{(x, y) x {1,2,3,... }, y {2,4,6,...,10}, x < y}.

Koko: px
Aloita esitys sivulta:

Download "{(x, y) x {1,2,3,... }, y {2,4,6,...,10}, x < y}."

Transkriptio

1 Ä Ø ÓÓ Ø Ø º º Ä Ø ÓÓ Ø Ø Å Ø Ñ Ø ÓØ ÑÖ ØØ Ð ÚØ Ù Ò ÓÙ Ó ÑÔÐ ØØ ÐÐ ÒÓØ Ø ÓÐÐ Ò ÙØ Ò {(x, y) x {1,2,3,... }, y {2,4,6,...,10}, x < y}. À ÐÐ Ø Ö Ó Ú Ø Ú Ò ÒÓØ Ø ÓÒ Ð ØÓ ÐÐ Ò Ú ØÓ ØÓ Ò ÝÒØ Ò Ø Ú ÐÐ ÐÐ Ð Ø Ð Ù ÐÐ Òº ÆÓØ Ø ÓÓÒ ÙÙÐÙÚ Ø Ö ØÑ ØØ Ø Ú Ò Ø Ö Ø Ñ Ø ÕÙ Ò µ Ð Ø ÓÓ Ø Ø Ð Ø ÓÑÔÖ Ò ÓÒµº ¾½¾

2 Ä Ø ÓÓ Ø Ø º ½ Ñ Ö ÑÑ ¾ Ü Ýµ Ü ¹ ½ºº Ý ¹ ¾ ºº½¼ Ü Ý Ê Ú ÐÐ ¾ Ø ÒÙÓÐ Ò ¹ Ó ÐÐ ÔÙÓÐ Ò ÓÒ Ö ØÑ ØØ Ò Ò Ú Ò º Ì ÒÙÓÐ ¹ ØØ ÙÙÐÙÙ ÓÙ ÓÓÒ ¹Ñ Ö ³ ³º ÃÓ Ó Ö Ú Ò ¾ Ð Ù ÓÒ Ð Ø ÓÓ Ø º ¾½

3 Ä Ø ÓÓ Ø Ø º Ö ØÑ ØØ Ø Ú Ò Ø ÓÚ Ø Ð Ø Ð Ù Ø ÑÙÓØÓ ØÓ ºº Ú ÌÓ Ò Ò Ø ÑÓÐ ÑÑ Ø ÐÐ Ú Ú ØÙØ Ó Ø ÚÓ Ú Ø ÔÙÙØØÙ º Ä Ù Ø ØÓ Ú ÓÚ Ø Ñ ØÝÝÔÔ τº ÃÙÒ τ ÓÒ Ó ÓÒ ÐÙ ÙØÝÝÔÔ ¾º½º¾µ Ò Ò Ð Ù ÐÙ ØØ Ð Ð Ò Ð Ø Ò ÖÚÓØ, + δ, + 2 δ, + 3 δ,... ÙÒÒ Ó ØØ ÖÚÓÒ Ú Ø ÐÓÔÙØØÓÑ Ò Ó ÔÙÙØØÙÙ Ð δ = ØÓ Ø 1 Ó ÔÙÙØØÙÙº ¾½

4 Ä Ø ÓÓ Ø Ø º Ñ Ö Ö ØÓ Ø Ò Ò ÙÐ ÑÑ º µ Ò ÑÑ Ò Ò Ð Ø ÚÓ Ò Ð Ù Ù ÑÝ e 1 = Ø Ö Ø ½µ ¾ ¾ºº º ÌÝÝÔ τ ÐÔ Ø Ñ Ø Ò ÐÐ Ò Ò ØÝÝÔÔ ÓÐÐ ÓÒ ÑÖ Ø ÐØÝ Ó Ò ÐÙÓÒØ Ú ØÙÐ ÒØ ÓÔ Ö Ø ÓÐÐ ÙÖ Ú ÖÚÓ º Ò Ò ÐÙ ÙØÝÝÔ ÐÐ ÓÒ ÐÙÓÒØ Ú ØÙÐ ÒØ x x + 1. ¾½

5 Ä Ø ÓÓ Ø Ø º ÁÑÔ Ö Ø Ú Ò Ò ÐÑÙ x a ÓÖ i p ØÓ q Ø Ô r Ó x f x i Ò ÓÖ ÚÓ Ø Ò Ð Ù Ù Ñ Ö ÓÐ Ð f a p p + rººq Ø Ø Ò Ò ÓÐ ØØ Ò ØØ ÐÑÙ Ò ÐØ f ÓÒ ÔÙ ÙÒ Ø Óµº ¾½

6 Ä Ø ÓÓ Ø Ø º Ä Ø ÓÓ Ø Ò Ô ÖÙ ÑÙÓØÓ ÓÒ Ð Ù ØÙÐÓ Ð Ù x 1 ¹ Ò Ö ØØÓÖ 1 º x k ¹ Ò Ö ØØÓÖ k Ø Ø ÂÓ Ò Ò Ò Ö ØØÓÖ i ÓÒ Ð Ø ØÝÝÔ Ò Ò Ð Ù º Ë Ò ÚÓ ÝØØ ÑÝ ÐØÚ ÑÙÙØØÙ x 1,..., x i 1 º ÅÙÙØØÙ Ø ÝÚØ ÐÔ Ñ ÓÐÐ Ø Ý Ø ÐÑØ x 1 = a 1,..., x k = a k Ó a i ÓÒ Ö Ú Ø Ú Ò Ð Ø Ò Ò Ö ØØÓÖ i Ð Ó Ø º ¾½

7 Ä Ø ÓÓ Ø Ø º ÃÓ Ó Ð Ø ÓÓ Ø Ò ÖÚÓ ÓÒ Ð Ø ØÙÐÓ Ð Ù Ò ÖÚÓ Ø Ò ÐÐ Ý Ø ÐÑ ÐÐ Ó ÐÐ Ø Ø Ò ØÙÐÓ ÓÒ ÌÖÙ º ÈÙÙØØÙÚ Ø Ø ÓÒ Ò ÌÖÙ º Ø ÐÑØ Ý Ò ÐÔ ÙØÓÒ Ñ Ø Ñ ØØ Ö Ò Ö ØÝ ÐÐ Ò ÑÙÙØØÙ Ò x i 1 ÙÖ Ú Ò ÖÚÓÓÒ ÖÖÝØÒ Ú Ø ÙÒ ÙÖ Ú Ò ÑÙÙØØÙ Ò x i Ó Ò Ò ÖÚÓ ÓÒ Ø ÐØÝº Ë Ñ Ö ÑÑ Ð ½ ¾µ ½ µ ½ µ ½ µ ½ ½¼µ ¾ µ ¾ µ ¾ µ ¾ ½¼µ µ µ µ ½¼µ µ µ ½¼µ ººº ¾½

8 Ä Ø ÓÓ Ø Ø º Ä Ø ÓÓ Ø Ò ÝÐ Ò Ò ÑÙÓØÓ Ð ÒØ Ñ Ë ÐÐ Ø Ò ÐØÚ Ò ÑÙÙØØÙ Ò x 1,..., x i 1 ÚÐ Ø Ø Ù Ó ÒÒ Ò Ù Ò Ò Ö ØØÓÖ i ÙÓÖ Ø Ø Òº ÅÙÙØØÙ Ò x i Ø Ð ÐÐ ÚÓ ÓÐÐ Ó ÓÒ Ò Ò ÑÓ p i Ð Ó Ø a i ÓÚ Ø Ø Ò ÑÓÓÒ p i º Î Ò ÓÔ Ú Ø Ò Ø ÓØ Ø Òº À ÑÓ p i ÚÓ Ø Ø Ò Ò ÐØ Ù Ø Ö ÑÙÙØØÙ º Ë ÐÐ Ø Ò Ú Ð Ð Ø¹ÑÖ ØØ ÐÝ ¾º¾º µ Ø Ø Ò Ò Ö ØØÓÖ Ò Ð ÑÙØØ ÐÑ Ò Ò¹ Ò Ò¹Ó ØÙÐ Ø Ò Ó Ó Ò Ð Ò ØÙÐ Ú ÓÓ Ø º ¾½

9 Ì ÙÐÙ Ó Ø º º Ì ÙÐÙ Ó Ø Ä ØÓ Ò ÚÙÓ ÙÒ Ø ÓÒ Ð Ó ÐÑÓ ÒÒ Ø ÙÐÙ ÓØ ÓÚ Ø Ô Ö ÒØ Ø ÙÔÔ ÑÑ ÖÓÓÐ º Ä ØÓ Ò Ø Ô Ò Ñ Ò Ø ÙÐÙ ÓÒ Ð ÓØ ÓÚ Ø ÒÒ Ñ ØÝÝÔÔ º ÁÒØÙ Ø Ú Ø Ø ÙÐÙ Ó Ø ÝØ ØÒ ÐÐÓ Ò ÙÒ Ø ÖÚ Ø Ò ÒÓÔ Ø ÓÒ Ù Ó Ó ÐÑ Ø Ô Ò Ô ÖÙ Ø ÐÐ º Ì Ú ÐÐ Ø ÙÒ Ø ÓÒ Ð Ò Ò Ó ÐÑÓ ÑÙÓØÓ Ð Ò Ð ÓÖ ØÑ Ò Ò Ò Ð ØÓ ÐÐ Ú Ø ÑÝ ÑÑ Ò ÓÖÚ Ò Ø Ø ÙÐÙ Ó ÐÐ Ó Ø Ó ÙÙ Ø Ú Ø º ¾¾¼

10 Ì ÙÐÙ Ó Ø º ÂÓ Ñ Ö Ð ÓÖ ØÑ Ø Ù Ò Ý ÐÝ Ø Å ÓÒ ØÑÒ Ð Ø Ò l ÐÙ Ø ÐÙ Ò kº Ð Ó Ö ÖÚÓ ÐÐ k Ò Ò ÒÒ ØØ Ò Ò Ø Ð Ø l Ú Ø Ú ½¹ÙÐÓØØ Ò Ò Ø ÙÐÙ Ó a Ú Ø Ø Ý ÐÝ Ò Ò Ó Ñ ÐРغ ÅÙÙØ Ò Ó Ò Ò Ý ÐÝ Ú Ω(k) ÐØ º ½ ÑÓ ÙÐ Ä Ø¾ ÖÖ Ý Û Ö ¾ ÑÔÓÖØ ÖÖ Ý Ð Ø¾ ÖÖ Ý Ð ÖÖ Ý ½ Ð Ò Ø Ðµ Þ Ô ½ºº е ¾¾½

11 Ì ÙÐÙ Ó Ø º Ì ÙÐÙ Ó a ÐÙÓ Ò ÑÓ ÙÙÐ Ò ÖÖ Ý ÙÒ Ø ÓÐÐ ÖÖ Ýº È ÖÙ ÓÒ ØØ Ø ÙÐÙ Ó a ÐÙÓ Ò ÖÖ ÐÐ Ø Ò ØØ Ò Ò Ú Ö ØØ Ò ØØ Ò ØÝØ ØØ Ò Øº Ì ÙÐÙ ÓÒÐÙÓÒØ ÙÒ Ø ÓÐÐ ÓÒ ¾ Ô Ö Ñ ØÖ ½º È Ö p qµ Ó ÐÑÓ ØØ Ø ÙÐÙ ÓÒ a Ò pººq º ÌÑ Ð Ø Ò Ø Ø Ò Ò Ð Ò µ ÙÒ Ø ÓÐÐ Ò aº ÌÑ Ô Ö Ø Ò ÙÒ Ø ÓÐÐ ÓÙÒ aº ¾¾¾

12 Ì ÙÐÙ Ó Ø º ¾º Ä Ø Ô Ö i e i µ ÓØ ÐÑÓ ØØ Ú Ø Ø ÙÐÙ ÓÒ a ÐÐ Ò ÙÖ Ú Ø ÁÒ i ÙÙÐÙÙ Ø ÙÐÙ ÓÓÒ aº Ë ÚÓ Ò Ø Ø Ø Ð Ù ÐÐ ÒÊ Ò ÓÙÒ aµ iº Ä Ù e i ÐÑÓ ØØ Ò ÖÚÓÒ Ó ØÙÐ Ø ÙÐÙ ÓÔ Ò a iº ÂÓ ÓÐÐ Ò i Ð Ø ÓÐ Ý ØÒ ØÐÐ Ø Ô Ö Ò Ò Ò e i ÓÒ Ð Ù Ó ÙØØ Ú Ö Ò Ó Ò ÖÚÓ Ý ÝØÒº ÂÓ ÓÐÐ Ò i ÓÒ ÑÓÒØ ØÐÐ Ø Ô Ö Ò Ò À ÐÐ ¹ Ø Ò Ö Ò ÑÙ Ò ÓÒ Ú Ö À ¹ØÓØ ÙØÙ ÓØØ Ò Ð Ø Ò Ú Ñ Ò Ô Ö Òº ¾¾

13 Ì ÙÐÙ Ó Ø º ÐÐ Ú Ö Ø ÙØØ Ú Ø ÓÒ Ò ÔÓ Ù Ò Ü ÔØ ÓÒµ µº Ë ÑÓ Ò Ý Ó Ò Ó ÒÒ a j Ò j ÓÒ Ò Ø ÙÐÙ ÓÒ a Ò ÐÙ Ò ÙÐ ÓÔÙÓÐ ÐÐ º Ì ÙÐÙ ÓÒ ÚÓ ÑÝ ÖØ Ø Ò ØØ ÙÒ Ø Ó ÙÑ ÖÖ Ý ØÝØØ ÐÙ Ø ÙÐÙ ÓÔ Ø ÒÒ ØÙÐÐ Ð Ù ÖÚÓÐÐ Ó ÐÐ Ô Ö ÐÐ i eµ ÒÒ ØØÙ Ö ÙÒ Ø Ó Ý Ø Ô Ò i ÒÝ Ý Ò ÖÚÓÒ ØÑÒ Ð Ù Ò e Ô Ò i ÙÖ Ú ÖÚÓ º ¾¾

14 Ì ÙÐÙ Ó Ø º Ì Ò Ñ Ö Ò ÙÒ Ø Ó Ó Ñ Ö ÐÐ a...z Ö Ó Ø ØÙÒ Ñ Ö ÓÒÓÒ s Ô Ð ÙØØ Ø ÙÐÙ ÓÒ b ÓÒ Ð Ø b c ÐÑÓ ØØ Ñ Ñ Ö ÓÒÓÒ s ÔÓ Ø Ó Ñ Ö c ÒØÝ º ½ ÑÔÓÖØ ÖÖ Ý ¾ ØÖ¾ Ø ÙÑ ÖÖ Ý Ð Ô µµ ³ ³ ³Þ³µ º Ð Ô Þ Ôµ ½ºº µ ÁÒ ØÝÝÔÔ Ò ÚÓ ÓÐÐ ÑÙÙ Ò Ù Ò ÁÒØ Ñ Ø Ò ØÝÝÔÔ ÓÒ ÚÓ ØÙÐ Ø ÐÙÓÒØ Ú Ø Ò º Ì ÙÐÙ Ó Ð Ó b i Ô Ö Ò i eµ Ð Ù e ÚÓ Ú Ø ÓÐÐ Ö ØÝÝÔÔ ÙÒ Ò Ö ÙÒ Ø Ó Ý Ø Ò º ¾¾

15 Ì ÙÐÙ ÓÒ ÑÙÙÒØ Ñ Ò Ò ØÓ º º½ º º½ Ì ÙÐÙ ÓÒ ÑÙÙÒØ Ñ Ò Ò ØÓ ÈÙ Ø ÙÒ Ø ÓÒ Ð Ó ÐÑÓ ÒÒ ÑÝ Ò Ø ÙÐÙ Ó ÑÙÙØÙ ÐÙÓÑ Ò Ð Òº Ì ÙÐÙ ÓÒ Òµ ÑÙÙØØ Ñ Ò Ò Ö Ó Ú ØØ Ò ÐÔ ÙÙÐØ ÚÙÙ Ò ½º µº Ì ÙÐÙ Ó a Ø ÐÐ Ò Ò ÙÚ Ù Ò Ô Ò ÐØ Ö ÐÐ ÐØ Ð Ø ÓÙ ÓÐØ Ò a Ø ÙÐÙ ÓÔ Ó Ò ÐÐ Ò Ý Ø Ò ØÝÝÔÔ Ò τº ¾¾

16 Ì ÙÐÙ ÓÒ ÑÙÙÒØ Ñ Ò Ò ØÓ º º½ Ë ÐØ À ÐÐ Ø Ö Ó ÓÔ Ö ØØÓÖ Ò a»» l ÓÒ Ô Ö Ñ ØÖ Ò l Ð Ø Ô Ö i e i µ ÙØ Ò ÙÒ Ø Ó ÖÖ Ý ÖÚÓÒ ÓÒ ÙÙ Ø ÙÐÙ Ó Ó ÓÒ ÑÙÙØ Ò Ù Ò a ÑÙØØ Ð Ø Ò l ÐÙ ØØ Ð Ñ Ø Ô Ø i ÐØÚØ Ò Ú Ø Ú Ø ÖÚÓØ e i º Ë Ð Ù Ð Ø b a»» ½ a ½µ ½µ Ò... ÚÓ ÝØØ Ú Ò a ØØ ÙÙØØ b ÓØ ÔÓ Ú Ø ØÓ Ø Ò Ú Ò Ô 1º ¾¾

17 Ì ÙÐÙ ÓÒ ÑÙÙÒØ Ñ Ò Ò ØÓ º º½ À Ðй Ð Ò ØÓØ ÙØØ ÓÙØÙÙ Ú Ð Ø Ñ Ò ÍÙ Ò Ø ÙÐÙ ÓÒ ÐÙÓÒØ»»µ ÓÒ Ø Ó Ú Ò Ø ÙÐÙ Ó ØÓ ÐÐ Ò ÓÔ Ó Òº Ë Ò Ò Ó ÒØ b j ÓÒ Ø Ó ÓÔ Ó Ò Ú Ò Ó Ò j Ð Ý Ý Ð Ø ÐØ l Ò Ò ØØ Ò Ø ÓØ Ò a jº ÌÓØ ÙØÙ Ø Ò Ò Ò Ø Ú Ò Ò Ò Ó ÒØ a iº ½º Ë ÓÖÚ Ø Ò Ø Ø ØÓÖ ÒØ ÐÐ l Ó ÐØ Ð Ø Ò l Ò Ø i Ò Ò Ú Ò Ø ÖÚÓØ a iº ¾º Ä Ø Ò l ÑÙÙØÓ Ø Ö Ó Ø Ø Ò ÙÓÖ Ò Ø ÙÐÙ ÓÓÒ aº Æ Ò Ò ÒÓÔ Ø Ò Ó ØÙÚ bº ¾¾

18 Ì ÙÐÙ ÓÒ ÑÙÙÒØ Ñ Ò Ò ØÓ º º½ ÌÐÐ Ö Ø ÙÐÐ Ø Ú ÐÐ Ò ÝØØ Ø Ô ÓÒ ÒÓÔ Í ÑÑ Ø Ò Ø Ø Ò ÙÙ Ò Ø ÙÐÙ ÓÒ b ØØ ÐÝ Ú Ò a Ò Ø ÖÚ Ø º Î ØØ Ù Ø Ò ÐÔ Ò ÝÚÝÝ Ò ÐÝØØÑ ÑÝ Ú Ò a ÐØ ÑÙ Ø Ø Ò ÖÓ Ò ÖÙÙ Ò µº ÈÙ Ø ÙÒ Ø ÓÒ Ð Ó ÐÑÓ ÒÒ ÑÓ Ò Ù Ò Ñ Ö Ø ØÓ ÒÒÓ µ ÓÐÐ Ò Ò ÒÒÓ ØÙÒ Ø ÐÝÚ Ø Ô Ö Ø ÒØµ Ø ØÓÖ ÒØ Ø Ë ÐÐ Ø Ó Ò Ô Ú ØÝ Ò Ð Ò ÓÒ ÝØ ÑÓÐ ÑÑ Ø Ú Ö ÓØ Ú Ò ÙÙ º Ö Ø ØÒ Ñ Ò ÑÓ ØÑÒ Ú Ö Ó ÒÒ Ò Ð Ö Ø ØØº ¾¾

19 ÅÓÒ ÙÐÓØØ Ø Ø ÙÐÙ ÓØ º º¾ º º¾ ÅÓÒ ÙÐÓØØ Ø Ø ÙÐÙ ÓØ À ÐÐ¹Ø ÙÐÙ ÓØ ÚÓ Ú Ø ÓÐÐ ÑÝ ÑÓÒ ÙÐÓØØ Ë ÐÐÓ Ò Ø ÙÐÙ Ó Ò Ò ÓÒ Ò Ý Ò i Ø Ô Ö i jµ ¾¹ÙÐÓØØ ÐÐ Ø ÙÐÙ Ó ÐÐ Ð Ñ ØÖ ÐÐ ÓÐÑ Ó i j kµ ¹ÙÐÓØØ ÐÐ º º º ÅÙÙØ Ò ÑÓÒ ÙÐÓØØ Ø ÙÐÙ Ó Ø Ø ÐÐÒ ÙØ Ò Ý ÙÐÓØØ Òº ¾ ¼

20 ÅÓÒ ÙÐÓØØ Ø Ø ÙÐÙ ÓØ º º¾ Ñ Ö Ñ ØÖ ÚÓ Ò ÐÙÓ m ÖÖ Ý p rµ q sµµ l Ð Ø l ÓÓ ØÙÙ Ô Ö Ø i jµ e ij µ Ò p i q Ò r j s Ð Ù e ij ÓÒ Ô ÐÐ m i jµ Ø Ö Ó Ø ØØÙ ÐØ º Ë Ø ÙÐÙ ÓÒ Ò ÐÙ Ò ÑÖ Ô Ö Ô Ò Ò Ò ÙÙÖ Ò Ò µº ¾ ½

21 ÁØ Ò Ú ØØ Ú Ø Ø ÙÐÙ ÓØ º º º º ÁØ Ò Ú ØØ Ú Ø Ø ÙÐÙ ÓØ À ÐÐ¹Ø ÙÐÙ ÓÒ ÚÓ ÑÖ Ø ÐÐ Ú Ø Ø Ò Ò Ø Ò Ä Ø Ø l ØÝØÝÝ Ð Ö Ø Ò Ø i jµ ÓØØ Ø ØÒ Ñ Ò Ñ ØÖ Ò m Ô Ó Ò Ð Ù Ø e ij Ô Ø Ó Ø ÐÐ º Ä Ù Ø e ij Ø Ð Ø Ò Ò Ð Ø Ó Ò Ò ÖÚÓ Ø ÖÚ Ø Ú Ðº Ë Ø Ò Ð Ù e ij ÚÓ Ó Ú Ø Ø ÑÙ Ò m i j µº Ë ÐÐÓ Ò ÚÓ Ñ Ö Ø ÙÐÙ Ó Ø Ó ÙÙ Ý Ø Ö ÙÖ Ú Ò ÙÒ Ø ÓÒ Ù Ò Ø ÖÚ ØÙØ ÖÚÓØº ¾ ¾

22 ÁØ Ò Ú ØØ Ú Ø Ø ÙÐÙ ÓØ º º Ì Ö Ø ÐÐ Ò ÙÖ Ú Ñ Ö ËÝ ØØ Ò Ò ¾ Ñ Ö ÓÒÓ X = x 1 x 2 x 3... x m Y = y 1 y 2 y 3... x n. ÃÓ Ø Ø Ò Ð Òµ Ò Ò Ñ Ö ØÓ Ò x 1 x 2 x 3... x m y 1 y 2 y 3... y n ÃÓ Ò Ø ØØÙ Ò Ñ Ö Ò Ô Ø ÓÐÐ Ñ Øº ÅÓÒØ Ó Ñ Ö Ô Ø ØØ Ó Ø Ñ ØØ Ð Ó Ø Ð ØØÝÝÒ Ð Ò ÓÓÒ ³ ³µ ¾

23 ÁØ Ò Ú ØØ Ú Ø Ø ÙÐÙ ÓØ º º ÈØ ÐÐÒ Ò Ù Ø Ú Ø Ñ Ö ÓÒÓ Ò X Y Ö ÒØ Ò Ù Ø Ò ÂÓ ØÓ Ò Ò Ñ Ö ÓÒÓ Ø ÓÒ ØÝ Ò Ò ØÓ Ò Ò ÚÐØØÑØØ Ó ÓÒ Ò Ó Ø Ñ ØØ º ÔØÝ Ò Ñ Ö ÓÒÓ Ò X = x : xs Y = y : ys Ó ØÙ Ò ÓÒ Ö Ø ÔÓ ÂØ ØÒ Ñ Ö x Ó Ø Ñ ØØ Ó Ø Ø Ò ÐÓÔÔÙÓ xs Ó Ó Y Ñ ÓÐÐ ÑÑ Ò ÝÚ Òº ËÝÑÑ ØÖ Ø y X ysº ÂÓ x = y Ò Ò Ó Ø Ø Ò Ò ØÓ Ò xs ys Ñ ÓÐÐ ÑÑ Ò ÝÚ Òº Î Ð Ø Ò Ò Ø Ú ØÓ Ó Ø Ô Ö º ¾

24 ÁØ Ò Ú ØØ Ú Ø Ø ÙÐÙ ÓØ º º ÌÑ Ò Ù Ø Ú Ò Ò ÔØØ ÐÝ ÚÓ Ò Ö Ó ØØ ÙÓÖ Ò Ö ÙÖ Ú À Ðй ÙÒ Ø Ó ½ Ø Ý ¾ Ð Ò Ø Ý Ø Ü Ð Ò Ø Ü Ø Ü³ Ü Ü µµ ݳ Ý Ý µµ Ü Ý Ñ Ò Þ Ø Ü Ý µ ÓØ ÖÛ Þ ½¼ Û Ö Þ ½ Ñ Ò Ø Ü Ý³µ Ø Ü³ Ý µ Ë Ò ÒØ ÖÚ Ù Ø Ò Ò Ö Ñ ØØ Ø ÔÓÒ ÒØ Ð Ø µ Ô ØÙÙ Ò m n Ú ¾

25 ÁØ Ò Ú ØØ Ú Ø Ø ÙÐÙ ÓØ º º Ì ÓØØÓÑÙÙ Ò ÝÝ ÐÚ Ð Ñ ÐÐ edist (x 1 : x 2 :...) (y 1 : y 2 :...) min (1 + (edist (x 2 :...) (y 1 : y 2 :...)) (edist (x 1 : x 2 :...) (y 2 :...))) (edist (x 2 :...) (y 2 :...)) edist (x 2 :...) (y 1 : y 2 :...) min (1 + (edist (...) (y 1 : y 2 :...)) (edist (x 2 :...) (y 2 :...)) ) (edist (...) (y 2 :...)) Ë Ñ ÙØ Ù Ø Ò ÑÓÒØ ÖØ  À ÐÐ Òµ Ð Ò Ö Ò Ó Ñ Ò Ð Ø ØÑ º ÖÖÓ ÐÐ ØØ Ò ÓÐ Ú Ø Ñ Øº ¾

26 ÁØ Ò Ú ØØ Ú Ø Ø ÙÐÙ ÓØ º º Ì ÙÐÙ Ó Ò ÙØ Ù Ò ØÙÐÓ Ø ÓØØ Ò Ø Ø ÖÚ Ø Ð Ý ÙÙ ÐÐ Òº Ã Ø ØÒ ÙÒ Ø Ó edist i j = edist (X Ò i Ú Ñ Ø Ñ Ö ) (Y Ò j º º º ) Ø ÙÐÙ Ó Ò Ò ÖÚÓØ Ò ÐÐ 0 i m 0 j nº Ê ÙÖ Ó ÙØ ÙÒ Ø Ø ÓØ Ò Ò Ò ÖÚÓ Ø ÙÐÙ Ó Ø º Ì ÙÐÙ ÓÒ Ø³¹Ð Ù Ò Ð ÒØ Ð ÙÒ ÐÓÔÔÙØÙÐÓ Ø Ú Ø Ú Ò Ø ÙÐÙ ÓÔ Ò ÐØ Ý ÝØÒº ¾

27 ÁØ Ò Ú ØØ Ú Ø Ø ÙÐÙ ÓØ º º ½ ÑÔÓÖØ ÖÖ Ý ¾ ÑÔÓÖØ Ä Ø¾ ÖÖ Ý Ø¾ Ü Ý Ð Ø Ñ Ð Ò Ø Ü Ò Ð Ò Ø Ý Ü Ð Ø¾ ÖÖ Ý Ö Ú Ö Ü µ Ý Ð Ø¾ ÖÖ Ý Ö Ú Ö Ý µ س ¼ ½¼ س ¼ ½½ ½¾ س ½ Ü Ý ½ Ñ Ò Þ ¹½ ¹½µµ ½ ÓØ ÖÛ ½ Þ ½ Û Ö Þ ½ Ñ Ò ¹½ µµ ¹½µµ ½ ÖÖ Ý ¼ ¼µ Ñ Òµµ ½ µ س µ ¹ ¼ººÑ ¾¼ ¹ ¼ººÒ Ò Ñ Òµ ¾½ ¾

28 ÁØ Ò Ú ØØ Ú Ø Ø ÙÐÙ ÓØ º º È Ö ÒØ Ò Ò Ó ÐÑÓ ÓÙØÙÙ Ð Ñ ØØ ÑÒ ÐÐ Ò Ø ÙÐÙ ÓÒØÝØØ Ö ØÝ Ò Ó Ò Ó Ò Ú ØØ Ú Ð ØÝØØÑØØ ÑÒ Ô Ò ÓÖ j :=0...n Ó d[0, j]:=j Ò ÓÖ ÓÖ i:=1...m Ó d[i,0]:=i ÓÖ j :=1...n Ó z :=1 + min(d[i 1, j], d[i, j 1]) xs[i] = ys[j] Ø Ò z :=min(z, d[i 1, j 1]) Ò d[i, j]:=z Ò ÓÖ Ò ÓÖ ¾

29 ÁØ Ò Ú ØØ Ú Ø Ø ÙÐÙ ÓØ º º ÌÝØØ Ö ØÝ Ò Ó ÐÑÓ ÒØ Ò ÓÒ Ú Ú ÐÐÓ Ø Ú Ö ÐØ Ø ØÒÒÝØØ ÓÓ Ò Ó Ø Ò Ø Ö ÐÝ Ø Ó ÓÒ Ò ÙÓÖ ØÙ Ö ØÝ Ø Ð ØÝ Ø ÓÒ ÐÑ Òº À ÐÐ Ò Ð ÙÙ ÐÐ Ò Ò Ö Ó ØØ Ú Ñ Ø Ñ Ò Ò Ø ÙÐÙ ÓÔ Ò ØÙÐ ØØ Ø ÙÐÙ ÓÒ ØÝØØ À ÐйØÓØ ÙØÙ ÐÐ º ¾ ¼

30 ÁØ Ò Ú ØØ Ú Ø Ø ÙÐÙ ÓØ º º Ⱥ ˺ ËÓÚ Ð ÑÑ ÝÐ Ø Ð ÓÖ ØÑ Ò ÙÙÒÒ ØØ ÐÙØ Ô Ò Ñ ÐØ ÝÒ Ñ Ò Ò Ó ÐÑÓ ÒØ ÝÒ Ñ ÔÖÓ Ö ÑÑ Ò µº Ê Ø Ø Ò ÓÔØ ÑÓ ÒØ ÓÒ ÐÑ º º º ÓÒ ÙÙÖ Ø Ô Ù ÚÓ Ò Ó ØØ Ö Ø ÚÓ Ò Ñ Ò ÓÒ ÐÑ Ò Ô Ò ÑÑ Ø Ô Ù º º º ÓØ ÚÓ Ò Ö Ø Ø Ñ ÐÐ Ñ Ò Ø ÐÑÐÐ Ö ÙÖ Ú Ø Ø ÙÓÖ Ò ÐÑ Ò Ö ÙÖ ÓØ µº º º ÑÙØØ ÐÐÓ Ò ÑÓ Ø Ô Ù Ö Ø ÓØ Ò Ý ÙÙ ÐÐ Ò ÓØ Ò Ò ÒÒ ØØ Ø ÙÐÙ Ó º Ì ØÚÒ ÓÒ Ú Ð Ø Ô Ö Ñ ÓÐÐ Ò Ò Ó ØÙ Ø Ô º ¾ ½

31 ÌÝÝÔÔ Ö Ø ÐÑ Ø ÌÝÝÔÔ Ö Ø ÐÑ Ø À ÐÐ Ò ØÝÝÔÔ Ö Ø ÐÑÒ Ø Ô ÖØ Ø ÓÚ Ø ÑÓÒ ÑÙÓØÓ ÙÙ À Ò Ð ÝÒ Å ÐÒ Ö Ò Ð Ø¹ÔÓÐÝÑÓÖ Ò Ñ Ð º µ ØÝÝÔ ÒÔØØ ÐÝ Ó Ð ØØÝÝ Ò º µ ØÝÝÔÔ ÐÙÓ Ø Ó ÐÐ ÚÓ Ø Ö ÒØ ØÓ ÑÓÒ ÑÙÓØÓ ÙÙ ÐÐ º µº ¾ ¾

32 ÌÝÝÔÔ Ö Ø ÐÑ Ø ÌÝÝÔÔ Ö Ø ÐÑÒ Ô ÖÙ Ø ÓÒ ØÝÝÔÔ ÑÙÙØØÙ ÌÝÝÔ ØÝ Ò ÖÚÓÑÙÙØØÙ ØÝÝÔÔ ØÝÝÔÔ Ó ÒØÝÚ ÑÙÙØØÙ Ó º º º Ù Ø ØÙÒØ Ñ ØÓÒØ ÓÒ Ö ØØ Ø ØÝÝÔÔ ÐÐ Ø Ó ÓÐ ØÝÝÔÔ ÑÙÙØØÙ µº Ö Ó Ø Ø Ò Ô Ò ÐÐ Ð Ù Ö Ñ ÐÐ ÙØ Ò ÖÚÓÑÙÙØØÙ Ø Òº ÌÝÝÔ ÒÔØØ ÐÝ ÐÚ ØØ Ö ØÝÝÔÔ ÑÙÙØØÙ ÐÐ Ø ÖÚ ØØ Ú Ø ÓÒ Ö ØØ ÑÑ µø ØÝÝÔ Øº ¾

33 ÌÝÝÔÔ Ö Ø ÐÑ Ø ÅÓÒ ÑÙÓØÓ ÙÙ Ø Ö Ó ØØ Ø ØØ ØÝÝÔ ÒÔØØ ÐÝ Ó ØÝÝÔÔ ÑÙÙØØÙ Ñ Ò Ò ØÝÝÔÔ Ò ÐÐ ÓÐ ÚÐØØÑØ ÒØº ÌÐÐ Ò Ò Ú Ô ÒÝØ ØÝÝÔÔ ÑÙÙØØÙ Ø Ö Ó ØØ Å Ø Ò ÓÒ Ö ØØ Ò Ò ØÝÝÔÔ ÐÔ º ÌÝÝÔÔ ÑÙÙØØÙ Ø ÓÚ Ø ÐÓÓ ÙÖÖÝÒ ÀÓÛ Ö Ò Ú Ø ÚÙÙ Ò ½º¾µ Ò º ÌÝÝÔÔ ÐÙÓ Ø Ø Ö Ó Ú Ø Ñ ÓÐÐ ÙÙ Ò Ø Ñ ÒØ Ú Ô Ø ØÝÝÔÔ ÑÙÙØØÙ Å Ø Ò ÐÐ Ò Ò ÓÒ Ö ØØ Ò Ò ØÝÝÔÔ ÐÔ ÓÐÐ º º º ¾

34 ÌÝÝÔÔ Ö Ø ÐÑ Ø ÍÙ ØÝÝÔÔ Ö Ø ÐÑÒ ÓÑ Ò ÙÙ ÓØ Ø Ò ÙÖ Ú Ò Ø Ò Ö Ò À Ðг ØÓØ ÙØ Ø Ò ÔÖÓØÓØÝÝÔÔ Ò À ¹ ÒØ Ò Ø ÑÙ ÙÒ ØÙØ ÑÙ ØÒ ÙÙ Ø ÔÓ ÐÑ Ø ÒØ Ø Ø ÑÐÐ ÑÑ Ò À ÐÐ¹Ó ÐÑ Ò ÓÑ Ò ÙÙ ÙÖÖÝÒ ÀÓÛ Ö Ò Ú Ø ÚÙÙ Ò ½º¾µ Ò Ø ÐÐ Ò Ø Ø ÑÐÐ ÑÔ ÐÑ Ù Ð ÒÒÙ Ò ØÝÝÔ ÒÔØØ ÐÝÑ Ò Ñ Ò º µº ÃÙÖ ØØÝÝ ØÙÔ ØÝÝÔÔ Ö Ø ÐÑÒ Ó Ú ÒØÙÒ Ò Ó Òº ¾

35 ÄÝ ÒØ Ø º½ º½ ÄÝ ÒØ Ø Æ Ñ ØØ ÑÐÐ ØÝÝÔ ÐÐ ÚÓ ÒØ ÓÑ Ò Ò Ñ Ò ØØ ÐÝÐÐ ØÝÔ Æ Ñ ØÝÝÔÔ ÑÙÙØØÙ Ø ØÝÝÔÔ ÒÒ ØØ Ú Æ Ñ Ð ÁËÇÄÄ Ö Ñ ÐÐ Ó Ò ÓÒ ØÝÝÔ Ò Ò Ñ º Å ÓÐÐ Ø ØÝÝÔÔ ÑÙÙØØÙ Ø ÐÙ Ø ÐÐ Ò ÚÐ ÐÝ ÒÒ Ò ÖÓØ ÐØÙ Ò º Ë ÐÐÓ Ò ØÝÝÔÔ Ý Ø Ð ÑÙ Ò ØÝÝÔÔ Ò Ò Ñ Ö ÙÖ ÓØ ÐÐ Ø µ Ø ÐÙ Ø ÐØÙ ØÝÝÔÔ ÑÙÙØØÙ Ö ØÝÝÔÔ ÓÒ ØÖÙ ØÓÖ ÐÐ º ¾

36 ÄÝ ÒØ Ø º½ Ñ Ö º µ ØÝÔ È Ö Ö ËØÖ Ò ¹ ËØÖ Ò ÒØ Ò Ñ Ò È Ö Ö ÓÒ Ö ØØ ÐÐ ØÝÝÔ ÐÐ Ó ÓÒ ØÝÝÔ Ò Ò Ñ ÐØ ËØÖ Ò ØÝÝÔÔ ÓÒ ØÖÙ ØÓÖ Ò ¹... Ý Ø ÐѺ Ë Ò Ð Ò ÚÓ ÑÑ Ö Ó ØØ ÙÖ Ú ØÝÝÔ ÐÝ Ý Ø Ð Ø Ú Ò È Ö Öº º º ÒØ ÓÖÚ Ò Ø Ð ÐÐ Ò ËØÖ Ò ¹ ËØÖ Ò º ¾

37 ÄÝ ÒØ Ø º½ ÌÝÝÔÔ ÑÙÙØØÙ Ò Ø ÐØÚ ØÝÔ È Ö Ø Ø ¹ Ø ÓÒ Ø ÐÝ ÒÒ ÐÐ ÐÐ È Ö Ö ÐÐ ÓÒ ÔÓ ÐÐ ÓÒ ÓÒ Ö ØØ Ò ØÝÝÔ Ò Ö Ø Øº ÃÒØ ÓÖÚ Ò Ö Ø Ô Ù ÙÖ Ú Ø È Ö Ö ÓÒ Ö ¹ Ö Ð Ñ ØÝÝÔÔ Ù Ò ËØÖ Ò ¹ ËØÖ Ò Ð È Ö Ö È Ö È Ö Ö ÓÒ È Ö Ö ¹ È Ö Ö Ð ËØÖ Ò ¹ ËØÖ Ò µ ¹ ËØÖ Ò ¹ ËØÖ Ò Ð Ö ¹ Ö µ ¹ Ö ¹ Ö ¾

38 ÅÓÒ Ú Ð ÒØ ØÝÝÔ Ø º¾ º¾ ÅÓÒ Ú Ð ÒØ ØÝÝÔ Ø ÃÓ ÓÒ Ò ÙÙ Ò ØÝÝÔ Ò ÑÖ ØØ ÐÝ ÓÒ Ø Æ Ñ ØÝÝÔÔ ÑÙÙØØÙ Ø Ú ØÓ ØÓ 1 Ú ØÓ ØÓ 2 Ú ØÓ ØÓ 3 º Ú ØÓ ØÓ m Ö Ú Ò Ë ÓÛ ÌÝÝÔ Ò Æ Ñ ÖÚÓØ ÓÚ Ø Ó Ó ÑÙÓØÓ Ú ØÓ ØÓ 1 Ø Ú ØÓ ØÓ 2 Ø Ú ØÓ ØÓ 3 Ø º º º Ø Ú ØÓ ØÓ m ÑÙ Ø Ú ØÓ ØÓ ÓÐ º ¾

39 ÅÓÒ Ú Ð ÒØ ØÝÝÔ Ø º¾ ÂÓ Ò Ò Ú ØÓ ØÓ i ÓÒ ÃÓÒ ØÖÙ ØÓÖ i ÒØØ i1 ÒØØ i2 ÒØØ i3... ÒØØ ini ÂÓ Ò Ò ÒØØ ij ÓÒ ØÝÝÔÔ Ó ÚÓ ÐØ ÑÝ Ø ØØ ÐÝ Ñ Ò ØØÙ ØÝÝÔÔ ÑÙÙØØÙ º Æ Ò ÑÙÓØÓ Ú ØÓ ØÓ i ÓÐ Ú ÖÚÓ ÓÒ ÃÓÒ ØÖÙ ØÓÖ i Ó ÐÑÓ ØØ ØØ Ý ÓÒ ÙÙÖ ØÑ Ú ØÓ Ó Ø n i Ø ØÓ ÒØØ Ø Ò ØØ Ö ØÝ jº ÒØ ÓÐ Ú Ò ÖÚÓÒ ØÝÝÔÔ ÓÒ ÒØØ ij º ¾ ¼

40 ÅÓÒ Ú Ð ÒØ ØÝÝÔ Ø º¾ Ñ Ö ØÓØÙÙ ÖÚÓØÝÝÔÔ ¾º½º µ ÓÒ Ô Ö ØØ µ Ø ÐØÝº Ø ÓÓÐ Ð ÌÖÙ ÃÝØÒÒ ÓÒ ÒÖ ÒÒ ØØÙ ØÓØ ÙØÙ Ò Ó Ñ Ö ÑÓÚ Ø ÓÐ ØØ Ú Ø Òº Ì ÓÒ ØÖÙ ØÓÖ ÐÐ Ð ÌÖÙ ÓÐ ÒØØ Ë ÓÒ À ÐÐ Ò Ø Ô ÐÑ Ø ÐÙ Ø ÐØÙ ÒÙÑ Ö Ø µ ØÝÝÔÔ ÙØ Ò Â Ú º¼ Ò ÒÙѺ ¾ ½

41 ÅÓÒ Ú Ð ÒØ ØÝÝÔ Ø º¾ ÇÐ ØÙ Ö ØÓ ÈÖ ÐÙ ØØ Ð ÑÝ ØÝÝÔ Ò Ø Å Ý ÂÙ Ø ÆÓØ Ò ÖÚÓ ÓÒ Ó Ó ³ Ù Ø Ò ³ ÒØØ ØÝÝÔÔ Ø ³ سº Ë ÓÒ ØÝÝÔÔ ØÙÖÚ ÐÐ Ò Ò Ô Ð ÙØÙ ÖÚÓ Ñ Ö Ý ÐÝÐÐ ÒÒ ØØ Ú ÒØ k Ú Ø Ú Ð Ó Ó ÐÐ Ò Ò Ø ÙÔÙÙ t ÓÒ º ¾ ¾

42 ÅÓÒ Ú Ð ÒØ ØÝÝÔ Ø º¾ Ì Ø Ò Ò ÑÝ ØÝÝÔÔ ÑÙÙØØÙ Ò ÖÓÓÐ Å Ý Ð ÂÙ Ø¹Ú ØÓ ØÓÒ Ò ÑÑ Ò ÒÓ Òµ ÒØØÒ ÖÚÓÒ ÓÒ ØÝÝÔ Ò ÑÙÙØØÙ Ò ÖÚÓ ÐÑ º Å Ý ÓÒ ÝØØ Ò ÑÖ ØØ Ð Ñ ØÝÝÔÔ ÓÒ ØÖÙ ØÓÖ Å Ý t ÐÙÓ ØÝÝÔÔ t Ú Ø Ú Ò ØÝÝÔ Ò t º ¾

43 ÅÓÒ Ú Ð ÒØ ØÝÝÔ Ø º¾ ÁØ Ö Ú Ò Ë ÓÛ ÙÙÐÙ ØÝÝÔ Ò ÑÖ ØØ ÐÝÝÒº Ë ÐÑÓ ØØ ØÙÐ ÐÐ ØØ ØÑÒ ØÝÝÔ Ò ÖÚÓ ÚÓ ØÙÐÓ Ø ÝØØ ÐÐ º º º ÓÐ ØÙ Ö Ó ØÙ Ù Ò ½º Ò Ò Ú ØÓ ÓÒ ÐÑÓ ØØ Ú ÓÒ ØÖÙ ØÓÖ ¾º ØØ Ò Ú ØÓ ÓÒ ÒØØ Ö ØÝ ÚÐ ÐÝ ÒÒ Ò ÖÓØ ÐØÙ Ò ÙØ Ò ÑÖ ØØ ÐÝ Òº ÁÐÑ Ò Ø ØÝÝÔ Ò ÖÚÓ ÚÓ Ý Ø ÐÐ ÑÙØØ ØÙÐÓ Ø Ñ Ò Ò Ó Ø Ò ØÙÐ Ò Ú Ö ÐÑÓ ØÙ Ò Ò Ø Ñ Ø Ò º Ì Ö ÑÔ Ð ØÝ ØÝÝÔÔ ÐÙÓ Ò Ý Ø Ý º µº ¾

44 ÃÓÒ ØÖÙ ØÓÖ Ø º¾º½ º¾º½ ÃÓÒ ØÖÙ ØÓÖ Ø Ä Ù Ò ÖÚÓµ ÓÒ ØÖÙ ØÓÖ ÓÒ ÙÒ Ø Ó ÃÓÒ ØÖÙ ØÓÖ i ÒØØ i1 ¹ ÒØØ i2 ¹ ÒØØ i3 ¹... ¹ ÒØØ ini ¹ Æ Ñ ØÝÝÔÔ ÑÙÙØØÙ Ø Ò ÙØ ÙÒ ÃÓÒ ØÖÙ ØÓÖ i Ð Ù i1 Ð Ù i2 Ð Ù i3... Ð Ù ini ØÙÐÓ ÓÒ Ú Ø Ú Ò Ú ØÓ ÓÒ i ÑÙ Ò Ò ÖÚÓ ÓÒ ÙÒ Ò ÒØÒ j ÖÚÓÒ ÓÒ Ð Ù ij º ¾

45 ÃÓÒ ØÖÙ ØÓÖ Ø º¾º½ À ÑÓÒ ÓÒ ØÖÙ ØÓÖ ÓÒ ÃÓÒ ØÖÙ ØÓÖ i ÑÓ i1 ÑÓ i2 ÑÓ i3... ÑÓ ini. ÂÓ Ò Ò ÑÓ ij ÓÒ ØÝÝÔÔ ÒØØ ij º ÌÑ ÑÓ ÓÔ ÖÚÓÓÒ Ó Ú Ò Ó ½º ÖÚÓ ÓÒ ØØ ÑÙÓØÓ Ú ØÓ ØÓ i Ð ÓÒ ØÙÐÓ Ó Ø Ò Ð Ù Ø ÃÓÒ ØÖÙ ØÓÖ i Ð Ù i1 Ð Ù i2 Ð Ù i3... Ð Ù ini ¾º Ó Ò Ò ÑÓ ij ÓÔ Ú Ø Ú Ò ÒØÒ ÖÚÓÓÒ Ð Ù i3 º ¾

46 ÃÓÒ ØÖÙ ØÓÖ Ø º¾º½ Ì Ö Ø ÐÐ Ò ÙÖ Ú Ñ Ö ÂÓ Ò Ò À Ò Ð ÓÒ Ó Ó ÃÙÒ Ò ÐÐ Ò Ò ÓÐÐ ÓÒ Ò Ñ Ö ØÝ ÒÙÑ ÖÓ Ñ Ö Ð Ø ¾ Ø Ð Ñ Ò Ò ÓÐÐ ÓÒ ØÙ¹ Ù ÙÒ Ñ Ñ Ö Å ØØ Å Ð Ò Ò º ËÓÔ Ú ÔÙ ÙØØ ÐÙÑÙÓØÓ Ö ÔÔÙÙ À Ò Ð Ò Ø ØÙ Ø º Ë ÚÓ Ò Ú Ð Ø ÑÓÒ ÓÚ ØÙ ÐÐ º ÂØ ØÒ Ö Ó ØÙ Ø ØÚ ÖÓÑ Ò Ó Ó ÑÙÙÒØ Ö ØÝ ÒÙÑ ÖÓÒ ÖÓÓÑ Ð º ¾

47 ÃÓÒ ØÖÙ ØÓÖ Ø º¾º½ ½ ÑÔÓÖØ ÊÓÑ Ò Ó ¾ Ø À Ò Ð ÃÙÒ Ò ÐÐ Ò Ò ËØÖ Ò ÁÒØ Ð Ñ Ò Ò ËØÖ Ò ËØÖ Ò Ö Ú Ò Ë ÓÛ ÔÙ ÙØØ ÐÙ À Ò Ð ¹ ËØÖ Ò ÔÙ ÙØØ ÐÙ ÃÙÒ Ò ÐÐ Ò Ò Ò Ñ Ö ØÝ ÒÙÑ ÖÓµ ½¼ Ì Ò ÃÙÒ Ò ÐÐ Ò Ò ÃÓÖ ÙØ ÒÒ ½½ Ò Ñ ½¾ ½ ÖÓÑ Ò Ó Ö ØÝ ÒÙÑ ÖÓ ½ ÔÙ ÙØØ ÐÙ Ð Ñ Ò Ò Ù ÙÒ Ñ µ ½ ÃÙÙÐ Ò ½ Ù ÙÒ Ñ ¾

48 ÃÓÒ ØÖÙ ØÓÖ Ø º¾º½ Æ Ø Ø ØÓØÝÝÔÔ ÙØ ÙØ Ò Ð Ö ÐÐ Ð Ö Ø ÌÝÔ Ìµ Ó Ò Ò ÖÚÓ ÚÓ Ý Ø ÐÐ Ð ØØÑÐÐ ÒØØ Ò ÖÚÓ ØÓ Ò ÓÒ ØÖÙ ØÓÖ ÐÐ ÖÓØ ÐÐ Ø Ò Ó Ò ÓÔ Ú ÐÐ ÑÓ ÐÐ º À ÐÐ Ò Òµ ÙÙÒÒ ØØ ÐÙÔ Ö Ø ÓÒ ÓÐÐÙØ ØØ ÖÓØØ Ð Ú Ø ÑÓØ ÑÙ ØÙØØ Ú Ø Ý Ø Ð Ú Ð Ù Ø º ÄÝ ÒÒ Ì Ø Ö Ó ØØ ÑÝ ØÖ Ø Ø ØÓØÝÝÔÔ ÐÐ Ø ÓÒ Ò Ò Ö ÒÒ ÓÒ Ø ØØÝº À ÐÐ ÔÙÓÐ Ø Ò ØÓØ ÙØØ Ò Ð Ö ÐÐ Ø Ò Ø ØÓØÝÝÔÔ Ò ÑÓ ÙÙÐ Ò µ Ý Ø ØÝ Ðк ¾

49 Æ Ñ ØÝØ ÒØØ º¾º¾ º¾º¾ Æ Ñ ØÝØ ÒØØ ÌÝÝÔ Ò ÑÖ ØØ ÐÝÒ Ú ØÓ ØÓ i ÚÓ Ò Ö Ó ØØ ÑÝ ÑÙÓ Ó ÃÓÒ ØÖÙ ØÓÖ i ß ÒØÒÒ Ñ i1 ÒØÒØÝÝÔÔ i1 ÒØÒÒ Ñ i2 ÒØÒØÝÝÔÔ i2 ÒØÒÒ Ñ i3 ÒØÒØÝÝÔÔ i3 º ÒØÒÒ Ñ ini ÒØÒØÝÝÔÔ ini Ð Ë ÐÐÓ Ò ÒØØ Ò Ú Ø Ø Ò Ò Ñ ÐÐ ÒÒ ÐÐ µº ¾ ¼

50 Æ Ñ ØÝØ ÒØØ º¾º¾ Æ Ñ ÐÐ Ú ØØ Ñ Ò Ò ÓÒ Ö ØÝ Ò Ý ÝÐÐ Ø ÙÒ ÒØØ ÓÒ Ô Ð ÓÒ Ø Ò Ø ÐÙÙÐØ Ú Ø ØÙÐÐ Ò Ð ÑÒ Ó ÐÑ Ò Ú º Ã ÒØÒ Ò Ñ ØÓ ØÙ Ñ Ú ØÓ Ó º Æ Ø ÐØÓ ÙÐ Ù Ô Ð Ù µ ÚÓ ØØ ÔÓ ÑÓ ÒØ ÒÒ Ò ¾º¾º µ Ô ÖÙ Ø ÐÐ Æ ÐÑ Ú Ø ØØ Ø Ò Ú ØÓ ØÓÓÒ Ð ØØÝÝ ØÑ ÓÙ Ó ÒØØ º ÅÝ ÒØØ Ò Ö Ó ØÙ Ö ØÝ ÓÒ Ú Ô º ¾ ½

51 Æ Ñ ØÝØ ÒØØ º¾º¾ ÖÚÓÒ ÓÒ ØÖÙÓ ÒØ Ø Ô ØÙÙ Ð Ù ÐÐ ÃÓÒ ØÖÙ ØÓÖ i ß ÒØÒÒ Ñ i1 Ð Ù i1 ÒØÒÒ Ñ i2 Ð Ù i2 ÒØÒÒ Ñ i3 Ð Ù i3 º ÒØÒÒ Ñ ini Ð Ù ini Ð ÂÓ Ò Ò Ð Ù i ÓÒ ØÝÝÔÔ ÒØÒØÝÝÔÔ i º º º ÒØ ÖÚÓÒ ÐÐ ÒØÐÐ ÓÒ Ò Ñ ÓÒ ÒØÒÒ Ñ i º Ã ÒØÒ ÐÙ ØÙ ÚÓ ÓÔ ÔÙÙØØÙ Ë ÐÐÓ Ò Ò ÖÚÓ ØÙÐ Ð Ù Ó ÒØ ÓÒ Ò Ú Ö Ò Ó Ø Ý ÝØÒº ¾ ¾

52 Æ Ñ ØÝØ ÒØØ º¾º¾ À ÑÓ Ö Ó Ø Ø Ò Ú Ø Ú Ø ÑÙÓ Ó ÃÓÒ ØÖÙ ØÓÖ i ß ÒØÒÒ Ñ i1 ÑÓ i1 ÒØÒÒ Ñ i2 ÑÓ i2 ÒØÒÒ Ñ i3 ÑÓ i3 º ÒØÒÒ Ñ ini ÑÓ ini Ð ÂÓ Ò Ò ÑÓ i ÓÒ ØÝÝÔÔ ÒØÒØÝÝÔÔ i º º º Ø ÓÚ Ø Ø Ò Ò ÒØÒ ÖÚÓÓÒ ÓÒ Ò Ñ ÓÒ ÒØÒÒ Ñ i º Ã ÒØÒ ÑÓ ÚÓ ÑÝ ÔÙÙØØÙ Ë ÐÐÓ Ò Ý Ò Ò ÒØØ Ø ØÒ Ó ÓÒ Ò ÙÓÑ ÓØØ º ¾

53 Æ Ñ ØÝØ ÒØØ º¾º¾ Ë Ñ ÐÐ ØÙÐ ÑÖ Ø ÐÐÝ ÔÙ ÙÒ Ø ÓØ ÒØÒÒ Ñ ij Æ Ñ ØÝÝÔÔ ÑÙÙØØÙ ع ÒØÒØÝÝÔÔ ij ½º Ì Ö Ø Ø Ò ØØ ØÙ Ö ÙÑ ÒØØ ÓÒ ÐÐ Ø Ú ØÓ ØÓ ÓÐÐ ÓÒ ØÑÒ Ò Ñ Ò Ò ÒØØ ÑÙÙØ Ò Ý ÓÒ ÓÒ Ò Ò Ú Ö º ¾º È Ð ÙØ Ø Ò Ý Ò ÒØÒ ÖÚÓº ÆÑ ÔÙ ÙÒ Ø ÓØ Ú ÒØÚØ Ø ÖÚ ØØ Ø ØÖ Ú Ð ÑÓÒ ÓÚ ØÙ Ø Ú Ò Ô Ø ÑÑ ÒØÒ ÐØ Òº ¾

54 Æ Ñ ØÝØ ÒØØ º¾º¾ Ë Ñ ÒØÒ Ò Ñ ÝØØ Ñ Ò ØÝÝÔ Ò Ö Ú ØÓ Ó ÙÒ Ò ÐÐ ÓÒ Ò ÑÝ Ñ ØÝÝÔÔ Ë ÐÐÓ Ò ÝÒØÝÝ ØÑÒ ÒØÒ ÐØÚ ÐÐ Ö Ú ØÓ Ó ÐÐ Ý Ø Ò Ò ÔÙ ÙÒ Ø Ó ÓÐÐ º º º ÓÒ Ý Ø Ò Ò ØÙÐÓ ØÝÝÔÔ º ÌÓ ÐØ Ñ ÒØÒ Ò Ñ ÝØØ Ö ØÝÝÔ Ý Ø µ Å ÓÐ Ý Ø Ò ÔÙ ÙÒ Ø ÓÒ Ö ÙÑ ÒØ Ò ØÝÔÔ ÅÙÙÒÒ Ø Ò ÐÐ Ø Ò Ð Ñ Ö ÑÑ º ¾

55 Æ Ñ ØÝØ ÒØØ º¾º¾ ½ ¾ ÑÔÓÖØ ÊÓÑ Ò Ó Ø À Ò Ð ÃÙÒ Ò ÐÐ Ò Ò ß ØÙÒ Ñ ËØÖ Ò Ö ØÝ ÁÒØ Ð Ð Ñ Ò Ò ß ØÙÒ Ñ Ù ÙÒ Ñ ËØÖ Ò Ð Ö Ú Ò Ë ÓÛ ½¼ ½½ ½¾ ÔÙ ÙØØ ÐÙ À Ò Ð ¹ ËØÖ Ò ÔÙ ÙØØ ÐÙ ÃÙÒ Ò ÐÐ Ò Òß ØÙÒ Ñ Ò Ñ Ö ØÝ ÒÙÑ ÖÓе Ì Ò ÃÙÒ Ò ÐÐ Ò Ò ÃÓÖ ÙØ ÒÒ ½ Ò Ñ ½ ½ ÖÓÑ Ò Ó ÒÙÑ ÖÓ ½ ÔÙ ÙØØ ÐÙ Ð Ñ Ò Òß Ù ÙÒ Ñ Ò Ñ Ðµ ½ ÃÙÙÐ Ò Ò Ñ ½ ½ ¾¼ ¾½ ¾¾ ÒÙØØ ÐÙ À Ò Ð ¹ ËØÖ Ò ÒÙØØ ÐÙ Ð ÃÙÙÐ Ò ¾ ØÙÒ Ñ Ð ¾

56 Æ Ñ ØÝØ ÒØØ º¾º¾ Æ Ñ ØØÝ ÒØØ ÚÓ ÑÝ Ô Ú ØØ Ú Ò ß ÒØÒÒ Ñ 1 Ð Ù 1 º ÒØÒÒ Ñ k Ð Ù k Ð Ì Ú Ò Ð Ù ÓÒ ÐÐ Ø ØÝÝÔÔ ÓÒ Ó Ò Ú ØÓ ØÓ ÐØ Ø Ñ Ò ØÙØ ÒØØ Ò Ò Ñ Øº ÂÓ Ò ÒÝ Ý Ò Ò ÖÚÓ a ÓÐ Ò Ñ Ò Ò Ø Ú ØÓ Ó Ø Ò Ò Ý ÓÒ ÙÓÖ ØÙ Ò Ò Ú Ö º ÅÙÙØ Ò Ó Ó Ð Ù Ò ÖÚÓ ÓÒ ÖÚÓÒ a ÐÐ Ò Ò ÓÔ Ó Ó Ø Ò Ñ ØÝØ ÒØØ Ú Ø Ò Ø Ñ Ò ØÙØ ÖÚÓØº ¾

ÁÒ Ù Ø Ú Ø ØÝÝÔ Ø º Ñ Ö ÒÖ ÔÙÙÒ ÑÖ Ø ÐÑ Ú ØØ Ø Ò ÒÖ ÔÙÙ ÓÒ Ó Ó ØÝ Ø ÓÐÑÙ Ó ÓÒ Ð Ó ÓÒ Ú Ò Ó Ð ÔÙÙ ÓÚ Ø ÑÝ ÒÖ ÔÙ Ø º Ë ÚÓ Ò Ö Ó ØØ ÙÓÖ Ò Ø Ò ÖÝÌÖ ÑÔØÝ Æ

ÁÒ Ù Ø Ú Ø ØÝÝÔ Ø º Ñ Ö ÒÖ ÔÙÙÒ ÑÖ Ø ÐÑ Ú ØØ Ø Ò ÒÖ ÔÙÙ ÓÒ Ó Ó ØÝ Ø ÓÐÑÙ Ó ÓÒ Ð Ó ÓÒ Ú Ò Ó Ð ÔÙÙ ÓÚ Ø ÑÝ ÒÖ ÔÙ Ø º Ë ÚÓ Ò Ö Ó ØØ ÙÓÖ Ò Ø Ò ÖÝÌÖ ÑÔØÝ Æ ÁÒ Ù Ø Ú Ø ØÝÝÔ Ø º º ÁÒ Ù Ø Ú Ø ØÝÝÔ Ø Ø ¹ÑÖ ØØ ÐÝ º¾µ ÚÓ Ú Ø Ø ÑÝ Ø Ò ÑÖ Ø ÐØÚ Æ Ñ ÒØÝ ÑÝ ³ ³¹Ñ Ö Ò Ó ÐÐ ÔÙÓÐ ÐÐ º Ë Ò ÓÐ ÐÐ ØØÝ ØÝÔ ¹ÐÝ ÒØ º½µº ¾ ÁÒ Ù Ø Ú Ø ØÝÝÔ Ø º Ñ Ö ÒÖ ÔÙÙÒ ÑÖ Ø ÐÑ Ú ØØ Ø Ò ÒÖ

Lisätiedot

ÍÐ ÓØ ÐÓ Ò Ô ÖØÓ ÃÙÒ Ô ÖÖ ØÒ Ð Ó ÙÐ ÓÒ ÝÑ ÓÒ Ò ØØ Ú Ñ ÐÐ Ñ ØÓ Ø ØÝÝÔ ÐÐ Ø Ú Ò Ð Ò ÙÙÖ ÓÚ ÐØÙ Ò Ö Ð Ò Ô ÖØÑ Ò Ñº Ó Ñ ÐÐ ÒÒ Ø Ò ½¼ Ü ½¼ Ñ ÐÙ ½¼ Ñ Ø Ö Ù

ÍÐ ÓØ ÐÓ Ò Ô ÖØÓ ÃÙÒ Ô ÖÖ ØÒ Ð Ó ÙÐ ÓÒ ÝÑ ÓÒ Ò ØØ Ú Ñ ÐÐ Ñ ØÓ Ø ØÝÝÔ ÐÐ Ø Ú Ò Ð Ò ÙÙÖ ÓÚ ÐØÙ Ò Ö Ð Ò Ô ÖØÑ Ò Ñº Ó Ñ ÐÐ ÒÒ Ø Ò ½¼ Ü ½¼ Ñ ÐÙ ½¼ Ñ Ø Ö Ù ØÙغ Ø Ò ÐÐ Ò Ò ÝÐ ÓÔ ØÓ Ì ÑÔ Ö Ò È Ð Ó ÐÑÓ ÒØ ÍÐ ÓØ ÐÓ Ò Ô ÖØÓ ÒØØ ÈÙ ÒØØ ºÔÙ Ç ÐÑ ØÓØ Ò ÍÐ ÓØ ÐÓ Ò Ô ÖØÓ ÃÙÒ Ô ÖÖ ØÒ Ð Ó ÙÐ ÓÒ ÝÑ ÓÒ Ò ØØ Ú Ñ ÐÐ Ñ ØÓ Ø ØÝÝÔ ÐÐ Ø Ú Ò Ð Ò ÙÙÖ ÓÚ ÐØÙ Ò Ö Ð Ò Ô ÖØÑ Ò Ñº

Lisätiedot

ÈÖÓ Ð Ø Ø ÌÙÖ Ò Ò ÓÒ Ø ÅÖ Ø ÐÑ ÈÖÓ Ð Ø Ò Ò ÌÙÖ Ò Ò ÓÒ Å ÓÒ ÖÒÐ Ò Ò Ô Ø ÖÑ Ò Ø Ò Ò ÌÙÖ Ò Ò ÓÒ Ó Ô Ø ÖÑ Ò Ø Ø ÐØ ÙØ ÙØ Ò ÓÐ ÓÒ ØØÓ ¹ Ð º ÂÓ Ò Å Ò Ö Ò Ý

ÈÖÓ Ð Ø Ø ÌÙÖ Ò Ò ÓÒ Ø ÅÖ Ø ÐÑ ÈÖÓ Ð Ø Ò Ò ÌÙÖ Ò Ò ÓÒ Å ÓÒ ÖÒÐ Ò Ò Ô Ø ÖÑ Ò Ø Ò Ò ÌÙÖ Ò Ò ÓÒ Ó Ô Ø ÖÑ Ò Ø Ø ÐØ ÙØ ÙØ Ò ÓÐ ÓÒ ØØÓ ¹ Ð º ÂÓ Ò Å Ò Ö Ò Ý ÈÖÓ Ð Ø Ø Ð ÓÖ ØÑ Ø Î Ñ Ø ÐÐÒ ÔÖÓ Ð Ø Ð ÓÖ ØÑ º ÌÐÐ Ð ÓÖ ØÑ ÖÚ Ø Ò Ø Ø ØÒ ÓÐ Ó ØÙÐÓ Ò ÑÙ Ò Ö Ù ÙØ Òº ÖÓÒ Ô Ø ÖÑ Ò Ñ Ò ÓÒ ØØ ÒÝØ Ø Ö Ø ÐÐ ÖÓ Ú Ò Ð ÒØ ØÓ Ø Ø Ò ÙÙ ÐÐ ÖÚ Ù ÐÐ Ø ÖÚ ØØ º Ä ÓÒ Ö ØØ Ø ØÓ ÒÒ ÝÝ

Lisätiedot

Ð ØÖÓÒ Ø Ñ ÙÚÐ Ò Ø Ì ÑÙ Ê ÒØ ¹ Ó À Ð Ò ¾ º ÐÓ ÙÙØ ½ Ë Ò ÙÔ Ò ÝÒÒ Ò Ñ Ò Ö À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ Ì ØÓ Ò ØØ ÐÝØ Ø Ò Ð ØÓ Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Å Ù Ö Ø ÐÑØ ¾ ¾º½ ÆÝ Ý Ø Ñ Ù Ö Ø ÐÑØ º º º º º º º º º º º º º º º º

Lisätiedot

:: γ1. g 1. :: γ2. g 2

:: γ1. g 1. :: γ2. g 2 ÌÝÝÔÔ Ú ØØ Ø ¹ Ý ÝÑÝ Ø º º¾ Ò ÑÙÙØØÙ Ò Ý ÝÑÝ Ð Ø x g Ò e? :: α Ö Ø Ø Ò ÓÐ ÐÐ Ø ÑÓ Ò Ô Ö Ñ ØÖ ØØ ÑÒ ÙÒ Ø ÓÒ ÑÙØØ À ÐÐ ÝÐ Ø Ò ÐÐ ÑÙÙØØÙ Ó ÐÐ ÐÑ ÒØÙ ØÝÝÔÔ ÐÙÓ Ð Ó º Ë Ø ÑÙØ ÑÑ Ò ÑÓÒ Ý ÝÑÝ Ð Ø p g Ò e? ::

Lisätiedot

Ì Ð Ú Ø ÚÙÙ ÐÙÓ Ø Á ÅÖ Ø ÐÑ ÇÐ ÓÓÒ : Æ Ê ÙÒ Ø Óº Ì Ð Ú Ø ÚÙÙ ÐÙÓ Ø ËÈ ( (Ò)) ÆËÈ ( (Ò)) ÑÖ Ø ÐÐÒ ÙÖ Ú Ø ËÈ ( (Ò)) ÓÒ Ò Ò ÐØ Ò Ä ÓÙ Ó ÓØ ÚÓ Ò ØÙÒÒ Ø Ø

Ì Ð Ú Ø ÚÙÙ ÐÙÓ Ø Á ÅÖ Ø ÐÑ ÇÐ ÓÓÒ : Æ Ê ÙÒ Ø Óº Ì Ð Ú Ø ÚÙÙ ÐÙÓ Ø ËÈ ( (Ò)) ÆËÈ ( (Ò)) ÑÖ Ø ÐÐÒ ÙÖ Ú Ø ËÈ ( (Ò)) ÓÒ Ò Ò ÐØ Ò Ä ÓÙ Ó ÓØ ÚÓ Ò ØÙÒÒ Ø Ø Ì Ð Ú Ø ÚÙÙ Á ÅÖ Ø ÐÑ ÇÐ ÓÓÒ Å Ø ÖÑ Ò Ø Ò Ò ÌÙÖ Ò Ò ÓÒ Ó ÔÝ ØÝÝ ÐÐ Ý ØØ Ðк Å Ò Ø Ð Ú Ø ÚÙÙ ÓÒ ÙÒ Ø Ó : Æ Æ Ñ (Ò) ÓÒ Å Ò Ð Ñ Ò ÑÙ Ø Ô Ó Ò Ñ Ñ ÐÙ ÙÑÖ ÙÒ Ø Ö Ø ÐÐ Ò Ò Ò Ô ØÙ Ý ØØ غ ÂÓ Å Ò Ø Ð Ú Ø ÑÙ ÓÒ

Lisätiedot

Kuvan piirto. Pelaaja. Maailman päivitys. Syötteen käsittely

Kuvan piirto. Pelaaja. Maailman päivitys. Syötteen käsittely ØÙغ Ø Ò ÐÐ Ò Ò ÝÐ ÓÔ ØÓ Ì ÑÔ Ö Ò È Ð Ó ÐÑÓ ÒØ È Ð Ó ÐÑ Ò Ö ÒÒ ÒØØ ÈÙ ÒØØ ºÔÙ Ç ÐÑ ØÓØ Ò Ò Ø ÐРؽ ؾ Ø È Ð Ó ÐÑ Ò Ô ÖÙ Ö ÒÒ Ì ØÓ ÓÒ Ô Ð Ò ÝØ Ñ Ò ÓÒ Ñ ÐÐ Ó Ø Ò ÙÚ ØØ ÐÐ Ø Ñ ÐÑ Ø ÚÓ ÓÐÐ Ú Ò Ý Ò ÖØ Ò Ò Ð

Lisätiedot

Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Ç Å ÓÐ ÓØ ØÓ ÒØ Ø Ò Ö ¾ ¾º½ ÇÅ ÓÐ ÓÑ ÐÐ Ç Ä ÓÐ ÓÒÑÖ ØÝ Ð º º º º º º º º º º º º º º º ¾ ¾º¾ ÇÉÄ ÓÐ Ó Ý ÐÝ Ð º º º º º º º º º º º º

Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Ç Å ÓÐ ÓØ ØÓ ÒØ Ø Ò Ö ¾ ¾º½ ÇÅ ÓÐ ÓÑ ÐÐ Ç Ä ÓÐ ÓÒÑÖ ØÝ Ð º º º º º º º º º º º º º º º ¾ ¾º¾ ÇÉÄ ÓÐ Ó Ý ÐÝ Ð º º º º º º º º º º º º ÝÚ ÝÑ Ô Ú ÖÚÓ Ò ÖÚÓ Ø Ð ÇÐ ÓÔÓ Ø Ø ØÓÑ ÐÐ Ø Ø ØÓ ÒÒ Ò ÐÐ ÒØ Ö Ø ÐÑ ÖØÓ ÖÐÙÒ À Ð Ò ¾ º½¼º¾¼¼ À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ Ì ØÓ Ò ØØ ÐÝØ Ø Ò Ð ØÓ Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Ç Å ÓÐ ÓØ ØÓ ÒØ Ø Ò Ö ¾ ¾º½ ÇÅ ÓÐ ÓÑ ÐÐ Ç Ä ÓÐ ÓÒÑÖ

Lisätiedot

p q = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 + (z 1 z 2 ) 2. x 1 y 1 z 1 x 2 y 2 z 2

p q = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 + (z 1 z 2 ) 2. x 1 y 1 z 1 x 2 y 2 z 2 º ÅÓÒ ÙÐÓØØ Ø Ö ÒØ Ð Ð ÒØ º½ Â Ø ÙÚÙÙ Ó ØØ Ö Ú Ø Ø Ù Ò ÑÙÙØØÙ Ò ÙÒ Ø Ó Ò Ö ÒØ Ð Ð ÒØ ÐÑÔ Ø Ð ÓÒ Ò Ô Ò ÙÒ Ø Ó T(x, y, z.t) ÄÑÔ Ø Ð Ö ÒØØ ÐÑÓ ØØ Ñ Ò ÙÙÒØ Ò ÐÑÔ Ø Ð Ú ÚÓ Ñ ÑÑ Ò Ù Ò Ð ÐÑÔ Ø Ð Ö ÒØØ ½½ ÃÓÓÖ

Lisätiedot

Ð ØÖÓÒ Ò Ú Ø Ò Ô ÓÒ Ö Ø Ð ØÖÓÒ Ò Ò Ú Ð ÙÒ ÝÐ ÓÔ ØÓ ÖÑ Ò ØÙØ ÑÙ ¹ Ð ØÓ ½ ¼¹ÐÙÚÙÐÐ Ù Ø Ó ÐÙ Ð ØÖÓÒ Ô Ð ºËº ÓÙ Ð Ø ½ ¾ Ñ Ö Ú Ø Ö Ò Ñ Ò ÓÒ Ò ÚÙÓÖÓÚ ÙØÙ Ø

Ð ØÖÓÒ Ò Ú Ø Ò Ô ÓÒ Ö Ø Ð ØÖÓÒ Ò Ò Ú Ð ÙÒ ÝÐ ÓÔ ØÓ ÖÑ Ò ØÙØ ÑÙ ¹ Ð ØÓ ½ ¼¹ÐÙÚÙÐÐ Ù Ø Ó ÐÙ Ð ØÖÓÒ Ô Ð ºËº ÓÙ Ð Ø ½ ¾ Ñ Ö Ú Ø Ö Ò Ñ Ò ÓÒ Ò ÚÙÓÖÓÚ ÙØÙ Ø ØÙغ Ø Ò ÐÐ Ò Ò ÝÐ ÓÔ ØÓ Ì ÑÔ Ö Ò È Ð Ó ÐÑÓ ÒØ È Ð Ó ÐÑÓ ÒÒ Ò ØÓÖ ÒØØ ÈÙ ÒØØ ºÔÙ Ç ÐÑ ØÓØ Ò Ð ØÖÓÒ Ò Ú Ø Ò Ô ÓÒ Ö Ø Ð ØÖÓÒ Ò Ò Ú Ð ÙÒ ÝÐ ÓÔ ØÓ ÖÑ Ò ØÙØ ÑÙ ¹ Ð ØÓ ½ ¼¹ÐÙÚÙÐÐ Ù Ø Ó ÐÙ Ð ØÖÓÒ Ô Ð ºËº ÓÙ Ð

Lisätiedot

Ä ÒÒ Ò Ú Ø ÚÙ٠̺ à ÖÚ º º¾¼¼ ̺ à ÖÚ µ Ä ÒÒ Ò Ú Ø ÚÙÙ º º¾¼¼ ½»

Ä ÒÒ Ò Ú Ø ÚÙ٠̺ à ÖÚ º º¾¼¼ ̺ à ÖÚ µ Ä ÒÒ Ò Ú Ø ÚÙÙ º º¾¼¼ ½» Ä ÒÒ Ò Ú Ø ÚÙ٠̺ à ÖÚ º º¾¼¼ ̺ à ÖÚ µ Ä ÒÒ Ò Ú Ø ÚÙÙ º º¾¼¼ ½» Î Ø ÚÙÙ Ò Ñ ØØ Ñ Ò Ò Ì Ö Ø ÐÐ Ò ÓØ Ò ÐØ º Å Ø Ò Ô Ð ÓÒ ÌÙÖ Ò Ò ÓÒ ÙÐÙØØ ØÙÒÒ Ø Ò Ò Á Ä Ø Ò Ð Ò ØÙÒÒ Ø Ú ÌÙÖ Ò Ò ÓÒ Ô Ù Ó Ð Ö ØØµº Ä Ø Ò

Lisätiedot

È Ú Ö Ù ÆÈ ÁÁ Ë ÑÓ Ò Ó Ò Ý ÝÑÝ ÚÙØ ØØ Ò ØÝ Ø ÙÒ ËØ Ô Ò ÓÓ Ä ÓÒ Ä Ú Ò ØØ Ð ÚØ ÆÈ¹ØÝ ÐÐ ÝÝ Ò ØØ Òº µ º Ù Ø ÙÙØ ¾¼¼ ¾»

È Ú Ö Ù ÆÈ ÁÁ Ë ÑÓ Ò Ó Ò Ý ÝÑÝ ÚÙØ ØØ Ò ØÝ Ø ÙÒ ËØ Ô Ò ÓÓ Ä ÓÒ Ä Ú Ò ØØ Ð ÚØ ÆÈ¹ØÝ ÐÐ ÝÝ Ò ØØ Òº µ º Ù Ø ÙÙØ ¾¼¼ ¾» È Ú Ö Ù ÆÈ Á à РÐÙÓ Ø È ÆÈ ÒÝØØÚØ ØÝ Ò Ö Ð ÐØ Ë ÐÚ Ø È ÆÈº µ È ÓÒ Ð ÐÙÓ Ó Ð ÓÒ ÙÙÐÙÑ Ò Ò Ð Ò ÚÓ Ò Ö Ø Ø ÔÓÐÝÒÓÑ Ø ÖÑ Ò Ø ÐÐ ÌÙÖ Ò Ò ÓÒ ÐÐ º µ ÆÈ ÓÒ Ð ÐÙÓ Ó Ð ÓÒ ÙÙÐÙÑ Ò Ò Ð Ò ÚÓ Ò Ú Ö Ó ÔÓÐÝÒÓÑ Ð Ð ÓÒ

Lisätiedot

Symmetriatasot. y x. Lämmittimet

Symmetriatasot. y x. Lämmittimet Ì Ò ÐÐ Ò Ò ÓÖ ÓÙÐÙ ¹ÖÝ ÑĐ» ËÓÚ ÐÐ ØÙÒ Ø ÖÑÓ ÝÒ Ñ Ò Ð ÓÖ ØÓÖ Ó ÅÍÁËÌÁÇ ÆÓ»Ì ÊÅǹ ¹¾¼¼¼ ÔÚÑ ½¼º Ñ Ð ÙÙØ ¾¼¼¼ ÇÌËÁÃÃÇ Ø Ú ÒØ¹ØÙÐÓ ÐÑ Ð ØØ Ò ¹Ñ ÐÐ ÒÒÙ Ò ÖØ Ø ØÙØ ØÙÐÓ ÐÑ Ð Ø Ñ ÐÐ Ø Ä ÌÁ ̵ ÂÙ Ú Ó Ð ¹ÂÙÙ Ð

Lisätiedot

À Ö Ö Ð Ù Ø ÅÖ Ø ÐÑ ÙÒ Ø Ó : Æ Æ Ñ (Ò) = O(ÐÓ Ò) ÓÒ Ø Ð ÓÒ ØÖÙÓ ØÙÚ Ó ÐÐ Ò Ò ÙÒ Ø Ó Ó ÙÚ Ñ Ö ÓÒÓÒ ½ Ò (Ò) Ò ÒÖ ØÝ ÐÐ ÓÒ Ð ØØ Ú Ø Ð O( (Ò))º Ä Ù Å Ø Ø

À Ö Ö Ð Ù Ø ÅÖ Ø ÐÑ ÙÒ Ø Ó : Æ Æ Ñ (Ò) = O(ÐÓ Ò) ÓÒ Ø Ð ÓÒ ØÖÙÓ ØÙÚ Ó ÐÐ Ò Ò ÙÒ Ø Ó Ó ÙÚ Ñ Ö ÓÒÓÒ ½ Ò (Ò) Ò ÒÖ ØÝ ÐÐ ÓÒ Ð ØØ Ú Ø Ð O( (Ò))º Ä Ù Å Ø Ø Ì ÔÙÑ ØØÓÑÙÙ Ì Ó Ø ÐÐÒ ÓÒ ÐÑ ÓØ ÓÚ Ø Ô Ö ØØ Ö Ø Ú ÑÙØØ Ó Ò Ö Ø Ù Ú Ø Ò Ò Ô Ð ÓÒ Ø Ø Ð ØØ Ö Ø Ù ÓÐ ÝØÒÒ ÐÚÓÐÐ Ò Òº Í ÑÑ Ø ÓÐ ØØ Ú Ø ØØ ÆÈ¹ØÝ ÐÐ Ø ÔÖÓ Ð Ñ Ø ÓÚ Ø Ø ÔÙÑ ØØÓÑ ÒØÖ Ø Ð µ ÑÙØØ ØØ ÓÐ ØÓ Ø ØØÙº

Lisätiedot

Å Ø Ñ ØØ ¹ÙÓÒÒÓÒØ Ø Ò Ò Ì Ö ØØ Ö ÙØ ÓÖ Á Å Ö Ò Ò ÌÝ Ò Ò Ñ Ö Ø Ø Ø Ø Ì Ø Ì ØÓ Ò ØØ ÝØ Ø Ò ØÓ Ò ËÖ ÔØ ¹Ô Ó Ñ ÇÔÔ Ò ÄÖÓÑÒ ËÙ Ø Ì ØÓ Ò ØØ ÝØ ÌÝ Ò Ö Ø Ø ÖØ

Å Ø Ñ ØØ ¹ÙÓÒÒÓÒØ Ø Ò Ò Ì Ö ØØ Ö ÙØ ÓÖ Á Å Ö Ò Ò ÌÝ Ò Ò Ñ Ö Ø Ø Ø Ø Ì Ø Ì ØÓ Ò ØØ ÝØ Ø Ò ØÓ Ò ËÖ ÔØ ¹Ô Ó Ñ ÇÔÔ Ò ÄÖÓÑÒ ËÙ Ø Ì ØÓ Ò ØØ ÝØ ÌÝ Ò Ö Ø Ø ÖØ Ò ËÖ ÔØ ¹Ô Ó Ñ Á Å Ö Ò Ò À Ò ½½º º¾¼¼ Ç Ñ ØÓØÙÓØ ÒØÓ Ø ØÓ ÓÒ Ô Ø ¹ Ñ Ò Ö À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ Ì ØÓ Ò ØØ ÝØ Ø Ò ØÓ Å Ø Ñ ØØ ¹ÙÓÒÒÓÒØ Ø Ò Ò Ì Ö ØØ Ö ÙØ ÓÖ Á Å Ö Ò Ò ÌÝ Ò Ò Ñ Ö Ø Ø Ø Ø Ì Ø Ì ØÓ Ò ØØ ÝØ Ø Ò

Lisätiedot

Ä ÒÒ Ò Ú Ø ÚÙ٠̺ à ÖÚ ¾º º¾¼¼ ̺ à ÖÚ µ Ä ÒÒ Ò Ú Ø ÚÙÙ ¾º º¾¼¼ ½»

Ä ÒÒ Ò Ú Ø ÚÙ٠̺ à ÖÚ ¾º º¾¼¼ ̺ à ÖÚ µ Ä ÒÒ Ò Ú Ø ÚÙÙ ¾º º¾¼¼ ½» Ä ÒÒ Ò Ú Ø ÚÙ٠̺ à ÖÚ ¾º º¾¼¼ ̺ à ÖÚ µ Ä ÒÒ Ò Ú Ø ÚÙÙ ¾º º¾¼¼ ½» ÃÙÖ Ò ÐØ Ø ÐØÙ ÐØ ½ ¾ Î Ø ÚÙÙ Ò Ñ ØØ Ñ Ò Ò ÄÙÓ È ÄÙÓ ÆÈ ÆÈ¹ØÝ ÐÐ ÝÝ ÆÈ¹ØÝ ÐÐ ÔÖÓ Ð ÑÓ Ì Ð Ú Ø ÚÙÙ ÄÙÓ ÈËÈ Ë Ú Ø Ò Ð Ù Ñ Ö ÈËÈ ¹ØÝ ÐÐ Ø

Lisätiedot

ÂÓ ÒØÓ ½ Ì ØÓ Ò ØØ ÐÝØ ÓÖ Ø ÒÒÓ ØÙÒ ÐÐ ÙÖ ØØ Ð Ö Ð Ø Ð ÒØ Ñ ÐÐ º ØÝ Ó Ø ÚÙÙØ Ø Òºµ Ç ÐÑÓ ÒÒ Ø ÒÒÓ ØÙÒ ÐÐ ØØ Ð Ö Ð Ø Ó ÐÑÓ ÒØ ¹ Ó ÐÑ Ò ÙÙÒÒ ØØ ÐÙØ Ô º

ÂÓ ÒØÓ ½ Ì ØÓ Ò ØØ ÐÝØ ÓÖ Ø ÒÒÓ ØÙÒ ÐÐ ÙÖ ØØ Ð Ö Ð Ø Ð ÒØ Ñ ÐÐ º ØÝ Ó Ø ÚÙÙØ Ø Òºµ Ç ÐÑÓ ÒÒ Ø ÒÒÓ ØÙÒ ÐÐ ØØ Ð Ö Ð Ø Ó ÐÑÓ ÒØ ¹ Ó ÐÑ Ò ÙÙÒÒ ØØ ÐÙØ Ô º ÂÓ ÒØÓ ½ ½ ÂÓ ÒØÓ ÃÙÖ ÐÐ ØÙØÙ ØÙØ Ò Ô ÖÙ Ø Ò ÙÒ Ø ÓÒ Ð Ø Ó ÐÑÓ ÒÒ Ø Ö ØÝ Ø Ñ Ø Ò ÖÓ ØÙØÙ Ø Ø Ð Ô ÖÙ Ø Ø Ó ÐÑÓ ÒÒ Ø Ó ÐÑÓ ÒØ Ð Ø À ÐÐ ÓÐÐ ÓÒ Ô Ó Ó ÐÑÓ ÙÒ Ø ÓÒ Ð Ø º ½ ÂÓ ÒØÓ ½ Ì ØÓ Ò ØØ ÐÝØ ÓÖ Ø ÒÒÓ ØÙÒ

Lisätiedot

Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Ç ÐÑ ØÓ Ò ÑÓ ÙÐ Ö Ó ÒØ ½ ÄÔ Ð Ú Ø ÓÑ Ò ÙÙ Ø Ô Ø Ó ÐÑÓ ÒØ Ô ØÂ º½ Ä ØÓ Ó Ø Ð ØÓ Ó Ø ÑÖ ØØ ÐÝØ º º º º º º º º º º º º º º º º º º º¾

Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Ç ÐÑ ØÓ Ò ÑÓ ÙÐ Ö Ó ÒØ ½ ÄÔ Ð Ú Ø ÓÑ Ò ÙÙ Ø Ô Ø Ó ÐÑÓ ÒØ Ô ØÂ º½ Ä ØÓ Ó Ø Ð ØÓ Ó Ø ÑÖ ØØ ÐÝØ º º º º º º º º º º º º º º º º º º º¾ Ô Ø Ó ÐÑÓ ÒØ ÐÔ Ð Ú Ò ÓÑ Ò ÙÙ Ò ÑÓ ÙÐ ¹ Ö Ó ÒØ Ì ÑÓ ÌÙÓÑ Ò Ò À Ð Ò ½º º¾¼¼ Ë Ñ Ò Ö Ø ÐÑ À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ Ì ØÓ Ò ØØ ÐÝØ Ø Ò Ð ØÓ Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Ç ÐÑ ØÓ Ò ÑÓ ÙÐ Ö Ó ÒØ ½ ÄÔ Ð Ú Ø ÓÑ Ò ÙÙ Ø Ô Ø Ó ÐÑÓ

Lisätiedot

ÓÑ ØÖ Ò Ø Ò Ø ØÓÖ ÒØ Ø Ã ÙÖ Ú Ø ÐØÚØ Ø ØÓÖ ÒØ Ø Ô ÖÙ ØÙÚ Ø Ñ ÒØÝÝÔ¹ Ô Ò Ò ÖÓØ ÐÐ Ò Ú ÖÙÙ Ø Ó Ó Ò ÐÐ ÓÒ Ô Ò ÑÔ Ó Ò Ò ÐÐ Ú Ð Ô Ò ÑÔ Ó Ò º ÒÑ Ö Ø ØÒ Ö Ö

ÓÑ ØÖ Ò Ø Ò Ø ØÓÖ ÒØ Ø Ã ÙÖ Ú Ø ÐØÚØ Ø ØÓÖ ÒØ Ø Ô ÖÙ ØÙÚ Ø Ñ ÒØÝÝÔ¹ Ô Ò Ò ÖÓØ ÐÐ Ò Ú ÖÙÙ Ø Ó Ó Ò ÐÐ ÓÒ Ô Ò ÑÔ Ó Ò Ò ÐÐ Ú Ð Ô Ò ÑÔ Ó Ò º ÒÑ Ö Ø ØÒ Ö Ö ØÙغ Ø Ò ÐÐ Ò Ò ÝÐ ÓÔ ØÓ Ì ÑÔ Ö Ò È Ð Ó ÐÑÓ ÒØ È Ð Ó ÐÑÓ ÒÒ Ý ÝÐÐ Ø ØÓÖ ÒØ Ø ÒØØ ÈÙ ÒØØ ºÔÙ Ç ÐÑ ØÓØ Ò ÓÑ ØÖ Ò Ø Ò Ø ØÓÖ ÒØ Ø Ã ÙÖ Ú Ø ÐØÚØ Ø ØÓÖ ÒØ Ø Ô ÖÙ ØÙÚ Ø Ñ ÒØÝÝÔ¹ Ô Ò Ò ÖÓØ ÐÐ Ò Ú ÖÙÙ Ø Ó Ó Ò ÐÐ

Lisätiedot

el. konsentraatio p puolella : n p = N c e (E cp E F ) el. konsentraatio n puolella : n n = N c e (E cn E F ) n n n p = e (Ecp Ecn) V 0 = kt q ln (

el. konsentraatio p puolella : n p = N c e (E cp E F ) el. konsentraatio n puolella : n n = N c e (E cn E F ) n n n p = e (Ecp Ecn) V 0 = kt q ln ( ÈÙÓÐ Ó ÓÑÔÓÒ ÒØØ Ò Ô ÖÙ Ø Ø À Ì Øº ½º È ÖÖ ÔÒ¹ÔÙÓÐ Ó Ð ØÓ Ò Ò Ö ÚÝ Ñ ÐÐ ÙÒ ÙÐ Ó Ò Ò ÒØØ ÓÒ ÒÓÐÐ º ÂÓ ÓÒØ Ø ÔÓØ ÒØ Ð Ò V 0 Ý ØÐ µ ÃÙÚ Ò ÚÙÐÐ µ Ù ÓÚ ÖØ Ý ØÐ Ø Ô¹ Ò¹ØÝÝÔ Ø Ò Ñ Ø Ö Ð Ò Ò Ö Ø ÓØ Ô¹ÔÙÓÐ ÐÐ ÙÙÖ

Lisätiedot

d 00 = 0, d i0 = i, 1 i m, d 0j

d 00 = 0, d i0 = i, 1 i m, d 0j ¾º¾º ÁÌÇÁÆÌÁ Ì ÁË Æ Ä Ëà ÅÁÆ Æ ¾ º ÇÔ Ö Ø Ó ÓÒÓ ÌÌÈÈÈÌÄÌÅÈÈ Ò Ù Ø¹Öݹ¹ Ò¹¹¹Ø Ö Ø º ÇÔ Ö Ø Ó Ò ÐÙ ØØ ÐÓ Ò Ù ØÖÝ d ǫ ÒØ ÖÝ ǫ e ÒÙ ØÖÝ u ǫ ÒØ Ö Ý y s Ò ØÖÝ s ǫ ÒØ Ö ǫ t ÒØÖÝ ǫ e ÒØ Ö Ø ¾º¾ ØÓ ÒØ Ø ÝÝ Ò Ð

Lisätiedot

À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç ØÓ ÙÐØ Ø»Ë Ø ÓÒ ÙÐØÝ Ä ØÓ ÁÒ Ø ØÙØ ÓÒ Ô ÖØÑ ÒØ Å Ø Ñ ØØ ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò Ì Ö

À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç ØÓ ÙÐØ Ø»Ë Ø ÓÒ ÙÐØÝ Ä ØÓ ÁÒ Ø ØÙØ ÓÒ Ô ÖØÑ ÒØ Å Ø Ñ ØØ ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò Ì Ö ÝÚ ÝÑ Ô Ú ÖÚÓ Ò ÖÚÓ Ø Ð Ä Ù ÓÑÔÓÒ ÒØ Ø Ã Ö Ì ÑÓÒ Ò À Ð Ò º º¾¼¼ Ç ÐÑ ØÓØÙÓØ ÒØÓ Ø ØÓ ÓÒ Ô Ð Ø ¹ Ñ Ò Ö À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ Ì ØÓ Ò ØØ ÐÝØ Ø Ò Ð ØÓ À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ

Lisätiedot

ÄÙ ÙØ ÓÖ Ë Ô Ö ÒØ ÐÐ Ò ÝÑÑ ØÖ Ò Ð Ù Ò ØØ ÙÐ Ò Ú Ñ Ò Ð Ù Ò Ý Ø Ý Ø ÖÚ Ø Ò Ø ØÓ ÑÓ ÙÐÓ Ö ØÑ Ø Ø Ö ÐÐ Ø ÙÒÒ Ø º Ì ÐÙÚÙ ÐÙÓ Ò Ø Ù Ò Ò ÐÙ Ò ØÖ ÑÔ Ò ØØ Òº Ø

ÄÙ ÙØ ÓÖ Ë Ô Ö ÒØ ÐÐ Ò ÝÑÑ ØÖ Ò Ð Ù Ò ØØ ÙÐ Ò Ú Ñ Ò Ð Ù Ò Ý Ø Ý Ø ÖÚ Ø Ò Ø ØÓ ÑÓ ÙÐÓ Ö ØÑ Ø Ø Ö ÐÐ Ø ÙÒÒ Ø º Ì ÐÙÚÙ ÐÙÓ Ò Ø Ù Ò Ò ÐÙ Ò ØÖ ÑÔ Ò ØØ Òº Ø ÃÖÝÔØÓ Ö Ò Ô ÖÙ Ø Ø Ìº à ÖÚ Ë ÔØ Ñ Ö ¾¼¼ ̺ à ÖÚ µ ÃÖÝÔØÓ Ö Ò Ô ÖÙ Ø Ø Ë ÔØ Ñ Ö ¾¼¼ ½» ½½ ÄÙ ÙØ ÓÖ Ë Ô Ö ÒØ ÐÐ Ò ÝÑÑ ØÖ Ò Ð Ù Ò ØØ ÙÐ Ò Ú Ñ Ò Ð Ù Ò Ý Ø Ý Ø ÖÚ Ø Ò Ø ØÓ ÑÓ ÙÐÓ Ö ØÑ Ø Ø Ö ÐÐ Ø ÙÒÒ Ø º Ì

Lisätiedot

F n (a) = 1 n { i : 1 i n, x i a }, P n (a, b) = F n (b) F n (a). P n (a, b) = 1 n { i : 1 i n, a < x i b }.

F n (a) = 1 n { i : 1 i n, x i a }, P n (a, b) = F n (b) F n (a). P n (a, b) = 1 n { i : 1 i n, a < x i b }. Ë ÐØ ½ ÂÓ ÒØÓ ½ ½º½ ÌÓ ÒÒ ÝÝ Ø Ð ØÓØ º º º º º º º º º º º º º º º º º º ½ ½º¾ À Ú ØÙØ Ö Ú Ò Ø ÑÔ Ö Ø ÙÑ Ø º º º º º º º º º º º ½ ½º ÌÓ ÒÒ ÝÝ Ñ ÐÐ Ø º º º º º º º º º º º º º º º º º º º º º º º ½º º½

Lisätiedot

A B P(A B) = P(A B) P(K) = 4 ( 52 5) =

A B P(A B) = P(A B) P(K) = 4 ( 52 5) = ËÁË ÄÌ ¾º º½ ÀÝÔ Ö ÓÑ ØÖ Ò Ò ÙÑ º º º º º º º º º º º º º º º ¾º º¾ Ì Ö ØÙ ÓØ ÒØ Ø ÓÐÐ ÙÙ º º º º º º º º º º º º º º ¾º ÇØ ÒØ Ô Ð ÙØØ Ò º º º º º º º º º º º º º º º º º º º º º º º º ¾º ÒÓÑ ÙÑ º º º

Lisätiedot

Simulointityökalu saarekekäytön säädön kehityksen tueksi Elektroniikan, tietoliikenteen ja automaation tiedekunta

Simulointityökalu saarekekäytön säädön kehityksen tueksi Elektroniikan, tietoliikenteen ja automaation tiedekunta Ë ÑÓ À Ð Simulointityökalu saarekekäytön säädön kehityksen tueksi Elektroniikan, tietoliikenteen ja automaation tiedekunta ÔÐÓÑ ØÝ Ó ÓÒ Ø ØØÝ ÓÔ ÒÒÝØØ Ò Ø Ö Ø ØØ Ú ÔÐÓÑ ¹ Ò Ò Ö Ò ØÙØ ÒØÓ Ú ÖØ Ò ÔÓÓ ½¼º

Lisätiedot

F n (a) = 1 n {i : 1 i n, x i a}, P n (a,b) = F n (b) F n (a). P n (a,b) = 1 n {i : 1 i n, a < x i b}.

F n (a) = 1 n {i : 1 i n, x i a}, P n (a,b) = F n (b) F n (a). P n (a,b) = 1 n {i : 1 i n, a < x i b}. Ë ÐØ ½ ÂÓ ÒØÓ ½ ½º½ ÌÓ ÒÒ ÝÝ Ø Ð ØÓØ º º º º º º º º º º º º º º º º º º ½ ½º¾ À Ú ØÙØ Ö Ú Ò Ø ÑÔ Ö Ø ÙÑ Ø º º º º º º º º º º º ½ ½º ÌÓ ÒÒ ÝÝ Ñ ÐÐ Ø º º º º º º º º º º º º º º º º º º º º º º º ½º º½

Lisätiedot

¾º C A {N A } K N A º A B N B

¾º C A {N A } K N A º A B N B Ú ÒØ Ò ÐÐ ÒØ ØÓ ÒÒÙ Ø Ì ÐÙÚÙ Ø Ö Ø ÐÐ Ò ÔÖÓØÓ ÓÐÐ Ó Ò ÚÙÐÐ Ó ÔÙÓÐ Ø ÚÓ Ú Ø Ó¹ Ô Ð Ø Ú Ñ Ø ØÓ ÒØ ØÓ Ò º ÌÐÐ Ò Ò ØÓ Ñ ÒÔ Ð ØØÝÝ Ù ÑÔ Ò Ø ØÓØÙÖÚ ÔÖÓØÓ ÓÐÐ Ò Ò ÑÑ ¹ Ò Ú Ò ÒÒ Ò Ù Ò Ú Ö Ò Ò Ò ØÓ Ñ ÒØ Ñ Ö Ø Ó

Lisätiedot

Ë ÐØ ½ Ð Ø Ê Ø ¾ ¾ Ê Ò ÝÒØ ØÝ ÒØ ÐÝÒ ÐÓ ØØ Ñ Ò Ò ¾º½ Ç Ò ÝØØ Ê¹ ØÙÒÒÓÒ Ò º º º º º º º º º º º º º º º º ¾º¾ Ä Ô Ø Ø Ò ØÓØ º º º º º º º º º º º º º º

Ë ÐØ ½ Ð Ø Ê Ø ¾ ¾ Ê Ò ÝÒØ ØÝ ÒØ ÐÝÒ ÐÓ ØØ Ñ Ò Ò ¾º½ Ç Ò ÝØØ Ê¹ ØÙÒÒÓÒ Ò º º º º º º º º º º º º º º º º ¾º¾ Ä Ô Ø Ø Ò ØÓØ º º º º º º º º º º º º º º ÂÓ ÒØÓ Ñ ØÖ Ò Ð Ò Ö Ø Ò Ñ ÐÐ Ò ØØ ÐÝÝÒ Ê¹Ó ÐÑ ØÓÐÐ ÒÒ Ç Ö Ò Ò Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò ÐÓ Ó Ò Ð ØÓ Ì ÑÔ Ö Ò ÝÐ ÓÔ ØÓ ÐÓ ÙÙ ¾¼¼ Ë ÐØ ½ Ð Ø Ê Ø ¾ ¾ Ê Ò ÝÒØ ØÝ ÒØ ÐÝÒ ÐÓ ØØ Ñ Ò Ò ¾º½ Ç Ò ÝØØ Ê¹ ØÙÒÒÓÒ Ò º º

Lisätiedot

ÁÁ ÌÁÁÎÁËÌ ÄÅ Ì ÅÈ Ê Æ Ì ÃÆÁÄÄÁÆ Æ ÄÁÇÈÁËÌÇ Ì ØÓÐ ÒÒ ¹ Ð ØÖÓÒ Ò ÓÙÐÙØÙ Ó ÐÑ ÂÇÆÁ È ÀÄ Å Ë Ò Ñ ÐÐ ÒÒÙ Ò Ô ÖÙ ØÙÚ ÑÙ Ò ÝÒØ Ã Ò Ø ÒØÝ ¾ ÚÙ ÌÓÙ Ó ÙÙ ¾¼¼ È

ÁÁ ÌÁÁÎÁËÌ ÄÅ Ì ÅÈ Ê Æ Ì ÃÆÁÄÄÁÆ Æ ÄÁÇÈÁËÌÇ Ì ØÓÐ ÒÒ ¹ Ð ØÖÓÒ Ò ÓÙÐÙØÙ Ó ÐÑ ÂÇÆÁ È ÀÄ Å Ë Ò Ñ ÐÐ ÒÒÙ Ò Ô ÖÙ ØÙÚ ÑÙ Ò ÝÒØ Ã Ò Ø ÒØÝ ¾ ÚÙ ÌÓÙ Ó ÙÙ ¾¼¼ È ÂÇÆÁ È ÀÄ Å ËÁÆÁÅ ÄÄÁÆÆÍÃË Æ È ÊÍËÌÍÎ ÅÍËÁÁÃÁÆ Ë ÆÌ ËÁ Ã Ò Ø ÒØÝ Ì Ö Ø Ð ØÓÖ ÃÓÒ Ø ÃÓÔÔ Ò Ò ½½º ØÓÙ Ó ÙÙØ ÁÁ ÌÁÁÎÁËÌ ÄÅ Ì ÅÈ Ê Æ Ì ÃÆÁÄÄÁÆ Æ ÄÁÇÈÁËÌÇ Ì ØÓÐ ÒÒ ¹ Ð ØÖÓÒ Ò ÓÙÐÙØÙ Ó ÐÑ ÂÇÆÁ È ÀÄ Å Ë Ò Ñ ÐÐ

Lisätiedot

q(x) = T n (x, x 0 ) p(x) =

q(x) = T n (x, x 0 ) p(x) = ÎÁÁ Ì ÝÐÓÖ Ò Ð Ù ÎÁÁ Ì ÝÐÓÖ Ò ÔÓÐÝÒÓÑ Ø Ì ÝÐÓÖ Ò Ð Ù Ì ÐÙÚÙ Ø Ö Ø ÐÐ Ò ÙÒ Ø Ó Ø ÓØ ÓÚ Ø ÒÒ ØÙÒ Ô Ø Ò x 0 ÝÑÔÖ ¹ Ø Ö ØØÚÒ Ð Ø Ð Ö ØØÚÒ ÑÓÒØ ÖØ Ø ÙÚ Ø µ Ö ÚÓ ØÙÚ ÅÖ Ø ÐÑ ÎÁÁ ½ ÙÒ Ø ÓÒ f : D f R D f R Ó ÓÒ

Lisätiedot

A c t a U n i v e r s i t a t i s T a m p e r e n s i s 1061

A c t a U n i v e r s i t a t i s T a m p e r e n s i s 1061 JORMA JOUTSENLAHTI Lukiolaisen tehtäväorientoituneen matemaattisen ajattelun piirteitä 1990-luvun pitkän matematiikan opiskelijoiden matemaattisen osaamisen ja uskomusten ilmentämänä AKATEEMINEN VÄITÖSKIRJA

Lisätiedot

Ë Ø ÐÓ Ò Ô ÖØÓ Á ÔÖÓ Ó ÒØ ÃÙÒ Ð ÙØ Ò ÓÒ Ò Ö ÒÒÙ Ò ÐÐ ÓÒ ÝÐ Ò ÖÖ ÐÐ Ò Ú Ò Ô Ò Ó Ö ÒÒÙ Ò Ø ÐÓ Ø Ò ÝÚ Ñ ÐÐ ÓÒ Ù Ø ÐÐ Ò ÙÙÖ ÑÖ Ò Ø Ø ÓÐÙ Ö µ Ã ÙÐÓØØ Ò Ò Ñ

Ë Ø ÐÓ Ò Ô ÖØÓ Á ÔÖÓ Ó ÒØ ÃÙÒ Ð ÙØ Ò ÓÒ Ò Ö ÒÒÙ Ò ÐÐ ÓÒ ÝÐ Ò ÖÖ ÐÐ Ò Ú Ò Ô Ò Ó Ö ÒÒÙ Ò Ø ÐÓ Ø Ò ÝÚ Ñ ÐÐ ÓÒ Ù Ø ÐÐ Ò ÙÙÖ ÑÖ Ò Ø Ø ÓÐÙ Ö µ à ÙÐÓØØ Ò Ò Ñ ØÙغ Ø Ò ÐÐ Ò Ò ÝÐ ÓÔ ØÓ Ì ÑÔ Ö Ò È Ð Ó ÐÑÓ ÒØ Ë Ø ÐÓ Ò Ô ÖØÓ Ò ÝÚÝÝ Ð ÒØ ÒØØ ÈÙ ÒØØ ºÔÙ Ç ÐÑ ØÓØ Ò Ë Ø ÐÓ Ò Ô ÖØÓ Á ÔÖÓ Ó ÒØ ÃÙÒ Ð ÙØ Ò ÓÒ Ò Ö ÒÒÙ Ò ÐÐ ÓÒ ÝÐ Ò ÖÖ ÐÐ Ò Ú Ò Ô Ò Ó Ö ÒÒÙ Ò Ø ÐÓ Ø Ò ÝÚ Ñ

Lisätiedot

ÂÙÐ Ò Ú Ñ Ò Ò Ö ØÖÙ ØÙÙÖ Ø ÇÒ ØÖ Ý Ø ØÓÑ Ò ÙÐ Ò Ò Ú Ò Ò ØÓ ÐÐ Ò Ò ÐØ ÐÙÓØ ØØ Ú Ø ØÓ Ò º ÃÓ Ò Ð Ö ÓÒ ½ Ò ÑÑ Ò ÓØØ ÒÙØ Ú ÖÑ ÒØ Ø Ó ÓÒ ÙÐ Ò Ò Ú Ò Ò ÐØ Ð

ÂÙÐ Ò Ú Ñ Ò Ò Ö ØÖÙ ØÙÙÖ Ø ÇÒ ØÖ Ý Ø ØÓÑ Ò ÙÐ Ò Ò Ú Ò Ò ØÓ ÐÐ Ò Ò ÐØ ÐÙÓØ ØØ Ú Ø ØÓ Ò º ÃÓ Ò Ð Ö ÓÒ ½ Ò ÑÑ Ò ÓØØ ÒÙØ Ú ÖÑ ÒØ Ø Ó ÓÒ ÙÐ Ò Ò Ú Ò Ò ÐØ Ð ÌÁ ÌÇÌÍÊÎ ÇË ÁÁÁ ÂÙÐ Ò Ú Ñ Ò Ò Ö ØÖÙ ØÙÙÖ Ì ÑÓ Ã ÖÚ ¾º½½º¾¼¼ Ì ÑÓ Ã ÖÚ µ ÌÁ ÌÇÌÍÊÎ ÇË ÁÁÁ ÂÙÐ Ò Ú Ñ Ò Ò Ö ØÖÙ ØÙÙÖ ¾º½½º¾¼¼ ½» ÂÙÐ Ò Ú Ñ Ò Ò Ö ØÖÙ ØÙÙÖ Ø ÇÒ ØÖ Ý Ø ØÓÑ Ò ÙÐ Ò Ò Ú Ò Ò ØÓ ÐÐ Ò Ò ÐØ ÐÙÓØ

Lisätiedot

ËÁË ÄÌ ¾º º½ ÀÝÔ Ö ÓÑ ØÖ Ò Ò ÙÑ º º º º º º º º º º º º º º º ¾º º¾ Ì Ö ØÙ ÓØ ÒØ Ø ÓÐÐ ÙÙ º º º º º º º º º º º º º º ¾º ÇØ ÒØ Ô Ð ÙØØ Ò º º º º º º º

ËÁË ÄÌ ¾º º½ ÀÝÔ Ö ÓÑ ØÖ Ò Ò ÙÑ º º º º º º º º º º º º º º º ¾º º¾ Ì Ö ØÙ ÓØ ÒØ Ø ÓÐÐ ÙÙ º º º º º º º º º º º º º º ¾º ÇØ ÒØ Ô Ð ÙØØ Ò º º º º º º º Ë ÐØ ½ ÂÓ ÒØÓ ½ ½º½ ÌÓ ÒÒ ÝÝ Ø Ð ØÓØ º º º º º º º º º º º º º º º º º º ½ ½º¾ À Ú ØÙØ Ö Ú Ò Ø ÑÔ Ö Ø ÙÑ Ø º º º º º º º º º º º ½ ½º ÌÓ ÒÒ ÝÝ Ñ ÐÐ Ø º º º º º º º º º º º º º º º º º º º º º º º ½º º½

Lisätiedot

Ð Ù Ò Ø ÌÑ ÔÐÓÑ ØÝ ÓÒ Ø Ó Ì ÑÔ Ö Ò Ø Ò ÐÐ Ò ÝÐ ÓÔ ØÓÒ Å Ø Ñ Ø Ò Ð ØÓ Ò ÀÝÔ ÖÑ Ð ÓÖ ØÓÖ ÓÒ Ñ Ø Ñ Ø Ò ÓÔ ØÙ Ò ØØÑ ØÙع ÑÙ ÐÐ º ÌÝ Ý ØÝÚØ Ø Ò ÒÒÓ Ø Ú Ø Ø

Ð Ù Ò Ø ÌÑ ÔÐÓÑ ØÝ ÓÒ Ø Ó Ì ÑÔ Ö Ò Ø Ò ÐÐ Ò ÝÐ ÓÔ ØÓÒ Å Ø Ñ Ø Ò Ð ØÓ Ò ÀÝÔ ÖÑ Ð ÓÖ ØÓÖ ÓÒ Ñ Ø Ñ Ø Ò ÓÔ ØÙ Ò ØØÑ ØÙع ÑÙ ÐÐ º ÌÝ Ý ØÝÚØ Ø Ò ÒÒÓ Ø Ú Ø Ø Ä Æ Ä ÍÃÃÇÆ Æ Å Ø Ñ Ø Ò Ô ÖÙ Ø ØÓØ Ø Ò Ú Ö Ø Ö Ø ÐÙ ÓÔ ÒØÓ¹ Ñ Ò ØÝ Ò Ú ÙØØ Ú Ò Ø Ò Ò ÐÝ Ó ÒØ ÁÈÄÇÅÁÌ ÝÚ ÝØØÝ Ì Ò ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ó ØÓÒ ÙÚÓ ØÓÒ Ó ÓÙ º½½º¾¼¼ º Ì Ö Ø Ø ÔÖÓ ÓÖ Ë ÔÔÓ ÈÓ ÓÐ Ò Ò ØÙØ Å ÀÙ ÓÐ

Lisätiedot

ÌÍÊÍÆ ÄÁÇÈÁËÌÇ Å Ø Ñ Ø Ò Ð ØÓ ÃÍÄ ÊÁÁÃà ÔÝ ØÐ Ø ÈÖÓ Ö Ù ¹ØÙØ ÐÑ º ¾ Ð Ø º Å Ø Ñ Ø ÀÙ Ø ÙÙ ¾¼¼ ÌÙØ ÐÑ Ò Ò ÓÒ ÔÝ ØÐ غ Ì Ö Ó ØÙ Ò ÓÒ Ø Ö Ø ÐÐ Ö Ð ÔÝ ¹ Ø

ÌÍÊÍÆ ÄÁÇÈÁËÌÇ Å Ø Ñ Ø Ò Ð ØÓ ÃÍÄ ÊÁÁÃà ÔÝ ØÐ Ø ÈÖÓ Ö Ù ¹ØÙØ ÐÑ º ¾ Ð Ø º Å Ø Ñ Ø ÀÙ Ø ÙÙ ¾¼¼ ÌÙØ ÐÑ Ò Ò ÓÒ ÔÝ ØÐ غ Ì Ö Ó ØÙ Ò ÓÒ Ø Ö Ø ÐÐ Ö Ð ÔÝ ¹ Ø È ÀÌ Ä Ì Ê ÙÐ ÈÖÓ Ö Ù ¹ØÙØ ÐÑ ÀÙ Ø ÙÙ ¾¼¼ Å Ì Å ÌÁÁÃ Æ Ä ÁÌÇË ÌÍÊÍÆ ÄÁÇÈÁËÌÇ ÌÍÊÍÆ ÄÁÇÈÁËÌÇ Å Ø Ñ Ø Ò Ð ØÓ ÃÍÄ ÊÁÁÃà ÔÝ ØÐ Ø ÈÖÓ Ö Ù ¹ØÙØ ÐÑ º ¾ Ð Ø º Å Ø Ñ Ø ÀÙ Ø ÙÙ ¾¼¼ ÌÙØ ÐÑ Ò Ò ÓÒ ÔÝ ØÐ غ Ì Ö Ó ØÙ

Lisätiedot

ÌÍÊÍÆ ÄÁÇÈÁËÌÇ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ÃÇÀÇ Ì ÊÇ ÇÔØ ÑÓ ÒØ ÐÙ ÓÐ ÐÐ ÈÖÓ Ö Ù ¹ØÙØ ÐÑ º º Å Ø Ñ Ø ÐÓ ÙÙ ¾¼½ ÇÔØ ÑÓ ÒØ ÓÒ ÓÚ ÐÐ ØÙÒ Ñ Ø Ñ Ø Ò Ó ¹ ÐÙ Ó

ÌÍÊÍÆ ÄÁÇÈÁËÌÇ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ÃÇÀÇ Ì ÊÇ ÇÔØ ÑÓ ÒØ ÐÙ ÓÐ ÐÐ ÈÖÓ Ö Ù ¹ØÙØ ÐÑ º º Å Ø Ñ Ø ÐÓ ÙÙ ¾¼½ ÇÔØ ÑÓ ÒØ ÓÒ ÓÚ ÐÐ ØÙÒ Ñ Ø Ñ Ø Ò Ó ¹ ÐÙ Ó ÇÔØ ÑÓ ÒØ ÐÙ ÓÐ ÐÐ ÈÖÓ Ö Ù¹ØÙØ ÐÑ Ì ÖÓ ÃÓ Ó Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ÌÙÖÙÒ Ð ÓÔ ØÓ ½ º ÐÓ ÙÙØ ¾¼½ ÌÍÊÍÆ ÄÁÇÈÁËÌÇ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ÃÇÀÇ Ì ÊÇ ÇÔØ ÑÓ ÒØ ÐÙ ÓÐ ÐÐ ÈÖÓ Ö Ù ¹ØÙØ ÐÑ º º Å Ø Ñ Ø ÐÓ

Lisätiedot

a b = abº Z Q R C + : N N N, +(m,n) = m + n ( Ð (m,n) m + n), : N N N, (m,n) = m n (= mn) ( Ð (m,n) mn). A B (A,B) A Bº

a b = abº Z Q R C + : N N N, +(m,n) = m + n ( Ð (m,n) m + n), : N N N, (m,n) = m n (= mn) ( Ð (m,n) mn). A B (A,B) A Bº ÄÙ Ù ÐÙ Ø ÂÙ Ä Ö ÂÓÙÒ È Ö ÓÒ Ò ÄÙ ÐÐ ÌÑ ÑÓÒ Ø Ô ÖÙ ØÙÙ ÂÓÙÒ È Ö Ó Ò ÚÙÓ Ò ¾¼¼ ¾¼¼ ÂÙ Ä Ö Ò ÚÙÓÒÒ ¾¼¼ Ô ØÑ Ò ÄÙ Ù Ð٠ع ÙÖ Ò ÐÙ ÒØÓ Òº ÅÓÒ Ø Ò Ò Ò Ñ Ø ¹ Ö Ð ÓÒ Ø Ö Ó Ø ØØÙ Ú ÓÒ Ñ ØØ ÐÐ ÐÙ ÒØÓ ÙÖ ÐÐ Ð ÑÙ

Lisätiedot

½ Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ ¹ÔÙÙ ¾ ¾º½ Ì Ø ÝØ ØØÝ ¹ÔÙÙ º º º º º º º º º º º º º º º º º º º º º º º º ÌÖ ¹ØÖ º½ ÑÔÖ Ø º º º º º º º º º º º º º º º º º º º º

½ Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ ¹ÔÙÙ ¾ ¾º½ Ì Ø ÝØ ØØÝ ¹ÔÙÙ º º º º º º º º º º º º º º º º º º º º º º º º ÌÖ ¹ØÖ º½ ÑÔÖ Ø º º º º º º º º º º º º º º º º º º º º ¹ØÖ Ø Ø Ø ÓÒ Ø ÐÐ ÒØ Ñ Ð ÚÝÐÐ Â Ó Å ÐÚ Ö À Ð Ò ¾¾º½¼º¾¼¼ Ë Ñ Ò Ö ØÝ À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ Ì ØÓ Ò ØØ ÐÝØ Ø Ò Ð ØÓ ½ Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ ¹ÔÙÙ ¾ ¾º½ Ì Ø ÝØ ØØÝ ¹ÔÙÙ º º º º º º º º º º º º º º º º º º º º º º

Lisätiedot

Ì ÂÙ Ò Ä ÑÑ Ö Ø Ý Ø ÓØ ÈÙ Ð Ò ¼ ¼½¾ ½ ÔÓ Ø ÒÙÐ º ÌÝ Ò Ò Ñ ÅÓ Ð ÓÚ ÐÐÙ Ø Ò ÖÖ ØØÚÝÝ ØÓØ ÙØÙ Ò ØÖ Ø ÓØ Ó Ì ØÐ Ò Ò Ð ÈÓÖØ Ð ØÝ Ó ÅÓ Ð ÔÔÐ Ø ÓÒ Ò ÁÑÔÐ Ñ Ò

Ì ÂÙ Ò Ä ÑÑ Ö Ø Ý Ø ÓØ ÈÙ Ð Ò ¼ ¼½¾ ½ ÔÓ Ø ÒÙÐ º ÌÝ Ò Ò Ñ ÅÓ Ð ÓÚ ÐÐÙ Ø Ò ÖÖ ØØÚÝÝ ØÓØ ÙØÙ Ò ØÖ Ø ÓØ Ó Ì ØÐ Ò Ò Ð ÈÓÖØ Ð ØÝ Ó ÅÓ Ð ÔÔÐ Ø ÓÒ Ò ÁÑÔÐ Ñ Ò ÂÙ Ò Ä ÑÑ Ö ÅÓ Ð ÓÚ ÐÐÙ Ø Ò ÖÖ ØØÚÝÝ ØÓØ ÙØÙ Ò ØÖ Ø ÓØ Ó Ì ØÓØ Ò Ò Ó ÐÑ ØÓØ Ò µ ÔÖÓ Ö Ù ¹ØÙØ ÐÑ ½º ÐÓ ÙÙØ ¾¼¼ ÂÝÚ ÝÐÒ ÝÐ ÓÔ ØÓ Ì ØÓØ Ò Ò Ð ØÓ ÂÝÚ ÝÐ Ì ÂÙ Ò Ä ÑÑ Ö Ø Ý Ø ÓØ ÈÙ Ð Ò ¼ ¼½¾ ½ ÔÓ Ø ÒÙÐ º ÌÝ

Lisätiedot

Ì ØÓØÙÖÚ Ò ÓØØ ÐÙØ Á Ì ØÓØÙÖÚ ÓÒ Ð º Ë ÙÖ Ú Ð Ø ÓÒ ÐÙ Ø ÐØÙ Ø ØÓØÙÖÚ Ò Ö Ó ¹ ÐÙ Ø º Â ÓØØ ÐÙ ÓÒ Ñ Ð Ó ÝÐ Ò Ò Ø ØÒ ÝÐ Ø ØÓØÙÖÚ Ò ÓÔÔ Ö Ó º À ÐÐ ÒÒÓÐÐ Ò

Ì ØÓØÙÖÚ Ò ÓØØ ÐÙØ Á Ì ØÓØÙÖÚ ÓÒ Ð º Ë ÙÖ Ú Ð Ø ÓÒ ÐÙ Ø ÐØÙ Ø ØÓØÙÖÚ Ò Ö Ó ¹ ÐÙ Ø º Â ÓØØ ÐÙ ÓÒ Ñ Ð Ó ÝÐ Ò Ò Ø ØÒ ÝÐ Ø ØÓØÙÖÚ Ò ÓÔÔ Ö Ó º À ÐÐ ÒÒÓÐÐ Ò ÌÁ ÌÇÌÍÊÎ Ó Á ̺ à ÖÚ ËÝÝ ÙÙ ¾¼¼ ̺ à ÖÚ µ ÌÁ ÌÇÌÍÊÎ Ó Á ËÝÝ ÙÙ ¾¼¼ ½» ½ Ì ØÓØÙÖÚ Ò ÓØØ ÐÙØ Á Ì ØÓØÙÖÚ ÓÒ Ð º Ë ÙÖ Ú Ð Ø ÓÒ ÐÙ Ø ÐØÙ Ø ØÓØÙÖÚ Ò Ö Ó ¹ ÐÙ Ø º Â ÓØØ ÐÙ ÓÒ Ñ Ð Ó ÝÐ Ò Ò Ø ØÒ ÝÐ Ø ØÓØÙÖÚ Ò

Lisätiedot

0 ex x = e 1. x + 3a 2x a = 2a xº. 1 3 (uvy) 3 (uxy) 3 (wxy) uvwxy (uvw) 1 3 (vwx)

0 ex x = e 1. x + 3a 2x a = 2a xº. 1 3 (uvy) 3 (uxy) 3 (wxy) uvwxy (uvw) 1 3 (vwx) Å ÌȽ ¼ ËÝÑ ÓÐ Ò Ò Ð ÒØ ¾ ÓÔ ½ Ð Ø ÃÙÖ Ò Ø ÚÓ Ø ÐØ ËÝÑ ÓÐ Ò Ð ÒÒ Ò ÙÖ ÐÐ ÓÔ Ø Ò Ø ØÓ ÓÒ Ò ÝØØÑ Ø ÔÙÚÐ Ò Ò Ñ Ø Ñ ØØ ÓÒ ÐÑ Ò¹ Ö Ø Ù º ÃÙÖ Ò Ø ÚÓ ØØ Ò ÓÒ ÒØ Ô ÖÙ Ú ÐÑ Ù Ø ÝÑ ÓÐ Ò Ð ÒØ Ò Ö Ó ØÙÒ Ò Å Ø Ñ ¹

Lisätiedot

Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Ý ÒØØ Ð Ò Ò ÓÒ Ò Ù ÓÒ ÐÑ ¾ ¾º½ ÅÖ Ø ÐÑ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾ ¾º¾ Ý ÒØØ Ð Ø Ò ÒÖ Ð Ò ÓÒ Ð

Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Ý ÒØØ Ð Ò Ò ÓÒ Ò Ù ÓÒ ÐÑ ¾ ¾º½ ÅÖ Ø ÐÑ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾ ¾º¾ Ý ÒØØ Ð Ø Ò ÒÖ Ð Ò ÓÒ Ð Ý ÒØØ Ð Ø ÒÖ Ð Ø ÒØØ Ì Ò À Ð Ò ¾ º½¼º¾¼¼ ÌÙØ ÐÑ À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ Ì ØÓ Ò ØØ ÐÝØ Ø Ò Ð ØÓ Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Ý ÒØØ Ð Ò Ò ÓÒ Ò Ù ÓÒ ÐÑ ¾ ¾º½ ÅÖ Ø ÐÑ º º º º º º º º º º º º º º º º º º º º º º º º º º º

Lisätiedot

È ÌÀÇÆ¹ÇÀ ÄÅÇÁÆÆÁÆ ËÇÎ ÄÄÍÃËÁ Å ÌÊÁÁËÁÄ Ëà ÆÌ Æ ÌÁÄ ËÌÇÌÁ Ì Ë Æ Â ÆÍÅ ÊÁË Æ Å Ì Å ÌÁÁÃÃ Æ ÄÍÃÁÇÄ ÁËÁÄÄ Ì Ò Ï ÐÐ Ö ¹Ä Ò ÈÖÓ Ö Ù ¹ØÙØ ÐÑ Å ÖÖ ÙÙ ¾¼¼ Å Ì Å ÌÁÁÃ Æ Ä ÁÌÇË ÌÍÊÍÆ ÄÁÇÈÁËÌÇ ÌÍÊÍÆ ÄÁÇÈÁËÌÇ Å

Lisätiedot

À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç ØÓ ÙÐØ Ø»Ë Ø ÓÒ ÙÐØÝ Ä ØÓ ÁÒ Ø ØÙØ ÓÒ Ô ÖØÑ ÒØ Å Ø Ñ ØØ ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò Ì Ö

À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç ØÓ ÙÐØ Ø»Ë Ø ÓÒ ÙÐØÝ Ä ØÓ ÁÒ Ø ØÙØ ÓÒ Ô ÖØÑ ÒØ Å Ø Ñ ØØ ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò Ì Ö Ø ÝØØ Ø Ò ØØ Ò ÙÚ Ù ÐÓ Ô ÖÙ Ø Ò Ò Ñ¹ Ö ØØ ÐÝ Û È ØÖ Ä Ò Ö Ò À Ð Ò ¾ º º¾¼¼ ÈÖÓ Ö Ù ¹ØÙØ ÐÑ À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ Ì ØÓ Ò ØØ ÐÝØ Ø Ò Ð ØÓ À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç

Lisätiedot

Ì Đ Á ÑÓ ÀÓÖÔÔÙ Ø Ý Ø ÓØ ÓÖÔÔÙº ÝÙº ÌÝĐÓÒ Ò Ñ Ç ÐÑ ØÓÒ ØØĐ Ñ Ò Ò ÔÙÙØØ ÐÐ Ò Ú Ö ÐÐ Ò Ú ÒØÓ Ò ØÓÒ Đ ØØ ÐÝÝÒ Ì ØÐ Ò Ò Ð ËÓ ØÛ Ö Ú ÐÓÔÑ ÒØ ÓÖ Ñ Ò Ò ÖÖÓÒ

Ì Đ Á ÑÓ ÀÓÖÔÔÙ Ø Ý Ø ÓØ ÓÖÔÔÙº ÝÙº ÌÝĐÓÒ Ò Ñ Ç ÐÑ ØÓÒ ØØĐ Ñ Ò Ò ÔÙÙØØ ÐÐ Ò Ú Ö ÐÐ Ò Ú ÒØÓ Ò ØÓÒ Đ ØØ ÐÝÝÒ Ì ØÐ Ò Ò Ð ËÓ ØÛ Ö Ú ÐÓÔÑ ÒØ ÓÖ Ñ Ò Ò ÖÖÓÒ Ç ÐÑ ØÓÒ ØØĐ Ñ Ò Ò ÔÙÙØØ ÐÐ Ò Ú Ö ÐÐ Ò Ú ÒØÓ Ò ØÓÒ Đ ØØ ÐÝÝÒ Á ÑÓ ÀÓÖÔÔÙ Ì ØÓØ Ò Ò ÔÖÓ Ö Ù ¹ØÙØ ÐÑ Ç ÐÑ ØÓØ Ò Ò Ð Ò ½½º ÐÑ ÙÙØ ¾¼¼¾ ÂÝÚĐ ÝÐĐ Ò ÝÐ ÓÔ ØÓ Ì ØÓØ Ò Ò Ð ØÓ Ì Đ Á ÑÓ ÀÓÖÔÔÙ Ø Ý Ø ÓØ ÓÖÔÔÙº ÝÙº

Lisätiedot

Ç Ø ØÙØ ÐÑ Ò Ð Ø Ó ÐÐ Ã Ö ¹ÂÓÙ Ó Ê Ì ÑÔ Ö Ò ÝÐ ÓÔ ØÓ ÁÒ ÓÖÑ Ø ÓØ Ø Ò Ý»Ø Ó Ø ÚØ ÈÖÓ Ö Ù ¹ØÙØ ÐÑ Ç Å ÖØØ Ì Ò Ö ¾ º½º¾¼½½ Ì ÑÔ Ö Ò ÝÐ ÓÔ ØÓ ÁÒ ÓÖÑ Ø ÓØ Ø Ò Ý»Ø Ó Ø ÚØ Ã Ö ¹ÂÓÙ Ó Ê Ç Ø ØÙØ ÐÑ Ò Ð Ø Ó ÐÐ

Lisätiedot

Ì Å ÈÙÐ Ò Ò Ø Ý Ø ÓØ Ñ ºÔÙÐ Ò Ò ÝÙº ÌÝ Ò Ò Ñ ÙØÓÑ Ø Ó ØÙ Ý Ø Ø Ù ÆÍÒ Ø¹Ø Ø Ù ÝÑÔÖ Ø Ì ØÐ Ò Ò Ð ÙØÓÑ Ø ÍÒ Ø Ì Ø Ò Ò ÆÍÒ Ø Ì Ø Ò ÒÚ ÖÓÒÑ ÒØ ÌÝ Ì ØÓØ Ò Ò

Ì Å ÈÙÐ Ò Ò Ø Ý Ø ÓØ Ñ ºÔÙÐ Ò Ò ÝÙº ÌÝ Ò Ò Ñ ÙØÓÑ Ø Ó ØÙ Ý Ø Ø Ù ÆÍÒ Ø¹Ø Ø Ù ÝÑÔÖ Ø Ì ØÐ Ò Ò Ð ÙØÓÑ Ø ÍÒ Ø Ì Ø Ò Ò ÆÍÒ Ø Ì Ø Ò ÒÚ ÖÓÒÑ ÒØ ÌÝ Ì ØÓØ Ò Ò Å ÈÙÐ Ò Ò ÙØÓÑ Ø Ó ØÙ Ý Ø Ø Ù ÆÍÒ Ø¹Ø Ø Ù ÝÑÔÖ Ø Ì ØÓØ Ò Ò Ò Ø ÒØÙØ ÐÑ ¾ º ÐÑ ÙÙØ ¾¼¼ ÂÝÚ ÝÐÒ ÝÐ ÓÔ ØÓ Ì ØÓØ Ò Ò Ð ØÓ ÂÝÚ ÝÐ Ì Å ÈÙÐ Ò Ò Ø Ý Ø ÓØ Ñ ºÔÙÐ Ò Ò ÝÙº ÌÝ Ò Ò Ñ ÙØÓÑ Ø Ó ØÙ Ý Ø Ø Ù ÆÍÒ Ø¹Ø Ø Ù

Lisätiedot

ÁÁ Ì Ö Ø Ó ÌÙÖÙÒ Ò Ì Ö Ø ÝÚ ÝØØÝ ÄÙÓÒÒÓÒØ Ø Ò ÝÑÔÖ Ø Ø Ò Ò Ø ÙÒÒ Ò Ø ÙÒØ Ò ÙÚÓ ØÓÒ Ó ÓÙ ½ º¼ º¾¼¼

ÁÁ Ì Ö Ø Ó ÌÙÖÙÒ Ò Ì Ö Ø ÝÚ ÝØØÝ ÄÙÓÒÒÓÒØ Ø Ò ÝÑÔÖ Ø Ø Ò Ò Ø ÙÒÒ Ò Ø ÙÒØ Ò ÙÚÓ ØÓÒ Ó ÓÙ ½ º¼ º¾¼¼ Å Ð Ë Ú Ð ÂÓ ÒØÓ Ð Ø ÓÖ Òº ØÖ ÙØ Ú Ø Ð Ø ÔÐÓÑ ØÝ ÁÁ Ì Ö Ø Ó ÌÙÖÙÒ Ò Ì Ö Ø ÝÚ ÝØØÝ ÄÙÓÒÒÓÒØ Ø Ò ÝÑÔÖ Ø Ø Ò Ò Ø ÙÒÒ Ò Ø ÙÒØ Ò ÙÚÓ ØÓÒ Ó ÓÙ ½ º¼ º¾¼¼ ÁÁÁ ÌÁÁÎÁËÌ ÄÅ Ì ÅÈ Ê Æ Ì ÃÆÁÄÄÁÆ Æ ÄÁÇÈÁËÌÇ Ì Ò ¹ ÐÙÓÒÒÓÒØ

Lisätiedot

Aktiivisten DNA-muutosten seulonta riippuvuusmalleilla Elektroniikan, tietoliikenteen ja automaation tiedekunta

Aktiivisten DNA-muutosten seulonta riippuvuusmalleilla Elektroniikan, tietoliikenteen ja automaation tiedekunta ÇÐÐ ¹È ÀÙÓÚ Ð Ò Ò Aktiivisten DNA-muutosten seulonta riippuvuusmalleilla Elektroniikan, tietoliikenteen ja automaation tiedekunta ÔÐÓÑ ØÝ Ó ÓÒ Ø ØØÝ ÓÔ ÒÒÝØØ Ò Ø Ö Ø ØØ Ú ÔÐÓÑ ¹ Ò Ò Ö Ò ØÙØ ÒØÓ Ú ÖØ Ò

Lisätiedot

Ì ÓÚ Ö ÓØ Ð Ò Ã ÐÐÙÒ Å Ø Ñ Ø Ò ÈÖÓ Ö Ù¹ØÙØ ÐÑ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ÂÝÚ ÝÐÒ ÝÐ ÓÔ ØÓ ËÝ Ý ¾¼¼ Ë ÐØ ÂÓ ÒØÓ ½ ½ À ØÓÖ ¾ Î Ö ÓØ ÓÖ ¾º½ Î Ö ÓÒ ÚÖ ØÝ º º º º º º º º º º º º º º º º º º º º º º º º º

Lisätiedot

½µ newstate := 0. µ state := goto[state,p i [j]] µ state := 0;j := 0. µ j := j + 1 µ newstate := newstate + 1

½µ newstate := 0. µ state := goto[state,p i [j]] µ state := 0;j := 0. µ j := j + 1 µ newstate := newstate + 1 ½º º Àǹ ÇÊ ËÁ ù Ä ÇÊÁÌÅÁ ½ à ÖÔ Ê Ò Ø Ö Ø Ð Ú Ø ÑÝ ÙÒ Ú Ö Ð Ò ÙØÙ Ò Ô ÖÙ ØÙÚ Ú Ö Ó Ø Ð ÓÖ ØÑ Ø Î Ð Ø Ò q ØÙÒÒ Ø ÐÙ Ù ÓÙ Ó Ø Qº Q Ò ÐÙÚÙØ ÚÓ Ú Ø ÓÐÐ Ô Ò Ò Ò Ò Ø ÖÚ Ø ÓÐÐ Ð ÙÐÙ Ù º ÎÖÒ Ø ÑÝ Ò ØÓ ÒÒ ÝÝ

Lisätiedot

139/ /11034 = 0.58

139/ /11034 = 0.58 ÄÙ Ù ÂÓ ÒØÓ Ø Ð ØÓÐÐ Ò ÔØØ ÐÝÝÒ º½ Ì Ð ØÓÐÐ Ò ÓÒ ÐÑ Ò ÐÙÓÒÒ Ì Ð ØÓÐÐ Ò Ñ ÐÐ ÒØ Ñ Ò Ò ÔØØ ÐÝ ØØ Ð Ú ÒØÓ Ò Ú Ø ÐÙ ÔÚ ÖÑÙÙØØ º ÓÐ Ø ØÒ ÐÚ ØØ ØÙÓÐÐ Ø Ø ÚÓ Ò Ø¹ Ø Ñ ØÒ Ø ÑÐÐ Ø Ø Ø Ø ÐРغ Ì Ð ØÓØ Ø Ò ÓÒ ÓÑ

Lisätiedot

x 1 x 2 x n u 1 + v 1 u 2 + v 2 u n + v n λu 1 λu 2 λu n

x 1 x 2 x n u 1 + v 1 u 2 + v 2 u n + v n λu 1 λu 2 λu n ÇÈÌÁÅÇÁÆÆÁÆ È ÊÍËÌ Ì Ã Ó ÊÙÓØ Ð Ò Ò ¾ º ÝÝ ÙÙØ ¾¼¼ ¾ ÂÓ ÒØÓ ÃÙÖ Ò Ø ÚÓ ØØ Ò ÓÒ ØÙØÙ ØÙØØ Ø Ú ÐÐ ÑÔ Ò ÓÔØ ÑÓ ÒØ ¹ Ð ÓÖ ØÑ Ò Ò Ò ÝØØ Ò ÓÚ ÐÐÙØÙ º ÃÙÖ Ñ Ø Ö Ð ÒØÙÙ Ò Ð Ò Ö Ó Òº ÐÙ ÐÝ Ý Ø ÖÖ Ø Ò Ñ ØÖ Ð Ö Ø

Lisätiedot

Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Ì Ø ÐÙÑ ÐÐ ÒÒÙ ½ ¾º½ Ì Ø ÐÙÑ ÐÐ ÒÒÙ Ò ØÓÖ º º º º º º º º º º º º º º º º º º ¾ ¾º¾ ËØÓ Ø Ò Ò Ø Ø ÐÙÑ ÐÐ ÒÒÙ º º º º º º º º º º º º

Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Ì Ø ÐÙÑ ÐÐ ÒÒÙ ½ ¾º½ Ì Ø ÐÙÑ ÐÐ ÒÒÙ Ò ØÓÖ º º º º º º º º º º º º º º º º º º ¾ ¾º¾ ËØÓ Ø Ò Ò Ø Ø ÐÙÑ ÐÐ ÒÒÙ º º º º º º º º º º º º Šع¾º ½¼ ËÓÚ ÐÐ ØÙÒ Ñ Ø Ñ Ø Ò Ö Ó ØÝ Ø º½º¾¼¼ Ì Ø ÐÙÒ ÑÙÐÓ ÒØ ÑÔÙÑ Ø ÖÚ Ò Ö Ø ÐÑ Ò Ù Ø ÒÒÙ Ø Ó ÙÙ Ì Ò ÐÐ Ò Ò ÓÖ ÓÙÐÙ Ì Ò ÐÐ Ò Ý Ò Ñ Ø Ñ Ø Ò Ó ØÓ ËÝ Ø Ñ Ò ÐÝÝ Ò Ð ÓÖ ØÓÖ Ó Â ÒÒ Ä ØÓÒ Ò ¼¾ Ë ÐØ ½ ÂÓ ÒØÓ

Lisätiedot

Painekalibrointijärjestelmä avaruusinstrumenttien testauslaboratorioon

Painekalibrointijärjestelmä avaruusinstrumenttien testauslaboratorioon Å Ö ÃÓÑÙ Painekalibrointijärjestelmä avaruusinstrumenttien testauslaboratorioon Sähkötekniikan korkeakoulu ÔÐÓÑ ØÝ Ó ÓÒ Ø ØØÝ ÓÔ ÒÒÝØØ Ò Ø Ö Ø ØØ Ú ÔÐÓÑ ¹ Ò Ò Ö Ò ØÙØ ÒØÓ Ú ÖØ Ò ÔÓÓ ½¾º¾º¾¼½ º ÌÝ Ò Ú ÐÚÓ

Lisätiedot

Ì È ÚÓ È Ö Ò Ò Ø Ý Ø ÓØ ÔÔ Ö Ò ÝÙº ÌÝ Ò Ò Ñ Å Ö Ò ÔÓ Ø Ñ ÐÐ Ø ÝØØ Ö Ø ÐÑÒ ÑÙ Ø Ò ÐÐ ÒÒ Ì ØÐ Ò Ò Ð Å Ö Ø¹ ÑÓ Ð ÓÖ ÓÔ Ö Ø Ò Ý Ø Ñ Ñ ÑÓÖÝ Ñ Ò Ñ ÒØ ÌÝ Ì Ø

Ì È ÚÓ È Ö Ò Ò Ø Ý Ø ÓØ ÔÔ Ö Ò ÝÙº ÌÝ Ò Ò Ñ Å Ö Ò ÔÓ Ø Ñ ÐÐ Ø ÝØØ Ö Ø ÐÑÒ ÑÙ Ø Ò ÐÐ ÒÒ Ì ØÐ Ò Ò Ð Å Ö Ø¹ ÑÓ Ð ÓÖ ÓÔ Ö Ø Ò Ý Ø Ñ Ñ ÑÓÖÝ Ñ Ò Ñ ÒØ ÌÝ Ì Ø È ÚÓ È Ö Ò Ò Å Ö Ò ÔÓ Ø Ñ ÐÐ Ø ÝØØ Ö Ø ÐÑÒ ÑÙ Ø Ò ÐÐ ÒÒ Ì ØÓØ Ò Ò ÈÖÓ Ö Ù ØÙØ ÐÑ ½ º ÐÓ ÙÙØ ¾¼¼ ÂÝÚ ÝÐÒ ÝÐ ÓÔ ØÓ Ì ØÓØ Ò Ò Ð ØÓ ÂÝÚ ÝÐ Ì È ÚÓ È Ö Ò Ò Ø Ý Ø ÓØ ÔÔ Ö Ò ÝÙº ÌÝ Ò Ò Ñ Å Ö Ò ÔÓ Ø Ñ ÐÐ Ø ÝØØ

Lisätiedot

À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç ØÓ ÙÐØ Ø»Ë Ø ÓÒ ÙÐØÝ Ä ØÓ ÁÒ Ø ØÙØ ÓÒ Ô ÖØÑ ÒØ Å Ø Ñ ØØ ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò Ì Ö

À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç ØÓ ÙÐØ Ø»Ë Ø ÓÒ ÙÐØÝ Ä ØÓ ÁÒ Ø ØÙØ ÓÒ Ô ÖØÑ ÒØ Å Ø Ñ ØØ ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò Ì Ö ÝÚ ÝÑ Ô Ú ÖÚÓ Ò ÖÚÓ Ø Ð ÈÓÐÙÒ Ø ÒØ Ù Ò ÒØ Ò ÝÑÔÖ Ø Ô Ð È Ä ÓÒ Ò À Ð Ò º º¾¼¼ ÄÙùØÙØ ÐÑ À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ Ì ØÓ Ò ØØ ÐÝØ Ø Ò Ð ØÓ À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç

Lisätiedot

ÁÆÇ Å ÌË Ä ÅÇÇ Ä ÅÇÆÁÃÍÄÌÌÍÍÊÁË Æ ÇÈÈÁÅÁË ÅÈ ÊÁËÌ Æ ÔÐÓÑ ØÝ Ì Ö Ø ÔÖÓ ÓÖ À ÒÒÙ Â ÓÐ Ì Ö Ø ÝÚ ÝØØÝ Ì ØÓ¹ Ø Ò Ò Ø ÙÒØ ¹ Ò ÙÚÓ ØÓÒ Ó ÓÙ ½ º¼½º¾¼½¼

ÁÆÇ Å ÌË Ä ÅÇÇ Ä ÅÇÆÁÃÍÄÌÌÍÍÊÁË Æ ÇÈÈÁÅÁË ÅÈ ÊÁËÌ Æ ÔÐÓÑ ØÝ Ì Ö Ø ÔÖÓ ÓÖ À ÒÒÙ Â ÓÐ Ì Ö Ø ÝÚ ÝØØÝ Ì ØÓ¹ Ø Ò Ò Ø ÙÒØ ¹ Ò ÙÚÓ ØÓÒ Ó ÓÙ ½ º¼½º¾¼½¼ ÁÆÇ Å ÌË Ä ÅÇÇ Ä ÅÇÆÁÃÍÄÌÌÍÍÊÁË Æ ÇÈÈÁÅÁË ÅÈ ÊÁËÌ Æ ÔÐÓÑ ØÝ Ì Ö Ø ÔÖÓ ÓÖ À ÒÒÙ Â ÓÐ Ì Ö Ø ÝÚ ÝØØÝ Ì ØÓ¹ Ø Ò Ò Ø ÙÒØ ¹ Ò ÙÚÓ ØÓÒ Ó ÓÙ ½ º¼½º¾¼½¼ ÌÝ Ò Ó À ÒÒÙ Â ÓÐ ÌÝ Ò Ø ÒÓ Åº Å Ø Ð ÅÓÓ Ð ÑÓÒ ÙÐØØÙÙÖ Ò

Lisätiedot

Ð Ø Ù ÁÈË Ò ÁÈË ÓÒ ÁÈ¹Ú Ö ÓÔÖÓØÓ ÓÐÐ Ò Ð ÒÒÙ Ñ ÐÐ Ø ØÒ ÁÈ¹Ô ØØ Ò ÙÖ Ñ Ò Ò ÑÙÙÒØ Ñ Ò Òº ÁÈË ÓÒ ÝÒØÝÒÝØ ÙÙ Ò ÁÈÚ ¹ÔÖÓØÓ ÓÐÐ Ò Ý Ø Ý ÁÈÚ ÓÒ Ò ÁÈË Ò ÐÙÓÒØ

Ð Ø Ù ÁÈË Ò ÁÈË ÓÒ ÁÈ¹Ú Ö ÓÔÖÓØÓ ÓÐÐ Ò Ð ÒÒÙ Ñ ÐÐ Ø ØÒ ÁÈ¹Ô ØØ Ò ÙÖ Ñ Ò Ò ÑÙÙÒØ Ñ Ò Òº ÁÈË ÓÒ ÝÒØÝÒÝØ ÙÙ Ò ÁÈÚ ¹ÔÖÓØÓ ÓÐÐ Ò Ý Ø Ý ÁÈÚ ÓÒ Ò ÁÈË Ò ÐÙÓÒØ ÌÁ ÌÇÌÍÊÎ ÇË ÁÎ ÁÈË Ì ÑÓ Ã ÖÚ º½¾º¾¼¼ Ì ÑÓ Ã ÖÚ µ ÌÁ ÌÇÌÍÊÎ ÇË ÁÎ ÁÈË º½¾º¾¼¼ ½» Ð Ø Ù ÁÈË Ò ÁÈË ÓÒ ÁÈ¹Ú Ö ÓÔÖÓØÓ ÓÐÐ Ò Ð ÒÒÙ Ñ ÐÐ Ø ØÒ ÁÈ¹Ô ØØ Ò ÙÖ Ñ Ò Ò ÑÙÙÒØ Ñ Ò Òº ÁÈË ÓÒ ÝÒØÝÒÝØ ÙÙ Ò ÁÈÚ ¹ÔÖÓØÓ ÓÐÐ

Lisätiedot

Referenced. Object. StateSet. Node. Geode

Referenced. Object. StateSet. Node. Geode ÇÔ ÒË Ò Ö Ô ¹Ó Ø Ì ÑÓºÌÓ Ú Ò ÒØÑº ÙØº ÌÑ Ó ÙÑ ÒØØ ÓÒ ØÝ Ò Ø Ô Ú Ø ØÒ Ø ÖÔ Ò ÑÙ Òº ½ Ø ÇÔ ÒË Ò Ö Ô ÇË µ ÓÒ ÇÔ Ò Ä Ò Ô Ö ÒÒ ØØÙ ¹ÙÓ Ö¹ ØÓ Ó ÓÒ Ú Ô Ø Ø Ú Ó ØÓ Ñ ÑÓÒ ÝÑÔÖ Ø º ÇË Ó¹ ÙÑ ÒØÓ ØÙ ÓÜÝ Ò¹Ó Ñ ØÓÒ

Lisätiedot

Ì ØÓØÙÖÚ Ò ÓØØ ÐÙØ Ì ØÓØÙÖÚ ÓÒ Ð º Ë ÙÖ Ú Ð Ø ÓÒ ÐÙ Ø ÐØÙ Ø ØÓØÙÖÚ Ò Ö Ó ¹ ÐÙ Ø º Â ÓØØ ÐÙ ÓÒ Ñ Ð Ó ÝÐ Ò Ò Ø ØÒ ÝÐ Ø ØÓØÙÖÚ Ò ÓÔÔ Ö¹ Ó º À ÐÐ ÒÒÓÐÐ Ò

Ì ØÓØÙÖÚ Ò ÓØØ ÐÙØ Ì ØÓØÙÖÚ ÓÒ Ð º Ë ÙÖ Ú Ð Ø ÓÒ ÐÙ Ø ÐØÙ Ø ØÓØÙÖÚ Ò Ö Ó ¹ ÐÙ Ø º Â ÓØØ ÐÙ ÓÒ Ñ Ð Ó ÝÐ Ò Ò Ø ØÒ ÝÐ Ø ØÓØÙÖÚ Ò ÓÔÔ Ö¹ Ó º À ÐÐ ÒÒÓÐÐ Ò Ì ØÓØÙÖÚ Ò ÓØØ ÐÙØ Ì ØÓØÙÖÚ ÓÒ Ð º Ë ÙÖ Ú Ð Ø ÓÒ ÐÙ Ø ÐØÙ Ø ØÓØÙÖÚ Ò Ö Ó ¹ ÐÙ Ø º Â ÓØØ ÐÙ ÓÒ Ñ Ð Ó ÝÐ Ò Ò Ø ØÒ ÝÐ Ø ØÓØÙÖÚ Ò ÓÔÔ Ö¹ Ó º À ÐÐ ÒÒÓÐÐ Ò Ò ØÙÖÚ ÐÐ ÙÙ ØØ Ò ØÓ Ñ ÒÔ Ø Ø Ó ÐÐ ÑÖØÒ ÓÖ ¹ Ò Ø Ó

Lisätiedot

3D piirron liukuhihna (3D Graphics Pipeline) Sovellus/mallinnus Geometrian käsittely Rasterointi/piirto

3D piirron liukuhihna (3D Graphics Pipeline) Sovellus/mallinnus Geometrian käsittely Rasterointi/piirto ØÙغ Ø Ò ÐÐ Ò Ò ÝÐ ÓÔ ØÓ Ì ÑÔ Ö Ò È Ð Ó ÐÑÓ ÒØ Ö Ò Ô ÖØÓ ÒØØ ÈÙ ÒØØ ºÔÙ Ç ÐÑ ØÓØ Ò ¹ Ö Ò Ô ÖØÑ Ò Ò ÙÚ Ø Ò Ù Ò Ð Ù Ù Ò Ò Ô Ô Ð Ò µ ÚÙÐÐ Ö Ð Ù Ù Ò Ö Ø ØÓ ÙÐ Ð Ù Ù Ò Ò Ö Ú Ò ÙØØ ÒÒ Ò Ù Ò Ô ÖÖ ØÒ ÖÙÙ ÙÐÐ Ö

Lisätiedot

139/ /11034 = 0.58

139/ /11034 = 0.58 Ú ËÁË ÄÌ ÅÓÒ ÙÐÓØ Ø ÙÑ Ø ½ º½ à ÙÐÓØØ Ø ÙÑ Ø º º º º º º º º º º º º º º º º º º º º º ½ º½º½ Ê ÙÒ ÙÑ Ø ÓÐÐ Ø ÙÑ Ø º º º º º º º º º ½ º½º¾ ÓÐÐ Ò Ó ÓØÙ ÖÚÓÒ ÓÑ Ò ÙÙ º º º º º º º º º ½ º½º À Ö Ö Ø Ñ ÐÐ

Lisätiedot

(a,b)(c,d) = (ac bd,ad + bc).

(a,b)(c,d) = (ac bd,ad + bc). ÃÓÑÔÐ ÐÙÚÙ Ø ½ ½º ÂÓ ÒØÓ ØÐ ÐÐ x + 1 = 0 ÓÐ Ö Ø Ù Ö Ð ÐÙ Ù Ò ÓÙ Ó Ó Ó Ò Ö Ð ÐÙ¹ ÚÙÒ ØÓ Ò Ò ÔÓØ Ò ÓÒ ÔÓ Ø Ú Ò Òº ÂÓØØ ØÐÐ Ý ØÐ ÐÐ Ø Ò Ö Ø Ù Ñ Ò ØÝØÝÝ Ð ÒØ Ö Ð ÐÙ Ù Ò ÓÙ Ó Ð ÑÐÐ Ò ÙÙ Ð Ó Ñ Ö ØÒ ع Ø ØÓ Ø

Lisätiedot

ËÚÝØÝ Ò µ ÓÒ Ñ Ò ÔÑÖ Ò Ò Ø ÖÑ ÓÒ ÝØØ Ø ØÓ ÓÒ Ö ÓÒ ÐÓ ØÓÒÒÙØ Ñ Ð Ó Ù Ò Ò Ð ÙÔ Ö Ø Ñ Ö ØÝ Ø Ã ØØ ÐÐ Ø Ö Ó Ø Ø Ò ÒÝ ÝÒ Ø Ò Ó Ø Ó ÐÐ Ð Ø Ò ÚÖ Ú Ð ØÙ Ø ÔÔ

ËÚÝØÝ Ò µ ÓÒ Ñ Ò ÔÑÖ Ò Ò Ø ÖÑ ÓÒ ÝØØ Ø ØÓ ÓÒ Ö ÓÒ ÐÓ ØÓÒÒÙØ Ñ Ð Ó Ù Ò Ò Ð ÙÔ Ö Ø Ñ Ö ØÝ Ø Ã ØØ ÐÐ Ø Ö Ó Ø Ø Ò ÒÝ ÝÒ Ø Ò Ó Ø Ó ÐÐ Ð Ø Ò ÚÖ Ú Ð ØÙ Ø ÔÔ ØÙغ Ø Ò ÐÐ Ò Ò ÝÐ ÓÔ ØÓ Ì ÑÔ Ö Ò È Ð Ó ÐÑÓ ÒØ Ë Ò ² Ö Ø ÒØØ ÈÙ ÒØØ ºÔÙ Ç ÐÑ ØÓØ Ò ËÚÝØÝ Ò µ ÓÒ Ñ Ò ÔÑÖ Ò Ò Ø ÖÑ ÓÒ ÝØØ Ø ØÓ ÓÒ Ö ÓÒ ÐÓ ØÓÒÒÙØ Ñ Ð Ó Ù Ò Ò Ð ÙÔ Ö Ø Ñ Ö ØÝ Ø Ã ØØ ÐÐ Ø Ö Ó Ø Ø Ò ÒÝ ÝÒ Ø

Lisätiedot

y t = X t β + u t, u t NID(0, 1) t = 1, 2,..., n ½µ

y t = X t β + u t, u t NID(0, 1) t = 1, 2,..., n ½µ ÇÊ Ê ÈÊÇ ÁÌ Â Â ÄÃ È ÄÄǹÇÌÌ ÄÍÆ Å ÄÄÁÆÌ ÅÁÆ Æ Ê Ò ÓÑ Î Ö Ð ½º Ò ÙÙØ ¾¼¼ ËÁË ÄÌ ½ Ë ÐØ ½ ÂÓ ÒØÓ ¾ ¾ ÇÖ Ö ÔÖÓ Ø ¾º½ Å ÐÐ Ò ÑÖ ØØ ÐÝ º º º º º º º º º º º º º º º º º º º º º º º º º Â Ð Ô ÐÐÓ¹ÓØØ ÐÙÒ Ò

Lisätiedot

ÁÁ ÌÁÁÎÁËÌ ÄÅ Ì ÅÈ Ê Æ Ì ÃÆÁÄÄÁÆ Æ ÄÁÇÈÁËÌÇ Ì Ò ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò ÓÙÐÙØÙ Ó ÐÑ ÄÌÁÇ ËÍÎÁ È Ö ÒÑ ÐÐ ¾¼¼ ¾¼¼ Ø Ô ØÙÒ Ò Ð ÒÒ ÓÒÒ ØØÓÑÙÙ ¹ Ò Ò ÐÝ Ó ÒØ Ý Ú

ÁÁ ÌÁÁÎÁËÌ ÄÅ Ì ÅÈ Ê Æ Ì ÃÆÁÄÄÁÆ Æ ÄÁÇÈÁËÌÇ Ì Ò ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò ÓÙÐÙØÙ Ó ÐÑ ÄÌÁÇ ËÍÎÁ È Ö ÒÑ ÐÐ ¾¼¼ ¾¼¼ Ø Ô ØÙÒ Ò Ð ÒÒ ÓÒÒ ØØÓÑÙÙ ¹ Ò Ò ÐÝ Ó ÒØ Ý Ú ËÍÎÁ ÄÌÁÇ ÈÁÊà ÆÅ ÄÄ ¾¼¼ ¾¼¼ Ì È ÀÌÍÆ Á Æ ÄÁÁÃ ÆÆ ¹ ÇÆÆ ÌÌÇÅÍÍÃËÁ Æ Æ Ä ËÇÁÆÌÁ ËÎ ÊÃÃÇÂ Æ ÎÍÄÄ ÔÐÓÑ ØÝ Ì Ö Ø Ð ÓÔ ØÓÒÐ ØÓÖ Ó ÌÙÖÙÒ Ò Ì Ö Ø ÝÚ ÝØØÝ ÄÙÓÒÒÓÒØ Ø Ò ÝÑÔÖ Ø Ø Ò Ò Ø ÙÒÒ Ò Ø ÙÒØ Ò ÙÚÓ ØÓÒ Ó ÓÙ

Lisätiedot

à ÑÖ Ò ÙÙ Ò ÙÒØÓÐ Ò Ò ÓÖ ÓØ ÓÒ ÓÖ ÓÑ Ö Ò Ð Ò ÑÖÝØÝÑ Ò Ò ËÁË ÄÌ ËÁË ÄÌ Ë ÐØ ½ ÂÓ ÒØÓ ½º½ ÌÙØ ÑÙ Ý ÝÑÝ ØÙØ ÐÑ Ò Ö ÒÒ º º º º º º º º º º º º º º º º º ½º¾ ÙÒØÓÐ Ò Ñ Ö Ò Ø ËÙÓÑ º º º º º º º º º º º º º

Lisätiedot

Ì ÂÝÖ Ä Ò Ò Ø Ý Ø ÓØ ÝÖ Ðº ÝÙº ÌÝ Ò Ò Ñ Å Ñ ØØ Ø Ð ÓÖ ØÑ Ø Ì ØÐ Ò Ò Ð ÇÒ Å Ñ Ø Ð ÓÖ Ø Ñ ÌÝ Ì ØÓØ Ò Ò ÔÖÓ Ö Ù ¹ØÙØ ÐÑ Ë ÚÙÑÖ Ì Ú Ø ÐÑ Å Ñ ØØ Ø Ð ÓÖ ØÑ

Ì ÂÝÖ Ä Ò Ò Ø Ý Ø ÓØ ÝÖ Ðº ÝÙº ÌÝ Ò Ò Ñ Å Ñ ØØ Ø Ð ÓÖ ØÑ Ø Ì ØÐ Ò Ò Ð ÇÒ Å Ñ Ø Ð ÓÖ Ø Ñ ÌÝ Ì ØÓØ Ò Ò ÔÖÓ Ö Ù ¹ØÙØ ÐÑ Ë ÚÙÑÖ Ì Ú Ø ÐÑ Å Ñ ØØ Ø Ð ÓÖ ØÑ ÂÝÖ Ä Ò Ò Å Ñ ØØ Ø Ð ÓÖ ØÑ Ø Ì ØÓØ Ò Ò ÔÖÓ Ö Ù ¹ØÙØ ÐÑ ½ º ÙÙØ ¾¼¼ ÂÝÚ ÝÐÒ ÝÐ ÓÔ ØÓ Ì ØÓØ Ò Ò Ð ØÓ ÂÝÚ ÝÐ Ì ÂÝÖ Ä Ò Ò Ø Ý Ø ÓØ ÝÖ Ðº ÝÙº ÌÝ Ò Ò Ñ Å Ñ ØØ Ø Ð ÓÖ ØÑ Ø Ì ØÐ Ò Ò Ð ÇÒ Å Ñ Ø Ð ÓÖ Ø Ñ ÌÝ Ì ØÓØ

Lisätiedot

1, x 0; 0, x < 0. ε(x) = p i ε(x i).

1, x 0; 0, x < 0. ε(x) = p i ε(x i). ËÁË ÄÌ Ö ØØ Ý ÙÐÓØØ ÙÑ ½½½ º½ Ö ØØ ØÙÒÒ ÑÙÙØØÙ º º º º º º º º º º º º º º º º º º ½½½ º¾ ÖÒÓÙÐÐ Ò Ó Ø ÒÓÑ ÙÑ º º º º º º º º º º º º º º º ½½ º¾º½  ÙÑ Ò ÝÑÑ ØÖ º º º º º º º º º º º º º º º º º º º ½½

Lisätiedot

k(x,x ) K N(µ, Σ) GP(m(x), k(x,x )) X x p diag(x)

k(x,x ) K N(µ, Σ) GP(m(x), k(x,x )) X x p diag(x) Ì ÊÅÇ ÁÂ ÍËËÁÆ ÈÊÇË ËËÁÌ Ê Ê ËËÁÇ Æ Ä ËÁËË Ã Ò Ø ÒØÝ Ç ÝÐ Ø ÒØØ À ÖÖ Ä Ñ Ì Ö Ø Ð ØÓÖ À ÀÙØØÙÒ Ò ÁÁ ÌÁÁÎÁËÌ ÄÅ Ì ÅÈ Ê Æ Ì ÃÆÁÄÄÁÆ Æ ÄÁÇÈÁËÌÇ Ì ØÓØ Ò Ò ÓÙÐÙØÙ Ó ÐÑ Ì ÊÅÇ ÁÂ Ù Ò ÔÖÓ Ø Ö Ö Ó Ò ÐÝÝ Ã Ò Ø ÒØÝ

Lisätiedot

N = A A A S(A) Aº 0 = 1 = { } 2 = {, { }} 3 = {, { }, {, { }}} 4 = {, { }, {, { }}, {, { }, {, { }}}} A = Nº. i=1 n N n > 0º

N = A A A S(A) Aº 0 = 1 = { } 2 = {, { }} 3 = {, { }, {, { }}} 4 = {, { }, {, { }}, {, { }, {, { }}}} A = Nº. i=1 n N n > 0º Å Ì ¾¾ ÄÙ ÙØ ÓÖ Ã ¾¼½¼ ÌÑ ÐÙ ÒØÓÑÓÒ Ø Ô ÖÙ ØÙÙ ÙÙÖ ÐØ Ó ÐØ Ä ÃÙÖ ØÙÒ Ô ÖÙ ¹ Ø ÐÐ Ò ÐÙ ÒØÓÑÓÒ Ø Ò ÓØ ÒÒ ØØ ÐÙ Ñ Ð Ô ØÓ¹ ØÙ Ò Ð Ý ØÝ Ó Ø º Ë ÐØ ½º ÄÙÓÒÒÓÐÐ Ø ÐÙÚÙØ ½º½º ÄÙ Ù Ö Ø ÐÑØ ½º¾º  ÓÐÐ ÙÙ ½º º Ð

Lisätiedot

À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç ØÓ ÙÐØ Ø»Ë Ø ÓÒ ÙÐØÝ Ä ØÓ ÁÒ Ø ØÙØ ÓÒ Ô ÖØÑ ÒØ Å Ø Ñ ØØ ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò Ø ÙÒ

À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç ØÓ ÙÐØ Ø»Ë Ø ÓÒ ÙÐØÝ Ä ØÓ ÁÒ Ø ØÙØ ÓÒ Ô ÖØÑ ÒØ Å Ø Ñ ØØ ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò Ø ÙÒ ÝÚ ÝÑ Ô Ú ÖÚÓ Ò ÖÚÓ Ø Ð ÄÙÓØØ ÑÙ Ò ÑÖ ØØ ÐÝ Ò ÐÝ Ó ÒØ ÁÒØ ÖÒ Ø¹ ÓÚ ÐÐÙ ÐÐ È Ø Ö Ë ÐÓÒ Ò À Ð Ò º º¾¼¼ Ë Ñ Ò Ö ÖØ Ð À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ Ì ØÓ Ò ØØ ÐÝØ Ø Ò Ð ØÓ À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ

Lisätiedot

(xy)z = x(yz) λx = xλ = x.

(xy)z = x(yz) λx = xλ = x. ÄÙ Ù ½ ÐÙ ÌÑ ÑÓÒ Ø ÓÒ Ø Ö Ó Ø ØØÙ ÝØ ØØÚ Ì ÑÔ Ö Ò ÝÐ ÓÔ ØÓÒ Ø ØÓ Ò ØØ Ðݹ Ø Ø Ò Ð ØÓ Ò ÓÔ ÒØÓ ÓÐÐ ÙØÓÑ Ø Øº ÅÓÒ Ø Ô ÖÙ ØÙÙ ÙÖ Ú Ò Ð Ø Ò Åº º À ÖÖ ÓÒ ÁÒØÖÓ ÙØ ÓÒ ØÓ ÓÖÑ Ð Ä Ò Ù Ì ÓÖݺ ÓÒ¹Ï Ð Ý ½ º º º

Lisätiedot

ÅÙÙÖ Ý Ý ÙÒØ ÓÔØ ÑÓ ÒØ Ä À Ø Ö ÒØ ÈÖÓ Ö Ù ¹ØÙØ ÐÑ À ÐÑ ÙÙ ¾¼¼ Å Ì Å ÌÁÁÃ Æ Ä ÁÌÇË ÌÍÊÍÆ ÄÁÇÈÁËÌÇ

ÅÙÙÖ Ý Ý ÙÒØ ÓÔØ ÑÓ ÒØ Ä À Ø Ö ÒØ ÈÖÓ Ö Ù ¹ØÙØ ÐÑ À ÐÑ ÙÙ ¾¼¼ Å Ì Å ÌÁÁÃ Æ Ä ÁÌÇË ÌÍÊÍÆ ÄÁÇÈÁËÌÇ ÅÙÙÖ Ý Ý ÙÒØ ÓÔØ ÑÓ ÒØ Ä À Ø Ö ÒØ ÈÖÓ Ö Ù ¹ØÙØ ÐÑ À ÐÑ ÙÙ ¾¼¼ Å Ì Å ÌÁÁÃ Æ Ä ÁÌÇË ÌÍÊÍÆ ÄÁÇÈÁËÌÇ ÌÍÊÍÆ ÄÁÇÈÁËÌÇ Å Ø Ñ Ø Ò Ð ØÓ ÀÁ Ì ÊÁÆÌ Ä ËËÁ ÅÙÙÖ Ý Ý ÙÒØ ÓÔØ ÑÓ ÒØ ÈÖÓ Ö Ù ¹ØÙØ ÐÑ ½¼ º Ð Ø º ËÓÚ ÐÐ

Lisätiedot

ÌÑ ØÙØ ÐÑ ØØ Ð Ð Ô Ò ÐÙ Ù ØØ Ò ØØÝÑ Ø ØØÑ Øº ÐÙ ¹ ØØ Ð ÑÑ Ñ Ø Ñ ØØ Ø Ñ ÐÐ Ó Ò ÚÙÐÐ Ñ Ø Ñ Ø Ò ÓÔÔ Ñ ÐÐ ÚÐØØÑØØ ÑØ ÐÙÓÒÒÓÐÐ Ø ÐÙÚÙØ ÚÓ Ò ÓÒ ØÖÙÓ ÓÐÑ Ô Ý

ÌÑ ØÙØ ÐÑ ØØ Ð Ð Ô Ò ÐÙ Ù ØØ Ò ØØÝÑ Ø ØØÑ Øº ÐÙ ¹ ØØ Ð ÑÑ Ñ Ø Ñ ØØ Ø Ñ ÐÐ Ó Ò ÚÙÐÐ Ñ Ø Ñ Ø Ò ÓÔÔ Ñ ÐÐ ÚÐØØÑØØ ÑØ ÐÙÓÒÒÓÐÐ Ø ÐÙÚÙØ ÚÓ Ò ÓÒ ØÖÙÓ ÓÐÑ Ô Ý Ä Ô Ò ÐÙ Ù ØØ Ò ØØÑ Ò Ò Ð Ñ Ô Ð Ò ÚÙÐÐ Î ÐÐ Ã ÒÒÙÒ Ò Å Ø Ñ Ø Ò ÔÖÓ Ö Ù ¹ØÙØ ÐÑ ÂÝÚ ÝÐÒ ÝÐ ÓÔ ØÓ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ËÝ Ý ¾¼¼ ÌÑ ØÙØ ÐÑ ØØ Ð Ð Ô Ò ÐÙ Ù ØØ Ò ØØÝÑ Ø ØØÑ Øº ÐÙ ¹ ØØ Ð ÑÑ Ñ Ø Ñ ØØ Ø

Lisätiedot

Hajasijoitettujen päätelaitteiden ohjelmistojen etähallintaratkaisu Elektroniikan, tietoliikenteen ja automaation tiedekunta

Hajasijoitettujen päätelaitteiden ohjelmistojen etähallintaratkaisu Elektroniikan, tietoliikenteen ja automaation tiedekunta È Ä Ø Hajasijoitettujen päätelaitteiden ohjelmistojen etähallintaratkaisu Elektroniikan, tietoliikenteen ja automaation tiedekunta ÔÐÓÑ ØÝ Ó ÓÒ Ø ØØÝ ÓÔ ÒÒÝØØ Ò Ø Ö Ø ØØ Ú ÔÐÓÑ ¹ Ò Ò Ö Ò ØÙØ ÒØÓ Ú ÖØ Ò

Lisätiedot

T 2. f T (x)e i2π k T x dx. c k e i2π k T x = x dx. c k e i2π k T x = k Z. f T (x) =

T 2. f T (x)e i2π k T x dx. c k e i2π k T x = x dx. c k e i2π k T x = k Z. f T (x) = º ÓÙÖÖ¹ÑÙÙÒÒÓ ÓÙÖÖ Ò ÒØÖÐ Ð Ù ¹ ÓÐÐ Ò ÙÒ Ø ÓÒ f(x) PC(R) º½ ÓÙÖÖ¹ Ò ÐÝÝ º ÒÐ Òµ ÅÖ Ø ÐÐÒ T ¹ ÓÐÐ Ò Ò ÙÒ Ø Ó f T (x) = f(x), T 2 < x < T 2, ÃÓÑÔÐ Ò Ò ÓÙÖÖ¹ÖÖÓ Ò c k = 1 T T 2 T 2 f T (x)e i2π k T x dx.

Lisätiedot

F(x) = P(X x), x R. F(x) = 1º

F(x) = P(X x), x R. F(x) = 1º ËÁË ÄÌ Ö ØØ Ý ÙÐÓØØ ÙÑ ½¼ º½ Ö ØØ ØÙÒÒ ÑÙÙØØÙ º º º º º º º º º º º º º º º º º º ½¼ º¾ ÖÒÓÙÐÐ Ò Ó Ø ÒÓÑ ÙÑ º º º º º º º º º º º º º º º ½¼ º¾º½  ÙÑ Ò ÝÑÑ ØÖ º º º º º º º º º º º º º º º º º º º ½½

Lisätiedot

Ì ÑÔ Ö Ò ÝÐ ÓÔ ØÓ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ÆÁ Å Ä ÊÇ ÓÙÖ Ö¹ÑÙÙÒÒÓ Ø ÈÖÓ Ö Ù ¹ØÙØ ÐÑ º Å Ø Ñ Ø ÀÙ Ø ÙÙ ¾¼¼ Ì Ú Ø ÐÑ ÌÙØ ÐÑ Ò Ò ÓÒ ÓÙÖ Ö¹ÑÙÙÒÒÓ Ò ØØ Ð

Ì ÑÔ Ö Ò ÝÐ ÓÔ ØÓ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ÆÁ Å Ä ÊÇ ÓÙÖ Ö¹ÑÙÙÒÒÓ Ø ÈÖÓ Ö Ù ¹ØÙØ ÐÑ º Å Ø Ñ Ø ÀÙ Ø ÙÙ ¾¼¼ Ì Ú Ø ÐÑ ÌÙØ ÐÑ Ò Ò ÓÒ ÓÙÖ Ö¹ÑÙÙÒÒÓ Ò ØØ Ð Ì ÅÈ Ê Æ ÄÁÇÈÁËÌÇ ÈÖÓ Ö Ù ¹ØÙØ ÐÑ ÖÓ Æ Ñ Ð ÓÙÖ Ö¹ÑÙÙÒÒÓ Ø Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ Å Ø Ñ Ø ÀÙ Ø ÙÙ ¾¼¼ Ì ÑÔ Ö Ò ÝÐ ÓÔ ØÓ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ÆÁ Å Ä ÊÇ ÓÙÖ Ö¹ÑÙÙÒÒÓ Ø ÈÖÓ Ö Ù ¹ØÙØ ÐÑ º Å Ø Ñ Ø

Lisätiedot

Ruuhkanhallinta-algoritmien toiminta haasteellisissa tietoverkoissa Elektroniikan, tietoliikenteen ja automaation tiedekunta

Ruuhkanhallinta-algoritmien toiminta haasteellisissa tietoverkoissa Elektroniikan, tietoliikenteen ja automaation tiedekunta Ä ÊÓÔÔÓÒ Ò Ruuhkanhallinta-algoritmien toiminta haasteellisissa tietoverkoissa Elektroniikan, tietoliikenteen ja automaation tiedekunta ÔÐÓÑ ØÝ Ó ÓÒ Ø ØØÝ ÓÔ ÒÒÝØØ Ò Ø Ö Ø ØØ Ú ÔÐÓÑ ¹ Ò Ò Ö Ò ØÙØ ÒØÓ Ú

Lisätiedot

Ì ÃÆÁÄÄÁÆ Æ ÃÇÊÃ ÃÇÍÄÍ Ì Å Ó Î Ø ÁÈÄÇÅÁÌ Æ ÌÁÁÎÁËÌ ÄÅ ÌÝ Ò Ò Ñ Î Ö ÚÖÓÓØØÓÖ Ò ÓÒ Ò Ò ÐÝÝ È ÚÑÖ º Ñ ÖÖ ÙÙØ ¾¼¼ Ë ÚÙÑÖ ¾ Ç ØÓ Ë ¹ Ø ØÓÐ ÒÒ Ø Ò Ò Ó ØÓ ÈÖ

Ì ÃÆÁÄÄÁÆ Æ ÃÇÊÃ ÃÇÍÄÍ Ì Å Ó Î Ø ÁÈÄÇÅÁÌ Æ ÌÁÁÎÁËÌ ÄÅ ÌÝ Ò Ò Ñ Î Ö ÚÖÓÓØØÓÖ Ò ÓÒ Ò Ò ÐÝÝ È ÚÑÖ º Ñ ÖÖ ÙÙØ ¾¼¼ Ë ÚÙÑÖ ¾ Ç ØÓ Ë ¹ Ø ØÓÐ ÒÒ Ø Ò Ò Ó ØÓ ÈÖ Ì ÃÆÁÄÄÁÆ Æ ÃÇÊÃ ÃÇÍÄÍ Ë ¹ Ø ØÓÐ ÒÒ Ø Ò Ò Ó ØÓ Å Ó Î Ø Î Ö ÚÖÓÓØØÓÖ Ò ÓÒ Ò Ò ÐÝÝ ÔÐÓÑ ØÝ Ó ÓÒ Ø ØØÝ ÓÔ ÒÒÝØØ Ò Ø Ö Ø ØØ Ú ÔÐÓÑ ¹ Ò Ò Ö Ò ØÙØ ÒØÓ Ú ÖØ Òº ÔÓÓ º Ñ ÖÖ ÙÙØ ¾¼¼ ÌÝ Ò Ú ÐÚÓ ÈÖÓ ÓÖ ÒØ ÖÓ Ö Ó ÌÝ

Lisätiedot

arvostelija Elliptisen käyrän salauksen perusteita Mikko Alakunnas Helsinki HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos

arvostelija Elliptisen käyrän salauksen perusteita Mikko Alakunnas Helsinki HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos hyväksymispäivä arvosana arvostelija Elliptisen käyrän salauksen perusteita Mikko Alakunnas Helsinki 12.4.2007 HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET

Lisätiedot

 ΠËÃ Ä Æ ÄÁÇÈÁËÌÇ Å Ø Ñ ØØ ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò Ø ÙÒØ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ Ð Ø ÐÓ ÒÒ ¹Ã Ë ÐÑÒÐ Ò Ø Ó Ò Ø Ð ØÓÐÐ Ò Ò Ñ ÐÐ ÒØ Ñ Ò Ò ÈÖÓ Ö Ù ¹ØÙØ Ð

 ΠËÃ Ä Æ ÄÁÇÈÁËÌÇ Å Ø Ñ ØØ ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò Ø ÙÒØ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ Ð Ø ÐÓ ÒÒ ¹Ã Ë ÐÑÒÐ Ò Ø Ó Ò Ø Ð ØÓÐÐ Ò Ò Ñ ÐÐ ÒØ Ñ Ò Ò ÈÖÓ Ö Ù ¹ØÙØ Ð Ì Ð ØÓØ Ø Ò ÔÖÓ Ö Ù ¹ØÙØ ÐÑ Ë ÐÑÒÐ Ò Ø Ó Ò Ø Ð ØÓÐÐ Ò Ò Ñ ÐÐ ÒØ Ñ Ò Ò ÒÒ ¹Ã Ð Ø ÐÓ ÂÝÚ ÝÐÒ ÝÐ ÓÔ ØÓ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ º ÓÙÐÙ ÙÙØ ¾¼¼  ΠËÃ Ä Æ ÄÁÇÈÁËÌÇ Å Ø Ñ ØØ ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò Ø ÙÒØ Å Ø Ñ

Lisätiedot

2x1 + x 2 = 1 x 1 + x 2 = 3. x1 = 2 x 2 = 5. 2 ( 2)+5 = = 3. 5x1 x 2 = 1 10x 1 2x 2 = 2. ax1 +bx 2 = e cx 1 +dx 2 = f

2x1 + x 2 = 1 x 1 + x 2 = 3. x1 = 2 x 2 = 5. 2 ( 2)+5 = = 3. 5x1 x 2 = 1 10x 1 2x 2 = 2. ax1 +bx 2 = e cx 1 +dx 2 = f Ä Ò Ö Ð Ö Á ÇÙÐÙÒ ÝÐ ÓÔ ØÓ Å Ø Ñ ØØ Ø Ò Ø Ø Ò Ð ØÓ ¾¼½½ ÂÖÚ ÒÔ Ã Ö Ó ØØ ÒÙØ ÌÙÙÐ Ê Ô ØØ ¾ ½ Ä Ò Ö Ò Ò Ý ØÐ ÖÝ Ñ ½½ Ñ Ö µ Ê Ø Ý ØÐ 5x = 7 Ã ÖÖÓØ Ò Ý ØÐ ÔÙÓÐ ØØ Ò ÐÙÚÙÐÐ 5 1 ÓÐÐÓ Ò Ò 5 1 5x = 5 1 7 Ð x =

Lisätiedot

x (t) = f(x(t)) u B δ (p) = ϕ t (v) = p, v B d (p) = lim e t AT e t A dt W =

x (t) = f(x(t)) u B δ (p) = ϕ t (v) = p, v B d (p) = lim e t AT e t A dt W = Á Ê ÆÌÁ ÄÁ ÀÌ Ä Ë ËÌ ÅÁÌ º Ì Ô ÒÓÔ Ø Ø Ø Ð ÙÙ Ì ÐÙÚÙ Ø ÑÑ Ö ÒØ Ð Ý ØÐ Ò Ø Ô ÒÓÖ Ø Ù Ò Ø Ð ÙÙ Ø Ö Ø ÐÙ¹ ÒÝØ ÔÐ Ò Ö ÐÐ Ý Ø Ñ ÐÐ º ÌÐÐ ÓÚ Ø Ñ Ö ÐÙÖ Ý Ø Ñ ÐÐ Ô ÐÐ Ò ÔÝ ØÝ ÙÓÖ Ò Ó Ó Ð Ø ÝÐ Ô Ò ÓÐ Ú ÐÙÖ º ÂÓ

Lisätiedot

Ë Ò Ö Û Ã Ò ½½ ¼¾ ÇÒ Ö Ä ÓØ ¼ ¼ ¼ ÔÖ Ð ¾¼¼¼

Ë Ò Ö Û Ã Ò ½½ ¼¾ ÇÒ Ö Ä ÓØ ¼ ¼ ¼ ÔÖ Ð ¾¼¼¼ Ë Ò Ö Û Ã Ò ½½ ¼¾ ÇÒ Ö Ä ÓØ ¼ ¼ ¼ ÔÖ Ð ¾¼¼¼ ÓÒØ ÒØ ½ Í Ö ÓÙÑ ÒØ Ø ÓÒ ½º½ ÁÒØÖÓ ÙØ ÓÒ º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º¾ ÓÑÑ Ò Ä Ò ÇÔØ ÓÒ º º º º º º º º º º º º º º º º º º º º

Lisätiedot

Ì ÅÈ Ê Æ ÄÁÇÈÁËÌÇ ÈÖÓ Ö Ù ¹ØÙØ ÐÑ ÇÐÐ Ë ÚÓÐ Ò Ò Ø ÖÑ Ò ÒØ Ò ÑÖ Ø ÐÑ Ø ÓÑ Ò ÙÙ Ø Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò ÐÓ Ó Ò Ð ØÓ Å Ø Ñ Ø À Ò ÙÙ ¾¼¼

Ì ÅÈ Ê Æ ÄÁÇÈÁËÌÇ ÈÖÓ Ö Ù ¹ØÙØ ÐÑ ÇÐÐ Ë ÚÓÐ Ò Ò Ø ÖÑ Ò ÒØ Ò ÑÖ Ø ÐÑ Ø ÓÑ Ò ÙÙ Ø Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò ÐÓ Ó Ò Ð ØÓ Å Ø Ñ Ø À Ò ÙÙ ¾¼¼ Ì ÅÈ Ê Æ ÄÁÇÈÁËÌÇ ÈÖÓ Ö Ù ¹ØÙØ ÐÑ ÇÐÐ Ë ÚÓÐ Ò Ò Ø ÖÑ Ò ÒØ Ò ÑÖ Ø ÐÑ Ø ÓÑ Ò ÙÙ Ø Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò ÐÓ Ó Ò Ð ØÓ Å Ø Ñ Ø À Ò ÙÙ ¾¼¼ Ì ÑÔ Ö Ò ÝÐ ÓÔ ØÓ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò ÐÓ Ó Ò Ð ØÓ Ë ÎÇÄ ÁÆ Æ ÇÄÄÁ

Lisätiedot

λ (i,j) (i 1,j) = µ R j, i = 1,... N B, j = 0,... N R λ (i,j) (i,j 1) = µ B i, i = 0,... N B, j = 1,... N R λ (i,j) (k,l) = 0, muulloin.

λ (i,j) (i 1,j) = µ R j, i = 1,... N B, j = 0,... N R λ (i,j) (i,j 1) = µ B i, i = 0,... N B, j = 1,... N R λ (i,j) (k,l) = 0, muulloin. Šع¾º½¼ ËÓÚ ÐÐ ØÙÒ Ñ Ø Ñ Ø Ò Ö Ó ØÝ Ø ¾¼¼ ¹¼¾¹½¾ Ì Ø ÐÙÒ Ñ ÐÐ ÒÒÙ Ø Å Ö ÓÚ Ò Ø ÙÐÐ Ì Ò ÐÐ Ò Ò ÓÖ ÓÙÐÙ Ì Ò ÐÐ Ò Ý Ò Ñ Ø Ñ Ø Ò Ó ØÓ ËÝ Ø Ñ Ò ÐÝÝ Ò Ð ÓÖ ØÓÖ Ó Ä ÙÖ ÂÙ Ò Ã Ò ¼¼ È Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Ì Ø ÐÙÑ

Lisätiedot

f(x 1,x 2 ) = f 1 (x 1 )f 2 (x 2 ) x 2 f(x 1,x 2,...,x n ) = f 1 (x 1 )f 2 (x 2 ) f n (x n ) f 1 (x 1 ) = 1 6, ÙÒ x 1 S 1 f 2 (x 2 ) = = 2 x 2

f(x 1,x 2 ) = f 1 (x 1 )f 2 (x 2 ) x 2 f(x 1,x 2,...,x n ) = f 1 (x 1 )f 2 (x 2 ) f n (x n ) f 1 (x 1 ) = 1 6, ÙÒ x 1 S 1 f 2 (x 2 ) = = 2 x 2 Ú ËÁË ÄÌ ÅÓÒ ÙÐÓØ Ø ÙÑ Ø ½ º½ à ÙÐÓØØ Ø ÙÑ Ø º º º º º º º º º º º º º º º º º º º º º ½ º½º½ Ê ÙÒ ÙÑ Ø ÓÐÐ Ø ÙÑ Ø º º º º º º º º º ½ º½º¾ ÓÐÐ Ò Ó ÓØÙ ÖÚÓÒ ÓÑ Ò ÙÙ º º º º º º º º º ½ º½º À Ö Ö Ø Ñ ÐÐ

Lisätiedot

Ì Ê ÑÓ È Ø Ò Ò Ø Ý Ø ÓØ Ö Ô Ø Òº ÝÙº ÌÝ Ò Ò Ñ ÃÝØ ØØÚÝÝ ÙÙÒÒ ØØ ÐÙ Ó Ò Ó ÐÑ ØÓÔÖÓ Ì ØÐ Ò Ò Ð Í Ð ØÝ Ò Ò Ò Ó ØÛ Ö ÔÖÓ ÌÝ Ì ØÓØ Ò Ò ÔÖÓ Ö Ù ¹ØÙØ ÐÑ Ë ÚÙ

Ì Ê ÑÓ È Ø Ò Ò Ø Ý Ø ÓØ Ö Ô Ø Òº ÝÙº ÌÝ Ò Ò Ñ ÃÝØ ØØÚÝÝ ÙÙÒÒ ØØ ÐÙ Ó Ò Ó ÐÑ ØÓÔÖÓ Ì ØÐ Ò Ò Ð Í Ð ØÝ Ò Ò Ò Ó ØÛ Ö ÔÖÓ ÌÝ Ì ØÓØ Ò Ò ÔÖÓ Ö Ù ¹ØÙØ ÐÑ Ë ÚÙ Ê ÑÓ È Ø Ò Ò ÃÝØ ØØÚÝÝ ÙÙÒÒ ØØ ÐÙ Ó Ò Ó ÐÑ ØÓÔÖÓ Ì ØÓØ Ò Ò ÔÖÓ Ö Ù ¹ØÙØ ÐÑ ¾ º ÓÙÐÙ ÙÙØ ¾¼¼ ÂÝÚ ÝÐÒ ÝÐ ÓÔ ØÓ Ì ØÓØ Ò Ò Ð ØÓ ÂÝÚ ÝÐ Ì Ê ÑÓ È Ø Ò Ò Ø Ý Ø ÓØ Ö Ô Ø Òº ÝÙº ÌÝ Ò Ò Ñ ÃÝØ ØØÚÝÝ ÙÙÒÒ ØØ ÐÙ Ó Ò

Lisätiedot

MSE(ˆθ) = Var(ˆθ)+[E(ˆθ) θ] 2,

MSE(ˆθ) = Var(ˆθ)+[E(ˆθ) θ] 2, ËÁË ÄÌ Ú º º½ Å Ö ÓÚ Ò Ì Ý Ú Ò ÔÝ ØÐ Ø ÙÙÖØ Ò ÐÙ Ù¹ Ò Ð º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾ º º¾ Â Ò Ò Ò ÔÝ ØÐ º º º º º º º º º º º º º º º º º º º º ¾ º º ËØÓ Ø Ò Ò ÙÔÔ Ò Ñ Ò Ò º

Lisätiedot

x = [ x 1 x 2 x n (x i K) x = K (n) = {(x 1, x 2,...,x n ) : x i K} e 1 = (1, 0,..., 0) Ø, e 2 = (0, 1,..., 0) Ø,..., e n = (0, 0,...

x = [ x 1 x 2 x n (x i K) x = K (n) = {(x 1, x 2,...,x n ) : x i K} e 1 = (1, 0,..., 0) Ø, e 2 = (0, 1,..., 0) Ø,..., e n = (0, 0,... ¼¼ Ë Å ØÖ Ø ÓÖ Ì ÖÓ Î Ò ÙÓ Ù ¾º ØÓÙ Ó ÙÙØ ¾¼¼ Ë ÐØ ½ Ä Ò Ö Ð Ö ½º½ Å Ö ÒØ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º¾ È ÖÙ ÓÑ Ò ÙÙ º º º º º º º º º º º º º º º º º º º º º º º º ½º Å

Lisätiedot

Ä ÖÓ Ò ÒØÝÑ Ò Ò Ù Ø Ð Ó Ò Ô ÐÐÓÒ Ñ ØØ Ú Ë ÖÔ È Ý Ò Ò ÈÖÓ Ö Ù ØÙØ ÐÑ ÇÙÐÙÒ ÝÐ ÓÔ ØÓ ÓÐÓ Ò Ð ØÓ ÌÓÙ Ó ÙÙ ¾¼¼ Ë ÐØ ½ ÂÓ ÒØÓ ½ ½º½ Ä ÖÓ Ò Ö ÒØ Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾

Lisätiedot

P F [L θ U] P F [L θ U] 1 α, 0 < α < 1,

P F [L θ U] P F [L θ U] 1 α, 0 < α < 1, ËÁË ÄÌ º º½ º º¾ º º º º Ú Å Ö ÓÚ Ò Ì Ý Ú Ò ÔÝ ØÐ Ø ÙÙÖØ Ò ÐÙ Ù¹ Ò Ð º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾ Â Ò Ò Ò ÔÝ ØÐ º º º º º º º º º º º º º º º º º º º º ¾ ËØÓ Ø Ò Ò ÙÔÔ Ò Ñ Ò

Lisätiedot

f(x) =, x = 0,1,...,100. P(T 20) = P( X 50 20) 0.

f(x) =, x = 0,1,...,100. P(T 20) = P( X 50 20) 0. Ú ËÁË ÄÌ ½¾º ËÙ Ø ÐÐ Ø Ò Ó ÙÙ Ò ÐÙÓØØ ÑÙ ÚÐ Ø º º º º º º º º º º º º º º ¾ ½¾º ÇØÓ Ó Ó º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¼ ½¾º Å Ò Ò ÙÑ Ø Ú Ô ÐÙÓØØ ÑÙ ÚÐ º º º º º º º º º º

Lisätiedot

Ë ÐØ ½ ÂÓ ÒØÓ ¾ À Ò Ñ Ò Ñ Ó Ø ÓÖ Ø Ò Ö Ñ ÐÐ ¾º½ ËÔÓÒØ Ò ÝÑÑ ØÖ Ö Ó º º º º º º º º º º º º º º º º º º º º ¾º½º½ Ö ØØ ÝÑÑ ØÖ º º º º º º º º º º º º º

Ë ÐØ ½ ÂÓ ÒØÓ ¾ À Ò Ñ Ò Ñ Ó Ø ÓÖ Ø Ò Ö Ñ ÐÐ ¾º½ ËÔÓÒØ Ò ÝÑÑ ØÖ Ö Ó º º º º º º º º º º º º º º º º º º º º ¾º½º½ Ö ØØ ÝÑÑ ØÖ º º º º º º º º º º º º º Ë Ó ËÝÑÑ ØÖ Ö Ó Ì Ò ÚÖ Ø ÓÖ Ó Å ØØ À Ò ÑÓ Ñ Ô º ÝÙº ÈÖÓ Ö Ù ¹ØÙØ ÐÑ ÂÝÚ ÝÐÒ ÝÐ ÓÔ ØÓ Ý Ò Ð ØÓ ½¾º ÀÙ Ø ÙÙØ ¾¼¼ Ë ÐØ ½ ÂÓ ÒØÓ ¾ À Ò Ñ Ò Ñ Ó Ø ÓÖ Ø Ò Ö Ñ ÐÐ ¾º½ ËÔÓÒØ Ò ÝÑÑ ØÖ Ö Ó º º º º º º º º º º º º

Lisätiedot

F(x) = P(X x), x R. F(x) = 1º

F(x) = P(X x), x R. F(x) = 1º ËÁË ÄÌ Ö ØØ Ý ÙÐÓØØ ÙÑ ½½½ º½ Ö ØØ ØÙÒÒ ÑÙÙØØÙ º º º º º º º º º º º º º º º º º º ½½½ º¾ ÖÒÓÙÐÐ Ò Ó Ø ÒÓÑ ÙÑ º º º º º º º º º º º º º º º ½½ º¾º½  ÙÑ Ò ÝÑÑ ØÖ º º º º º º º º º º º º º º º º º º º ½½

Lisätiedot