ ÈÖÓ Ö Ù ¹ØÙØ ÐÑ ÖÓ Æ Ñ Ð ÓÙÖ Ö¹ÑÙÙÒÒÓ Ø Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ Å Ø Ñ Ø ÀÙ Ø ÙÙ ¾¼¼ Ì ÑÔ Ö Ò ÝÐ ÓÔ ØÓ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ÆÁ Å Ä ÊÇ ÓÙÖ Ö¹ÑÙÙÒÒÓ Ø ÈÖÓ Ö Ù ¹ØÙØ ÐÑ º Å Ø Ñ Ø

Lisätiedot

ÂÓ ÒØÓ ½ Ì ØÓ Ò ØØ ÐÝØ ÓÖ Ø ÒÒÓ ØÙÒ ÐÐ ÙÖ ØØ Ð Ö Ð Ø Ð ÒØ Ñ ÐÐ º ØÝ Ó Ø ÚÙÙØ Ø Òºµ Ç ÐÑÓ ÒÒ Ø ÒÒÓ ØÙÒ ÐÐ ØØ Ð Ö Ð Ø Ó ÐÑÓ ÒØ ¹ Ó ÐÑ Ò ÙÙÒÒ ØØ ÐÙØ Ô º

ÂÓ ÒØÓ ½ Ì ØÓ Ò ØØ ÐÝØ ÓÖ Ø ÒÒÓ ØÙÒ ÐÐ ÙÖ ØØ Ð Ö Ð Ø Ð ÒØ Ñ ÐÐ º ØÝ Ó Ø ÚÙÙØ Ø Òºµ Ç ÐÑÓ ÒÒ Ø ÒÒÓ ØÙÒ ÐÐ ØØ Ð Ö Ð Ø Ó ÐÑÓ ÒØ ¹ Ó ÐÑ Ò ÙÙÒÒ ØØ ÐÙØ Ô º ÂÓ ÒØÓ ½ ½ ÂÓ ÒØÓ ÃÙÖ ÐÐ ØÙØÙ ØÙØ Ò Ô ÖÙ Ø Ò ÙÒ Ø ÓÒ Ð Ø Ó ÐÑÓ ÒÒ Ø Ö ØÝ Ø Ñ Ø Ò ÖÓ ØÙØÙ Ø Ø Ð Ô ÖÙ Ø Ø Ó ÐÑÓ ÒÒ Ø Ó ÐÑÓ ÒØ Ð Ø À ÐÐ ÓÐÐ ÓÒ Ô Ó Ó ÐÑÓ ÙÒ Ø ÓÒ Ð Ø º ½ ÂÓ ÒØÓ ½ Ì ØÓ Ò ØØ ÐÝØ ÓÖ Ø ÒÒÓ ØÙÒ

Lisätiedot

E d f = 1 ε 0. E d r = t A. E d f

E d f = 1 ε 0. E d r = t A. E d f Ö ÍÒ Ú Ö ØØ ÖÐ Ò Ö È Ý Ë Ñ Ò Ö ¾¼½ ¼ Ë ËË ¾¼¼ ÜÔ Ö Ñ ÒØ ÐÐ Ä Ö Ñ Ò Ö Æ ØÐ Ò Ö ÇÔØ ÙÒ ÍÐØÖ ÙÖÞÞ Ø Ô ØÖÓ ÓÔ ÒÛ Ò ÙÒ Ò ÓÐÓ Ò ËÝ Ø Ñ Ò ÓÞ ÒØ ÈÖÓ º Öº Ã Ö Ø Ò À ÝÒ Ï ÐÛ Ö ÙÒ ÚÓÒ Å Ø Ö Ñ Ø Ð ØÖÓÑ Ò Ø Ò Ð ÖÒ

Lisätiedot

A B P(A B) = P(A B) P(K) = 4 ( 52 5) =

A B P(A B) = P(A B) P(K) = 4 ( 52 5) = ËÁË ÄÌ ¾º º½ ÀÝÔ Ö ÓÑ ØÖ Ò Ò ÙÑ º º º º º º º º º º º º º º º ¾º º¾ Ì Ö ØÙ ÓØ ÒØ Ø ÓÐÐ ÙÙ º º º º º º º º º º º º º º ¾º ÇØ ÒØ Ô Ð ÙØØ Ò º º º º º º º º º º º º º º º º º º º º º º º º ¾º ÒÓÑ ÙÑ º º º

Lisätiedot

F(x) = P(X x), x R. F(x) = 1º

F(x) = P(X x), x R. F(x) = 1º ËÁË ÄÌ Ö ØØ Ý ÙÐÓØØ ÙÑ ½½½ º½ Ö ØØ ØÙÒÒ ÑÙÙØØÙ º º º º º º º º º º º º º º º º º º ½½½ º¾ ÖÒÓÙÐÐ Ò Ó Ø ÒÓÑ ÙÑ º º º º º º º º º º º º º º º ½½ º¾º½  ÙÑ Ò ÝÑÑ ØÖ º º º º º º º º º º º º º º º º º º º ½½

Lisätiedot

Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Ç Å ÓÐ ÓØ ØÓ ÒØ Ø Ò Ö ¾ ¾º½ ÇÅ ÓÐ ÓÑ ÐÐ Ç Ä ÓÐ ÓÒÑÖ ØÝ Ð º º º º º º º º º º º º º º º ¾ ¾º¾ ÇÉÄ ÓÐ Ó Ý ÐÝ Ð º º º º º º º º º º º º

Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Ç Å ÓÐ ÓØ ØÓ ÒØ Ø Ò Ö ¾ ¾º½ ÇÅ ÓÐ ÓÑ ÐÐ Ç Ä ÓÐ ÓÒÑÖ ØÝ Ð º º º º º º º º º º º º º º º ¾ ¾º¾ ÇÉÄ ÓÐ Ó Ý ÐÝ Ð º º º º º º º º º º º º ÝÚ ÝÑ Ô Ú ÖÚÓ Ò ÖÚÓ Ø Ð ÇÐ ÓÔÓ Ø Ø ØÓÑ ÐÐ Ø Ø ØÓ ÒÒ Ò ÐÐ ÒØ Ö Ø ÐÑ ÖØÓ ÖÐÙÒ À Ð Ò ¾ º½¼º¾¼¼ À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ Ì ØÓ Ò ØØ ÐÝØ Ø Ò Ð ØÓ Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Ç Å ÓÐ ÓØ ØÓ ÒØ Ø Ò Ö ¾ ¾º½ ÇÅ ÓÐ ÓÑ ÐÐ Ç Ä ÓÐ ÓÒÑÖ

Lisätiedot

º F(+, + ) = 1 F(, ) = F(, y) = F(x, ) = 0 й

º F(+, + ) = 1 F(, ) = F(, y) = F(x, ) = 0 й ËÁË ÄÌ Ö ØØ Ý ÙÐÓØØ ÙÑ ½¼ º½ Ö ØØ ØÙÒÒ ÑÙÙØØÙ º º º º º º º º º º º º º º º º º º ½¼ º¾ ÖÒÓÙÐÐ Ò Ó Ø ÒÓÑ ÙÑ º º º º º º º º º º º º º º º ½½½ º¾º½  ÙÑ Ò ÝÑÑ ØÖ º º º º º º º º º º º º º º º º º º º ½½

Lisätiedot

f(x 1,x 2 ) = f 1 (x 1 )f 2 (x 2 ) x 2 f(x 1,x 2,...,x n ) = f 1 (x 1 )f 2 (x 2 ) f n (x n ) f 1 (x 1 ) = 1 6, ÙÒ x 1 S 1 f 2 (x 2 ) = = 2 x 2

f(x 1,x 2 ) = f 1 (x 1 )f 2 (x 2 ) x 2 f(x 1,x 2,...,x n ) = f 1 (x 1 )f 2 (x 2 ) f n (x n ) f 1 (x 1 ) = 1 6, ÙÒ x 1 S 1 f 2 (x 2 ) = = 2 x 2 Ú ËÁË ÄÌ ÅÓÒ ÙÐÓØ Ø ÙÑ Ø ½ º½ à ÙÐÓØØ Ø ÙÑ Ø º º º º º º º º º º º º º º º º º º º º º ½ º½º½ Ê ÙÒ ÙÑ Ø ÓÐÐ Ø ÙÑ Ø º º º º º º º º º ½ º½º¾ ÓÐÐ Ò Ó ÓØÙ ÖÚÓÒ ÓÑ Ò ÙÙ º º º º º º º º º ½ º½º À Ö Ö Ø Ñ ÐÐ

Lisätiedot

Å Ø Ñ ØØ ¹ÙÓÒÒÓÒØ Ø Ò Ò Ì Ö ØØ Ö ÙØ ÓÖ Á Å Ö Ò Ò ÌÝ Ò Ò Ñ Ö Ø Ø Ø Ø Ì Ø Ì ØÓ Ò ØØ ÝØ Ø Ò ØÓ Ò ËÖ ÔØ ¹Ô Ó Ñ ÇÔÔ Ò ÄÖÓÑÒ ËÙ Ø Ì ØÓ Ò ØØ ÝØ ÌÝ Ò Ö Ø Ø ÖØ

Å Ø Ñ ØØ ¹ÙÓÒÒÓÒØ Ø Ò Ò Ì Ö ØØ Ö ÙØ ÓÖ Á Å Ö Ò Ò ÌÝ Ò Ò Ñ Ö Ø Ø Ø Ø Ì Ø Ì ØÓ Ò ØØ ÝØ Ø Ò ØÓ Ò ËÖ ÔØ ¹Ô Ó Ñ ÇÔÔ Ò ÄÖÓÑÒ ËÙ Ø Ì ØÓ Ò ØØ ÝØ ÌÝ Ò Ö Ø Ø ÖØ Ò ËÖ ÔØ ¹Ô Ó Ñ Á Å Ö Ò Ò À Ò ½½º º¾¼¼ Ç Ñ ØÓØÙÓØ ÒØÓ Ø ØÓ ÓÒ Ô Ø ¹ Ñ Ò Ö À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ Ì ØÓ Ò ØØ ÝØ Ø Ò ØÓ Å Ø Ñ ØØ ¹ÙÓÒÒÓÒØ Ø Ò Ò Ì Ö ØØ Ö ÙØ ÓÖ Á Å Ö Ò Ò ÌÝ Ò Ò Ñ Ö Ø Ø Ø Ø Ì Ø Ì ØÓ Ò ØØ ÝØ Ø Ò

Lisätiedot

P F [L θ U] P F [L θ U] 1 α, 0 < α < 1,

P F [L θ U] P F [L θ U] 1 α, 0 < α < 1, ËÁË ÄÌ º º½ º º¾ º º º º Ú Å Ö ÓÚ Ò Ì Ý Ú Ò ÔÝ ØÐ Ø ÙÙÖØ Ò ÐÙ Ù¹ Ò Ð º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾ Â Ò Ò Ò ÔÝ ØÐ º º º º º º º º º º º º º º º º º º º º ¾ ËØÓ Ø Ò Ò ÙÔÔ Ò Ñ Ò

Lisätiedot

F n (a) = 1 n { i : 1 i n, x i a }, P n (a, b) = F n (b) F n (a). P n (a, b) = 1 n { i : 1 i n, a < x i b }.

F n (a) = 1 n { i : 1 i n, x i a }, P n (a, b) = F n (b) F n (a). P n (a, b) = 1 n { i : 1 i n, a < x i b }. Ë ÐØ ½ ÂÓ ÒØÓ ½ ½º½ ÌÓ ÒÒ ÝÝ Ø Ð ØÓØ º º º º º º º º º º º º º º º º º º ½ ½º¾ À Ú ØÙØ Ö Ú Ò Ø ÑÔ Ö Ø ÙÑ Ø º º º º º º º º º º º ½ ½º ÌÓ ÒÒ ÝÝ Ñ ÐÐ Ø º º º º º º º º º º º º º º º º º º º º º º º ½º º½

Lisätiedot

x (t) = f(x(t)) u B δ (p) = ϕ t (v) = p, v B d (p) = lim e t AT e t A dt W =

x (t) = f(x(t)) u B δ (p) = ϕ t (v) = p, v B d (p) = lim e t AT e t A dt W = Á Ê ÆÌÁ ÄÁ ÀÌ Ä Ë ËÌ ÅÁÌ º Ì Ô ÒÓÔ Ø Ø Ø Ð ÙÙ Ì ÐÙÚÙ Ø ÑÑ Ö ÒØ Ð Ý ØÐ Ò Ø Ô ÒÓÖ Ø Ù Ò Ø Ð ÙÙ Ø Ö Ø ÐÙ¹ ÒÝØ ÔÐ Ò Ö ÐÐ Ý Ø Ñ ÐÐ º ÌÐÐ ÓÚ Ø Ñ Ö ÐÙÖ Ý Ø Ñ ÐÐ Ô ÐÐ Ò ÔÝ ØÝ ÙÓÖ Ò Ó Ó Ð Ø ÝÐ Ô Ò ÓÐ Ú ÐÙÖ º ÂÓ

Lisätiedot

0 ex x = e 1. x + 3a 2x a = 2a xº. 1 3 (uvy) 3 (uxy) 3 (wxy) uvwxy (uvw) 1 3 (vwx)

0 ex x = e 1. x + 3a 2x a = 2a xº. 1 3 (uvy) 3 (uxy) 3 (wxy) uvwxy (uvw) 1 3 (vwx) Å ÌȽ ¼ ËÝÑ ÓÐ Ò Ò Ð ÒØ ¾ ÓÔ ½ Ð Ø ÃÙÖ Ò Ø ÚÓ Ø ÐØ ËÝÑ ÓÐ Ò Ð ÒÒ Ò ÙÖ ÐÐ ÓÔ Ø Ò Ø ØÓ ÓÒ Ò ÝØØÑ Ø ÔÙÚÐ Ò Ò Ñ Ø Ñ ØØ ÓÒ ÐÑ Ò¹ Ö Ø Ù º ÃÙÖ Ò Ø ÚÓ ØØ Ò ÓÒ ÒØ Ô ÖÙ Ú ÐÑ Ù Ø ÝÑ ÓÐ Ò Ð ÒØ Ò Ö Ó ØÙÒ Ò Å Ø Ñ ¹

Lisätiedot

λ (i,j) (i 1,j) = µ R j, i = 1,... N B, j = 0,... N R λ (i,j) (i,j 1) = µ B i, i = 0,... N B, j = 1,... N R λ (i,j) (k,l) = 0, muulloin.

λ (i,j) (i 1,j) = µ R j, i = 1,... N B, j = 0,... N R λ (i,j) (i,j 1) = µ B i, i = 0,... N B, j = 1,... N R λ (i,j) (k,l) = 0, muulloin. Šع¾º½¼ ËÓÚ ÐÐ ØÙÒ Ñ Ø Ñ Ø Ò Ö Ó ØÝ Ø ¾¼¼ ¹¼¾¹½¾ Ì Ø ÐÙÒ Ñ ÐÐ ÒÒÙ Ø Å Ö ÓÚ Ò Ø ÙÐÐ Ì Ò ÐÐ Ò Ò ÓÖ ÓÙÐÙ Ì Ò ÐÐ Ò Ý Ò Ñ Ø Ñ Ø Ò Ó ØÓ ËÝ Ø Ñ Ò ÐÝÝ Ò Ð ÓÖ ØÓÖ Ó Ä ÙÖ ÂÙ Ò Ã Ò ¼¼ È Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Ì Ø ÐÙÑ

Lisätiedot

F n (a) = 1 n {i : 1 i n, x i a}, P n (a,b) = F n (b) F n (a). P n (a,b) = 1 n {i : 1 i n, a < x i b}.

F n (a) = 1 n {i : 1 i n, x i a}, P n (a,b) = F n (b) F n (a). P n (a,b) = 1 n {i : 1 i n, a < x i b}. Ë ÐØ ½ ÂÓ ÒØÓ ½ ½º½ ÌÓ ÒÒ ÝÝ Ø Ð ØÓØ º º º º º º º º º º º º º º º º º º ½ ½º¾ À Ú ØÙØ Ö Ú Ò Ø ÑÔ Ö Ø ÙÑ Ø º º º º º º º º º º º ½ ½º ÌÓ ÒÒ ÝÝ Ñ ÐÐ Ø º º º º º º º º º º º º º º º º º º º º º º º ½º º½

Lisätiedot

139/ /11034 = 0.58

139/ /11034 = 0.58 Ú ËÁË ÄÌ ÅÓÒ ÙÐÓØ Ø ÙÑ Ø ½ º½ à ÙÐÓØØ Ø ÙÑ Ø º º º º º º º º º º º º º º º º º º º º º ½ º½º½ Ê ÙÒ ÙÑ Ø ÓÐÐ Ø ÙÑ Ø º º º º º º º º º ½ º½º¾ ÓÐÐ Ò Ó ÓØÙ ÖÚÓÒ ÓÑ Ò ÙÙ º º º º º º º º º ½ º½º À Ö Ö Ø Ñ ÐÐ

Lisätiedot

ÌÍÊÍÆ ÄÁÇÈÁËÌÇ Å Ø Ñ Ø Ò Ð ØÓ ÃÍÄ ÊÁÁÃà ÔÝ ØÐ Ø ÈÖÓ Ö Ù ¹ØÙØ ÐÑ º ¾ Ð Ø º Å Ø Ñ Ø ÀÙ Ø ÙÙ ¾¼¼ ÌÙØ ÐÑ Ò Ò ÓÒ ÔÝ ØРغ Ì Ö Ó ØÙ Ò ÓÒ Ø Ö Ø ÐÐ Ö Ð ÔÝ ¹ Ø

ÌÍÊÍÆ ÄÁÇÈÁËÌÇ Å Ø Ñ Ø Ò Ð ØÓ ÃÍÄ ÊÁÁÃà ÔÝ ØÐ Ø ÈÖÓ Ö Ù ¹ØÙØ ÐÑ º ¾ Ð Ø º Å Ø Ñ Ø ÀÙ Ø ÙÙ ¾¼¼ ÌÙØ ÐÑ Ò Ò ÓÒ ÔÝ ØРغ Ì Ö Ó ØÙ Ò ÓÒ Ø Ö Ø ÐÐ Ö Ð ÔÝ ¹ Ø È ÀÌ Ä Ì Ê ÙÐ ÈÖÓ Ö Ù ¹ØÙØ ÐÑ ÀÙ Ø ÙÙ ¾¼¼ Å Ì Å ÌÁÁÃ Æ Ä ÁÌÇË ÌÍÊÍÆ ÄÁÇÈÁËÌÇ ÌÍÊÍÆ ÄÁÇÈÁËÌÇ Å Ø Ñ Ø Ò Ð ØÓ ÃÍÄ ÊÁÁÃà ÔÝ ØÐ Ø ÈÖÓ Ö Ù ¹ØÙØ ÐÑ º ¾ Ð Ø º Å Ø Ñ Ø ÀÙ Ø ÙÙ ¾¼¼ ÌÙØ ÐÑ Ò Ò ÓÒ ÔÝ ØРغ Ì Ö Ó ØÙ

Lisätiedot

À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç ØÓ ÙÐØ Ø»Ë Ø ÓÒ ÙÐØÝ Ä ØÓ ÁÒ Ø ØÙØ ÓÒ Ô ÖØÑ ÒØ Å Ø Ñ ØØ ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò Ì Ö

À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç ØÓ ÙÐØ Ø»Ë Ø ÓÒ ÙÐØÝ Ä ØÓ ÁÒ Ø ØÙØ ÓÒ Ô ÖØÑ ÒØ Å Ø Ñ ØØ ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò Ì Ö ÝÚ ÝÑ Ô Ú ÖÚÓ Ò ÖÚÓ Ø Ð Ä Ù ÓÑÔÓÒ ÒØ Ø Ã Ö Ì ÑÓÒ Ò À Ð Ò º º¾¼¼ Ç ÐÑ ØÓØÙÓØ ÒØÓ Ø ØÓ ÓÒ Ô Ð Ø ¹ Ñ Ò Ö À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ Ì ØÓ Ò ØØ ÐÝØ Ø Ò Ð ØÓ À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ

Lisätiedot

Ì ÅÈ Ê Æ ÄÁÇÈÁËÌÇ ÈÖÓ Ö Ù ¹ØÙØ ÐÑ ÇÐÐ Ë ÚÓÐ Ò Ò Ø ÖÑ Ò ÒØ Ò ÑÖ Ø ÐÑ Ø ÓÑ Ò ÙÙ Ø Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò ÐÓ Ó Ò Ð ØÓ Å Ø Ñ Ø À Ò ÙÙ ¾¼¼

Ì ÅÈ Ê Æ ÄÁÇÈÁËÌÇ ÈÖÓ Ö Ù ¹ØÙØ ÐÑ ÇÐÐ Ë ÚÓÐ Ò Ò Ø ÖÑ Ò ÒØ Ò ÑÖ Ø ÐÑ Ø ÓÑ Ò ÙÙ Ø Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò ÐÓ Ó Ò Ð ØÓ Å Ø Ñ Ø À Ò ÙÙ ¾¼¼ Ì ÅÈ Ê Æ ÄÁÇÈÁËÌÇ ÈÖÓ Ö Ù ¹ØÙØ ÐÑ ÇÐÐ Ë ÚÓÐ Ò Ò Ø ÖÑ Ò ÒØ Ò ÑÖ Ø ÐÑ Ø ÓÑ Ò ÙÙ Ø Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò ÐÓ Ó Ò Ð ØÓ Å Ø Ñ Ø À Ò ÙÙ ¾¼¼ Ì ÑÔ Ö Ò ÝÐ ÓÔ ØÓ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò ÐÓ Ó Ò Ð ØÓ Ë ÎÇÄ ÁÆ Æ ÇÄÄÁ

Lisätiedot

Ð Ù Ò Ø ÌÑ ÔÐÓÑ ØÝ ÓÒ Ø Ó Ì ÑÔ Ö Ò Ø Ò ÐÐ Ò ÝÐ ÓÔ ØÓÒ Å Ø Ñ Ø Ò Ð ØÓ Ò ÀÝÔ ÖÑ Ð ÓÖ ØÓÖ ÓÒ Ñ Ø Ñ Ø Ò ÓÔ ØÙ Ò ØØÑ ØÙع ÑÙ ÐÐ º ÌÝ Ý ØÝÚØ Ø Ò ÒÒÓ Ø Ú Ø Ø

Ð Ù Ò Ø ÌÑ ÔÐÓÑ ØÝ ÓÒ Ø Ó Ì ÑÔ Ö Ò Ø Ò ÐÐ Ò ÝÐ ÓÔ ØÓÒ Å Ø Ñ Ø Ò Ð ØÓ Ò ÀÝÔ ÖÑ Ð ÓÖ ØÓÖ ÓÒ Ñ Ø Ñ Ø Ò ÓÔ ØÙ Ò ØØÑ ØÙع ÑÙ ÐÐ º ÌÝ Ý ØÝÚØ Ø Ò ÒÒÓ Ø Ú Ø Ø Ä Æ Ä ÍÃÃÇÆ Æ Å Ø Ñ Ø Ò Ô ÖÙ Ø ØÓØ Ø Ò Ú Ö Ø Ö Ø ÐÙ ÓÔ ÒØÓ¹ Ñ Ò ØÝ Ò Ú ÙØØ Ú Ò Ø Ò Ò ÐÝ Ó ÒØ ÁÈÄÇÅÁÌ ÝÚ ÝØØÝ Ì Ò ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ó ØÓÒ ÙÚÓ ØÓÒ Ó ÓÙ º½½º¾¼¼ º Ì Ö Ø Ø ÔÖÓ ÓÖ Ë ÔÔÓ ÈÓ ÓÐ Ò Ò ØÙØ Å ÀÙ ÓÐ

Lisätiedot

1, x 0; 0, x < 0. ε(x) = p i ε(x i).

1, x 0; 0, x < 0. ε(x) = p i ε(x i). ËÁË ÄÌ Ö ØØ Ý ÙÐÓØØ ÙÑ ½½½ º½ Ö ØØ ØÙÒÒ ÑÙÙØØÙ º º º º º º º º º º º º º º º º º º ½½½ º¾ ÖÒÓÙÐÐ Ò Ó Ø ÒÓÑ ÙÑ º º º º º º º º º º º º º º º ½½ º¾º½  ÙÑ Ò ÝÑÑ ØÖ º º º º º º º º º º º º º º º º º º º ½½

Lisätiedot

{(x, y) x {1,2,3,... }, y {2,4,6,...,10}, x < y}.

{(x, y) x {1,2,3,... }, y {2,4,6,...,10}, x < y}. Ä Ø ÓÓ Ø Ø º º Ä Ø ÓÓ Ø Ø Å Ø Ñ Ø ÓØ ÑÖ ØØ Ð ÚØ Ù Ò ÓÙ Ó ÑÔÐ ØØ ÐÐ ÒÓØ Ø ÓÐÐ Ò ÙØ Ò {(x, y) x {1,2,3,... }, y {2,4,6,...,10}, x < y}. À ÐÐ Ø Ö Ó Ú Ø Ú Ò ÒÓØ Ø ÓÒ Ð ØÓ ÐÐ Ò Ú ØÓ ØÓ Ò ÝÒØ Ò Ø Ú ÐÐ ÐÐ Ð Ø

Lisätiedot

:: γ1. g 1. :: γ2. g 2

:: γ1. g 1. :: γ2. g 2 ÌÝÝÔÔ Ú ØØ Ø ¹ Ý ÝÑÝ Ø º º¾ Ò ÑÙÙØØÙ Ò Ý ÝÑÝ Ð Ø x g Ò e? :: α Ö Ø Ø Ò ÓÐ ÐÐ Ø ÑÓ Ò Ô Ö Ñ ØÖ ØØ ÑÒ ÙÒ Ø ÓÒ ÑÙØØ À ÐÐ ÝÐ Ø Ò ÐÐ ÑÙÙØØÙ Ó ÐÐ ÐÑ ÒØÙ ØÝÝÔÔ ÐÙÓ Ð Ó º Ë Ø ÑÙØ ÑÑ Ò ÑÓÒ Ý ÝÑÝ Ð Ø p g Ò e? ::

Lisätiedot

2x1 + x 2 = 1 x 1 + x 2 = 3. x1 = 2 x 2 = 5. 2 ( 2)+5 = = 3. 5x1 x 2 = 1 10x 1 2x 2 = 2. ax1 +bx 2 = e cx 1 +dx 2 = f

2x1 + x 2 = 1 x 1 + x 2 = 3. x1 = 2 x 2 = 5. 2 ( 2)+5 = = 3. 5x1 x 2 = 1 10x 1 2x 2 = 2. ax1 +bx 2 = e cx 1 +dx 2 = f Ä Ò Ö Ð Ö Á ÇÙÐÙÒ ÝÐ ÓÔ ØÓ Å Ø Ñ ØØ Ø Ò Ø Ø Ò Ð ØÓ ¾¼½½ ÂÖÚ ÒÔ Ã Ö Ó ØØ ÒÙØ ÌÙÙÐ Ê Ô ØØ ¾ ½ Ä Ò Ö Ò Ò Ý ØÐ ÖÝ Ñ ½½ Ñ Ö µ Ê Ø Ý ØÐ 5x = 7 Ã ÖÖÓØ Ò Ý ØÐ ÔÙÓÐ ØØ Ò ÐÙÚÙÐÐ 5 1 ÓÐÐÓ Ò Ò 5 1 5x = 5 1 7 Ð x =

Lisätiedot

ÄÙ ÙØ ÓÖ Ë Ô Ö ÒØ ÐÐ Ò ÝÑÑ ØÖ Ò Ð Ù Ò ØØ ÙÐ Ò Ú Ñ Ò Ð Ù Ò Ý Ø Ý Ø ÖÚ Ø Ò Ø ØÓ ÑÓ ÙÐÓ Ö ØÑ Ø Ø Ö ÐÐ Ø ÙÒÒ Ø º Ì ÐÙÚÙ ÐÙÓ Ò Ø Ù Ò Ò ÐÙ Ò ØÖ ÑÔ Ò ØØ Òº Ø

ÄÙ ÙØ ÓÖ Ë Ô Ö ÒØ ÐÐ Ò ÝÑÑ ØÖ Ò Ð Ù Ò ØØ ÙÐ Ò Ú Ñ Ò Ð Ù Ò Ý Ø Ý Ø ÖÚ Ø Ò Ø ØÓ ÑÓ ÙÐÓ Ö ØÑ Ø Ø Ö ÐÐ Ø ÙÒÒ Ø º Ì ÐÙÚÙ ÐÙÓ Ò Ø Ù Ò Ò ÐÙ Ò ØÖ ÑÔ Ò ØØ Òº Ø ÃÖÝÔØÓ Ö Ò Ô ÖÙ Ø Ø Ìº à ÖÚ Ë ÔØ Ñ Ö ¾¼¼ ̺ à ÖÚ µ ÃÖÝÔØÓ Ö Ò Ô ÖÙ Ø Ø Ë ÔØ Ñ Ö ¾¼¼ ½» ½½ ÄÙ ÙØ ÓÖ Ë Ô Ö ÒØ ÐÐ Ò ÝÑÑ ØÖ Ò Ð Ù Ò ØØ ÙÐ Ò Ú Ñ Ò Ð Ù Ò Ý Ø Ý Ø ÖÚ Ø Ò Ø ØÓ ÑÓ ÙÐÓ Ö ØÑ Ø Ø Ö ÐÐ Ø ÙÒÒ Ø º Ì

Lisätiedot

Simulointityökalu saarekekäytön säädön kehityksen tueksi Elektroniikan, tietoliikenteen ja automaation tiedekunta

Simulointityökalu saarekekäytön säädön kehityksen tueksi Elektroniikan, tietoliikenteen ja automaation tiedekunta Ë ÑÓ À Ð Simulointityökalu saarekekäytön säädön kehityksen tueksi Elektroniikan, tietoliikenteen ja automaation tiedekunta ÔÐÓÑ ØÝ Ó ÓÒ Ø ØØÝ ÓÔ ÒÒÝØØ Ò Ø Ö Ø ØØ Ú ÔÐÓÑ ¹ Ò Ò Ö Ò ØÙØ ÒØÓ Ú ÖØ Ò ÔÓÓ ½¼º

Lisätiedot

ÁÁ Ì Ö Ø Ó ÌÙÖÙÒ Ò Ì Ö Ø ÝÚ ÝØØÝ ÄÙÓÒÒÓÒØ Ø Ò ÝÑÔÖ Ø Ø Ò Ò Ø ÙÒÒ Ò Ø ÙÒØ Ò ÙÚÓ ØÓÒ Ó ÓÙ ½ º¼ º¾¼¼

ÁÁ Ì Ö Ø Ó ÌÙÖÙÒ Ò Ì Ö Ø ÝÚ ÝØØÝ ÄÙÓÒÒÓÒØ Ø Ò ÝÑÔÖ Ø Ø Ò Ò Ø ÙÒÒ Ò Ø ÙÒØ Ò ÙÚÓ ØÓÒ Ó ÓÙ ½ º¼ º¾¼¼ Å Ð Ë Ú Ð ÂÓ ÒØÓ Ð Ø ÓÖ Òº ØÖ ÙØ Ú Ø Ð Ø ÔÐÓÑ ØÝ ÁÁ Ì Ö Ø Ó ÌÙÖÙÒ Ò Ì Ö Ø ÝÚ ÝØØÝ ÄÙÓÒÒÓÒØ Ø Ò ÝÑÔÖ Ø Ø Ò Ò Ø ÙÒÒ Ò Ø ÙÒØ Ò ÙÚÓ ØÓÒ Ó ÓÙ ½ º¼ º¾¼¼ ÁÁÁ ÌÁÁÎÁËÌ ÄÅ Ì ÅÈ Ê Æ Ì ÃÆÁÄÄÁÆ Æ ÄÁÇÈÁËÌÇ Ì Ò ¹ ÐÙÓÒÒÓÒØ

Lisätiedot

C A B, A D B A B E. A B C, A C B Ø B A C.

C A B, A D B A B E. A B C, A C B Ø B A C. Ù Ð Ò ÝÔ Ö ÓÐ Ò ÓÑ ØÖ Ò Ñ ÐÐ Ö Ë ÐÑ Ð ÈÖÓ Ö Ù ØÙØ ÐÑ ÂÝÚ ÝÐÒ ÝÐ ÓÔ ØÓ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ Ã ÚØ ¾¼¼ Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ À Ð ÖØ Ò ÓÓÑ Ö Ø ÐÑ ¾ ¾º½ À Ð ÖØ Ò Ò Ò ÓÓÑ Ø º º º º º º º º º º º º º º º º

Lisätiedot

Ë ÐØ ½ ÂÓ ÒØÓ ¾ À Ò Ñ Ò Ñ Ó Ø ÓÖ Ø Ò Ö Ñ ÐÐ ¾º½ ËÔÓÒØ Ò ÝÑÑ ØÖ Ö Ó º º º º º º º º º º º º º º º º º º º º ¾º½º½ Ö ØØ ÝÑÑ ØÖ º º º º º º º º º º º º º

Ë ÐØ ½ ÂÓ ÒØÓ ¾ À Ò Ñ Ò Ñ Ó Ø ÓÖ Ø Ò Ö Ñ ÐÐ ¾º½ ËÔÓÒØ Ò ÝÑÑ ØÖ Ö Ó º º º º º º º º º º º º º º º º º º º º ¾º½º½ Ö ØØ ÝÑÑ ØÖ º º º º º º º º º º º º º Ë Ó ËÝÑÑ ØÖ Ö Ó Ì Ò ÚÖ Ø ÓÖ Ó Å ØØ À Ò ÑÓ Ñ Ô º ÝÙº ÈÖÓ Ö Ù ¹ØÙØ ÐÑ ÂÝÚ ÝÐÒ ÝÐ ÓÔ ØÓ Ý Ò Ð ØÓ ½¾º ÀÙ Ø ÙÙØ ¾¼¼ Ë ÐØ ½ ÂÓ ÒØÓ ¾ À Ò Ñ Ò Ñ Ó Ø ÓÖ Ø Ò Ö Ñ ÐÐ ¾º½ ËÔÓÒØ Ò ÝÑÑ ØÖ Ö Ó º º º º º º º º º º º º

Lisätiedot

MSE(ˆθ) = Var(ˆθ)+[E(ˆθ) θ] 2,

MSE(ˆθ) = Var(ˆθ)+[E(ˆθ) θ] 2, ËÁË ÄÌ Ú º º½ Å Ö ÓÚ Ò Ì Ý Ú Ò ÔÝ ØÐ Ø ÙÙÖØ Ò ÐÙ Ù¹ Ò Ð º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾ º º¾ Â Ò Ò Ò ÔÝ ØÐ º º º º º º º º º º º º º º º º º º º º ¾ º º ËØÓ Ø Ò Ò ÙÔÔ Ò Ñ Ò Ò º

Lisätiedot

ÁÁ ÌÁÁÎÁËÌ ÄÅ Ì ÅÈ Ê Æ Ì ÃÆÁÄÄÁÆ Æ ÄÁÇÈÁËÌÇ Ì ØÓÐ ÒÒ ¹ Ð ØÖÓÒ Ò ÓÙÐÙØÙ Ó ÐÑ ÂÇÆÁ È ÀÄ Å Ë Ò Ñ ÐÐ ÒÒÙ Ò Ô ÖÙ ØÙÚ ÑÙ Ò ÝÒØ Ã Ò Ø ÒØÝ ¾ ÚÙ ÌÓÙ Ó ÙÙ ¾¼¼ È

ÁÁ ÌÁÁÎÁËÌ ÄÅ Ì ÅÈ Ê Æ Ì ÃÆÁÄÄÁÆ Æ ÄÁÇÈÁËÌÇ Ì ØÓÐ ÒÒ ¹ Ð ØÖÓÒ Ò ÓÙÐÙØÙ Ó ÐÑ ÂÇÆÁ È ÀÄ Å Ë Ò Ñ ÐÐ ÒÒÙ Ò Ô ÖÙ ØÙÚ ÑÙ Ò ÝÒØ Ã Ò Ø ÒØÝ ¾ ÚÙ ÌÓÙ Ó ÙÙ ¾¼¼ È ÂÇÆÁ È ÀÄ Å ËÁÆÁÅ ÄÄÁÆÆÍÃË Æ È ÊÍËÌÍÎ ÅÍËÁÁÃÁÆ Ë ÆÌ ËÁ Ã Ò Ø ÒØÝ Ì Ö Ø Ð ØÓÖ ÃÓÒ Ø ÃÓÔÔ Ò Ò ½½º ØÓÙ Ó ÙÙØ ÁÁ ÌÁÁÎÁËÌ ÄÅ Ì ÅÈ Ê Æ Ì ÃÆÁÄÄÁÆ Æ ÄÁÇÈÁËÌÇ Ì ØÓÐ ÒÒ ¹ Ð ØÖÓÒ Ò ÓÙÐÙØÙ Ó ÐÑ ÂÇÆÁ È ÀÄ Å Ë Ò Ñ ÐÐ

Lisätiedot

a b = abº Z Q R C + : N N N, +(m,n) = m + n ( Ð (m,n) m + n), : N N N, (m,n) = m n (= mn) ( Ð (m,n) mn). A B (A,B) A Bº

a b = abº Z Q R C + : N N N, +(m,n) = m + n ( Ð (m,n) m + n), : N N N, (m,n) = m n (= mn) ( Ð (m,n) mn). A B (A,B) A Bº ÄÙ Ù ÐÙ Ø ÂÙ Ä Ö ÂÓÙÒ È Ö ÓÒ Ò ÄÙ ÐÐ ÌÑ ÑÓÒ Ø Ô ÖÙ ØÙÙ ÂÓÙÒ È Ö Ó Ò ÚÙÓ Ò ¾¼¼ ¾¼¼ ÂÙ Ä Ö Ò ÚÙÓÒÒ ¾¼¼ Ô ØÑ Ò ÄÙ Ù Ð٠ع ÙÖ Ò ÐÙ ÒØÓ Òº ÅÓÒ Ø Ò Ò Ò Ñ Ø ¹ Ö Ð ÓÒ Ø Ö Ó Ø ØØÙ Ú ÓÒ Ñ ØØ ÐÐ ÐÙ ÒØÓ ÙÖ ÐÐ Ð ÑÙ

Lisätiedot

½ Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ ¹ÔÙÙ ¾ ¾º½ Ì Ø ÝØ ØØÝ ¹ÔÙÙ º º º º º º º º º º º º º º º º º º º º º º º º ÌÖ ¹ØÖ º½ ÑÔÖ Ø º º º º º º º º º º º º º º º º º º º º

½ Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ ¹ÔÙÙ ¾ ¾º½ Ì Ø ÝØ ØØÝ ¹ÔÙÙ º º º º º º º º º º º º º º º º º º º º º º º º ÌÖ ¹ØÖ º½ ÑÔÖ Ø º º º º º º º º º º º º º º º º º º º º ¹ØÖ Ø Ø Ø ÓÒ Ø ÐÐ ÒØ Ñ Ð ÚÝÐÐ Â Ó Å ÐÚ Ö À Ð Ò ¾¾º½¼º¾¼¼ Ë Ñ Ò Ö ØÝ À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ Ì ØÓ Ò ØØ ÐÝØ Ø Ò Ð ØÓ ½ Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ ¹ÔÙÙ ¾ ¾º½ Ì Ø ÝØ ØØÝ ¹ÔÙÙ º º º º º º º º º º º º º º º º º º º º º º

Lisätiedot

ËÁË ÄÌ ¾º º½ ÀÝÔ Ö ÓÑ ØÖ Ò Ò ÙÑ º º º º º º º º º º º º º º º ¾º º¾ Ì Ö ØÙ ÓØ ÒØ Ø ÓÐÐ ÙÙ º º º º º º º º º º º º º º ¾º ÇØ ÒØ Ô Ð ÙØØ Ò º º º º º º º

ËÁË ÄÌ ¾º º½ ÀÝÔ Ö ÓÑ ØÖ Ò Ò ÙÑ º º º º º º º º º º º º º º º ¾º º¾ Ì Ö ØÙ ÓØ ÒØ Ø ÓÐÐ ÙÙ º º º º º º º º º º º º º º ¾º ÇØ ÒØ Ô Ð ÙØØ Ò º º º º º º º Ë ÐØ ½ ÂÓ ÒØÓ ½ ½º½ ÌÓ ÒÒ ÝÝ Ø Ð ØÓØ º º º º º º º º º º º º º º º º º º ½ ½º¾ À Ú ØÙØ Ö Ú Ò Ø ÑÔ Ö Ø ÙÑ Ø º º º º º º º º º º º ½ ½º ÌÓ ÒÒ ÝÝ Ñ ÐÐ Ø º º º º º º º º º º º º º º º º º º º º º º º ½º º½

Lisätiedot

f(x) =, x = 0,1,...,100. P(T 20) = P( X 50 20) 0.

f(x) =, x = 0,1,...,100. P(T 20) = P( X 50 20) 0. Ú ËÁË ÄÌ ½¾º ËÙ Ø ÐÐ Ø Ò Ó ÙÙ Ò ÐÙÓØØ ÑÙ ÚÐ Ø º º º º º º º º º º º º º º ¾ ½¾º ÇØÓ Ó Ó º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¼ ½¾º Å Ò Ò ÙÑ Ø Ú Ô ÐÙÓØØ ÑÙ ÚÐ º º º º º º º º º º

Lisätiedot

(xy)z = x(yz) λx = xλ = x.

(xy)z = x(yz) λx = xλ = x. ÄÙ Ù ½ ÐÙ ÌÑ ÑÓÒ Ø ÓÒ Ø Ö Ó Ø ØØÙ ÝØ ØØÚ Ì ÑÔ Ö Ò ÝÐ ÓÔ ØÓÒ Ø ØÓ Ò ØØ Ðݹ Ø Ø Ò Ð ØÓ Ò ÓÔ ÒØÓ ÓÐÐ ÙØÓÑ Ø Øº ÅÓÒ Ø Ô ÖÙ ØÙÙ ÙÖ Ú Ò Ð Ø Ò Åº º À ÖÖ ÓÒ ÁÒØÖÓ ÙØ ÓÒ ØÓ ÓÖÑ Ð Ä Ò Ù Ì ÓÖݺ ÓÒ¹Ï Ð Ý ½ º º º

Lisätiedot

P(r, ϕ t) = P(z, e it ) = 1 z 2 e it z 2, Ñ z = reiϕ. f(z + re iϕ )dϕ. f(z) = 1. f(z) f(z 0 ).

P(r, ϕ t) = P(z, e it ) = 1 z 2 e it z 2, Ñ z = reiϕ. f(z + re iϕ )dϕ. f(z) = 1. f(z) f(z 0 ). ÁÆÌ ÊÈÇÄ ÌÁÇ À Ê Æ Î ÊÍÍÃËÁËË ÈÖÓ Ö Ù ¹ØÙØ ÐÑ Â ÖÑÓ Å Ð À Ð Ò Ò ÝÐ ÓÔ ØÓ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ Ù Ø ÙÙ ¾¼¼ Ë ÐØ ½ ÂÓ ÒØÓ ¾ ËÙ ÖÑÓÒ Ø ÙÒ Ø ÓØ Ð Ò ØÙÐÓ ¾º½ Ò ÐÝÝØØ Ø ÙÒ Ø ÓØ º º º º º º º º º º º º º

Lisätiedot

Ë Ø ÐÓ Ò Ô ÖØÓ Á ÔÖÓ Ó ÒØ ÃÙÒ Ð ÙØ Ò ÓÒ Ò Ö ÒÒÙ Ò ÐÐ ÓÒ ÝÐ Ò ÖÖ ÐÐ Ò Ú Ò Ô Ò Ó Ö ÒÒÙ Ò Ø ÐÓ Ø Ò ÝÚ Ñ ÐÐ ÓÒ Ù Ø ÐÐ Ò ÙÙÖ ÑÖ Ò Ø Ø ÓÐÙ Ö µ Ã ÙÐÓØØ Ò Ò Ñ

Ë Ø ÐÓ Ò Ô ÖØÓ Á ÔÖÓ Ó ÒØ ÃÙÒ Ð ÙØ Ò ÓÒ Ò Ö ÒÒÙ Ò ÐÐ ÓÒ ÝÐ Ò ÖÖ ÐÐ Ò Ú Ò Ô Ò Ó Ö ÒÒÙ Ò Ø ÐÓ Ø Ò ÝÚ Ñ ÐÐ ÓÒ Ù Ø ÐÐ Ò ÙÙÖ ÑÖ Ò Ø Ø ÓÐÙ Ö µ à ÙÐÓØØ Ò Ò Ñ ØÙغ Ø Ò ÐÐ Ò Ò ÝÐ ÓÔ ØÓ Ì ÑÔ Ö Ò È Ð Ó ÐÑÓ ÒØ Ë Ø ÐÓ Ò Ô ÖØÓ Ò ÝÚÝÝ Ð ÒØ ÒØØ ÈÙ ÒØØ ºÔÙ Ç ÐÑ ØÓØ Ò Ë Ø ÐÓ Ò Ô ÖØÓ Á ÔÖÓ Ó ÒØ ÃÙÒ Ð ÙØ Ò ÓÒ Ò Ö ÒÒÙ Ò ÐÐ ÓÒ ÝÐ Ò ÖÖ ÐÐ Ò Ú Ò Ô Ò Ó Ö ÒÒÙ Ò Ø ÐÓ Ø Ò ÝÚ Ñ

Lisätiedot

N = A A A S(A) Aº 0 = 1 = { } 2 = {, { }} 3 = {, { }, {, { }}} 4 = {, { }, {, { }}, {, { }, {, { }}}} A = Nº. i=1 n N n > 0º

N = A A A S(A) Aº 0 = 1 = { } 2 = {, { }} 3 = {, { }, {, { }}} 4 = {, { }, {, { }}, {, { }, {, { }}}} A = Nº. i=1 n N n > 0º Å Ì ¾¾ ÄÙ ÙØ ÓÖ Ã ¾¼½¼ ÌÑ ÐÙ ÒØÓÑÓÒ Ø Ô ÖÙ ØÙÙ ÙÙÖ ÐØ Ó ÐØ Ä ÃÙÖ ØÙÒ Ô ÖÙ ¹ Ø ÐÐ Ò ÐÙ ÒØÓÑÓÒ Ø Ò ÓØ ÒÒ ØØ ÐÙ Ñ Ð Ô ØÓ¹ ØÙ Ò Ð Ý ØÝ Ó Ø º Ë ÐØ ½º ÄÙÓÒÒÓÐÐ Ø ÐÙÚÙØ ½º½º ÄÙ Ù Ö Ø ÐÑØ ½º¾º  ÓÐÐ ÙÙ ½º º Ð

Lisätiedot

x α 1... x (v ṽ)φdx = 0

x α 1... x (v ṽ)φdx = 0 Ð Ñ ÒØØ Ñ Ò Ø ÐÑ ÐÐ ÔØ ÐÐ ÓÒ ÐÑ ÐÐ ÈÖÓ Ö Ù ¹ØÙØ ÐÑ Ì ÑÙ ÅÙ ØÓÒ Ò ½ ½ ÁعËÙÓÑ Ò ÝÐ ÓÔ ØÓ ÄÙÓÒÒÓÒØ Ø Ò Ñ Ø Ø Ø Ò Ø ÙÒØ Ý Ò Ñ Ø Ñ Ø Ò Ð ØÓ ½ º ØÓÙ Ó ÙÙØ ¾¼½¾ Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Ð Ñ ÒØØ Ñ Ò Ø ÐÑÒ ÙÒ Ø Ó Ú ÖÙÙ

Lisätiedot

3D piirron liukuhihna (3D Graphics Pipeline) Sovellus/mallinnus Geometrian käsittely Rasterointi/piirto

3D piirron liukuhihna (3D Graphics Pipeline) Sovellus/mallinnus Geometrian käsittely Rasterointi/piirto ØÙغ Ø Ò ÐÐ Ò Ò ÝÐ ÓÔ ØÓ Ì ÑÔ Ö Ò È Ð Ó ÐÑÓ ÒØ Ö Ò Ô ÖØÓ ÒØØ ÈÙ ÒØØ ºÔÙ Ç ÐÑ ØÓØ Ò ¹ Ö Ò Ô ÖØÑ Ò Ò ÙÚ Ø Ò Ù Ò Ð Ù Ù Ò Ò Ô Ô Ð Ò µ ÚÙÐÐ Ö Ð Ù Ù Ò Ö Ø ØÓ ÙÐ Ð Ù Ù Ò Ò Ö Ú Ò ÙØØ ÒÒ Ò Ù Ò Ô ÖÖ ØÒ ÖÙÙ ÙÐÐ Ö

Lisätiedot

Ruuhkanhallinta-algoritmien toiminta haasteellisissa tietoverkoissa Elektroniikan, tietoliikenteen ja automaation tiedekunta

Ruuhkanhallinta-algoritmien toiminta haasteellisissa tietoverkoissa Elektroniikan, tietoliikenteen ja automaation tiedekunta Ä ÊÓÔÔÓÒ Ò Ruuhkanhallinta-algoritmien toiminta haasteellisissa tietoverkoissa Elektroniikan, tietoliikenteen ja automaation tiedekunta ÔÐÓÑ ØÝ Ó ÓÒ Ø ØØÝ ÓÔ ÒÒÝØØ Ò Ø Ö Ø ØØ Ú ÔÐÓÑ ¹ Ò Ò Ö Ò ØÙØ ÒØÓ Ú

Lisätiedot

x = [ x 1 x 2 x n (x i K) x = K (n) = {(x 1, x 2,...,x n ) : x i K} e 1 = (1, 0,..., 0) Ø, e 2 = (0, 1,..., 0) Ø,..., e n = (0, 0,...

x = [ x 1 x 2 x n (x i K) x = K (n) = {(x 1, x 2,...,x n ) : x i K} e 1 = (1, 0,..., 0) Ø, e 2 = (0, 1,..., 0) Ø,..., e n = (0, 0,... ¼¼ Ë Å ØÖ Ø ÓÖ Ì ÖÓ Î Ò ÙÓ Ù ¾º ØÓÙ Ó ÙÙØ ¾¼¼ Ë ÐØ ½ Ä Ò Ö Ð Ö ½º½ Å Ö ÒØ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º¾ È ÖÙ ÓÑ Ò ÙÙ º º º º º º º º º º º º º º º º º º º º º º º º ½º Å

Lisätiedot

(AB) ij = p. k=1 a ikb kj. AA 1 = A 1 A = I.

(AB) ij = p. k=1 a ikb kj. AA 1 = A 1 A = I. Ð ÙÓ ÙÖ Ø Å˹ ½ ¼ ÄÁÆ ÊÁ Ä Ê Æ È ÊÍËÌ Ì ÌÁÅÇ ÁÊÇÄ A A = 0 0 2 0 0 2 ÐØÓ Ð ÓÔ ØÓ È ÖÙ Ø Ø Ò ÃÓÖ ÓÙÐÙ Å Ø Ñ Ø Ò ËÝ Ø Ñ Ò ÐÝÝ Ò Ð ØÓ ËÝ Ý ¾¼½ ÄÁÆ ÊÁ Ä Ê Æ È ÊÍËÌ Ì ÌÑ ÑÓÒ Ø ÓÒ Ö Ó Ø ØØÙ ÙÙ ÐÐ Ò Ý ÝÐÐ ¾¼½

Lisätiedot

Ç Ø ØÙØ ÐÑ Ò Ð Ø Ó ÐÐ Ã Ö ¹ÂÓÙ Ó Ê Ì ÑÔ Ö Ò ÝÐ ÓÔ ØÓ ÁÒ ÓÖÑ Ø ÓØ Ø Ò Ý»Ø Ó Ø ÚØ ÈÖÓ Ö Ù ¹ØÙØ ÐÑ Ç Å ÖØØ Ì Ò Ö ¾ º½º¾¼½½ Ì ÑÔ Ö Ò ÝÐ ÓÔ ØÓ ÁÒ ÓÖÑ Ø ÓØ Ø Ò Ý»Ø Ó Ø ÚØ Ã Ö ¹ÂÓÙ Ó Ê Ç Ø ØÙØ ÐÑ Ò Ð Ø Ó ÐÐ

Lisätiedot

Ë ÐØ ½ Ð Ø Ê Ø ¾ ¾ Ê Ò ÝÒØ ØÝ ÒØ ÐÝÒ ÐÓ ØØ Ñ Ò Ò ¾º½ Ç Ò ÝØØ Ê¹ ØÙÒÒÓÒ Ò º º º º º º º º º º º º º º º º ¾º¾ Ä Ô Ø Ø Ò ØÓØ º º º º º º º º º º º º º º

Ë ÐØ ½ Ð Ø Ê Ø ¾ ¾ Ê Ò ÝÒØ ØÝ ÒØ ÐÝÒ ÐÓ ØØ Ñ Ò Ò ¾º½ Ç Ò ÝØØ Ê¹ ØÙÒÒÓÒ Ò º º º º º º º º º º º º º º º º ¾º¾ Ä Ô Ø Ø Ò ØÓØ º º º º º º º º º º º º º º ÂÓ ÒØÓ Ñ ØÖ Ò Ð Ò Ö Ø Ò Ñ ÐÐ Ò ØØ ÐÝÝÒ Ê¹Ó ÐÑ ØÓÐÐ ÒÒ Ç Ö Ò Ò Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò ÐÓ Ó Ò Ð ØÓ Ì ÑÔ Ö Ò ÝÐ ÓÔ ØÓ ÐÓ ÙÙ ¾¼¼ Ë ÐØ ½ Ð Ø Ê Ø ¾ ¾ Ê Ò ÝÒØ ØÝ ÒØ ÐÝÒ ÐÓ ØØ Ñ Ò Ò ¾º½ Ç Ò ÝØØ Ê¹ ØÙÒÒÓÒ Ò º º

Lisätiedot

½µ newstate := 0. µ state := goto[state,p i [j]] µ state := 0;j := 0. µ j := j + 1 µ newstate := newstate + 1

½µ newstate := 0. µ state := goto[state,p i [j]] µ state := 0;j := 0. µ j := j + 1 µ newstate := newstate + 1 ½º º Àǹ ÇÊ ËÁ ù Ä ÇÊÁÌÅÁ ½ à ÖÔ Ê Ò Ø Ö Ø Ð Ú Ø ÑÝ ÙÒ Ú Ö Ð Ò ÙØÙ Ò Ô ÖÙ ØÙÚ Ú Ö Ó Ø Ð ÓÖ ØÑ Ø Î Ð Ø Ò q ØÙÒÒ Ø ÐÙ Ù ÓÙ Ó Ø Qº Q Ò ÐÙÚÙØ ÚÓ Ú Ø ÓÐÐ Ô Ò Ò Ò Ò Ø ÖÚ Ø ÓÐÐ Ð ÙÐÙ Ù º ÎÖÒ Ø ÑÝ Ò ØÓ ÒÒ ÝÝ

Lisätiedot

k(x,x ) K N(µ, Σ) GP(m(x), k(x,x )) X x p diag(x)

k(x,x ) K N(µ, Σ) GP(m(x), k(x,x )) X x p diag(x) Ì ÊÅÇ ÁÂ ÍËËÁÆ ÈÊÇË ËËÁÌ Ê Ê ËËÁÇ Æ Ä ËÁËË Ã Ò Ø ÒØÝ Ç ÝÐ Ø ÒØØ À ÖÖ Ä Ñ Ì Ö Ø Ð ØÓÖ À ÀÙØØÙÒ Ò ÁÁ ÌÁÁÎÁËÌ ÄÅ Ì ÅÈ Ê Æ Ì ÃÆÁÄÄÁÆ Æ ÄÁÇÈÁËÌÇ Ì ØÓØ Ò Ò ÓÙÐÙØÙ Ó ÐÑ Ì ÊÅÇ ÁÂ Ù Ò ÔÖÓ Ø Ö Ö Ó Ò ÐÝÝ Ã Ò Ø ÒØÝ

Lisätiedot

Ì ÂÙ Ò Ä ÑÑ Ö Ø Ý Ø ÓØ ÈÙ Ð Ò ¼ ¼½¾ ½ ÔÓ Ø ÒÙÐ º ÌÝ Ò Ò Ñ ÅÓ Ð ÓÚ ÐÐÙ Ø Ò ÖÖ ØØÚÝÝ ØÓØ ÙØÙ Ò ØÖ Ø ÓØ Ó Ì ØÐ Ò Ò Ð ÈÓÖØ Ð ØÝ Ó ÅÓ Ð ÔÔÐ Ø ÓÒ Ò ÁÑÔÐ Ñ Ò

Ì ÂÙ Ò Ä ÑÑ Ö Ø Ý Ø ÓØ ÈÙ Ð Ò ¼ ¼½¾ ½ ÔÓ Ø ÒÙÐ º ÌÝ Ò Ò Ñ ÅÓ Ð ÓÚ ÐÐÙ Ø Ò ÖÖ ØØÚÝÝ ØÓØ ÙØÙ Ò ØÖ Ø ÓØ Ó Ì ØÐ Ò Ò Ð ÈÓÖØ Ð ØÝ Ó ÅÓ Ð ÔÔÐ Ø ÓÒ Ò ÁÑÔÐ Ñ Ò ÂÙ Ò Ä ÑÑ Ö ÅÓ Ð ÓÚ ÐÐÙ Ø Ò ÖÖ ØØÚÝÝ ØÓØ ÙØÙ Ò ØÖ Ø ÓØ Ó Ì ØÓØ Ò Ò Ó ÐÑ ØÓØ Ò µ ÔÖÓ Ö Ù ¹ØÙØ ÐÑ ½º ÐÓ ÙÙØ ¾¼¼ ÂÝÚ ÝÐÒ ÝÐ ÓÔ ØÓ Ì ØÓØ Ò Ò Ð ØÓ ÂÝÚ ÝÐ Ì ÂÙ Ò Ä ÑÑ Ö Ø Ý Ø ÓØ ÈÙ Ð Ò ¼ ¼½¾ ½ ÔÓ Ø ÒÙÐ º ÌÝ

Lisätiedot

X = 0I A0 +1I A1 +2I A2 +3I A3 = 1I A1 +2I A2 +3I A3. {X(ω) = r}º

X = 0I A0 +1I A1 +2I A2 +3I A3 = 1I A1 +2I A2 +3I A3. {X(ω) = r}º ËÁË ÄÌ ¾º º½ ÀÝÔ Ö ÓÑ ØÖ Ò Ò ÙÑ º º º º º º º º º º º º º º º ¾º º¾ Ì Ö ØÙ ÓØ ÒØ Ø ÓÐÐ ÙÙ º º º º º º º º º º º º º º ¾º ÇØ ÒØ Ô Ð ÙØØ Ò º º º º º º º º º º º º º º º º º º º º º º º º ¾º ÒÓÑ ÙÑ º º º

Lisätiedot

ÂÝÚ ÝÐÒ ÝÐ ÓÔ ØÓ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ÃÁÆÆÍÆ Æ ÌÇÈÁ Ê ÒÒÙ Ø Ò Ø Ò ÓÐÓ Ø Ò ÐÑ ØÓÐÐ Ø Ò Ø Ò Ú ÙØÙ ÙÒØÓ Ò ÐÑ Ò Ö ÓÒÔ ØÓ ÙÙØ Òº ÈÖÓ Ö Ù ¹ØÙØ ÐÑ º ½

ÂÝÚ ÝÐÒ ÝÐ ÓÔ ØÓ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ÃÁÆÆÍÆ Æ ÌÇÈÁ Ê ÒÒÙ Ø Ò Ø Ò ÓÐÓ Ø Ò ÐÑ ØÓÐÐ Ø Ò Ø Ò Ú ÙØÙ ÙÒØÓ Ò ÐÑ Ò Ö ÓÒÔ ØÓ ÙÙØ Òº ÈÖÓ Ö Ù ¹ØÙØ ÐÑ º ½ Ê Ã ÆÆÍËÌ ÃÆÁËÌ Æ ÇÄÇ ÁËÌ Æ Â ÁÄÅ ËÌÇÄÄÁËÌ Æ Ì ÃÁ Á Æ Î ÁÃÍÌÍË ËÍÆÌÇÂ Æ ËÁË ÁÄÅ Æ Ê ÇÆÈÁÌÇÁËÍÍÌ Æ ÌÓÔ Ã ÒÒÙÒ Ò Ì Ð ØÓØ Ø Ò ÔÖÓ Ö Ù ¹ØÙØ ÐÑ ÂÝÚ ÝÐÒ ÝÐ ÓÔ ØÓ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ¾¼¼ ÂÝÚ ÝÐÒ ÝÐ ÓÔ

Lisätiedot

Pr(θ = 1)Pr(Y > y 0 θ = 1) Pr(θ = 1)Pr(Y > y 0 θ = 1)+Pr(θ = 0)Pr(Y > y 0 θ = 0) γ[1 F 1 (y 0 )] γ[1 F 1 (y 0 )]+(1 γ)[1 F 0 (y 0 )].

Pr(θ = 1)Pr(Y > y 0 θ = 1) Pr(θ = 1)Pr(Y > y 0 θ = 1)+Pr(θ = 0)Pr(Y > y 0 θ = 0) γ[1 F 1 (y 0 )] γ[1 F 1 (y 0 )]+(1 γ)[1 F 0 (y 0 )]. Ì Ð ØÓÐÐ Ò Ò ÔØØ ÐÝ ¾ ½¼ ÓÔ ÖØÓ ÄÙÓÑ Ì Ð ØÓØ ÁÒ ÓÖÑ Ø ÓØ Ø Ò Ý ¼½ Ì ÅÈ Ê Æ ÄÁÇÈÁËÌÇ Ã ÚØ ¾¼½ Ã Ö ÐÐ ÙÙØØ ÖØ Û Ø ÂÓÐÐ ÂÓÒ ËØ Ø Ø Ð ÁÒ Ö Ò Ë ÓÒ Ø ÓÒ ÈÖ Ò¹ Ø À ÐÐ ¾¼¼¾ ÓÙÒ ËÑ Ø ÒØ Ð Ó ËØ Ø Ø Ð ÁÒ Ö Ò Ñ Ö

Lisätiedot

Ì ØÓØÙÖÚ Ò ÓØØ ÐÙØ Á Ì ØÓØÙÖÚ ÓÒ Ð º Ë ÙÖ Ú Ð Ø ÓÒ ÐÙ Ø ÐØÙ Ø ØÓØÙÖÚ Ò Ö Ó ¹ ÐÙ Ø º Â ÓØØ ÐÙ ÓÒ Ñ Ð Ó ÝÐ Ò Ò Ø ØÒ ÝÐ Ø ØÓØÙÖÚ Ò ÓÔÔ Ö Ó º À ÐÐ ÒÒÓÐÐ Ò

Ì ØÓØÙÖÚ Ò ÓØØ ÐÙØ Á Ì ØÓØÙÖÚ ÓÒ Ð º Ë ÙÖ Ú Ð Ø ÓÒ ÐÙ Ø ÐØÙ Ø ØÓØÙÖÚ Ò Ö Ó ¹ ÐÙ Ø º  ÓØØ ÐÙ ÓÒ Ñ Ð Ó ÝÐ Ò Ò Ø ØÒ ÝÐ Ø ØÓØÙÖÚ Ò ÓÔÔ Ö Ó º À ÐÐ ÒÒÓÐÐ Ò ÌÁ ÌÇÌÍÊÎ Ó Á ̺ à ÖÚ ËÝÝ ÙÙ ¾¼¼ ̺ à ÖÚ µ ÌÁ ÌÇÌÍÊÎ Ó Á ËÝÝ ÙÙ ¾¼¼ ½» ½ Ì ØÓØÙÖÚ Ò ÓØØ ÐÙØ Á Ì ØÓØÙÖÚ ÓÒ Ð º Ë ÙÖ Ú Ð Ø ÓÒ ÐÙ Ø ÐØÙ Ø ØÓØÙÖÚ Ò Ö Ó ¹ ÐÙ Ø º  ÓØØ ÐÙ ÓÒ Ñ Ð Ó ÝÐ Ò Ò Ø ØÒ ÝÐ Ø ØÓØÙÖÚ Ò

Lisätiedot

f(x;n,θ) = θ x (1 θ) n x, x = 0,1,...,n; 0 θ 1. Θ = {θ 0 θ 1}. ˆθ = x n.

f(x;n,θ) = θ x (1 θ) n x, x = 0,1,...,n; 0 θ 1. Θ = {θ 0 θ 1}. ˆθ = x n. ËÁË ÄÌ Ú º º½ Å Ö ÓÚ Ò Ì Ý Ú Ò ÔÝ ØÐ Ø ÙÙÖØ Ò ÐÙ Ù¹ Ò Ð º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾ º º¾ Â Ò Ò Ò ÔÝ ØÐ º º º º º º º º º º º º º º º º º º º º ¾ º º ËØÓ Ø Ò Ò ÙÔÔ Ò Ñ Ò Ò º

Lisätiedot

Ì ÃÆÁÄÄÁÆ Æ ÃÇÊÃ ÃÇÍÄÍ Ì ÃÆÁÄÄÁË Æ ËÁÁÃ Æ Â Å Ì Å ÌÁÁÃ Æ ÇË ËÌÇ Ì Ç ØÓ È Ò Ë ÚÙ Ò ÌÝ Ò Ò Ñ Ì ØÐ Ò Ò Ð ÈÖÓ ÙÙÖ Ò ÓÓ Ò Ñ ÌÝ Ò Ú ÐÚÓ ÌÝ Ò Ó ÂÙ Ó Ã ÒÒ Ì Ò

Ì ÃÆÁÄÄÁÆ Æ ÃÇÊÃ ÃÇÍÄÍ Ì ÃÆÁÄÄÁË Æ ËÁÁÃ Æ Â Å Ì Å ÌÁÁÃ Æ ÇË ËÌÇ Ì Ç ØÓ È Ò Ë ÚÙ Ò ÌÝ Ò Ò Ñ Ì ØÐ Ò Ò Ð ÈÖÓ ÙÙÖ Ò ÓÓ Ò Ñ ÌÝ Ò Ú ÐÚÓ ÌÝ Ò Ó ÂÙ Ó Ã ÒÒ Ì Ò Ì Ò ÐÐ Ò Ò ÓÖ ÓÙÐÙ Ì Ò ÐÐ Ò Ý Ò Ñ Ø Ñ Ø Ò Ó ØÓ Å Ø Ñ Ø Ò Ð ØÓ ÂÙ Ó Ã ÒÒ ÃÓÑÔÓ ØØ Ð Ñ Ò ØØ Ò Ò ÐÝÝ Ð Ñ ÒØØ Ñ Ò Ø ÐÑÐÐ ÔÐÓÑ ¹ Ò Ò Ö Ò ØÙØ ÒØÓ Ú ÖØ Ò Ø Ö Ø ØØ Ú Ø ØØÝ ÔÐÓÑ ØÝ ÔÓÓ ¾ º ÐÓ ÙÙØ ¾¼¼ ÌÝ Ò Ú ÐÚÓ

Lisätiedot

Aktiivisten DNA-muutosten seulonta riippuvuusmalleilla Elektroniikan, tietoliikenteen ja automaation tiedekunta

Aktiivisten DNA-muutosten seulonta riippuvuusmalleilla Elektroniikan, tietoliikenteen ja automaation tiedekunta ÇÐÐ ¹È ÀÙÓÚ Ð Ò Ò Aktiivisten DNA-muutosten seulonta riippuvuusmalleilla Elektroniikan, tietoliikenteen ja automaation tiedekunta ÔÐÓÑ ØÝ Ó ÓÒ Ø ØØÝ ÓÔ ÒÒÝØØ Ò Ø Ö Ø ØØ Ú ÔÐÓÑ ¹ Ò Ò Ö Ò ØÙØ ÒØÓ Ú ÖØ Ò

Lisätiedot

284 = º Î Ø Ú Ø. A = kanta korkeus. A 1/2suunn = kanta+kanta 2

284 = º Î Ø Ú Ø. A = kanta korkeus. A 1/2suunn = kanta+kanta 2 ÈÝØ ÓÖ Ò Ð Ù ÈÝØ ÓÖ Ò ÓÐÑ ÓØ ÈÖÓ Ö Ù¹ØÙØ ÐÑ ÒÓ¹Ã Ö Ò ½ Å Ø Ñ Ø Ò Ý Ò Ð ØÓ ÁعËÙÓÑ Ò ÝÐ ÓÔ ØÓ º ÐÓ ÙÙØ ¾¼½¾ Ë ÐØ ½ ÂÓ ÒØÓ ½ ½º½ ÈÝØ ÓÖ º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ ÈÝØ ÓÖ

Lisätiedot

Ì È ÚÓ È Ö Ò Ò Ø Ý Ø ÓØ ÔÔ Ö Ò ÝÙº ÌÝ Ò Ò Ñ Å Ö Ò ÔÓ Ø Ñ ÐÐ Ø ÝØØ Ö Ø ÐÑÒ ÑÙ Ø Ò ÐÐ ÒÒ Ì ØÐ Ò Ò Ð Å Ö Ø¹ ÑÓ Ð ÓÖ ÓÔ Ö Ø Ò Ý Ø Ñ Ñ ÑÓÖÝ Ñ Ò Ñ ÒØ ÌÝ Ì Ø

Ì È ÚÓ È Ö Ò Ò Ø Ý Ø ÓØ ÔÔ Ö Ò ÝÙº ÌÝ Ò Ò Ñ Å Ö Ò ÔÓ Ø Ñ ÐÐ Ø ÝØØ Ö Ø ÐÑÒ ÑÙ Ø Ò ÐÐ ÒÒ Ì ØÐ Ò Ò Ð Å Ö Ø¹ ÑÓ Ð ÓÖ ÓÔ Ö Ø Ò Ý Ø Ñ Ñ ÑÓÖÝ Ñ Ò Ñ ÒØ ÌÝ Ì Ø È ÚÓ È Ö Ò Ò Å Ö Ò ÔÓ Ø Ñ ÐÐ Ø ÝØØ Ö Ø ÐÑÒ ÑÙ Ø Ò ÐÐ ÒÒ Ì ØÓØ Ò Ò ÈÖÓ Ö Ù ØÙØ ÐÑ ½ º ÐÓ ÙÙØ ¾¼¼ ÂÝÚ ÝÐÒ ÝÐ ÓÔ ØÓ Ì ØÓØ Ò Ò Ð ØÓ ÂÝÚ ÝÐ Ì È ÚÓ È Ö Ò Ò Ø Ý Ø ÓØ ÔÔ Ö Ò ÝÙº ÌÝ Ò Ò Ñ Å Ö Ò ÔÓ Ø Ñ ÐÐ Ø ÝØØ

Lisätiedot

arvostelija Elliptisen käyrän salauksen perusteita Mikko Alakunnas Helsinki HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos

arvostelija Elliptisen käyrän salauksen perusteita Mikko Alakunnas Helsinki HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos hyväksymispäivä arvosana arvostelija Elliptisen käyrän salauksen perusteita Mikko Alakunnas Helsinki 12.4.2007 HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET

Lisätiedot

À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç ØÓ ÙÐØ Ø»Ë Ø ÓÒ ÙÐØÝ Ä ØÓ ÁÒ Ø ØÙØ ÓÒ Ô ÖØÑ ÒØ Å Ø Ñ ØØ ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò Ì Ö

À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç ØÓ ÙÐØ Ø»Ë Ø ÓÒ ÙÐØÝ Ä ØÓ ÁÒ Ø ØÙØ ÓÒ Ô ÖØÑ ÒØ Å Ø Ñ ØØ ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò Ì Ö ÝÚ ÝÑ Ô Ú ÖÚÓ Ò ÖÚÓ Ø Ð ÈÓÐÙÒ Ø ÒØ Ù Ò ÒØ Ò ÝÑÔÖ Ø Ô Ð È Ä ÓÒ Ò À Ð Ò º º¾¼¼ ÄÙùØÙØ ÐÑ À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ Ì ØÓ Ò ØØ ÐÝØ Ø Ò Ð ØÓ À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç

Lisätiedot

Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Ç ÐÑ ØÓ Ò ÑÓ ÙÐ Ö Ó ÒØ ½ ÄÔ Ð Ú Ø ÓÑ Ò ÙÙ Ø Ô Ø Ó ÐÑÓ ÒØ Ô Ø º½ Ä ØÓ Ó Ø Ð ØÓ Ó Ø ÑÖ ØØ ÐÝØ º º º º º º º º º º º º º º º º º º º¾

Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Ç ÐÑ ØÓ Ò ÑÓ ÙÐ Ö Ó ÒØ ½ ÄÔ Ð Ú Ø ÓÑ Ò ÙÙ Ø Ô Ø Ó ÐÑÓ ÒØ Ô Ø º½ Ä ØÓ Ó Ø Ð ØÓ Ó Ø ÑÖ ØØ ÐÝØ º º º º º º º º º º º º º º º º º º º¾ Ô Ø Ó ÐÑÓ ÒØ ÐÔ Ð Ú Ò ÓÑ Ò ÙÙ Ò ÑÓ ÙÐ ¹ Ö Ó ÒØ Ì ÑÓ ÌÙÓÑ Ò Ò À Ð Ò ½º º¾¼¼ Ë Ñ Ò Ö Ø ÐÑ À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ Ì ØÓ Ò ØØ ÐÝØ Ø Ò Ð ØÓ Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Ç ÐÑ ØÓ Ò ÑÓ ÙÐ Ö Ó ÒØ ½ ÄÔ Ð Ú Ø ÓÑ Ò ÙÙ Ø Ô Ø Ó ÐÑÓ

Lisätiedot

À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç ØÓ ÙÐØ Ø»Ë Ø ÓÒ ÙÐØÝ Ä ØÓ ÁÒ Ø ØÙØ ÓÒ Ô ÖØÑ ÒØ Å Ø Ñ ØØ ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò Ø ÙÒ

À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç ØÓ ÙÐØ Ø»Ë Ø ÓÒ ÙÐØÝ Ä ØÓ ÁÒ Ø ØÙØ ÓÒ Ô ÖØÑ ÒØ Å Ø Ñ ØØ ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò Ø ÙÒ ÝÚ ÝÑ Ô Ú ÖÚÓ Ò ÖÚÓ Ø Ð ÄÙÓØØ ÑÙ Ò ÑÖ ØØ ÐÝ Ò ÐÝ Ó ÒØ ÁÒØ ÖÒ Ø¹ ÓÚ ÐÐÙ ÐÐ È Ø Ö Ë ÐÓÒ Ò À Ð Ò º º¾¼¼ Ë Ñ Ò Ö ÖØ Ð À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ Ì ØÓ Ò ØØ ÐÝØ Ø Ò Ð ØÓ À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ

Lisätiedot

M : S N { }, S : S N.

M : S N { }, S : S N. Æ ¹Ð ÒØ ÙÒ Ú Ö Ð ÙÙ Æ ËÙÙØ Ö Ò Ò ÔÖÓ Ö Ù Ñ Ø Ñ Ø ÌÙÖÙÒ ÝÐ ÓÔ ØÓ ¾¼¼ Ë ÐØ ÂÓ ÒØÓ ¾ ½ ÓÖÑ Ð Ø Ò ÐØ Ò Ø ÓÖ Ò ØØ Ø ØÙÐÓ ½º½ ÅÙÐØ ÓÙ ÓØ Ö Ð Ø ÓØ º º º º º º º º º º º º º º º º º º º º º º ½º¾ Ë Ò Ø Ð Ø ÑÓÖ

Lisätiedot

Ì Đ Á ÑÓ ÀÓÖÔÔÙ Ø Ý Ø ÓØ ÓÖÔÔÙº ÝÙº ÌÝĐÓÒ Ò Ñ Ç ÐÑ ØÓÒ ØØĐ Ñ Ò Ò ÔÙÙØØ ÐÐ Ò Ú Ö ÐÐ Ò Ú ÒØÓ Ò ØÓÒ Đ ØØ ÐÝÝÒ Ì ØÐ Ò Ò Ð ËÓ ØÛ Ö Ú ÐÓÔÑ ÒØ ÓÖ Ñ Ò Ò ÖÖÓÒ

Ì Đ Á ÑÓ ÀÓÖÔÔÙ Ø Ý Ø ÓØ ÓÖÔÔÙº ÝÙº ÌÝĐÓÒ Ò Ñ Ç ÐÑ ØÓÒ ØØĐ Ñ Ò Ò ÔÙÙØØ ÐÐ Ò Ú Ö ÐÐ Ò Ú ÒØÓ Ò ØÓÒ Đ ØØ ÐÝÝÒ Ì ØÐ Ò Ò Ð ËÓ ØÛ Ö Ú ÐÓÔÑ ÒØ ÓÖ Ñ Ò Ò ÖÖÓÒ Ç ÐÑ ØÓÒ ØØĐ Ñ Ò Ò ÔÙÙØØ ÐÐ Ò Ú Ö ÐÐ Ò Ú ÒØÓ Ò ØÓÒ Đ ØØ ÐÝÝÒ Á ÑÓ ÀÓÖÔÔÙ Ì ØÓØ Ò Ò ÔÖÓ Ö Ù ¹ØÙØ ÐÑ Ç ÐÑ ØÓØ Ò Ò Ð Ò ½½º ÐÑ ÙÙØ ¾¼¼¾ ÂÝÚĐ ÝÐĐ Ò ÝÐ ÓÔ ØÓ Ì ØÓØ Ò Ò Ð ØÓ Ì Đ Á ÑÓ ÀÓÖÔÔÙ Ø Ý Ø ÓØ ÓÖÔÔÙº ÝÙº

Lisätiedot

È ÌÀÇƹÇÀ ÄÅÇÁÆÆÁÆ ËÇÎ ÄÄÍÃËÁ Å ÌÊÁÁËÁÄ Ëà ÆÌ Æ ÌÁÄ ËÌÇÌÁ Ì Ë Æ Â ÆÍÅ ÊÁË Æ Å Ì Å ÌÁÁÃÃ Æ ÄÍÃÁÇÄ ÁËÁÄÄ Ì Ò Ï ÐÐ Ö ¹Ä Ò ÈÖÓ Ö Ù ¹ØÙØ ÐÑ Å ÖÖ ÙÙ ¾¼¼ Å Ì Å ÌÁÁÃ Æ Ä ÁÌÇË ÌÍÊÍÆ ÄÁÇÈÁËÌÇ ÌÍÊÍÆ ÄÁÇÈÁËÌÇ Å

Lisätiedot

à ÑÖ Ò ÙÙ Ò ÙÒØÓÐ Ò Ò ÓÖ ÓØ ÓÒ ÓÖ ÓÑ Ö Ò Ð Ò ÑÖÝØÝÑ Ò Ò ËÁË ÄÌ ËÁË ÄÌ Ë ÐØ ½ ÂÓ ÒØÓ ½º½ ÌÙØ ÑÙ Ý ÝÑÝ ØÙØ ÐÑ Ò Ö ÒÒ º º º º º º º º º º º º º º º º º ½º¾ ÙÒØÓÐ Ò Ñ Ö Ò Ø ËÙÓÑ º º º º º º º º º º º º º

Lisätiedot

A c t a U n i v e r s i t a t i s T a m p e r e n s i s 1061

A c t a U n i v e r s i t a t i s T a m p e r e n s i s 1061 JORMA JOUTSENLAHTI Lukiolaisen tehtäväorientoituneen matemaattisen ajattelun piirteitä 1990-luvun pitkän matematiikan opiskelijoiden matemaattisen osaamisen ja uskomusten ilmentämänä AKATEEMINEN VÄITÖSKIRJA

Lisätiedot

Ì ÓÚ Ö ÓØ Ð Ò Ã ÐÐÙÒ Å Ø Ñ Ø Ò ÈÖÓ Ö Ù¹ØÙØ ÐÑ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ÂÝÚ ÝÐÒ ÝÐ ÓÔ ØÓ ËÝ Ý ¾¼¼ Ë ÐØ ÂÓ ÒØÓ ½ ½ À ØÓÖ ¾ Î Ö ÓØ ÓÖ ¾º½ Î Ö ÓÒ ÚÖ ØÝ º º º º º º º º º º º º º º º º º º º º º º º º º

Lisätiedot

Referenced. Object. StateSet. Node. Geode

Referenced. Object. StateSet. Node. Geode ÇÔ ÒË Ò Ö Ô ¹Ó Ø Ì ÑÓºÌÓ Ú Ò ÒØѺ Ùغ ÌÑ Ó ÙÑ ÒØØ ÓÒ ØÝ Ò Ø Ô Ú Ø ØÒ Ø ÖÔ Ò ÑÙ Òº ½ Ø ÇÔ ÒË Ò Ö Ô ÇË µ ÓÒ ÇÔ Ò Ä Ò Ô Ö ÒÒ ØØÙ ¹ÙÓ Ö¹ ØÓ Ó ÓÒ Ú Ô Ø Ø Ú Ó ØÓ Ñ ÑÓÒ ÝÑÔÖ Ø º ÇË Ó¹ ÙÑ ÒØÓ ØÙ ÓÜÝ Ò¹Ó Ñ ØÓÒ

Lisätiedot

º F(+,+ ) = 1 F(, ) = F(,y) = F(x, ) = 0 й

º F(+,+ ) = 1 F(, ) = F(,y) = F(x, ) = 0 й Ú ËÁË ÄÌ ÅÓÒ ÙÐÓØ Ø ÙÑ Ø ½ º½ à ÙÐÓØØ Ø ÙÑ Ø º º º º º º º º º º º º º º º º º º º º º ½ º½º½ Ê ÙÒ ÙÑ Ø ÓÐÐ Ø ÙÑ Ø º º º º º º º º º ½ º½º¾ ÓÐÐ Ò Ó ÓØÙ ÖÚÓÒ ÓÑ Ò ÙÙ º º º º º º º º º ½ º½º À Ö Ö Ø Ñ ÐÐ

Lisätiedot

º A, B E A B E. A B = A B. A k E, k N k=0 A k E. p(b) = m N,

º A, B E A B E. A B = A B. A k E, k N k=0 A k E. p(b) = m N, Ì Ð ØÓÑ Ø Ñ Ø Ã Ó ÊÙÓØ Ð Ò Ò ÍÒ Ú Ö ØÝ Ó ÇÙÐÙ ÙÐØÝ Ó Ì ÒÓÐÓ Ý Ú ÓÒ Ó Å Ø Ñ Ø Â ÒÙ ÖÝ ¾¼¼ ¾ ÔØ Ö ½ ÌÓ ÒÒ ÝÝ Ò Ø ½º½ Ë ØÙÒÒ Ó ÓØÓ Ú ÖÙÙ ÌÓ ÒÒ ÝÝ Ð ÒÒ Ò Ø Ö Ó ØÙ Ò ÓÒ ØØ Ñ Ø Ñ ØØ Ñ Ò Ø Ð¹ Ñ ÙÚ Ñ Ò Ø Ø Ó Ø

Lisätiedot

ÁÁ ÌÁÁÎÁËÌ ÄÅ Ì ÅÈ Ê Æ Ì ÃÆÁÄÄÁÆ Æ ÄÁÇÈÁËÌÇ Ì Ò ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò ÓÙÐÙØÙ Ó ÐÑ ÄÌÁÇ ËÍÎÁ È Ö ÒÑ ÐÐ ¾¼¼ ¾¼¼ Ø Ô ØÙÒ Ò Ð ÒÒ ÓÒÒ ØØÓÑÙÙ ¹ Ò Ò ÐÝ Ó ÒØ Ý Ú

ÁÁ ÌÁÁÎÁËÌ ÄÅ Ì ÅÈ Ê Æ Ì ÃÆÁÄÄÁÆ Æ ÄÁÇÈÁËÌÇ Ì Ò ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò ÓÙÐÙØÙ Ó ÐÑ ÄÌÁÇ ËÍÎÁ È Ö ÒÑ ÐÐ ¾¼¼ ¾¼¼ Ø Ô ØÙÒ Ò Ð ÒÒ ÓÒÒ ØØÓÑÙÙ ¹ Ò Ò ÐÝ Ó ÒØ Ý Ú ËÍÎÁ ÄÌÁÇ ÈÁÊà ÆÅ ÄÄ ¾¼¼ ¾¼¼ Ì È ÀÌÍÆ Á Æ ÄÁÁà ÆÆ ¹ ÇÆÆ ÌÌÇÅÍÍÃËÁ Æ Æ Ä ËÇÁÆÌÁ ËÎ ÊÃÃÇÂ Æ ÎÍÄÄ ÔÐÓÑ ØÝ Ì Ö Ø Ð ÓÔ ØÓÒÐ ØÓÖ Ó ÌÙÖÙÒ Ò Ì Ö Ø ÝÚ ÝØØÝ ÄÙÓÒÒÓÒØ Ø Ò ÝÑÔÖ Ø Ø Ò Ò Ø ÙÒÒ Ò Ø ÙÒØ Ò ÙÚÓ ØÓÒ Ó ÓÙ

Lisätiedot

Ì Å ÈÙÐ Ò Ò Ø Ý Ø ÓØ Ñ ºÔÙÐ Ò Ò ÝÙº ÌÝ Ò Ò Ñ ÙØÓÑ Ø Ó ØÙ Ý Ø Ø Ù ÆÍÒ Ø¹Ø Ø Ù ÝÑÔÖ Ø Ì ØÐ Ò Ò Ð ÙØÓÑ Ø ÍÒ Ø Ì Ø Ò Ò ÆÍÒ Ø Ì Ø Ò ÒÚ ÖÓÒÑ ÒØ ÌÝ Ì ØÓØ Ò Ò

Ì Å ÈÙÐ Ò Ò Ø Ý Ø ÓØ Ñ ºÔÙÐ Ò Ò ÝÙº ÌÝ Ò Ò Ñ ÙØÓÑ Ø Ó ØÙ Ý Ø Ø Ù ÆÍÒ Ø¹Ø Ø Ù ÝÑÔÖ Ø Ì ØÐ Ò Ò Ð ÙØÓÑ Ø ÍÒ Ø Ì Ø Ò Ò ÆÍÒ Ø Ì Ø Ò ÒÚ ÖÓÒÑ ÒØ ÌÝ Ì ØÓØ Ò Ò Å ÈÙÐ Ò Ò ÙØÓÑ Ø Ó ØÙ Ý Ø Ø Ù ÆÍÒ Ø¹Ø Ø Ù ÝÑÔÖ Ø Ì ØÓØ Ò Ò Ò Ø ÒØÙØ ÐÑ ¾ º ÐÑ ÙÙØ ¾¼¼ ÂÝÚ ÝÐÒ ÝÐ ÓÔ ØÓ Ì ØÓØ Ò Ò Ð ØÓ ÂÝÚ ÝÐ Ì Å ÈÙÐ Ò Ò Ø Ý Ø ÓØ Ñ ºÔÙÐ Ò Ò ÝÙº ÌÝ Ò Ò Ñ ÙØÓÑ Ø Ó ØÙ Ý Ø Ø Ù ÆÍÒ Ø¹Ø Ø Ù

Lisätiedot