Kuvan piirto. Pelaaja. Maailman päivitys. Syötteen käsittely

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Kuvan piirto. Pelaaja. Maailman päivitys. Syötteen käsittely"

Transkriptio

1 ØÙغ Ø Ò ÐÐ Ò Ò ÝÐ ÓÔ ØÓ Ì ÑÔ Ö Ò È Ð Ó ÐÑÓ ÒØ È Ð Ó ÐÑ Ò Ö ÒÒ ÒØØ ÈÙ ÒØØ ºÔÙ Ç ÐÑ ØÓØ Ò

2 Ò Ø ÐРؽ ؾ Ø È Ð Ó ÐÑ Ò Ô ÖÙ Ö ÒÒ Ì ØÓ ÓÒ Ô Ð Ò ÝØ Ñ Ò ÓÒ Ñ ÐÐ Ó Ø Ò ÙÚ ØØ ÐÐ Ø Ñ ÐÑ Ø ÚÓ ÓÐÐ Ú Ò Ý Ò ÖØ Ò Ò Ð ÝÖ ÒØØ Ó Ð ÙÙ ÑÓ Ø ØÓ ÐØ ÑÓÒ ÑÙØ Ò Ò ÓÐÑ ÙÐÓØØ Ò Ò Ñ ÐÑ Á Ð Ò Ò Ñ ÐÑ ÓÒ ÝÐ Ò Ø ÙÚ ÑÙØØ Ø ÚÓ Ò ÑÙÓ Ó Ø Ñ ÐÐ Ú Ò ÓÐÐ Ò Ö ØÙÐÐ Ø Ö ÙÙ ÐÐ ÃÙÚ ØØ ÐÐ Ñ ÐÑ Ø Ô ØÙÙ ÑÙÙØÓ Ò ÙÐÙ ÌØ ÙÚ Ø Ò Ö ÒØ Ñ ÐÐ Ñ ÐÐ Ñ ÐÑ Ø Ó ÐÐ Ò Ô Ö ÐÐ È Ð Ú ÙØØ Ñ ÐÑ Ò ÒØ Ñ ÐÐ Ý ØØ Ø Ñº Ó Ñ ÐÐ Ô Ð ÑÓ Ò Å ÐÑ Ø ÑÙÓ Ó Ø Ø Ò ÙÚ Ô Ð ÐÐ Ó ÐÐ Ò Ñº Ò Ø ÐÐ ÑÝ ÒØ ÑÙ Ø Ø ÑÙ ½

3 Kuvan piirto Pelaaja Maailman päivitys Syötteen käsittely È Ð Ó ÐÑ Ò Ô Ø ÔÝ ØÝ Ô Ú ØØÑÒ Ñ ÐÑ Ö Ó ÝØØ Ò Ý ØØ Ò Ú Ø ÑÙ Ø Ò ÔÙ ØØ Ñ ÐÑ Ò Ô Ú ØÝ Ò Ò ØØ Ñ ÐÑ Ø Ò Ñ Ø Ø Ó Ò Ò Ò Ñ ÐÑ Ø Ô Ø ÒÝØØ ÙÙ Ô Ú ØØÝÒÝØ ÙÚ Ô Ð ÐÐ Ö ØØÚÒ ÙÙÖ ÐÐ Ö Ú Ò ÐÐ Ô Ð Ò Ý ØØ Ò Ô Ø ÙØØ Ú Ø Ò Ñ ÐÑ Ù ÓØØ Ú Ò ÒÓÔ Ø ¾

4 Ì ØÓ ÓÒ Ô Ð ÓÒ Ö Ð Ó ÐÑ ØÓ ÃÙÒ Ð Ô Ð Ò ÐØÑ Ñ ÐÐ ÓÒ ÝÐ Ò Ð ÑÓÒ ÑÙØ Ò Ò ÓÒ Ý Ó ÐÑ ØÓØ Ò Ø Ú Ø Ø Ø ÌÓ ÐØ Ø ØÓ ÓÒ Ô Ð ÓÐ ØÙÖÚ ÐÐ ÙÙ Ö ØØ Ò Ò ÅÝ Ò Ö Ð ÙÙ ÓÒ ÝÐ Ò Ò ÑÑÒ Ô Ñ Ù Ò ÓÚ Ø º Ø Ú Ò Ú Ø Ò Ú Ú ØÝÑ Ò Ò ÝÐ ÓÒ Ò Ø ØÝÒ Ö Ò ÙØ ÖÓÑ Ù Ø ÚÖغ Ð ÒØÓ ÓÒ Ò Ó Ù Ö Ø ÐÑ ÒÓ Ø Ò Ô Ð Ò ÖÑÓØ ØØ Ú Ø Ö ØÝ

5 È Ð Ó ÐÑ Ò Ô ÖÙ ÐÑÙ È Ð Ò Ý ØØ Ò ÐÙ Ñ Ò Ò Ò ÑÙ Ò Ø ØÚ Ñ ÐÑ Ò Ø Ð ÒØ Ò Ô Ú ØÝ ÚÓ Ò Ò Ò ÐÙ µ Ø ÐÐ Ý Ó ÓÒ ¹ ÙÙ È Ð ÚÓ Ø ÐÐ ÓÐ Ú Ò Ö ÒÒ Ò ØÓ Ñ Ú Ó Ñ ÐÑ Ò Ô Ú ØÝ Ô ÖØÓ Ò ÖØ Ò Ö Ø Ù ÙÓÖ Ø Ø Ò Ñ ÐÑ Ò Ô Ú ØÝ Ô ÖØÓ ÐÑÙ ÚÙÓÖÓØ ÐÐ Ò Ô Ð ÒÓÔ ÙØÙÙ ØÙ٠Ѻ Ò ÑÙ Ò Ñ Ø Ò Ù Ò Ô ÖØÑ Ò Ò Ø ÒÓÔ Ù Ö ÔÔÙÙ Ò ÝÑÒ ÑÓÒ ÑÙØ ÙÙ Ø ÑÝ ÓÒ Ò ÒÓÔ Ù Ú ÙØØ ØÐÐ Ò ÙÓÖ Ò Ô Ð Ò ÒÓÔ ÙØ Ò

6 Päivitä maailma Piirrä Ê Ø Ù Ô Ð Ñ ÐÑ Ò Ø Ò Ú ÓÒÓÔ Ù ÐÐ päiv. piirto aika È ÖÙ Ö Ø Ù Ô Ú ØÝ Ô ÖØÓ ÚÙÓÖÓØ ÐÐ Ò Ô Ú ØÝ ÒÓÔ Ù Ú Ø Ð

7 Ã ÒØ Ô Ú ØÝ ÒÓÔ Ù Ö Ø Ù ÓÒ Ú Ð Ø ØÙ Ø Ò ÒØ ÖÙÙ ÙÒÔ Ú ØÝ ÒÓÔ Ù Ö Ñ Ö Ø µ Ç ÓØ Ø Ò ÓÒ ½» Ö Ñ Ö Ø µ ÐÓÔÔÙÑ Ø ÒÒ Ò Ù Ò ÐÓ Ø Ø Ò ÙÙ ÖÖÓ Odota Päivitä maailma Piirrä Ý ÝÒÒ Ñ Ø Ò Ò ÝÐ ÑÖ Ø Ð ÒØ Ø Ó

8 ÇÐ ØØ ØØ Ô ÖØÓ Ô Ú ØÝ ØÒ Ò ÙÓÖ ØØ ÑÖØÝÒ ÓÒ ÐÐ ÇÒ ÐÑ Ó Ò Ò Ø Ô Ù Ñº Ô Ð Ò ÒÓÔ Ù ÚÓ ÔÙÓÐ ØØÙ Ê Ø Ù ÓÚ ÐØÙÙ ÒÓ Ø Ò Ø Ð ÒØ Ò Ó Ô Ð ÐÙ Ø Ø ÓÚ Ø ÒØØ Ñº ÓÒ ÓÐ? päiv. piirto aika à ÒØ Ó ÓÒ ÐÑ Ó Ô Ú ØÝ»Ô ÖØÓ ÝÐ ØØ ÓÒ

9 Î ØÙÚ Ý ÌÓ Ò Ò Ö Ø Ù Ø ÐÐ Ø Ø Ò Ú Ñ Ò ÖÖÓ Ò ÐÙÒ Ò Ó Ø Ð Ø Ò ÖÖÓ Ò ÐÙ ÒÝ Ý Ò Ò ÖÓØÙ Ø Æ Ò Ò Ô Ö Ø Ò Ô Ú ØÝ Ø Ò ÖÓ Ò ÑÙ Ò Ø Ø Ò Ø ÒÓÔ ÙØ Ø Ò Ò ÙÐÙÑ Ø Ñ ÐÑ Ú ÐÐ Ò Ñº ÔÔ Ð Ò Ð Ö Ò Ö ÒÙÐ Ö Ø ØØ Øµ Í Ò Ø Ò Ø Ú ÑÔ Ù Ò Ø ÙÙÖÙ Ò Ò Ý Ò Ð Ý Ñº Ø ÖÑÝ Ø Ö Ø ÐÙ ÚÓ ÓÐÐ ÓÒ ÐÑ ÖØÝ Ò Ý Ø Ô ÑÑÒ Ñ Ø Ò ÖÖ ÐÐ Ò ÔÔ Ð ÚÓ Ò Ý Ô Ú ØÝ ÖØÝ Ø Ò ÔÙÓÐ ÐØ ØÓ ÐÐ Ø ÖÑÝ Ø Ú Ø Ø ÖÑÝ ÚÓ Ò ÑÝ Ú Ø Ø Ò ÚÖÒ ÔÙÓÐ Ò ÒÒ

10 Ê Ø ÙÒ ÚÓ Ò Ø ÖÑÝ Ø Ö Ø ÐÙ Ø ÔÔ Ð Ò ÒÝ Ý Ò Ô Ò Ø Ò ÐÐ Ò Ô Ò ÚÐ ÐÐ ÖØÝÑÚ ØÓÖ ÐÐ Ð ÒØ ÑÓÒ ÑÙØ ÑÔ ÅÝ Ñº Ô Ð Ò ÐÓ Ò Ø ÓÐÝÒ Ô Ú ØÝ ÒÓÔ ÙØØ ÚÐØØÑØØ ÓÐ Ñ Ð Ø ÑÙÙØØ

11 Ã ÑÖ Ø ØØÝ Ô Ú ØÝ Ò ÖØ ÑÔ Ö Ø Ù ÝØ ØÒ Ô Ú ØÝ Ø ÙÙÖÙ Ø Ý Ô ØÒ ÙÓÐ Ø ØØ Ñ ÐÑ Ò Ô Ú ØÝ Ø ÙØ ÙØ Ò ÑÖ Ò ÒÒ ØÙÒ Ý Ò ÚÐ Ò Â Ø Ò Ý Ò Ó Ó Ò ÚÙ Ò ÙÓÐ Ø Ò ØØ Ó Ø ÚÙ Ó Ø ÙØ ÙØ Ò Ô Ú ØÝ Ø ÖÖ Ò Ô ØÒ Ö Ø Ñ Ò Ø ÚÙØ ÓÒ Ó Ø ÐØÝ ÙØ ÙØ Ò Ô Ú ØÝ Ø Ó ÓÒ ØØ Ð ÑØØ Ñ ÚÙ È Ú ØÝ Ø ÚÓ Ò ÑÝ ÓÙØÙ ÙØ ÙÑ Ò Ù ÑÔ Ò ÖØ Ò Ó ÓÒ ØÝ Ð Ò Ó Ô ÖØÓ ÓÒ ØÒÝØ Ù Ò Ó Ð ÚÝÓÔ Ö Ø Ó ØÑ º ÓÒ ÙØØ ÒÙØ Ú Ú ØÝ Ò ½¼

12 ÌÓ ÐØ Ú ÓÐ ØÝ Ô Ð ÓÒ Ð Ò ÒÒ Ø Ð Ò Ô Ø Ô Ú ØØ Ð ÑÒ Ñ ÐÑ ÝØØ ÐÙ ÑÝ ÚÐ ÐÐ Ò ÑÙÙØÓ Ò ÒÒ Ø Ò Ñ Ñ ÝÐÖ Ô Ö ÐÐ ÙØ Ù ÐÐ ÌÐÐ Ö ÒØ ÐÐ ÓÒ Ñ ÓÐÐ Ø ØØ Ó Ô Ú ØÝ Ù ÙÙ Ø ÖÔ ÒÓÔ Ø ÚÓ Ò Ô ÖØÓ ÙØ Ù ÑÓÒØ ÖØ Ô Ö Ò ÐÑ Ò Ô Ú ØÝ Ø! päiv piirto aika à ÑÖ Ø ØØÝ Ô Ú ØÝ Ø ÓÚ Ú Ø ÒÝØØÚØ Ñ Ò Ú Ô Ð Ò Ý Ò Ò Ô Ú ØÝ Ð ØØÝÝ Ù Ø Ò Ò Ô Ú Ø Ø Ú ÓÑÖ Ò ÑÔ ÖØÓ Ñ Ö Ø ½½

13 Päivitä maailma Piirrä ÃÙ Ø Ò Ò ÒÓÔ ÑÑ Ø ÖÙÙ ÙÒÔ Ú ØÝ Ø ÓÐ Ý ØÝ Ó Ñ ÐÑ Ø Ô Ù Ñ ØÒ ÑÙÙØÓ Ø ÖÙÙØÙ Ò ÚÐ ÐÐ ÒÝØ ØÒ Ú Ò Ñ Ò ÝÑ Ù ÑÔ Ò ÖØ Ò ÌÑÒ ÚÙÓ ÚÓ ÓÐÐ ÒÒ ØØ Ú Ø Ó Ô Ð Ñ ÐÑ Ò Ð ØØÝÚ Ø Ô Ú ØÝ Ø Ñ Ò Ø Ø Ò Ô ÖÖÓÒ Ò Ñº Ò Ñ Ø ÓÒ Ø Ò Ñ Ò Ò ½¾

14 È ÖØÓÖÙØ Ò ÐÐ Ø Ò Ý Ø Ý ÙØ ÙØØ Ú ÐÐ ÖÙØ Ò ÐÐ ÚÓ Ò ÖØÓ Ñ Ó Ó ÓÐÐ Ò Ñ ÒÓ ÓÒ Ô ÖÙ Ø ÐÐ Ú Ð Ø Ò Ó Ò Ñ Ø Ó ÖÙÙØÙ ÃÝØØ Ò Ý ØØ Ò ÐÙ Ñ Ò Ò ÚÓ ÓÐÐ Ø ÖÔ Ò Ø Ñ Ò Ö Ð ÐÐ Ö Ô Ð ØÝÝÔ Ñº ÐÙØ Ò Ó ØØ Ý Ø ØØ ÓØ Ø Ò Ú Ø Ò ÐÐ ÙÒ ÓÒ ÙÑ ØØÙÙ Ø ÑÒ ÑÓÒ ÑÙØ Ø Ð ÒØ ½

15 Ñ Ö Ô Ð Ó ÐÑ Ò Ô ÖÙ ÐÑÙ Ø»» à ÐÐÓÒ µ Ø ÐØÝ Ã ÐÐÓÒ µ ÒÝØ ¼ ÖÖÓ Ä ÙÖ Ô Ú Ø Ø Ð Ò Ò ØÓ ÐØ ÑÙ Ø Ø Ò ÑÝ Ô ÖØ Ò ÚÐ Ðл» ÒÝØ ¹ Ø ÐØÝ Â ÃËÇÆÈÁÌÍÍË Ò ÖÖÓ Ä ÙÖ Å ÃÁ ÊÊÇÃË Ì Û Ð Å ÐÑ ÒÈ Ú ØÝ µ Ø ÐØÝ Â ÃËÇÆÈÁÌÍÍË Ø ÐØÝ ÂÓ ÓÒ ØÝ Ð Ð Ò Ý ÓÐ Ú Ö ÓÔ Ð µ» ÐÓÔÙØ ÚÐ Ò Ò Ø ÓØ» ÙÒÓ Ø Ò Å Ò ½º¼ ÒÝØ ¹ Ø ÐØÝ µ»â ÃËÇÆÈÁÌÍÍ˵ ÓÎл Å ÓÐÐ Ò Ò Ò ÑÓ ÒØ Ñ ÐÑ Ò Ô ÖØÓ» Ò ÑÓ ÒØ Â È ÖØÓ ÓÎÐ µ Û Ð ØÖÙ Ò Ò ÖÖÓ Ä ÙÖ ÖÖÓ Ä ÙÖ ½ Ò ÒÝØ ¹ Ø ÐØÝ Â ÃËÇÆÈÁÌÍÍË Ø Ò Ø ÐØÝ ÒÝØ ¹  ÃËÇÆÈÁÌÍÍË Ò ËÝ ØØ ÒÄÙ Ù Ñ µ» ÎÓ Ò Ø Ñº Ø» Ô ÖØÓ ÒÝØ Ñ ÓÐÐ Ø Ø Ò Ò Ò ½

16 Ë Ø Ñ ÓÐÐ ÙÙ Ô Ú ØÝ Ò Ô ÖÖÓÒ Ö ÒÒ ÙÙ Ò ØÓØ ÙØØ Ñ ¹ Ò ÓÒ Ø Ò Ø Ö Ø Ó ÝØØ Ö Ø ÐÑ ØÙ Ë Ò Ó ØØ Ñ Ò Ò Ð ÒØ Ø ÓÒ Ñ Ò Ò ÚÓ ÓÐÐ ÓÒ ÐÑ Ð¹ Ð Ø Ø Ò Ò ÑÙ Ø ÝÒ ÖÓÒÓ ÒØ Ô ÖØÓÖÙØ Ò ÐÙ Ñ ÐÑ Ó ÓÒ Ô ÓÒ Ø ÒØ Ø Ð Ê Ø Ù ÐÙÙÐØ Ú Ø Ñ Ð Ð ÒÒ Ó Ð ØØ ØÓØ ÓÐÐ Ñ ÓÐÐ Ø ÙÓÖ ØØ Ø ØØ Ñ Ò Ø ØÓ Ö ÒÒ ÙÙ Ð ØÐÐ Ò Ô Ð Ò ÒÓÔ ÙØØ ½

17 ËÝÒ ÖÓÒÓ ÒØ Ú ÖØ Ò Ô ÖØÓ ÚÓ Ó ÓØØ Ñ ÓÖ ÐÙÔ ÐÓ ØØ Ô ÖØÑ Ò Ò È Ú ØÝ ÖÙØ Ò ÒØ ÐÙÚ Ò Ô ÖÖÓÒ ÐÓ ØØ Ñ Ò ÙÒ ÓÒ ÒÙØ Ô Ú Ø ØØÝ Ñ ÐÑ Ò ÓÒ Ø ÒØØ Ò Ø Ð Ò È Ú ØÝ ÖÙØ Ò ÚÓ ØÑÒ Ð Ò Ø ÚÐ ØØ Ñ Ø ÑÙØØ Ø ØÓ¹ Ö ÒØ ÐÐ Ø ÑÙ Ø Ò ÐÐ ÒÒ ÐÐ ØÝØÝÝ ÙÓÐ Ø Ø ØØ Ô Ú Ø Ñ Ñ ÐÐ ÓØ Ô ÖØÓÖÙØ Ò Ð٠Ѻ ÓÔݹÓÒ¹ÛÖ Ø µ Ñ ÓÐÐ Ø ØÓØ ÙØØ ÔÓ ÙÐ Ñ Ò Ò ÑÝ Ý ØØ Ø Ò Ó Ø Ò Ø ÓÐÐ ½

18 È Ð Ò Ô Ú ØÝ Å ÐÑ Ò Ô Ú ØÝ ÚÓ Ò Ø Ò Ó Ò Ô Ð Ò ÓÑ Ò Ô Ð ÑÓÒ Ô Ú ØÝ ÑÙÙÒ Ñ ÐÑ Ò Ô Ú ØÝ ÄÙ Ø Ò ÝØØ Ò Ý Ø ÓÒØÖÓÐÐ Ð ØØ ÐØ ØÙÐ Ø Ò ÐÙØÙ ÑÙÙØÓ Ô Ð Ñ ÐÑ ÌÙØ Ø Ò Ô Ð Ò Ö Ó ØÙ Ø Ô Ð Ñ ÐÑ ÓÑ ØÖ Ø Ö Ó ØÙ Ø Ñº Ò ÐÓÓ Ø Ö Ó ØÙ Ø Ñº ÓÚ Ó ÓÒ Ø ÖÚ Ø Ò Ú Ò ÝÐ Ò Ô Ð Ò ÝÒ Ñ ÑÓÓØØÓÖ ØØ Ð Ø ØÒ ÐÙØØÙ ÑÙÙØÓ Ö Ó ØÙ Ò Ô Ú Ø ØÒ Ô Ð Ò Ø Ð Ñ ÐÑ ½

19 Å ÐÑ Ò Ô Ú ØÝ È Ð Ñ ÐÑ ÚÓ Ø ÐÐ ÓÐ Ú Ò Ô Ú ÐÓÓ Ó Ø Ø ÓØ Ø Ú Ø Ñ ÐÑ Ò Ñ ÐÐ Ø ÓÐÝÔÓ Ó Ø Ø Ó Ø Ó Ô Ð Ò Ø ÓÐÝÑÓÓØØÓÖ È Ú Ø Ó Ø Ø ØÓ Ñ ÒÒ ÐÐ ÙÙØØ Ñº ÒØ ¹ØÓÑ ÒÒ ÐÐ Ø Ò Ø Ò º ÄÓÓ Ø Ó Ø Ø Ó Ø Ø Ó ÐÐ Ø Ð Ý Ò ÖØ Ò Ò ØÓ Ñ ÒÒ ÐÐ Ù٠Ѻ Ú Ñ ÐÐ Ú ØØ Ú ÓÚ Ò º ½

20 Ì ÓÐÝÔÓ Ø Ó Ø Ø Ó Ø Ø Ó ÐÐ ÑÓÒ ÑÙØ ÑÔ ØÓ Ñ ÒÒ ÐÐ ÙÙ Ø ÚÓ ØØ Ø ÙÙÒÒ Ø Ð¹ Ñ Ø Ò º Ѻ Ö Ð Ø Ô Ð ÑÓØ Ú ØÙ Ø Ø Ý Ø ØÝ ÙÑÔÔ Ò Ø Ò º ÙØ ÙØ Ò ÑÝ ÆÈ ÒÓÒ¹ÔÐ Ý Ö Ö Ø Öµ ØÓ Ñ Ú Ø Ù Ò Ñ ÐÐ Ø Ú ÐÐ Ù Ò Ô Ð Ò ÑÓ ÑÙØØ Ý ØØ Ø ØÙÐ Ú Ø Ø ÓÐÝÑÓÓØØÓÖ ÐØ ½

21 ÃÓ Ø Ò Ô Ú ØÝ È Ú Ø Ó Ø Ø ÖÓØ ÐÐ Ò Ø Ð ÒØ Ò ÒÒ ÐØ Ø ÖÔ ÐÐ Ø Ñº ÙÓÒ Ó Ô Ð ÓÒ Ñ Ø Ò Ø ØÝØÝÝ ÓØØ ÙÓÑ ÓÓÒ Ø ÖÑÝ Ø Ö Ø ÐÙ ÄÓÓ Ø Ó Ø Ø ÓØ ÐÐ Ò Ò Ò Ö Ð Ú Ò Ò ÑÙ Ò ØÝÝÔ ÐÐ Ø Ù Ò ÓÐ Ú Ò Ó Ø Ò ØÓ Ñ ÒÒ ÐÐ ÙÙØØ Ø ÖÚ Ø Ø ÐÐ Ø Ø Ò ÐÓÓ Ò Ó Ø Ò ÓÒØÖÓÐÐ Ñ Ò Ñ Ô Ú Ø ØÒ Ò Ø Ð ¾¼

22 ÅÝ Ø ÓÐÝÔÓ Ø Ó Ø Ø ÓØ ÐÐ Ò Ò Ò Ö Ð Ú Ò Ò ÑÙ Ò Ø Ò Ù Ò ÓÐ Ú Ó Ø Ø ÚÐØØÑØØ Ø ÖÔ ÐÐ Ø Ô Ú ØØ ØÓ ÐØ Ñº Ö Ð ØÖ Ø Ò Ô Ð ÑÙ Ò ÓÐ Ú Ò ÑÓ Ò ØÝØÝÝ ØÓ Ñ Ó Ó Ò Ù Ò Ø Ò Ò Ò ØØ Ù ÑÔ Ò ÓÐ Ú Ø Ô Ð ÑÓØ ØÓ Ñ Ú Ø Ý Ò¹ ÖØ ÑÑ Ò Ð ÓÖ ØÑ Ò ÑÙ Ò Ð ÐÐ ÓÐ Ú Ø Ø ØØÝÒ ÑÑÒ ÑÙ Ò ËÙÙÒÒ Ø ÐÑ Ò Ø Ñ Ô Ø Ò Ò ÑÓØØ ÓÑ Ø Ð Ñº Ð ÒØÓ ÑÙÐ ØØÓÖ ÓÒ Ò ÒØ ÙÙÒØ ÒÓÔ Ù À ÑÓØ Ø Ò Ø ÚÓ ØØ Ø Ø ÚÓ Ø Ñº ÑÔÙ Ô Ð Ð À ÑÓØ Ø Ò ÙÙÒÒ Ø ÐÑ Ò Ú ÙØØ Ú Ø Ö Ó ØØ Ø Ñº Ø ÖÑØ Ñ Ò Ø ÑÙ Ò Ð ÒØÓ ÓÒ Ò ¾½

23 Ì Ò ÙÙÒÒ Ø ÐÑ Ò ÖØ Ø Ô Ù Ö Ø Ú Ò Ò ÙÙÒÒ Ø ÐÑ Ó Ð Ø Ò Ó ÖØ ÙÙ Ø Ò Ñº È˹ØÝÝÔÔ Ô Ð µ Ѻ Ó Ú Ò Ø ÚÓ ØØ Ò Ð Ù Ó Ø Ô Ð ØÝØÝÝ Ú Ò ÔØØ Ñ Ò ÙÙÒØ Ò Ô Ø Ð Ù Ã ØØÝÒ ÑÔ Ø Ø Ò Ò ÙÙÒÒ Ø ÐÑ Ñº Ö Ð ØÖ Ø µ ÙÙÒÒ Ø ÐÑ ÚÓ Ñ Ù Ò Ð ÒØ ÖÖÓ Ø Ò Ò ØÓ Ñ ÒØ ØÒ ÙÙÒÒ Ø ÐÑ Ò ÔÙ ØØ ÓÐÓ Ù Ø Ò ÑÙ Ò ÙÙÒÒ Ø ÐÑ ÚÓ Ñ ÙÒÒ Ø ÚÓ Ø ÚÙØ Ø Ò Ø ØÓ Ø Ò ØØ ØÝØÝÝ Ð Ø ÙÙ ÙÙÒÒ Ø ÐÑ ÃÙÒ Ø ÖÚ ØØ Ú ØÓ Ñ ÒØ ÔØ ØØÝ Ô Ú Ø ØÒ Ó Ø Ò Ø Ð ¾¾

24 È Ð Ô Ú ØÝ ÄÙ Ô Ð Ò Ý Ø ÌÙØ Ö Ó ØØ Ø È Ú Ø Ô Ð Ò Ø Ð Å ÐÑ Ò Ô Ú ØÝ È Ú Ø Ó Ø Ø ÖÓØØ Ð Ø Ð ÒØ Ò ÒÒ ÐØ Ø ÖÔ ÐÐ Ø ÄÓÓ Ø Ó Ø Ø Â ÓØØ Ð Ö Ð Ú Ò Ò ÑÙ Ò ËÙÓÖ Ø ÓÒØÖÓÐÐ Ñ Ò Ñ È Ú Ø Ø Ð Ì ÓÐÝÔÓ Ø Ó Ø Ø Â ÓØØ Ð Ö Ð Ú Ò Ò ÑÙ Ò À ÑÓØ Ø Ð Ø ÚÓ ØØ Ø ÌÙØ Ö Ó ØØ Ø Ì ÙÙÒÒ Ø ÐÑ È Ú Ø Ø Ð ÙÙÒÒ Ø ÐÑ Ò ÑÙ Ò ¾

ÍÐ ÓØ ÐÓ Ò Ô ÖØÓ ÃÙÒ Ô ÖÖ ØÒ Ð Ó ÙÐ ÓÒ ÝÑ ÓÒ Ò ØØ Ú Ñ ÐÐ Ñ ØÓ Ø ØÝÝÔ ÐÐ Ø Ú Ò Ð Ò ÙÙÖ ÓÚ ÐØÙ Ò Ö Ð Ò Ô ÖØÑ Ò Ñº Ó Ñ ÐÐ ÒÒ Ø Ò ½¼ Ü ½¼ Ñ ÐÙ ½¼ Ñ Ø Ö Ù

ÍÐ ÓØ ÐÓ Ò Ô ÖØÓ ÃÙÒ Ô ÖÖ ØÒ Ð Ó ÙÐ ÓÒ ÝÑ ÓÒ Ò ØØ Ú Ñ ÐÐ Ñ ØÓ Ø ØÝÝÔ ÐÐ Ø Ú Ò Ð Ò ÙÙÖ ÓÚ ÐØÙ Ò Ö Ð Ò Ô ÖØÑ Ò Ñº Ó Ñ ÐÐ ÒÒ Ø Ò ½¼ Ü ½¼ Ñ ÐÙ ½¼ Ñ Ø Ö Ù ØÙغ Ø Ò ÐÐ Ò Ò ÝÐ ÓÔ ØÓ Ì ÑÔ Ö Ò È Ð Ó ÐÑÓ ÒØ ÍÐ ÓØ ÐÓ Ò Ô ÖØÓ ÒØØ ÈÙ ÒØØ ºÔÙ Ç ÐÑ ØÓØ Ò ÍÐ ÓØ ÐÓ Ò Ô ÖØÓ ÃÙÒ Ô ÖÖ ØÒ Ð Ó ÙÐ ÓÒ ÝÑ ÓÒ Ò ØØ Ú Ñ ÐÐ Ñ ØÓ Ø ØÝÝÔ ÐÐ Ø Ú Ò Ð Ò ÙÙÖ ÓÚ ÐØÙ Ò Ö Ð Ò Ô ÖØÑ Ò Ñº

Lisätiedot

Ð ØÖÓÒ Ò Ú Ø Ò Ô ÓÒ Ö Ø Ð ØÖÓÒ Ò Ò Ú Ð ÙÒ ÝÐ ÓÔ ØÓ ÖÑ Ò ØÙØ ÑÙ ¹ Ð ØÓ ½ ¼¹ÐÙÚÙÐÐ Ù Ø Ó ÐÙ Ð ØÖÓÒ Ô Ð ºËº ÓÙ Ð Ø ½ ¾ Ñ Ö Ú Ø Ö Ò Ñ Ò ÓÒ Ò ÚÙÓÖÓÚ ÙØÙ Ø

Ð ØÖÓÒ Ò Ú Ø Ò Ô ÓÒ Ö Ø Ð ØÖÓÒ Ò Ò Ú Ð ÙÒ ÝÐ ÓÔ ØÓ ÖÑ Ò ØÙØ ÑÙ ¹ Ð ØÓ ½ ¼¹ÐÙÚÙÐÐ Ù Ø Ó ÐÙ Ð ØÖÓÒ Ô Ð ºËº ÓÙ Ð Ø ½ ¾ Ñ Ö Ú Ø Ö Ò Ñ Ò ÓÒ Ò ÚÙÓÖÓÚ ÙØÙ Ø ØÙغ Ø Ò ÐÐ Ò Ò ÝÐ ÓÔ ØÓ Ì ÑÔ Ö Ò È Ð Ó ÐÑÓ ÒØ È Ð Ó ÐÑÓ ÒÒ Ò ØÓÖ ÒØØ ÈÙ ÒØØ ºÔÙ Ç ÐÑ ØÓØ Ò Ð ØÖÓÒ Ò Ú Ø Ò Ô ÓÒ Ö Ø Ð ØÖÓÒ Ò Ò Ú Ð ÙÒ ÝÐ ÓÔ ØÓ ÖÑ Ò ØÙØ ÑÙ ¹ Ð ØÓ ½ ¼¹ÐÙÚÙÐÐ Ù Ø Ó ÐÙ Ð ØÖÓÒ Ô Ð ºËº ÓÙ Ð

Lisätiedot

Ì Ð Ú Ø ÚÙÙ ÐÙÓ Ø Á ÅÖ Ø ÐÑ ÇÐ ÓÓÒ : Æ Ê ÙÒ Ø Óº Ì Ð Ú Ø ÚÙÙ ÐÙÓ Ø ËÈ ( (Ò)) ÆËÈ ( (Ò)) ÑÖ Ø ÐÐÒ ÙÖ Ú Ø ËÈ ( (Ò)) ÓÒ Ò Ò ÐØ Ò Ä ÓÙ Ó ÓØ ÚÓ Ò ØÙÒÒ Ø Ø

Ì Ð Ú Ø ÚÙÙ ÐÙÓ Ø Á ÅÖ Ø ÐÑ ÇÐ ÓÓÒ : Æ Ê ÙÒ Ø Óº Ì Ð Ú Ø ÚÙÙ ÐÙÓ Ø ËÈ ( (Ò)) ÆËÈ ( (Ò)) ÑÖ Ø ÐÐÒ ÙÖ Ú Ø ËÈ ( (Ò)) ÓÒ Ò Ò ÐØ Ò Ä ÓÙ Ó ÓØ ÚÓ Ò ØÙÒÒ Ø Ø Ì Ð Ú Ø ÚÙÙ Á ÅÖ Ø ÐÑ ÇÐ ÓÓÒ Å Ø ÖÑ Ò Ø Ò Ò ÌÙÖ Ò Ò ÓÒ Ó ÔÝ ØÝÝ ÐÐ Ý ØØ Ðк Å Ò Ø Ð Ú Ø ÚÙÙ ÓÒ ÙÒ Ø Ó : Æ Æ Ñ (Ò) ÓÒ Å Ò Ð Ñ Ò ÑÙ Ø Ô Ó Ò Ñ Ñ ÐÙ ÙÑÖ ÙÒ Ø Ö Ø ÐÐ Ò Ò Ò Ô ØÙ Ý ØØ Øº ÂÓ Å Ò Ø Ð Ú Ø ÑÙ ÓÒ

Lisätiedot

ÓÑ ØÖ Ò Ø Ò Ø ØÓÖ ÒØ Ø Ã ÙÖ Ú Ø ÐØÚØ Ø ØÓÖ ÒØ Ø Ô ÖÙ ØÙÚ Ø Ñ ÒØÝÝÔ¹ Ô Ò Ò ÖÓØ ÐÐ Ò Ú ÖÙÙ Ø Ó Ó Ò ÐÐ ÓÒ Ô Ò ÑÔ Ó Ò Ò ÐÐ Ú Ð Ô Ò ÑÔ Ó Ò º ÒÑ Ö Ø ØÒ Ö Ö

ÓÑ ØÖ Ò Ø Ò Ø ØÓÖ ÒØ Ø Ã ÙÖ Ú Ø ÐØÚØ Ø ØÓÖ ÒØ Ø Ô ÖÙ ØÙÚ Ø Ñ ÒØÝÝÔ¹ Ô Ò Ò ÖÓØ ÐÐ Ò Ú ÖÙÙ Ø Ó Ó Ò ÐÐ ÓÒ Ô Ò ÑÔ Ó Ò Ò ÐÐ Ú Ð Ô Ò ÑÔ Ó Ò º ÒÑ Ö Ø ØÒ Ö Ö ØÙغ Ø Ò ÐÐ Ò Ò ÝÐ ÓÔ ØÓ Ì ÑÔ Ö Ò È Ð Ó ÐÑÓ ÒØ È Ð Ó ÐÑÓ ÒÒ Ý ÝÐÐ Ø ØÓÖ ÒØ Ø ÒØØ ÈÙ ÒØØ ºÔÙ Ç ÐÑ ØÓØ Ò ÓÑ ØÖ Ò Ø Ò Ø ØÓÖ ÒØ Ø Ã ÙÖ Ú Ø ÐØÚØ Ø ØÓÖ ÒØ Ø Ô ÖÙ ØÙÚ Ø Ñ ÒØÝÝÔ¹ Ô Ò Ò ÖÓØ ÐÐ Ò Ú ÖÙÙ Ø Ó Ó Ò ÐÐ

Lisätiedot

Ð ØÖÓÒ Ø Ñ ÙÚÐ Ò Ø Ì ÑÙ Ê ÒØ ¹ Ó À Ð Ò ¾ º ÐÓ ÙÙØ ½ Ë Ò ÙÔ Ò ÝÒÒ Ò Ñ Ò Ö À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ Ì ØÓ Ò ØØ ÐÝØ Ø Ò Ð ØÓ Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Å Ù Ö Ø ÐÑØ ¾ ¾º½ ÆÝ Ý Ø Ñ Ù Ö Ø ÐÑØ º º º º º º º º º º º º º º º º

Lisätiedot

ÁÒ Ù Ø Ú Ø ØÝÝÔ Ø º Ñ Ö ÒÖ ÔÙÙÒ ÑÖ Ø ÐÑ Ú ØØ Ø Ò ÒÖ ÔÙÙ ÓÒ Ó Ó ØÝ Ø ÓÐÑÙ Ó ÓÒ Ð Ó ÓÒ Ú Ò Ó Ð ÔÙÙ ÓÚ Ø ÑÝ ÒÖ ÔÙ Ø º Ë ÚÓ Ò Ö Ó ØØ ÙÓÖ Ò Ø Ò ÖÝÌÖ ÑÔØÝ Æ

ÁÒ Ù Ø Ú Ø ØÝÝÔ Ø º Ñ Ö ÒÖ ÔÙÙÒ ÑÖ Ø ÐÑ Ú ØØ Ø Ò ÒÖ ÔÙÙ ÓÒ Ó Ó ØÝ Ø ÓÐÑÙ Ó ÓÒ Ð Ó ÓÒ Ú Ò Ó Ð ÔÙÙ ÓÚ Ø ÑÝ ÒÖ ÔÙ Ø º Ë ÚÓ Ò Ö Ó ØØ ÙÓÖ Ò Ø Ò ÖÝÌÖ ÑÔØÝ Æ ÁÒ Ù Ø Ú Ø ØÝÝÔ Ø º º ÁÒ Ù Ø Ú Ø ØÝÝÔ Ø Ø ¹ÑÖ ØØ ÐÝ º¾µ ÚÓ Ú Ø Ø ÑÝ Ø Ò ÑÖ Ø ÐØÚ Æ Ñ ÒØÝ ÑÝ ³ ³¹Ñ Ö Ò Ó ÐÐ ÔÙÓÐ ÐÐ º Ë Ò ÓÐ ÐÐ ØØÝ ØÝÔ ¹ÐÝ ÒØ º½µº ¾ ÁÒ Ù Ø Ú Ø ØÝÝÔ Ø º Ñ Ö ÒÖ ÔÙÙÒ ÑÖ Ø ÐÑ Ú ØØ Ø Ò ÒÖ

Lisätiedot

el. konsentraatio p puolella : n p = N c e (E cp E F ) el. konsentraatio n puolella : n n = N c e (E cn E F ) n n n p = e (Ecp Ecn) V 0 = kt q ln (

el. konsentraatio p puolella : n p = N c e (E cp E F ) el. konsentraatio n puolella : n n = N c e (E cn E F ) n n n p = e (Ecp Ecn) V 0 = kt q ln ( ÈÙÓÐ Ó ÓÑÔÓÒ ÒØØ Ò Ô ÖÙ Ø Ø À Ì Øº ½º È ÖÖ ÔÒ¹ÔÙÓÐ Ó Ð ØÓ Ò Ò Ö ÚÝ Ñ ÐÐ ÙÒ ÙÐ Ó Ò Ò ÒØØ ÓÒ ÒÓÐÐ º ÂÓ ÓÒØ Ø ÔÓØ ÒØ Ð Ò V 0 Ý ØÐ µ ÃÙÚ Ò ÚÙÐÐ µ Ù ÓÚ ÖØ Ý ØÐ Ø Ô¹ Ò¹ØÝÝÔ Ø Ò Ñ Ø Ö Ð Ò Ò Ö Ø ÓØ Ô¹ÔÙÓÐ ÐÐ ÙÙÖ

Lisätiedot

À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç ØÓ ÙÐØ Ø»Ë Ø ÓÒ ÙÐØÝ Ä ØÓ ÁÒ Ø ØÙØ ÓÒ Ô ÖØÑ ÒØ Å Ø Ñ ØØ ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò Ì Ö

À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç ØÓ ÙÐØ Ø»Ë Ø ÓÒ ÙÐØÝ Ä ØÓ ÁÒ Ø ØÙØ ÓÒ Ô ÖØÑ ÒØ Å Ø Ñ ØØ ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò Ì Ö ÝÚ ÝÑ Ô Ú ÖÚÓ Ò ÖÚÓ Ø Ð Ä Ù ÓÑÔÓÒ ÒØ Ø Ã Ö Ì ÑÓÒ Ò À Ð Ò º º¾¼¼ Ç ÐÑ ØÓØÙÓØ ÒØÓ Ø ØÓ ÓÒ Ô Ð Ø ¹ Ñ Ò Ö À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ Ì ØÓ Ò ØØ ÐÝØ Ø Ò Ð ØÓ À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ

Lisätiedot

À Ö Ö Ð Ù Ø ÅÖ Ø ÐÑ ÙÒ Ø Ó : Æ Æ Ñ (Ò) = O(ÐÓ Ò) ÓÒ Ø Ð ÓÒ ØÖÙÓ ØÙÚ Ó ÐÐ Ò Ò ÙÒ Ø Ó Ó ÙÚ Ñ Ö ÓÒÓÒ ½ Ò (Ò) Ò ÒÖ ØÝ ÐÐ ÓÒ Ð ØØ Ú Ø Ð O( (Ò))º Ä Ù Å Ø Ø

À Ö Ö Ð Ù Ø ÅÖ Ø ÐÑ ÙÒ Ø Ó : Æ Æ Ñ (Ò) = O(ÐÓ Ò) ÓÒ Ø Ð ÓÒ ØÖÙÓ ØÙÚ Ó ÐÐ Ò Ò ÙÒ Ø Ó Ó ÙÚ Ñ Ö ÓÒÓÒ ½ Ò (Ò) Ò ÒÖ ØÝ ÐÐ ÓÒ Ð ØØ Ú Ø Ð O( (Ò))º Ä Ù Å Ø Ø Ì ÔÙÑ ØØÓÑÙÙ Ì Ó Ø ÐÐÒ ÓÒ ÐÑ ÓØ ÓÚ Ø Ô Ö ØØ Ö Ø Ú ÑÙØØ Ó Ò Ö Ø Ù Ú Ø Ò Ò Ô Ð ÓÒ Ø Ø Ð ØØ Ö Ø Ù ÓÐ ÝØÒÒ ÐÚÓÐÐ Ò Òº Í ÑÑ Ø ÓÐ ØØ Ú Ø ØØ ÆȹØÝ ÐÐ Ø ÔÖÓ Ð Ñ Ø ÓÚ Ø Ø ÔÙÑ ØØÓÑ ÒØÖ Ø Ð µ ÑÙØØ ØØ ÓÐ ØÓ Ø ØØÙº

Lisätiedot

Symmetriatasot. y x. Lämmittimet

Symmetriatasot. y x. Lämmittimet Ì Ò ÐÐ Ò Ò ÓÖ ÓÙÐÙ ¹ÖÝ ÑĐ» ËÓÚ ÐÐ ØÙÒ Ø ÖÑÓ ÝÒ Ñ Ò Ð ÓÖ ØÓÖ Ó ÅÍÁËÌÁÇ ÆÓ»Ì ÊÅǹ ¹¾¼¼¼ ÔÚÑ ½¼º Ñ Ð ÙÙØ ¾¼¼¼ ÇÌËÁÃÃÇ Ø Ú ÒعØÙÐÓ ÐÑ Ð ØØ Ò ¹Ñ ÐÐ ÒÒÙ Ò ÖØ Ø ØÙØ ØÙÐÓ ÐÑ Ð Ø Ñ ÐÐ Ø Ä ÌÁ ̵ ÂÙ Ú Ó Ð ¹ÂÙÙ Ð

Lisätiedot

p q = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 + (z 1 z 2 ) 2. x 1 y 1 z 1 x 2 y 2 z 2

p q = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 + (z 1 z 2 ) 2. x 1 y 1 z 1 x 2 y 2 z 2 º ÅÓÒ ÙÐÓØØ Ø Ö ÒØ Ð Ð ÒØ º½ Â Ø ÙÚÙÙ Ó ØØ Ö Ú Ø Ø Ù Ò ÑÙÙØØÙ Ò ÙÒ Ø Ó Ò Ö ÒØ Ð Ð ÒØ ÐÑÔ Ø Ð ÓÒ Ò Ô Ò ÙÒ Ø Ó T(x, y, z.t) ÄÑÔ Ø Ð Ö ÒØØ ÐÑÓ ØØ Ñ Ò ÙÙÒØ Ò ÐÑÔ Ø Ð Ú ÚÓ Ñ ÑÑ Ò Ù Ò Ð ÐÑÔ Ø Ð Ö ÒØØ ½½ ÃÓÓÖ

Lisätiedot

Å Ø Ñ ØØ ¹ÙÓÒÒÓÒØ Ø Ò Ò Ì Ö ØØ Ö ÙØ ÓÖ Á Å Ö Ò Ò ÌÝ Ò Ò Ñ Ö Ø Ø Ø Ø Ì Ø Ì ØÓ Ò ØØ ÝØ Ø Ò ØÓ Ò ËÖ ÔØ ¹Ô Ó Ñ ÇÔÔ Ò ÄÖÓÑÒ ËÙ Ø Ì ØÓ Ò ØØ ÝØ ÌÝ Ò Ö Ø Ø ÖØ

Å Ø Ñ ØØ ¹ÙÓÒÒÓÒØ Ø Ò Ò Ì Ö ØØ Ö ÙØ ÓÖ Á Å Ö Ò Ò ÌÝ Ò Ò Ñ Ö Ø Ø Ø Ø Ì Ø Ì ØÓ Ò ØØ ÝØ Ø Ò ØÓ Ò ËÖ ÔØ ¹Ô Ó Ñ ÇÔÔ Ò ÄÖÓÑÒ ËÙ Ø Ì ØÓ Ò ØØ ÝØ ÌÝ Ò Ö Ø Ø ÖØ Ò ËÖ ÔØ ¹Ô Ó Ñ Á Å Ö Ò Ò À Ò ½½º º¾¼¼ Ç Ñ ØÓØÙÓØ ÒØÓ Ø ØÓ ÓÒ Ô Ø ¹ Ñ Ò Ö À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ Ì ØÓ Ò ØØ ÝØ Ø Ò ØÓ Å Ø Ñ ØØ ¹ÙÓÒÒÓÒØ Ø Ò Ò Ì Ö ØØ Ö ÙØ ÓÖ Á Å Ö Ò Ò ÌÝ Ò Ò Ñ Ö Ø Ø Ø Ø Ì Ø Ì ØÓ Ò ØØ ÝØ Ø Ò

Lisätiedot

È Ú Ö Ù ÆÈ ÁÁ Ë ÑÓ Ò Ó Ò Ý ÝÑÝ ÚÙØ ØØ Ò ØÝ Ø ÙÒ ËØ Ô Ò ÓÓ Ä ÓÒ Ä Ú Ò ØØ Ð ÚØ ÆȹØÝ ÐÐ ÝÝ Ò ØØ Òº µ º Ù Ø ÙÙØ ¾¼¼ ¾»

È Ú Ö Ù ÆÈ ÁÁ Ë ÑÓ Ò Ó Ò Ý ÝÑÝ ÚÙØ ØØ Ò ØÝ Ø ÙÒ ËØ Ô Ò ÓÓ Ä ÓÒ Ä Ú Ò ØØ Ð ÚØ ÆȹØÝ ÐÐ ÝÝ Ò ØØ Òº µ º Ù Ø ÙÙØ ¾¼¼ ¾» È Ú Ö Ù ÆÈ Á à РÐÙÓ Ø È ÆÈ ÒÝØØÚØ ØÝ Ò Ö Ð ÐØ Ë ÐÚ Ø È ÆȺ µ È ÓÒ Ð ÐÙÓ Ó Ð ÓÒ ÙÙÐÙÑ Ò Ò Ð Ò ÚÓ Ò Ö Ø Ø ÔÓÐÝÒÓÑ Ø ÖÑ Ò Ø ÐÐ ÌÙÖ Ò Ò ÓÒ ÐÐ º µ ÆÈ ÓÒ Ð ÐÙÓ Ó Ð ÓÒ ÙÙÐÙÑ Ò Ò Ð Ò ÚÓ Ò Ú Ö Ó ÔÓÐÝÒÓÑ Ð Ð ÓÒ

Lisätiedot

Ç Ø ØÙØ ÐÑ Ò Ð Ø Ó ÐÐ Ã Ö ¹ÂÓÙ Ó Ê Ì ÑÔ Ö Ò ÝÐ ÓÔ ØÓ ÁÒ ÓÖÑ Ø ÓØ Ø Ò Ý»Ø Ó Ø ÚØ ÈÖÓ Ö Ù ¹ØÙØ ÐÑ Ç Å ÖØØ Ì Ò Ö ¾ º½º¾¼½½ Ì ÑÔ Ö Ò ÝÐ ÓÔ ØÓ ÁÒ ÓÖÑ Ø ÓØ Ø Ò Ý»Ø Ó Ø ÚØ Ã Ö ¹ÂÓÙ Ó Ê Ç Ø ØÙØ ÐÑ Ò Ð Ø Ó ÐÐ

Lisätiedot

Ë Ø ÐÓ Ò Ô ÖØÓ Á ÔÖÓ Ó ÒØ ÃÙÒ Ð ÙØ Ò ÓÒ Ò Ö ÒÒÙ Ò ÐÐ ÓÒ ÝÐ Ò ÖÖ ÐÐ Ò Ú Ò Ô Ò Ó Ö ÒÒÙ Ò Ø ÐÓ Ø Ò ÝÚ Ñ ÐÐ ÓÒ Ù Ø ÐÐ Ò ÙÙÖ ÑÖ Ò Ø Ø ÓÐÙ Ö µ Ã ÙÐÓØØ Ò Ò Ñ

Ë Ø ÐÓ Ò Ô ÖØÓ Á ÔÖÓ Ó ÒØ ÃÙÒ Ð ÙØ Ò ÓÒ Ò Ö ÒÒÙ Ò ÐÐ ÓÒ ÝÐ Ò ÖÖ ÐÐ Ò Ú Ò Ô Ò Ó Ö ÒÒÙ Ò Ø ÐÓ Ø Ò ÝÚ Ñ ÐÐ ÓÒ Ù Ø ÐÐ Ò ÙÙÖ ÑÖ Ò Ø Ø ÓÐÙ Ö µ à ÙÐÓØØ Ò Ò Ñ ØÙغ Ø Ò ÐÐ Ò Ò ÝÐ ÓÔ ØÓ Ì ÑÔ Ö Ò È Ð Ó ÐÑÓ ÒØ Ë Ø ÐÓ Ò Ô ÖØÓ Ò ÝÚÝÝ Ð ÒØ ÒØØ ÈÙ ÒØØ ºÔÙ Ç ÐÑ ØÓØ Ò Ë Ø ÐÓ Ò Ô ÖØÓ Á ÔÖÓ Ó ÒØ ÃÙÒ Ð ÙØ Ò ÓÒ Ò Ö ÒÒÙ Ò ÐÐ ÓÒ ÝÐ Ò ÖÖ ÐÐ Ò Ú Ò Ô Ò Ó Ö ÒÒÙ Ò Ø ÐÓ Ø Ò ÝÚ Ñ

Lisätiedot

{(x, y) x {1,2,3,... }, y {2,4,6,...,10}, x < y}.

{(x, y) x {1,2,3,... }, y {2,4,6,...,10}, x < y}. Ä Ø ÓÓ Ø Ø º º Ä Ø ÓÓ Ø Ø Å Ø Ñ Ø ÓØ ÑÖ ØØ Ð ÚØ Ù Ò ÓÙ Ó ÑÔÐ ØØ ÐÐ ÒÓØ Ø ÓÐÐ Ò ÙØ Ò {(x, y) x {1,2,3,... }, y {2,4,6,...,10}, x < y}. À ÐÐ Ø Ö Ó Ú Ø Ú Ò ÒÓØ Ø ÓÒ Ð ØÓ ÐÐ Ò Ú ØÓ ØÓ Ò ÝÒØ Ò Ø Ú ÐÐ ÐÐ Ð Ø

Lisätiedot

3D piirron liukuhihna (3D Graphics Pipeline) Sovellus/mallinnus Geometrian käsittely Rasterointi/piirto

3D piirron liukuhihna (3D Graphics Pipeline) Sovellus/mallinnus Geometrian käsittely Rasterointi/piirto ØÙغ Ø Ò ÐÐ Ò Ò ÝÐ ÓÔ ØÓ Ì ÑÔ Ö Ò È Ð Ó ÐÑÓ ÒØ Ö Ò Ô ÖØÓ ÒØØ ÈÙ ÒØØ ºÔÙ Ç ÐÑ ØÓØ Ò ¹ Ö Ò Ô ÖØÑ Ò Ò ÙÚ Ø Ò Ù Ò Ð Ù Ù Ò Ò Ô Ô Ð Ò µ ÚÙÐÐ Ö Ð Ù Ù Ò Ö Ø ØÓ ÙÐ Ð Ù Ù Ò Ò Ö Ú Ò ÙØØ ÒÒ Ò Ù Ò Ô ÖÖ ØÒ ÖÙÙ ÙÐÐ Ö

Lisätiedot

À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç ØÓ ÙÐØ Ø»Ë Ø ÓÒ ÙÐØÝ Ä ØÓ ÁÒ Ø ØÙØ ÓÒ Ô ÖØÑ ÒØ Å Ø Ñ ØØ ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò Ì Ö

À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç ØÓ ÙÐØ Ø»Ë Ø ÓÒ ÙÐØÝ Ä ØÓ ÁÒ Ø ØÙØ ÓÒ Ô ÖØÑ ÒØ Å Ø Ñ ØØ ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò Ì Ö ÝÚ ÝÑ Ô Ú ÖÚÓ Ò ÖÚÓ Ø Ð ÈÓÐÙÒ Ø ÒØ Ù Ò ÒØ Ò ÝÑÔÖ Ø Ô Ð È Ä ÓÒ Ò À Ð Ò º º¾¼¼ ÄÙùØÙØ ÐÑ À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ Ì ØÓ Ò ØØ ÐÝØ Ø Ò Ð ØÓ À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç

Lisätiedot

ÌÍÊÍÆ ÄÁÇÈÁËÌÇ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ÃÇÀÇ Ì ÊÇ ÇÔØ ÑÓ ÒØ ÐÙ ÓÐ ÐÐ ÈÖÓ Ö Ù ¹ØÙØ ÐÑ º º Å Ø Ñ Ø ÐÓ ÙÙ ¾¼½ ÇÔØ ÑÓ ÒØ ÓÒ ÓÚ ÐÐ ØÙÒ Ñ Ø Ñ Ø Ò Ó ¹ ÐÙ Ó

ÌÍÊÍÆ ÄÁÇÈÁËÌÇ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ÃÇÀÇ Ì ÊÇ ÇÔØ ÑÓ ÒØ ÐÙ ÓÐ ÐÐ ÈÖÓ Ö Ù ¹ØÙØ ÐÑ º º Å Ø Ñ Ø ÐÓ ÙÙ ¾¼½ ÇÔØ ÑÓ ÒØ ÓÒ ÓÚ ÐÐ ØÙÒ Ñ Ø Ñ Ø Ò Ó ¹ ÐÙ Ó ÇÔØ ÑÓ ÒØ ÐÙ ÓÐ ÐÐ ÈÖÓ Ö Ù¹ØÙØ ÐÑ Ì ÖÓ ÃÓ Ó Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ÌÙÖÙÒ Ð ÓÔ ØÓ ½ º ÐÓ ÙÙØ ¾¼½ ÌÍÊÍÆ ÄÁÇÈÁËÌÇ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ÃÇÀÇ Ì ÊÇ ÇÔØ ÑÓ ÒØ ÐÙ ÓÐ ÐÐ ÈÖÓ Ö Ù ¹ØÙØ ÐÑ º º Å Ø Ñ Ø ÐÓ

Lisätiedot

Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Ç ÐÑ ØÓ Ò ÑÓ ÙÐ Ö Ó ÒØ ½ ÄÔ Ð Ú Ø ÓÑ Ò ÙÙ Ø Ô Ø Ó ÐÑÓ ÒØ Ô Ø º½ Ä ØÓ Ó Ø Ð ØÓ Ó Ø ÑÖ ØØ ÐÝØ º º º º º º º º º º º º º º º º º º º¾

Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Ç ÐÑ ØÓ Ò ÑÓ ÙÐ Ö Ó ÒØ ½ ÄÔ Ð Ú Ø ÓÑ Ò ÙÙ Ø Ô Ø Ó ÐÑÓ ÒØ Ô Ø º½ Ä ØÓ Ó Ø Ð ØÓ Ó Ø ÑÖ ØØ ÐÝØ º º º º º º º º º º º º º º º º º º º¾ Ô Ø Ó ÐÑÓ ÒØ ÐÔ Ð Ú Ò ÓÑ Ò ÙÙ Ò ÑÓ ÙÐ ¹ Ö Ó ÒØ Ì ÑÓ ÌÙÓÑ Ò Ò À Ð Ò ½º º¾¼¼ Ë Ñ Ò Ö Ø ÐÑ À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ Ì ØÓ Ò ØØ ÐÝØ Ø Ò Ð ØÓ Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Ç ÐÑ ØÓ Ò ÑÓ ÙÐ Ö Ó ÒØ ½ ÄÔ Ð Ú Ø ÓÑ Ò ÙÙ Ø Ô Ø Ó ÐÑÓ

Lisätiedot

:: γ1. g 1. :: γ2. g 2

:: γ1. g 1. :: γ2. g 2 ÌÝÝÔÔ Ú ØØ Ø ¹ Ý ÝÑÝ Ø º º¾ Ò ÑÙÙØØÙ Ò Ý ÝÑÝ Ð Ø x g Ò e? :: α Ö Ø Ø Ò ÓÐ ÐÐ Ø ÑÓ Ò Ô Ö Ñ ØÖ ØØ ÑÒ ÙÒ Ø ÓÒ ÑÙØØ À ÐÐ ÝÐ Ø Ò ÐÐ ÑÙÙØØÙ Ó ÐÐ ÐÑ ÒØÙ ØÝÝÔÔ ÐÙÓ Ð Ó º Ë Ø ÑÙØ ÑÑ Ò ÑÓÒ Ý ÝÑÝ Ð Ø p g Ò e? ::

Lisätiedot

ÂÓ ÒØÓ ½ Ì ØÓ Ò ØØ ÐÝØ ÓÖ Ø ÒÒÓ ØÙÒ ÐÐ ÙÖ ØØ Ð Ö Ð Ø Ð ÒØ Ñ ÐÐ º ØÝ Ó Ø ÚÙÙØ Ø Òºµ Ç ÐÑÓ ÒÒ Ø ÒÒÓ ØÙÒ ÐÐ ØØ Ð Ö Ð Ø Ó ÐÑÓ ÒØ ¹ Ó ÐÑ Ò ÙÙÒÒ ØØ ÐÙØ Ô º

ÂÓ ÒØÓ ½ Ì ØÓ Ò ØØ ÐÝØ ÓÖ Ø ÒÒÓ ØÙÒ ÐÐ ÙÖ ØØ Ð Ö Ð Ø Ð ÒØ Ñ ÐÐ º ØÝ Ó Ø ÚÙÙØ Ø Òºµ Ç ÐÑÓ ÒÒ Ø ÒÒÓ ØÙÒ ÐÐ ØØ Ð Ö Ð Ø Ó ÐÑÓ ÒØ ¹ Ó ÐÑ Ò ÙÙÒÒ ØØ ÐÙØ Ô º ÂÓ ÒØÓ ½ ½ ÂÓ ÒØÓ ÃÙÖ ÐÐ ØÙØÙ ØÙØ Ò Ô ÖÙ Ø Ò ÙÒ Ø ÓÒ Ð Ø Ó ÐÑÓ ÒÒ Ø Ö ØÝ Ø Ñ Ø Ò ÖÓ ØÙØÙ Ø Ø Ð Ô ÖÙ Ø Ø Ó ÐÑÓ ÒÒ Ø Ó ÐÑÓ ÒØ Ð Ø À ÐÐ ÓÐÐ ÓÒ Ô Ó Ó ÐÑÓ ÙÒ Ø ÓÒ Ð Ø º ½ ÂÓ ÒØÓ ½ Ì ØÓ Ò ØØ ÐÝØ ÓÖ Ø ÒÒÓ ØÙÒ

Lisätiedot

Ì ØÓØÙÖÚ Ò ÓØØ ÐÙØ Á Ì ØÓØÙÖÚ ÓÒ Ð º Ë ÙÖ Ú Ð Ø ÓÒ ÐÙ Ø ÐØÙ Ø ØÓØÙÖÚ Ò Ö Ó ¹ ÐÙ Ø º Â ÓØØ ÐÙ ÓÒ Ñ Ð Ó ÝÐ Ò Ò Ø ØÒ ÝÐ Ø ØÓØÙÖÚ Ò ÓÔÔ Ö Ó º À ÐÐ ÒÒÓÐÐ Ò

Ì ØÓØÙÖÚ Ò ÓØØ ÐÙØ Á Ì ØÓØÙÖÚ ÓÒ Ð º Ë ÙÖ Ú Ð Ø ÓÒ ÐÙ Ø ÐØÙ Ø ØÓØÙÖÚ Ò Ö Ó ¹ ÐÙ Ø º  ÓØØ ÐÙ ÓÒ Ñ Ð Ó ÝÐ Ò Ò Ø ØÒ ÝÐ Ø ØÓØÙÖÚ Ò ÓÔÔ Ö Ó º À ÐÐ ÒÒÓÐÐ Ò ÌÁ ÌÇÌÍÊÎ Ó Á ̺ à ÖÚ ËÝÝ ÙÙ ¾¼¼ ̺ à ÖÚ µ ÌÁ ÌÇÌÍÊÎ Ó Á ËÝÝ ÙÙ ¾¼¼ ½» ½ Ì ØÓØÙÖÚ Ò ÓØØ ÐÙØ Á Ì ØÓØÙÖÚ ÓÒ Ð º Ë ÙÖ Ú Ð Ø ÓÒ ÐÙ Ø ÐØÙ Ø ØÓØÙÖÚ Ò Ö Ó ¹ ÐÙ Ø º  ÓØØ ÐÙ ÓÒ Ñ Ð Ó ÝÐ Ò Ò Ø ØÒ ÝÐ Ø ØÓØÙÖÚ Ò

Lisätiedot

Ì ÂÙ Ò Ä ÑÑ Ö Ø Ý Ø ÓØ ÈÙ Ð Ò ¼ ¼½¾ ½ ÔÓ Ø ÒÙÐ º ÌÝ Ò Ò Ñ ÅÓ Ð ÓÚ ÐÐÙ Ø Ò ÖÖ ØØÚÝÝ ØÓØ ÙØÙ Ò ØÖ Ø ÓØ Ó Ì ØÐ Ò Ò Ð ÈÓÖØ Ð ØÝ Ó ÅÓ Ð ÔÔÐ Ø ÓÒ Ò ÁÑÔÐ Ñ Ò

Ì ÂÙ Ò Ä ÑÑ Ö Ø Ý Ø ÓØ ÈÙ Ð Ò ¼ ¼½¾ ½ ÔÓ Ø ÒÙÐ º ÌÝ Ò Ò Ñ ÅÓ Ð ÓÚ ÐÐÙ Ø Ò ÖÖ ØØÚÝÝ ØÓØ ÙØÙ Ò ØÖ Ø ÓØ Ó Ì ØÐ Ò Ò Ð ÈÓÖØ Ð ØÝ Ó ÅÓ Ð ÔÔÐ Ø ÓÒ Ò ÁÑÔÐ Ñ Ò ÂÙ Ò Ä ÑÑ Ö ÅÓ Ð ÓÚ ÐÐÙ Ø Ò ÖÖ ØØÚÝÝ ØÓØ ÙØÙ Ò ØÖ Ø ÓØ Ó Ì ØÓØ Ò Ò Ó ÐÑ ØÓØ Ò µ ÔÖÓ Ö Ù ¹ØÙØ ÐÑ ½º ÐÓ ÙÙØ ¾¼¼ ÂÝÚ ÝÐÒ ÝÐ ÓÔ ØÓ Ì ØÓØ Ò Ò Ð ØÓ ÂÝÚ ÝÐ Ì ÂÙ Ò Ä ÑÑ Ö Ø Ý Ø ÓØ ÈÙ Ð Ò ¼ ¼½¾ ½ ÔÓ Ø ÒÙÐ º ÌÝ

Lisätiedot

à ÑÖ Ò ÙÙ Ò ÙÒØÓÐ Ò Ò ÓÖ ÓØ ÓÒ ÓÖ ÓÑ Ö Ò Ð Ò ÑÖÝØÝÑ Ò Ò ËÁË ÄÌ ËÁË ÄÌ Ë ÐØ ½ ÂÓ ÒØÓ ½º½ ÌÙØ ÑÙ Ý ÝÑÝ ØÙØ ÐÑ Ò Ö ÒÒ º º º º º º º º º º º º º º º º º ½º¾ ÙÒØÓÐ Ò Ñ Ö Ò Ø ËÙÓÑ º º º º º º º º º º º º º

Lisätiedot

ÂÙÐ Ò Ú Ñ Ò Ò Ö ØÖÙ ØÙÙÖ Ø ÇÒ ØÖ Ý Ø ØÓÑ Ò ÙÐ Ò Ò Ú Ò Ò ØÓ ÐÐ Ò Ò ÐØ ÐÙÓØ ØØ Ú Ø ØÓ Ò º ÃÓ Ò Ð Ö ÓÒ ½ Ò ÑÑ Ò ÓØØ ÒÙØ Ú ÖÑ ÒØ Ø Ó ÓÒ ÙÐ Ò Ò Ú Ò Ò ÐØ Ð

ÂÙÐ Ò Ú Ñ Ò Ò Ö ØÖÙ ØÙÙÖ Ø ÇÒ ØÖ Ý Ø ØÓÑ Ò ÙÐ Ò Ò Ú Ò Ò ØÓ ÐÐ Ò Ò ÐØ ÐÙÓØ ØØ Ú Ø ØÓ Ò º ÃÓ Ò Ð Ö ÓÒ ½ Ò ÑÑ Ò ÓØØ ÒÙØ Ú ÖÑ ÒØ Ø Ó ÓÒ ÙÐ Ò Ò Ú Ò Ò ÐØ Ð ÌÁ ÌÇÌÍÊÎ ÇË ÁÁÁ ÂÙÐ Ò Ú Ñ Ò Ò Ö ØÖÙ ØÙÙÖ Ì ÑÓ Ã ÖÚ ¾º½½º¾¼¼ Ì ÑÓ Ã ÖÚ µ ÌÁ ÌÇÌÍÊÎ ÇË ÁÁÁ ÂÙÐ Ò Ú Ñ Ò Ò Ö ØÖÙ ØÙÙÖ ¾º½½º¾¼¼ ½» ÂÙÐ Ò Ú Ñ Ò Ò Ö ØÖÙ ØÙÙÖ Ø ÇÒ ØÖ Ý Ø ØÓÑ Ò ÙÐ Ò Ò Ú Ò Ò ØÓ ÐÐ Ò Ò ÐØ ÐÙÓØ

Lisätiedot

d 00 = 0, d i0 = i, 1 i m, d 0j

d 00 = 0, d i0 = i, 1 i m, d 0j ¾º¾º ÁÌÇÁÆÌÁ Ì ÁË Æ Ä Ëà ÅÁÆ Æ ¾ º ÇÔ Ö Ø Ó ÓÒÓ ÌÌÈÈÈÌÄÌÅÈÈ Ò Ù Ø¹Öݹ¹ Ò¹¹¹Ø Ö Ø º ÇÔ Ö Ø Ó Ò ÐÙ ØØ ÐÓ Ò Ù ØÖÝ d ǫ ÒØ ÖÝ ǫ e ÒÙ ØÖÝ u ǫ ÒØ Ö Ý y s Ò ØÖÝ s ǫ ÒØ Ö ǫ t ÒØÖÝ ǫ e ÒØ Ö Ø ¾º¾ ØÓ ÒØ Ø ÝÝ Ò Ð

Lisätiedot

ÌÑ ØÙØ ÐÑ ØØ Ð Ð Ô Ò ÐÙ Ù ØØ Ò ØØÝÑ Ø ØØÑ Øº ÐÙ ¹ ØØ Ð ÑÑ Ñ Ø Ñ ØØ Ø Ñ ÐÐ Ó Ò ÚÙÐÐ Ñ Ø Ñ Ø Ò ÓÔÔ Ñ ÐÐ ÚÐØØÑØØ ÑØ ÐÙÓÒÒÓÐÐ Ø ÐÙÚÙØ ÚÓ Ò ÓÒ ØÖÙÓ ÓÐÑ Ô Ý

ÌÑ ØÙØ ÐÑ ØØ Ð Ð Ô Ò ÐÙ Ù ØØ Ò ØØÝÑ Ø ØØÑ Øº ÐÙ ¹ ØØ Ð ÑÑ Ñ Ø Ñ ØØ Ø Ñ ÐÐ Ó Ò ÚÙÐÐ Ñ Ø Ñ Ø Ò ÓÔÔ Ñ ÐÐ ÚÐØØÑØØ ÑØ ÐÙÓÒÒÓÐÐ Ø ÐÙÚÙØ ÚÓ Ò ÓÒ ØÖÙÓ ÓÐÑ Ô Ý Ä Ô Ò ÐÙ Ù ØØ Ò ØØÑ Ò Ò Ð Ñ Ô Ð Ò ÚÙÐÐ Î ÐÐ Ã ÒÒÙÒ Ò Å Ø Ñ Ø Ò ÔÖÓ Ö Ù ¹ØÙØ ÐÑ ÂÝÚ ÝÐÒ ÝÐ ÓÔ ØÓ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ËÝ Ý ¾¼¼ ÌÑ ØÙØ ÐÑ ØØ Ð Ð Ô Ò ÐÙ Ù ØØ Ò ØØÝÑ Ø ØØÑ Øº ÐÙ ¹ ØØ Ð ÑÑ Ñ Ø Ñ ØØ Ø

Lisätiedot

ËÚÝØÝ Ò µ ÓÒ Ñ Ò ÔÑÖ Ò Ò Ø ÖÑ ÓÒ ÝØØ Ø ØÓ ÓÒ Ö ÓÒ ÐÓ ØÓÒÒÙØ Ñ Ð Ó Ù Ò Ò Ð ÙÔ Ö Ø Ñ Ö ØÝ Ø Ã ØØ ÐÐ Ø Ö Ó Ø Ø Ò ÒÝ ÝÒ Ø Ò Ó Ø Ó ÐÐ Ð Ø Ò ÚÖ Ú Ð ØÙ Ø ÔÔ

ËÚÝØÝ Ò µ ÓÒ Ñ Ò ÔÑÖ Ò Ò Ø ÖÑ ÓÒ ÝØØ Ø ØÓ ÓÒ Ö ÓÒ ÐÓ ØÓÒÒÙØ Ñ Ð Ó Ù Ò Ò Ð ÙÔ Ö Ø Ñ Ö ØÝ Ø Ã ØØ ÐÐ Ø Ö Ó Ø Ø Ò ÒÝ ÝÒ Ø Ò Ó Ø Ó ÐÐ Ð Ø Ò ÚÖ Ú Ð ØÙ Ø ÔÔ ØÙغ Ø Ò ÐÐ Ò Ò ÝÐ ÓÔ ØÓ Ì ÑÔ Ö Ò È Ð Ó ÐÑÓ ÒØ Ë Ò ² Ö Ø ÒØØ ÈÙ ÒØØ ºÔÙ Ç ÐÑ ØÓØ Ò ËÚÝØÝ Ò µ ÓÒ Ñ Ò ÔÑÖ Ò Ò Ø ÖÑ ÓÒ ÝØØ Ø ØÓ ÓÒ Ö ÓÒ ÐÓ ØÓÒÒÙØ Ñ Ð Ó Ù Ò Ò Ð ÙÔ Ö Ø Ñ Ö ØÝ Ø Ã ØØ ÐÐ Ø Ö Ó Ø Ø Ò ÒÝ ÝÒ Ø

Lisätiedot

È ÌÀÇƹÇÀ ÄÅÇÁÆÆÁÆ ËÇÎ ÄÄÍÃËÁ Å ÌÊÁÁËÁÄ Ëà ÆÌ Æ ÌÁÄ ËÌÇÌÁ Ì Ë Æ Â ÆÍÅ ÊÁË Æ Å Ì Å ÌÁÁÃÃ Æ ÄÍÃÁÇÄ ÁËÁÄÄ Ì Ò Ï ÐÐ Ö ¹Ä Ò ÈÖÓ Ö Ù ¹ØÙØ ÐÑ Å ÖÖ ÙÙ ¾¼¼ Å Ì Å ÌÁÁÃ Æ Ä ÁÌÇË ÌÍÊÍÆ ÄÁÇÈÁËÌÇ ÌÍÊÍÆ ÄÁÇÈÁËÌÇ Å

Lisätiedot

a b = abº Z Q R C + : N N N, +(m,n) = m + n ( Ð (m,n) m + n), : N N N, (m,n) = m n (= mn) ( Ð (m,n) mn). A B (A,B) A Bº

a b = abº Z Q R C + : N N N, +(m,n) = m + n ( Ð (m,n) m + n), : N N N, (m,n) = m n (= mn) ( Ð (m,n) mn). A B (A,B) A Bº ÄÙ Ù ÐÙ Ø ÂÙ Ä Ö ÂÓÙÒ È Ö ÓÒ Ò ÄÙ ÐÐ ÌÑ ÑÓÒ Ø Ô ÖÙ ØÙÙ ÂÓÙÒ È Ö Ó Ò ÚÙÓ Ò ¾¼¼ ¾¼¼ ÂÙ Ä Ö Ò ÚÙÓÒÒ ¾¼¼ Ô ØÑ Ò ÄÙ Ù Ð٠ع ÙÖ Ò ÐÙ ÒØÓ Òº ÅÓÒ Ø Ò Ò Ò Ñ Ø ¹ Ö Ð ÓÒ Ø Ö Ó Ø ØØÙ Ú ÓÒ Ñ ØØ ÐÐ ÐÙ ÒØÓ ÙÖ ÐÐ Ð ÑÙ

Lisätiedot

F n (a) = 1 n { i : 1 i n, x i a }, P n (a, b) = F n (b) F n (a). P n (a, b) = 1 n { i : 1 i n, a < x i b }.

F n (a) = 1 n { i : 1 i n, x i a }, P n (a, b) = F n (b) F n (a). P n (a, b) = 1 n { i : 1 i n, a < x i b }. Ë ÐØ ½ ÂÓ ÒØÓ ½ ½º½ ÌÓ ÒÒ ÝÝ Ø Ð ØÓØ º º º º º º º º º º º º º º º º º º ½ ½º¾ À Ú ØÙØ Ö Ú Ò Ø ÑÔ Ö Ø ÙÑ Ø º º º º º º º º º º º ½ ½º ÌÓ ÒÒ ÝÝ Ñ ÐÐ Ø º º º º º º º º º º º º º º º º º º º º º º º ½º º½

Lisätiedot

½µ newstate := 0. µ state := goto[state,p i [j]] µ state := 0;j := 0. µ j := j + 1 µ newstate := newstate + 1

½µ newstate := 0. µ state := goto[state,p i [j]] µ state := 0;j := 0. µ j := j + 1 µ newstate := newstate + 1 ½º º Àǹ ÇÊ ËÁ ù Ä ÇÊÁÌÅÁ ½ à ÖÔ Ê Ò Ø Ö Ø Ð Ú Ø ÑÝ ÙÒ Ú Ö Ð Ò ÙØÙ Ò Ô ÖÙ ØÙÚ Ú Ö Ó Ø Ð ÓÖ ØÑ Ø Î Ð Ø Ò q ØÙÒÒ Ø ÐÙ Ù ÓÙ Ó Ø Qº Q Ò ÐÙÚÙØ ÚÓ Ú Ø ÓÐÐ Ô Ò Ò Ò Ò Ø ÖÚ Ø ÓÐÐ Ð ÙÐÙ Ù º ÎÖÒ Ø ÑÝ Ò ØÓ ÒÒ ÝÝ

Lisätiedot

Hajasijoitettujen päätelaitteiden ohjelmistojen etähallintaratkaisu Elektroniikan, tietoliikenteen ja automaation tiedekunta

Hajasijoitettujen päätelaitteiden ohjelmistojen etähallintaratkaisu Elektroniikan, tietoliikenteen ja automaation tiedekunta È Ä Ø Hajasijoitettujen päätelaitteiden ohjelmistojen etähallintaratkaisu Elektroniikan, tietoliikenteen ja automaation tiedekunta ÔÐÓÑ ØÝ Ó ÓÒ Ø ØØÝ ÓÔ ÒÒÝØØ Ò Ø Ö Ø ØØ Ú ÔÐÓÑ ¹ Ò Ò Ö Ò ØÙØ ÒØÓ Ú ÖØ Ò

Lisätiedot

Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Ý ÒØØ Ð Ò Ò ÓÒ Ò Ù ÓÒ ÐÑ ¾ ¾º½ ÅÖ Ø ÐÑ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾ ¾º¾ Ý ÒØØ Ð Ø Ò ÒÖ Ð Ò ÓÒ Ð

Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Ý ÒØØ Ð Ò Ò ÓÒ Ò Ù ÓÒ ÐÑ ¾ ¾º½ ÅÖ Ø ÐÑ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾ ¾º¾ Ý ÒØØ Ð Ø Ò ÒÖ Ð Ò ÓÒ Ð Ý ÒØØ Ð Ø ÒÖ Ð Ø ÒØØ Ì Ò À Ð Ò ¾ º½¼º¾¼¼ ÌÙØ ÐÑ À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ Ì ØÓ Ò ØØ ÐÝØ Ø Ò Ð ØÓ Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Ý ÒØØ Ð Ò Ò ÓÒ Ò Ù ÓÒ ÐÑ ¾ ¾º½ ÅÖ Ø ÐÑ º º º º º º º º º º º º º º º º º º º º º º º º º º º

Lisätiedot

ÌÍÊÍÆ ÄÁÇÈÁËÌÇ Å Ø Ñ Ø Ò Ð ØÓ ÃÍÄ ÊÁÁÃà ÔÝ ØÐ Ø ÈÖÓ Ö Ù ¹ØÙØ ÐÑ º ¾ Ð Ø º Å Ø Ñ Ø ÀÙ Ø ÙÙ ¾¼¼ ÌÙØ ÐÑ Ò Ò ÓÒ ÔÝ ØРغ Ì Ö Ó ØÙ Ò ÓÒ Ø Ö Ø ÐÐ Ö Ð ÔÝ ¹ Ø

ÌÍÊÍÆ ÄÁÇÈÁËÌÇ Å Ø Ñ Ø Ò Ð ØÓ ÃÍÄ ÊÁÁÃà ÔÝ ØÐ Ø ÈÖÓ Ö Ù ¹ØÙØ ÐÑ º ¾ Ð Ø º Å Ø Ñ Ø ÀÙ Ø ÙÙ ¾¼¼ ÌÙØ ÐÑ Ò Ò ÓÒ ÔÝ ØРغ Ì Ö Ó ØÙ Ò ÓÒ Ø Ö Ø ÐÐ Ö Ð ÔÝ ¹ Ø È ÀÌ Ä Ì Ê ÙÐ ÈÖÓ Ö Ù ¹ØÙØ ÐÑ ÀÙ Ø ÙÙ ¾¼¼ Å Ì Å ÌÁÁÃ Æ Ä ÁÌÇË ÌÍÊÍÆ ÄÁÇÈÁËÌÇ ÌÍÊÍÆ ÄÁÇÈÁËÌÇ Å Ø Ñ Ø Ò Ð ØÓ ÃÍÄ ÊÁÁÃà ÔÝ ØÐ Ø ÈÖÓ Ö Ù ¹ØÙØ ÐÑ º ¾ Ð Ø º Å Ø Ñ Ø ÀÙ Ø ÙÙ ¾¼¼ ÌÙØ ÐÑ Ò Ò ÓÒ ÔÝ ØРغ Ì Ö Ó ØÙ

Lisätiedot

A c t a U n i v e r s i t a t i s T a m p e r e n s i s 1061

A c t a U n i v e r s i t a t i s T a m p e r e n s i s 1061 JORMA JOUTSENLAHTI Lukiolaisen tehtäväorientoituneen matemaattisen ajattelun piirteitä 1990-luvun pitkän matematiikan opiskelijoiden matemaattisen osaamisen ja uskomusten ilmentämänä AKATEEMINEN VÄITÖSKIRJA

Lisätiedot

Ë ÐØ ½ Ð Ø Ê Ø ¾ ¾ Ê Ò ÝÒØ ØÝ ÒØ ÐÝÒ ÐÓ ØØ Ñ Ò Ò ¾º½ Ç Ò ÝØØ Ê¹ ØÙÒÒÓÒ Ò º º º º º º º º º º º º º º º º ¾º¾ Ä Ô Ø Ø Ò ØÓØ º º º º º º º º º º º º º º

Ë ÐØ ½ Ð Ø Ê Ø ¾ ¾ Ê Ò ÝÒØ ØÝ ÒØ ÐÝÒ ÐÓ ØØ Ñ Ò Ò ¾º½ Ç Ò ÝØØ Ê¹ ØÙÒÒÓÒ Ò º º º º º º º º º º º º º º º º ¾º¾ Ä Ô Ø Ø Ò ØÓØ º º º º º º º º º º º º º º ÂÓ ÒØÓ Ñ ØÖ Ò Ð Ò Ö Ø Ò Ñ ÐÐ Ò ØØ ÐÝÝÒ Ê¹Ó ÐÑ ØÓÐÐ ÒÒ Ç Ö Ò Ò Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò ÐÓ Ó Ò Ð ØÓ Ì ÑÔ Ö Ò ÝÐ ÓÔ ØÓ ÐÓ ÙÙ ¾¼¼ Ë ÐØ ½ Ð Ø Ê Ø ¾ ¾ Ê Ò ÝÒØ ØÝ ÒØ ÐÝÒ ÐÓ ØØ Ñ Ò Ò ¾º½ Ç Ò ÝØØ Ê¹ ØÙÒÒÓÒ Ò º º

Lisätiedot

1, x 0; 0, x < 0. ε(x) = p i ε(x i).

1, x 0; 0, x < 0. ε(x) = p i ε(x i). ËÁË ÄÌ Ö ØØ Ý ÙÐÓØØ ÙÑ ½½½ º½ Ö ØØ ØÙÒÒ ÑÙÙØØÙ º º º º º º º º º º º º º º º º º º ½½½ º¾ ÖÒÓÙÐÐ Ò Ó Ø ÒÓÑ ÙÑ º º º º º º º º º º º º º º º ½½ º¾º½  ÙÑ Ò ÝÑÑ ØÖ º º º º º º º º º º º º º º º º º º º ½½

Lisätiedot

ÄÙ ÙØ ÓÖ Ë Ô Ö ÒØ ÐÐ Ò ÝÑÑ ØÖ Ò Ð Ù Ò ØØ ÙÐ Ò Ú Ñ Ò Ð Ù Ò Ý Ø Ý Ø ÖÚ Ø Ò Ø ØÓ ÑÓ ÙÐÓ Ö ØÑ Ø Ø Ö ÐÐ Ø ÙÒÒ Ø º Ì ÐÙÚÙ ÐÙÓ Ò Ø Ù Ò Ò ÐÙ Ò ØÖ ÑÔ Ò ØØ Òº Ø

ÄÙ ÙØ ÓÖ Ë Ô Ö ÒØ ÐÐ Ò ÝÑÑ ØÖ Ò Ð Ù Ò ØØ ÙÐ Ò Ú Ñ Ò Ð Ù Ò Ý Ø Ý Ø ÖÚ Ø Ò Ø ØÓ ÑÓ ÙÐÓ Ö ØÑ Ø Ø Ö ÐÐ Ø ÙÒÒ Ø º Ì ÐÙÚÙ ÐÙÓ Ò Ø Ù Ò Ò ÐÙ Ò ØÖ ÑÔ Ò ØØ Òº Ø ÃÖÝÔØÓ Ö Ò Ô ÖÙ Ø Ø Ìº à ÖÚ Ë ÔØ Ñ Ö ¾¼¼ ̺ à ÖÚ µ ÃÖÝÔØÓ Ö Ò Ô ÖÙ Ø Ø Ë ÔØ Ñ Ö ¾¼¼ ½» ½½ ÄÙ ÙØ ÓÖ Ë Ô Ö ÒØ ÐÐ Ò ÝÑÑ ØÖ Ò Ð Ù Ò ØØ ÙÐ Ò Ú Ñ Ò Ð Ù Ò Ý Ø Ý Ø ÖÚ Ø Ò Ø ØÓ ÑÓ ÙÐÓ Ö ØÑ Ø Ø Ö ÐÐ Ø ÙÒÒ Ø º Ì

Lisätiedot

Ð Ø Ù ÁÈË Ò ÁÈË ÓÒ ÁÈ¹Ú Ö ÓÔÖÓØÓ ÓÐÐ Ò Ð ÒÒÙ Ñ ÐÐ Ø ØÒ ÁÈ¹Ô ØØ Ò ÙÖ Ñ Ò Ò ÑÙÙÒØ Ñ Ò Òº ÁÈË ÓÒ ÝÒØÝÒÝØ ÙÙ Ò ÁÈÚ ¹ÔÖÓØÓ ÓÐÐ Ò Ý Ø Ý ÁÈÚ ÓÒ Ò ÁÈË Ò ÐÙÓÒØ

Ð Ø Ù ÁÈË Ò ÁÈË ÓÒ ÁÈ¹Ú Ö ÓÔÖÓØÓ ÓÐÐ Ò Ð ÒÒÙ Ñ ÐÐ Ø ØÒ ÁÈ¹Ô ØØ Ò ÙÖ Ñ Ò Ò ÑÙÙÒØ Ñ Ò Òº ÁÈË ÓÒ ÝÒØÝÒÝØ ÙÙ Ò ÁÈÚ ¹ÔÖÓØÓ ÓÐÐ Ò Ý Ø Ý ÁÈÚ ÓÒ Ò ÁÈË Ò ÐÙÓÒØ ÌÁ ÌÇÌÍÊÎ ÇË ÁÎ ÁÈË Ì ÑÓ Ã ÖÚ º½¾º¾¼¼ Ì ÑÓ Ã ÖÚ µ ÌÁ ÌÇÌÍÊÎ ÇË ÁÎ ÁÈË º½¾º¾¼¼ ½» Ð Ø Ù ÁÈË Ò ÁÈË ÓÒ ÁÈ¹Ú Ö ÓÔÖÓØÓ ÓÐÐ Ò Ð ÒÒÙ Ñ ÐÐ Ø ØÒ ÁÈ¹Ô ØØ Ò ÙÖ Ñ Ò Ò ÑÙÙÒØ Ñ Ò Òº ÁÈË ÓÒ ÝÒØÝÒÝØ ÙÙ Ò ÁÈÚ ¹ÔÖÓØÓ ÓÐÐ

Lisätiedot

F n (a) = 1 n {i : 1 i n, x i a}, P n (a,b) = F n (b) F n (a). P n (a,b) = 1 n {i : 1 i n, a < x i b}.

F n (a) = 1 n {i : 1 i n, x i a}, P n (a,b) = F n (b) F n (a). P n (a,b) = 1 n {i : 1 i n, a < x i b}. Ë ÐØ ½ ÂÓ ÒØÓ ½ ½º½ ÌÓ ÒÒ ÝÝ Ø Ð ØÓØ º º º º º º º º º º º º º º º º º º ½ ½º¾ À Ú ØÙØ Ö Ú Ò Ø ÑÔ Ö Ø ÙÑ Ø º º º º º º º º º º º ½ ½º ÌÓ ÒÒ ÝÝ Ñ ÐÐ Ø º º º º º º º º º º º º º º º º º º º º º º º ½º º½

Lisätiedot

Ì Å ÈÙÐ Ò Ò Ø Ý Ø ÓØ Ñ ºÔÙÐ Ò Ò ÝÙº ÌÝ Ò Ò Ñ ÙØÓÑ Ø Ó ØÙ Ý Ø Ø Ù ÆÍÒ Ø¹Ø Ø Ù ÝÑÔÖ Ø Ì ØÐ Ò Ò Ð ÙØÓÑ Ø ÍÒ Ø Ì Ø Ò Ò ÆÍÒ Ø Ì Ø Ò ÒÚ ÖÓÒÑ ÒØ ÌÝ Ì ØÓØ Ò Ò

Ì Å ÈÙÐ Ò Ò Ø Ý Ø ÓØ Ñ ºÔÙÐ Ò Ò ÝÙº ÌÝ Ò Ò Ñ ÙØÓÑ Ø Ó ØÙ Ý Ø Ø Ù ÆÍÒ Ø¹Ø Ø Ù ÝÑÔÖ Ø Ì ØÐ Ò Ò Ð ÙØÓÑ Ø ÍÒ Ø Ì Ø Ò Ò ÆÍÒ Ø Ì Ø Ò ÒÚ ÖÓÒÑ ÒØ ÌÝ Ì ØÓØ Ò Ò Å ÈÙÐ Ò Ò ÙØÓÑ Ø Ó ØÙ Ý Ø Ø Ù ÆÍÒ Ø¹Ø Ø Ù ÝÑÔÖ Ø Ì ØÓØ Ò Ò Ò Ø ÒØÙØ ÐÑ ¾ º ÐÑ ÙÙØ ¾¼¼ ÂÝÚ ÝÐÒ ÝÐ ÓÔ ØÓ Ì ØÓØ Ò Ò Ð ØÓ ÂÝÚ ÝÐ Ì Å ÈÙÐ Ò Ò Ø Ý Ø ÓØ Ñ ºÔÙÐ Ò Ò ÝÙº ÌÝ Ò Ò Ñ ÙØÓÑ Ø Ó ØÙ Ý Ø Ø Ù ÆÍÒ Ø¹Ø Ø Ù

Lisätiedot

ÁÁ Ì Ö Ø Ó ÌÙÖÙÒ Ò Ì Ö Ø ÝÚ ÝØØÝ ÄÙÓÒÒÓÒØ Ø Ò ÝÑÔÖ Ø Ø Ò Ò Ø ÙÒÒ Ò Ø ÙÒØ Ò ÙÚÓ ØÓÒ Ó ÓÙ ½ º¼ º¾¼¼

ÁÁ Ì Ö Ø Ó ÌÙÖÙÒ Ò Ì Ö Ø ÝÚ ÝØØÝ ÄÙÓÒÒÓÒØ Ø Ò ÝÑÔÖ Ø Ø Ò Ò Ø ÙÒÒ Ò Ø ÙÒØ Ò ÙÚÓ ØÓÒ Ó ÓÙ ½ º¼ º¾¼¼ Å Ð Ë Ú Ð ÂÓ ÒØÓ Ð Ø ÓÖ Òº ØÖ ÙØ Ú Ø Ð Ø ÔÐÓÑ ØÝ ÁÁ Ì Ö Ø Ó ÌÙÖÙÒ Ò Ì Ö Ø ÝÚ ÝØØÝ ÄÙÓÒÒÓÒØ Ø Ò ÝÑÔÖ Ø Ø Ò Ò Ø ÙÒÒ Ò Ø ÙÒØ Ò ÙÚÓ ØÓÒ Ó ÓÙ ½ º¼ º¾¼¼ ÁÁÁ ÌÁÁÎÁËÌ ÄÅ Ì ÅÈ Ê Æ Ì ÃÆÁÄÄÁÆ Æ ÄÁÇÈÁËÌÇ Ì Ò ¹ ÐÙÓÒÒÓÒØ

Lisätiedot

Ruuhkanhallinta-algoritmien toiminta haasteellisissa tietoverkoissa Elektroniikan, tietoliikenteen ja automaation tiedekunta

Ruuhkanhallinta-algoritmien toiminta haasteellisissa tietoverkoissa Elektroniikan, tietoliikenteen ja automaation tiedekunta Ä ÊÓÔÔÓÒ Ò Ruuhkanhallinta-algoritmien toiminta haasteellisissa tietoverkoissa Elektroniikan, tietoliikenteen ja automaation tiedekunta ÔÐÓÑ ØÝ Ó ÓÒ Ø ØØÝ ÓÔ ÒÒÝØØ Ò Ø Ö Ø ØØ Ú ÔÐÓÑ ¹ Ò Ò Ö Ò ØÙØ ÒØÓ Ú

Lisätiedot

Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Ì Ø ÐÙÑ ÐÐ ÒÒÙ ½ ¾º½ Ì Ø ÐÙÑ ÐÐ ÒÒÙ Ò ØÓÖ º º º º º º º º º º º º º º º º º º ¾ ¾º¾ ËØÓ Ø Ò Ò Ø Ø ÐÙÑ ÐÐ ÒÒÙ º º º º º º º º º º º º

Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Ì Ø ÐÙÑ ÐÐ ÒÒÙ ½ ¾º½ Ì Ø ÐÙÑ ÐÐ ÒÒÙ Ò ØÓÖ º º º º º º º º º º º º º º º º º º ¾ ¾º¾ ËØÓ Ø Ò Ò Ø Ø ÐÙÑ ÐÐ ÒÒÙ º º º º º º º º º º º º Šع¾º ½¼ ËÓÚ ÐÐ ØÙÒ Ñ Ø Ñ Ø Ò Ö Ó ØÝ Ø º½º¾¼¼ Ì Ø ÐÙÒ ÑÙÐÓ ÒØ ÑÔÙÑ Ø ÖÚ Ò Ö Ø ÐÑ Ò Ù Ø ÒÒÙ Ø Ó ÙÙ Ì Ò ÐÐ Ò Ò ÓÖ ÓÙÐÙ Ì Ò ÐÐ Ò Ý Ò Ñ Ø Ñ Ø Ò Ó ØÓ ËÝ Ø Ñ Ò ÐÝÝ Ò Ð ÓÖ ØÓÖ Ó Â ÒÒ Ä ØÓÒ Ò ¼¾ Ë ÐØ ½ ÂÓ ÒØÓ

Lisätiedot

Ì ÓÚ Ö ÓØ Ð Ò Ã ÐÐÙÒ Å Ø Ñ Ø Ò ÈÖÓ Ö Ù¹ØÙØ ÐÑ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ÂÝÚ ÝÐÒ ÝÐ ÓÔ ØÓ ËÝ Ý ¾¼¼ Ë ÐØ ÂÓ ÒØÓ ½ ½ À ØÓÖ ¾ Î Ö ÓØ ÓÖ ¾º½ Î Ö ÓÒ ÚÖ ØÝ º º º º º º º º º º º º º º º º º º º º º º º º º

Lisätiedot

ËÁË ÄÌ ¾º º½ ÀÝÔ Ö ÓÑ ØÖ Ò Ò ÙÑ º º º º º º º º º º º º º º º ¾º º¾ Ì Ö ØÙ ÓØ ÒØ Ø ÓÐÐ ÙÙ º º º º º º º º º º º º º º ¾º ÇØ ÒØ Ô Ð ÙØØ Ò º º º º º º º

ËÁË ÄÌ ¾º º½ ÀÝÔ Ö ÓÑ ØÖ Ò Ò ÙÑ º º º º º º º º º º º º º º º ¾º º¾ Ì Ö ØÙ ÓØ ÒØ Ø ÓÐÐ ÙÙ º º º º º º º º º º º º º º ¾º ÇØ ÒØ Ô Ð ÙØØ Ò º º º º º º º Ë ÐØ ½ ÂÓ ÒØÓ ½ ½º½ ÌÓ ÒÒ ÝÝ Ø Ð ØÓØ º º º º º º º º º º º º º º º º º º ½ ½º¾ À Ú ØÙØ Ö Ú Ò Ø ÑÔ Ö Ø ÙÑ Ø º º º º º º º º º º º ½ ½º ÌÓ ÒÒ ÝÝ Ñ ÐÐ Ø º º º º º º º º º º º º º º º º º º º º º º º ½º º½

Lisätiedot

(a,b)(c,d) = (ac bd,ad + bc).

(a,b)(c,d) = (ac bd,ad + bc). ÃÓÑÔÐ ÐÙÚÙ Ø ½ ½º ÂÓ ÒØÓ ØÐ ÐÐ x + 1 = 0 ÓÐ Ö Ø Ù Ö Ð ÐÙ Ù Ò ÓÙ Ó Ó Ó Ò Ö Ð ÐÙ¹ ÚÙÒ ØÓ Ò Ò ÔÓØ Ò ÓÒ ÔÓ Ø Ú Ò Òº ÂÓØØ ØÐÐ Ý ØÐ ÐÐ Ø Ò Ö Ø Ù Ñ Ò ØÝØÝÝ Ð ÒØ Ö Ð ÐÙ Ù Ò ÓÙ Ó Ð ÑÐÐ Ò ÙÙ Ð Ó Ñ Ö ØÒ Ø¹ Ø ØÓ Ø

Lisätiedot

Ð Ù Ò Ø ÌÑ ÔÐÓÑ ØÝ ÓÒ Ø Ó Ì ÑÔ Ö Ò Ø Ò ÐÐ Ò ÝÐ ÓÔ ØÓÒ Å Ø Ñ Ø Ò Ð ØÓ Ò ÀÝÔ ÖÑ Ð ÓÖ ØÓÖ ÓÒ Ñ Ø Ñ Ø Ò ÓÔ ØÙ Ò ØØÑ ØÙع ÑÙ ÐÐ º ÌÝ Ý ØÝÚØ Ø Ò ÒÒÓ Ø Ú Ø Ø

Ð Ù Ò Ø ÌÑ ÔÐÓÑ ØÝ ÓÒ Ø Ó Ì ÑÔ Ö Ò Ø Ò ÐÐ Ò ÝÐ ÓÔ ØÓÒ Å Ø Ñ Ø Ò Ð ØÓ Ò ÀÝÔ ÖÑ Ð ÓÖ ØÓÖ ÓÒ Ñ Ø Ñ Ø Ò ÓÔ ØÙ Ò ØØÑ ØÙع ÑÙ ÐÐ º ÌÝ Ý ØÝÚØ Ø Ò ÒÒÓ Ø Ú Ø Ø Ä Æ Ä ÍÃÃÇÆ Æ Å Ø Ñ Ø Ò Ô ÖÙ Ø ØÓØ Ø Ò Ú Ö Ø Ö Ø ÐÙ ÓÔ ÒØÓ¹ Ñ Ò ØÝ Ò Ú ÙØØ Ú Ò Ø Ò Ò ÐÝ Ó ÒØ ÁÈÄÇÅÁÌ ÝÚ ÝØØÝ Ì Ò ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ó ØÓÒ ÙÚÓ ØÓÒ Ó ÓÙ º½½º¾¼¼ º Ì Ö Ø Ø ÔÖÓ ÓÖ Ë ÔÔÓ ÈÓ ÓÐ Ò Ò ØÙØ Å ÀÙ ÓÐ

Lisätiedot

Referenced. Object. StateSet. Node. Geode

Referenced. Object. StateSet. Node. Geode ÇÔ ÒË Ò Ö Ô ¹Ó Ø Ì ÑÓºÌÓ Ú Ò ÒØѺ Ùغ ÌÑ Ó ÙÑ ÒØØ ÓÒ ØÝ Ò Ø Ô Ú Ø ØÒ Ø ÖÔ Ò ÑÙ Òº ½ Ø ÇÔ ÒË Ò Ö Ô ÇË µ ÓÒ ÇÔ Ò Ä Ò Ô Ö ÒÒ ØØÙ ¹ÙÓ Ö¹ ØÓ Ó ÓÒ Ú Ô Ø Ø Ú Ó ØÓ Ñ ÑÓÒ ÝÑÔÖ Ø º ÇË Ó¹ ÙÑ ÒØÓ ØÙ ÓÜÝ Ò¹Ó Ñ ØÓÒ

Lisätiedot

A B P(A B) = P(A B) P(K) = 4 ( 52 5) =

A B P(A B) = P(A B) P(K) = 4 ( 52 5) = ËÁË ÄÌ ¾º º½ ÀÝÔ Ö ÓÑ ØÖ Ò Ò ÙÑ º º º º º º º º º º º º º º º ¾º º¾ Ì Ö ØÙ ÓØ ÒØ Ø ÓÐÐ ÙÙ º º º º º º º º º º º º º º ¾º ÇØ ÒØ Ô Ð ÙØØ Ò º º º º º º º º º º º º º º º º º º º º º º º º ¾º ÒÓÑ ÙÑ º º º

Lisätiedot

À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç ØÓ ÙÐØ Ø»Ë Ø ÓÒ ÙÐØÝ Ä ØÓ ÁÒ Ø ØÙØ ÓÒ Ô ÖØÑ ÒØ Å Ø Ñ ØØ ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò Ì Ö

À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç ØÓ ÙÐØ Ø»Ë Ø ÓÒ ÙÐØÝ Ä ØÓ ÁÒ Ø ØÙØ ÓÒ Ô ÖØÑ ÒØ Å Ø Ñ ØØ ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò Ì Ö ÁÖÖÐ Ø Ò Ò ¹ Ö ÑÓÓØØÓÖ Â ÒÒ Ä Ù Ö Ò Ò À Ð Ò ¾ º º¾¼¼ Ç ÐÑ ØÓØÙÓØ ÒØÓ Ø ØÓ ÓÒ Ô Ð Ø Ñ Ò Ö À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ Ì ØÓ Ò ØØ ÐÝØ Ø Ò Ð ØÓ À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç

Lisätiedot

ÁÁ ÌÁÁÎÁËÌ ÄÅ Ì ÅÈ Ê Æ Ì ÃÆÁÄÄÁÆ Æ ÄÁÇÈÁËÌÇ Ì Ò ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò ÓÙÐÙØÙ Ó ÐÑ ÄÌÁÇ ËÍÎÁ È Ö ÒÑ ÐÐ ¾¼¼ ¾¼¼ Ø Ô ØÙÒ Ò Ð ÒÒ ÓÒÒ ØØÓÑÙÙ ¹ Ò Ò ÐÝ Ó ÒØ Ý Ú

ÁÁ ÌÁÁÎÁËÌ ÄÅ Ì ÅÈ Ê Æ Ì ÃÆÁÄÄÁÆ Æ ÄÁÇÈÁËÌÇ Ì Ò ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò ÓÙÐÙØÙ Ó ÐÑ ÄÌÁÇ ËÍÎÁ È Ö ÒÑ ÐÐ ¾¼¼ ¾¼¼ Ø Ô ØÙÒ Ò Ð ÒÒ ÓÒÒ ØØÓÑÙÙ ¹ Ò Ò ÐÝ Ó ÒØ Ý Ú ËÍÎÁ ÄÌÁÇ ÈÁÊà ÆÅ ÄÄ ¾¼¼ ¾¼¼ Ì È ÀÌÍÆ Á Æ ÄÁÁà ÆÆ ¹ ÇÆÆ ÌÌÇÅÍÍÃËÁ Æ Æ Ä ËÇÁÆÌÁ ËÎ ÊÃÃÇÂ Æ ÎÍÄÄ ÔÐÓÑ ØÝ Ì Ö Ø Ð ÓÔ ØÓÒÐ ØÓÖ Ó ÌÙÖÙÒ Ò Ì Ö Ø ÝÚ ÝØØÝ ÄÙÓÒÒÓÒØ Ø Ò ÝÑÔÖ Ø Ø Ò Ò Ø ÙÒÒ Ò Ø ÙÒØ Ò ÙÚÓ ØÓÒ Ó ÓÙ

Lisätiedot

139/ /11034 = 0.58

139/ /11034 = 0.58 Ú ËÁË ÄÌ ÅÓÒ ÙÐÓØ Ø ÙÑ Ø ½ º½ à ÙÐÓØØ Ø ÙÑ Ø º º º º º º º º º º º º º º º º º º º º º ½ º½º½ Ê ÙÒ ÙÑ Ø ÓÐÐ Ø ÙÑ Ø º º º º º º º º º ½ º½º¾ ÓÐÐ Ò Ó ÓØÙ ÖÚÓÒ ÓÑ Ò ÙÙ º º º º º º º º º ½ º½º À Ö Ö Ø Ñ ÐÐ

Lisätiedot

À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç ØÓ ÙÐØ Ø»Ë Ø ÓÒ ÙÐØÝ Ä ØÓ ÁÒ Ø ØÙØ ÓÒ Ô ÖØÑ ÒØ Å Ø Ñ ØØ ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò Ì Ö

À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç ØÓ ÙÐØ Ø»Ë Ø ÓÒ ÙÐØÝ Ä ØÓ ÁÒ Ø ØÙØ ÓÒ Ô ÖØÑ ÒØ Å Ø Ñ ØØ ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò Ì Ö Ø ÝØØ Ø Ò ØØ Ò ÙÚ Ù ÐÓ Ô ÖÙ Ø Ò Ò Ñ¹ Ö ØØ ÐÝ Û È ØÖ Ä Ò Ö Ò À Ð Ò ¾ º º¾¼¼ ÈÖÓ Ö Ù ¹ØÙØ ÐÑ À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ Ì ØÓ Ò ØØ ÐÝØ Ø Ò Ð ØÓ À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç

Lisätiedot

ÁÁ ÌÁÁÎÁËÌ ÄÅ Ì ÅÈ Ê Æ Ì ÃÆÁÄÄÁÆ Æ ÄÁÇÈÁËÌÇ Ì Ò ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò ÓÙÐÙØÙ Ó ÐÑ ÆÌÌÁ¹ÁÄ ÊÁ È ÊÌ Æ Æ ÁÐÑ ØÓÒÑÙÓ Ù Ñ Ö ÙÓÐ Ò Ø Ó ÐÐ Ú Ù¹ ØÙ Ø Ñ Ö ÐÐ Ò ÙÑ

ÁÁ ÌÁÁÎÁËÌ ÄÅ Ì ÅÈ Ê Æ Ì ÃÆÁÄÄÁÆ Æ ÄÁÇÈÁËÌÇ Ì Ò ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò ÓÙÐÙØÙ Ó ÐÑ ÆÌÌÁ¹ÁÄ ÊÁ È ÊÌ Æ Æ ÁÐÑ ØÓÒÑÙÓ Ù Ñ Ö ÙÓÐ Ò Ø Ó ÐÐ Ú Ù¹ ØÙ Ø Ñ Ö ÐÐ Ò ÙÑ ÆÌÌÁ¹ÁÄ ÊÁ È ÊÌ Æ Æ ÁÄÅ ËÌÇÆÅÍÇÃà ÍË Å ÊÁËÍÇÄ ÁÆ ÃÌÁÇÁÄÄ Î ÁÃÍÌÍÃË Ì Å Ê ÄÄÁËÁÁÆ ÃÍÅÈÍà ÊÊÇËÈÁÄÎÁÁÆ Â Å È ÄÄÇÆ Ë Ì ÁÄ Ì Ë Ë Æ ÔÐÓÑ ØÝ Ì Ö Ø ÂÝÖ Å Ð Ì Ö Ø ÝÚ ÝØØÝ ÄÙÓÒÒÓÒØ Ø Ò ÝÑÔÖ Ø Ø Ò Ò Ø ÙÒØ Ò ÙÚÓ

Lisätiedot

Aktiivisten DNA-muutosten seulonta riippuvuusmalleilla Elektroniikan, tietoliikenteen ja automaation tiedekunta

Aktiivisten DNA-muutosten seulonta riippuvuusmalleilla Elektroniikan, tietoliikenteen ja automaation tiedekunta ÇÐÐ ¹È ÀÙÓÚ Ð Ò Ò Aktiivisten DNA-muutosten seulonta riippuvuusmalleilla Elektroniikan, tietoliikenteen ja automaation tiedekunta ÔÐÓÑ ØÝ Ó ÓÒ Ø ØØÝ ÓÔ ÒÒÝØØ Ò Ø Ö Ø ØØ Ú ÔÐÓÑ ¹ Ò Ò Ö Ò ØÙØ ÒØÓ Ú ÖØ Ò

Lisätiedot

T 2. f T (x)e i2π k T x dx. c k e i2π k T x = x dx. c k e i2π k T x = k Z. f T (x) =

T 2. f T (x)e i2π k T x dx. c k e i2π k T x = x dx. c k e i2π k T x = k Z. f T (x) = º ÓÙÖÖ¹ÑÙÙÒÒÓ ÓÙÖÖ Ò ÒØÖÐ Ð Ù ¹ ÓÐÐ Ò ÙÒ Ø ÓÒ f(x) PC(R) º½ ÓÙÖÖ¹ Ò ÐÝÝ º ÒÐ Òµ ÅÖ Ø ÐÐÒ T ¹ ÓÐÐ Ò Ò ÙÒ Ø Ó f T (x) = f(x), T 2 < x < T 2, ÃÓÑÔÐ Ò Ò ÓÙÖÖ¹ÖÖÓ Ò c k = 1 T T 2 T 2 f T (x)e i2π k T x dx.

Lisätiedot

Ì ÑÔ Ö Ò ÝÐ ÓÔ ØÓ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ÆÁ Å Ä ÊÇ ÓÙÖ Ö¹ÑÙÙÒÒÓ Ø ÈÖÓ Ö Ù ¹ØÙØ ÐÑ º Å Ø Ñ Ø ÀÙ Ø ÙÙ ¾¼¼ Ì Ú Ø ÐÑ ÌÙØ ÐÑ Ò Ò ÓÒ ÓÙÖ Ö¹ÑÙÙÒÒÓ Ò ØØ Ð

Ì ÑÔ Ö Ò ÝÐ ÓÔ ØÓ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ÆÁ Å Ä ÊÇ ÓÙÖ Ö¹ÑÙÙÒÒÓ Ø ÈÖÓ Ö Ù ¹ØÙØ ÐÑ º Å Ø Ñ Ø ÀÙ Ø ÙÙ ¾¼¼ Ì Ú Ø ÐÑ ÌÙØ ÐÑ Ò Ò ÓÒ ÓÙÖ Ö¹ÑÙÙÒÒÓ Ò ØØ Ð Ì ÅÈ Ê Æ ÄÁÇÈÁËÌÇ ÈÖÓ Ö Ù ¹ØÙØ ÐÑ ÖÓ Æ Ñ Ð ÓÙÖ Ö¹ÑÙÙÒÒÓ Ø Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ Å Ø Ñ Ø ÀÙ Ø ÙÙ ¾¼¼ Ì ÑÔ Ö Ò ÝÐ ÓÔ ØÓ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ÆÁ Å Ä ÊÇ ÓÙÖ Ö¹ÑÙÙÒÒÓ Ø ÈÖÓ Ö Ù ¹ØÙØ ÐÑ º Å Ø Ñ Ø

Lisätiedot

λ (i,j) (i 1,j) = µ R j, i = 1,... N B, j = 0,... N R λ (i,j) (i,j 1) = µ B i, i = 0,... N B, j = 1,... N R λ (i,j) (k,l) = 0, muulloin.

λ (i,j) (i 1,j) = µ R j, i = 1,... N B, j = 0,... N R λ (i,j) (i,j 1) = µ B i, i = 0,... N B, j = 1,... N R λ (i,j) (k,l) = 0, muulloin. Šع¾º½¼ ËÓÚ ÐÐ ØÙÒ Ñ Ø Ñ Ø Ò Ö Ó ØÝ Ø ¾¼¼ ¹¼¾¹½¾ Ì Ø ÐÙÒ Ñ ÐÐ ÒÒÙ Ø Å Ö ÓÚ Ò Ø ÙÐÐ Ì Ò ÐÐ Ò Ò ÓÖ ÓÙÐÙ Ì Ò ÐÐ Ò Ý Ò Ñ Ø Ñ Ø Ò Ó ØÓ ËÝ Ø Ñ Ò ÐÝÝ Ò Ð ÓÖ ØÓÖ Ó Ä ÙÖ ÂÙ Ò Ã Ò ¼¼ È Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Ì Ø ÐÙÑ

Lisätiedot

y t = X t β + u t, u t NID(0, 1) t = 1, 2,..., n ½µ

y t = X t β + u t, u t NID(0, 1) t = 1, 2,..., n ½µ ÇÊ Ê ÈÊÇ ÁÌ Â Â ÄÃ È ÄÄǹÇÌÌ ÄÍÆ Å ÄÄÁÆÌ ÅÁÆ Æ Ê Ò ÓÑ Î Ö Ð ½º Ò ÙÙØ ¾¼¼ ËÁË ÄÌ ½ Ë ÐØ ½ ÂÓ ÒØÓ ¾ ¾ ÇÖ Ö ÔÖÓ Ø ¾º½ Å ÐÐ Ò ÑÖ ØØ ÐÝ º º º º º º º º º º º º º º º º º º º º º º º º º Â Ð Ô ÐÐÓ¹ÓØØ ÐÙÒ Ò

Lisätiedot

Ì ÃÆÁÄÄÁÆ Æ ÃÇÊÃ ÃÇÍÄÍ Ì Å Ó Î Ø ÁÈÄÇÅÁÌ Æ ÌÁÁÎÁËÌ ÄÅ ÌÝ Ò Ò Ñ Î Ö ÚÖÓÓØØÓÖ Ò ÓÒ Ò Ò ÐÝÝ È ÚÑÖ º Ñ ÖÖ ÙÙØ ¾¼¼ Ë ÚÙÑÖ ¾ Ç ØÓ Ë ¹ Ø ØÓÐ ÒÒ Ø Ò Ò Ó ØÓ ÈÖ

Ì ÃÆÁÄÄÁÆ Æ ÃÇÊÃ ÃÇÍÄÍ Ì Å Ó Î Ø ÁÈÄÇÅÁÌ Æ ÌÁÁÎÁËÌ ÄÅ ÌÝ Ò Ò Ñ Î Ö ÚÖÓÓØØÓÖ Ò ÓÒ Ò Ò ÐÝÝ È ÚÑÖ º Ñ ÖÖ ÙÙØ ¾¼¼ Ë ÚÙÑÖ ¾ Ç ØÓ Ë ¹ Ø ØÓÐ ÒÒ Ø Ò Ò Ó ØÓ ÈÖ Ì ÃÆÁÄÄÁÆ Æ ÃÇÊÃ ÃÇÍÄÍ Ë ¹ Ø ØÓÐ ÒÒ Ø Ò Ò Ó ØÓ Å Ó Î Ø Î Ö ÚÖÓÓØØÓÖ Ò ÓÒ Ò Ò ÐÝÝ ÔÐÓÑ ØÝ Ó ÓÒ Ø ØØÝ ÓÔ ÒÒÝØØ Ò Ø Ö Ø ØØ Ú ÔÐÓÑ ¹ Ò Ò Ö Ò ØÙØ ÒØÓ Ú ÖØ Òº ÔÓÓ º Ñ ÖÖ ÙÙØ ¾¼¼ ÌÝ Ò Ú ÐÚÓ ÈÖÓ ÓÖ ÒØ ÖÓ Ö Ó ÌÝ

Lisätiedot

Ì Ê ÑÓ È Ø Ò Ò Ø Ý Ø ÓØ Ö Ô Ø Òº ÝÙº ÌÝ Ò Ò Ñ ÃÝØ ØØÚÝÝ ÙÙÒÒ ØØ ÐÙ Ó Ò Ó ÐÑ ØÓÔÖÓ Ì ØÐ Ò Ò Ð Í Ð ØÝ Ò Ò Ò Ó ØÛ Ö ÔÖÓ ÌÝ Ì ØÓØ Ò Ò ÔÖÓ Ö Ù ¹ØÙØ ÐÑ Ë ÚÙ

Ì Ê ÑÓ È Ø Ò Ò Ø Ý Ø ÓØ Ö Ô Ø Òº ÝÙº ÌÝ Ò Ò Ñ ÃÝØ ØØÚÝÝ ÙÙÒÒ ØØ ÐÙ Ó Ò Ó ÐÑ ØÓÔÖÓ Ì ØÐ Ò Ò Ð Í Ð ØÝ Ò Ò Ò Ó ØÛ Ö ÔÖÓ ÌÝ Ì ØÓØ Ò Ò ÔÖÓ Ö Ù ¹ØÙØ ÐÑ Ë ÚÙ Ê ÑÓ È Ø Ò Ò ÃÝØ ØØÚÝÝ ÙÙÒÒ ØØ ÐÙ Ó Ò Ó ÐÑ ØÓÔÖÓ Ì ØÓØ Ò Ò ÔÖÓ Ö Ù ¹ØÙØ ÐÑ ¾ º ÓÙÐÙ ÙÙØ ¾¼¼ ÂÝÚ ÝÐÒ ÝÐ ÓÔ ØÓ Ì ØÓØ Ò Ò Ð ØÓ ÂÝÚ ÝÐ Ì Ê ÑÓ È Ø Ò Ò Ø Ý Ø ÓØ Ö Ô Ø Òº ÝÙº ÌÝ Ò Ò Ñ ÃÝØ ØØÚÝÝ ÙÙÒÒ ØØ ÐÙ Ó Ò

Lisätiedot

(xy)z = x(yz) λx = xλ = x.

(xy)z = x(yz) λx = xλ = x. ÄÙ Ù ½ ÐÙ ÌÑ ÑÓÒ Ø ÓÒ Ø Ö Ó Ø ØØÙ ÝØ ØØÚ Ì ÑÔ Ö Ò ÝÐ ÓÔ ØÓÒ Ø ØÓ Ò ØØ Ðݹ Ø Ø Ò Ð ØÓ Ò ÓÔ ÒØÓ ÓÐÐ ÙØÓÑ Ø Øº ÅÓÒ Ø Ô ÖÙ ØÙÙ ÙÖ Ú Ò Ð Ø Ò Åº º À ÖÖ ÓÒ ÁÒØÖÓ ÙØ ÓÒ ØÓ ÓÖÑ Ð Ä Ò Ù Ì ÓÖݺ ÓÒ¹Ï Ð Ý ½ º º º

Lisätiedot

C A B, A D B A B E. A B C, A C B Ø B A C.

C A B, A D B A B E. A B C, A C B Ø B A C. Ù Ð Ò ÝÔ Ö ÓÐ Ò ÓÑ ØÖ Ò Ñ ÐÐ Ö Ë ÐÑ Ð ÈÖÓ Ö Ù ØÙØ ÐÑ ÂÝÚ ÝÐÒ ÝÐ ÓÔ ØÓ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ Ã ÚØ ¾¼¼ Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ À Ð ÖØ Ò ÓÓÑ Ö Ø ÐÑ ¾ ¾º½ À Ð ÖØ Ò Ò Ò ÓÓÑ Ø º º º º º º º º º º º º º º º º

Lisätiedot

Ì ÂÝÖ Ä Ò Ò Ø Ý Ø ÓØ ÝÖ Ðº ÝÙº ÌÝ Ò Ò Ñ Å Ñ ØØ Ø Ð ÓÖ ØÑ Ø Ì ØÐ Ò Ò Ð ÇÒ Å Ñ Ø Ð ÓÖ Ø Ñ ÌÝ Ì ØÓØ Ò Ò ÔÖÓ Ö Ù ¹ØÙØ ÐÑ Ë ÚÙÑÖ Ì Ú Ø ÐÑ Å Ñ ØØ Ø Ð ÓÖ ØÑ

Ì ÂÝÖ Ä Ò Ò Ø Ý Ø ÓØ ÝÖ Ðº ÝÙº ÌÝ Ò Ò Ñ Å Ñ ØØ Ø Ð ÓÖ ØÑ Ø Ì ØÐ Ò Ò Ð ÇÒ Å Ñ Ø Ð ÓÖ Ø Ñ ÌÝ Ì ØÓØ Ò Ò ÔÖÓ Ö Ù ¹ØÙØ ÐÑ Ë ÚÙÑÖ Ì Ú Ø ÐÑ Å Ñ ØØ Ø Ð ÓÖ ØÑ ÂÝÖ Ä Ò Ò Å Ñ ØØ Ø Ð ÓÖ ØÑ Ø Ì ØÓØ Ò Ò ÔÖÓ Ö Ù ¹ØÙØ ÐÑ ½ º ÙÙØ ¾¼¼ ÂÝÚ ÝÐÒ ÝÐ ÓÔ ØÓ Ì ØÓØ Ò Ò Ð ØÓ ÂÝÚ ÝÐ Ì ÂÝÖ Ä Ò Ò Ø Ý Ø ÓØ ÝÖ Ðº ÝÙº ÌÝ Ò Ò Ñ Å Ñ ØØ Ø Ð ÓÖ ØÑ Ø Ì ØÐ Ò Ò Ð ÇÒ Å Ñ Ø Ð ÓÖ Ø Ñ ÌÝ Ì ØÓØ

Lisätiedot

x (t) = f(x(t)) u B δ (p) = ϕ t (v) = p, v B d (p) = lim e t AT e t A dt W =

x (t) = f(x(t)) u B δ (p) = ϕ t (v) = p, v B d (p) = lim e t AT e t A dt W = Á Ê ÆÌÁ ÄÁ ÀÌ Ä Ë ËÌ ÅÁÌ º Ì Ô ÒÓÔ Ø Ø Ø Ð ÙÙ Ì ÐÙÚÙ Ø ÑÑ Ö ÒØ Ð Ý ØÐ Ò Ø Ô ÒÓÖ Ø Ù Ò Ø Ð ÙÙ Ø Ö Ø ÐÙ¹ ÒÝØ ÔÐ Ò Ö ÐÐ Ý Ø Ñ ÐÐ º ÌÐÐ ÓÚ Ø Ñ Ö ÐÙÖ Ý Ø Ñ ÐÐ Ô ÐÐ Ò ÔÝ ØÝ ÙÓÖ Ò Ó Ó Ð Ø ÝÐ Ô Ò ÓÐ Ú ÐÙÖ º ÂÓ

Lisätiedot

Ä ÖÓ Ò ÒØÝÑ Ò Ò Ù Ø Ð Ó Ò Ô ÐÐÓÒ Ñ ØØ Ú Ë ÖÔ È Ý Ò Ò ÈÖÓ Ö Ù ØÙØ ÐÑ ÇÙÐÙÒ ÝÐ ÓÔ ØÓ ÓÐÓ Ò Ð ØÓ ÌÓÙ Ó ÙÙ ¾¼¼ Ë ÐØ ½ ÂÓ ÒØÓ ½ ½º½ Ä ÖÓ Ò Ö ÒØ Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾

Lisätiedot

M Pv + q = 0, M = EIκ = EIv, (EIv ) + Pv = q. v(x) = Asin kx + B cos kx + Cx + D + v p. P kr = π2 EI L n

M Pv + q = 0, M = EIκ = EIv, (EIv ) + Pv = q. v(x) = Asin kx + B cos kx + Cx + D + v p. P kr = π2 EI L n ÄÙ Ù ½ ËØ Ð Ù Ú Ó Ó ÐÑ ½º½ ÈÙÖ Ø ØØÙ Ø ÚÙØ ØØÙ ÙÚ Ì Ô ÒÓ ÓØ Q v + q =, M = Q, ½º½µ ÑÑÓ ÐÐ ÙÚ ÐÐ M v + q =, M = EIκ = EIv, (EIv ) + v = q. ½º¾µ ½º µ ½º µ EI = Ú Ó ÆÙÖ Ù ÚÓ Ñ v (4) + k v = q EI, k = EI,

Lisätiedot

P F [L θ U] P F [L θ U] 1 α, 0 < α < 1,

P F [L θ U] P F [L θ U] 1 α, 0 < α < 1, ËÁË ÄÌ º º½ º º¾ º º º º Ú Å Ö ÓÚ Ò Ì Ý Ú Ò ÔÝ ØÐ Ø ÙÙÖØ Ò ÐÙ Ù¹ Ò Ð º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾ Â Ò Ò Ò ÔÝ ØÐ º º º º º º º º º º º º º º º º º º º º ¾ ËØÓ Ø Ò Ò ÙÔÔ Ò Ñ Ò

Lisätiedot

arvostelija Elliptisen käyrän salauksen perusteita Mikko Alakunnas Helsinki HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos

arvostelija Elliptisen käyrän salauksen perusteita Mikko Alakunnas Helsinki HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos hyväksymispäivä arvosana arvostelija Elliptisen käyrän salauksen perusteita Mikko Alakunnas Helsinki 12.4.2007 HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET

Lisätiedot

ÂÝÚ ÝÐÒ ÝÐ ÓÔ ØÓ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ÃÁÆÆÍÆ Æ ÌÇÈÁ Ê ÒÒÙ Ø Ò Ø Ò ÓÐÓ Ø Ò ÐÑ ØÓÐÐ Ø Ò Ø Ò Ú ÙØÙ ÙÒØÓ Ò ÐÑ Ò Ö ÓÒÔ ØÓ ÙÙØ Òº ÈÖÓ Ö Ù ¹ØÙØ ÐÑ º ½

ÂÝÚ ÝÐÒ ÝÐ ÓÔ ØÓ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ÃÁÆÆÍÆ Æ ÌÇÈÁ Ê ÒÒÙ Ø Ò Ø Ò ÓÐÓ Ø Ò ÐÑ ØÓÐÐ Ø Ò Ø Ò Ú ÙØÙ ÙÒØÓ Ò ÐÑ Ò Ö ÓÒÔ ØÓ ÙÙØ Òº ÈÖÓ Ö Ù ¹ØÙØ ÐÑ º ½ Ê Ã ÆÆÍËÌ ÃÆÁËÌ Æ ÇÄÇ ÁËÌ Æ Â ÁÄÅ ËÌÇÄÄÁËÌ Æ Ì ÃÁ Á Æ Î ÁÃÍÌÍË ËÍÆÌÇÂ Æ ËÁË ÁÄÅ Æ Ê ÇÆÈÁÌÇÁËÍÍÌ Æ ÌÓÔ Ã ÒÒÙÒ Ò Ì Ð ØÓØ Ø Ò ÔÖÓ Ö Ù ¹ØÙØ ÐÑ ÂÝÚ ÝÐÒ ÝÐ ÓÔ ØÓ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ¾¼¼ ÂÝÚ ÝÐÒ ÝÐ ÓÔ

Lisätiedot

x α 1... x (v ṽ)φdx = 0

x α 1... x (v ṽ)φdx = 0 Ð Ñ ÒØØ Ñ Ò Ø ÐÑ ÐÐ ÔØ ÐÐ ÓÒ ÐÑ ÐÐ ÈÖÓ Ö Ù ¹ØÙØ ÐÑ Ì ÑÙ ÅÙ ØÓÒ Ò ½ ½ ÁعËÙÓÑ Ò ÝÐ ÓÔ ØÓ ÄÙÓÒÒÓÒØ Ø Ò Ñ Ø Ø Ø Ò Ø ÙÒØ Ý Ò Ñ Ø Ñ Ø Ò Ð ØÓ ½ º ØÓÙ Ó ÙÙØ ¾¼½¾ Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Ð Ñ ÒØØ Ñ Ò Ø ÐÑÒ ÙÒ Ø Ó Ú ÖÙÙ

Lisätiedot

x 1 x 2 x n u 1 + v 1 u 2 + v 2 u n + v n λu 1 λu 2 λu n

x 1 x 2 x n u 1 + v 1 u 2 + v 2 u n + v n λu 1 λu 2 λu n ÇÈÌÁÅÇÁÆÆÁÆ È ÊÍËÌ Ì Ã Ó ÊÙÓØ Ð Ò Ò ¾ º ÝÝ ÙÙØ ¾¼¼ ¾ ÂÓ ÒØÓ ÃÙÖ Ò Ø ÚÓ ØØ Ò ÓÒ ØÙØÙ ØÙØØ Ø Ú ÐÐ ÑÔ Ò ÓÔØ ÑÓ ÒØ ¹ Ð ÓÖ ØÑ Ò Ò Ò ÝØØ Ò ÓÚ ÐÐÙØÙ º ÃÙÖ Ñ Ø Ö Ð ÒØÙÙ Ò Ð Ò Ö Ó Òº ÐÙ ÐÝ Ý Ø ÖÖ Ø Ò Ñ ØÖ Ð Ö Ø

Lisätiedot

Erkki Mäkinen ja Timo Poranen. Algoritmit

Erkki Mäkinen ja Timo Poranen. Algoritmit Erkki Mäkinen ja Timo Poranen Algoritmit INFORMAATIOTIETEIDEN YKSIKKÖ TAMPEREEN YLIOPISTO INFORMAATIOTIETEIDEN YKSIKÖN RAPORTTEJA 1/2011 TAMPERE 2011 TAMPEREEN YLIOPISTO INFORMAATIOTIETEIDEN YKSIKKÖ INFORMAATIOTIETEIDEN

Lisätiedot

284 = º Î Ø Ú Ø. A = kanta korkeus. A 1/2suunn = kanta+kanta 2

284 = º Î Ø Ú Ø. A = kanta korkeus. A 1/2suunn = kanta+kanta 2 ÈÝØ ÓÖ Ò Ð Ù ÈÝØ ÓÖ Ò ÓÐÑ ÓØ ÈÖÓ Ö Ù¹ØÙØ ÐÑ ÒÓ¹Ã Ö Ò ½ Å Ø Ñ Ø Ò Ý Ò Ð ØÓ ÁعËÙÓÑ Ò ÝÐ ÓÔ ØÓ º ÐÓ ÙÙØ ¾¼½¾ Ë ÐØ ½ ÂÓ ÒØÓ ½ ½º½ ÈÝØ ÓÖ º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ ÈÝØ ÓÖ

Lisätiedot

f(x) =, x = 0,1,...,100. P(T 20) = P( X 50 20) 0.

f(x) =, x = 0,1,...,100. P(T 20) = P( X 50 20) 0. Ú ËÁË ÄÌ ½¾º ËÙ Ø ÐÐ Ø Ò Ó ÙÙ Ò ÐÙÓØØ ÑÙ ÚÐ Ø º º º º º º º º º º º º º º ¾ ½¾º ÇØÓ Ó Ó º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¼ ½¾º Å Ò Ò ÙÑ Ø Ú Ô ÐÙÓØØ ÑÙ ÚÐ º º º º º º º º º º

Lisätiedot

ÂÝÖ Ë Ö Ò Ò ÌÝ Ò Ò Ñ Ö Ø Ø Ø Ø Ð Ì ØÐ ÂÙÐ Ò Ú Ñ Ò Ñ Ò Ø ÐÑ ÌËÁ Ò ÅË˹ÑÖ ØÝ ÇÔÔ Ò ÄÖÓÑÒ ËÙ Ø ÌÝ Ò Ð Ö Ø Ø ÖØ Ä Ú Ð ØÙÑ ÅÓÒØ Ò Ý Ö Ë ÚÙÑÖ Ë Ó ÒØ Ð ÆÙÑ Ö

ÂÝÖ Ë Ö Ò Ò ÌÝ Ò Ò Ñ Ö Ø Ø Ø Ø Ð Ì ØÐ ÂÙÐ Ò Ú Ñ Ò Ñ Ò Ø ÐÑ ÌËÁ Ò ÅË˹ÑÖ ØÝ ÇÔÔ Ò ÄÖÓÑÒ ËÙ Ø ÌÝ Ò Ð Ö Ø Ø ÖØ Ä Ú Ð ØÙÑ ÅÓÒØ Ò Ý Ö Ë ÚÙÑÖ Ë Ó ÒØ Ð ÆÙÑ Ö ÝÚ ÝÑ Ô Ú ÖÚÓ Ò ÖÚÓ Ø Ð ÂÙÐ Ò Ú Ñ Ò Ñ Ò Ø ÐÑ ÌËÁ Ò ÅË˹ÑÖ ØÝ ÂÝÖ Ë Ö Ò Ò À Ð Ò ½ º º¾¼¼ À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ Ì ØÓ Ò ØØ ÐÝØ Ø Ò Ð ØÓ ÂÝÖ Ë Ö Ò Ò ÌÝ Ò Ò Ñ Ö Ø Ø Ø Ø Ð Ì ØÐ ÂÙÐ Ò Ú Ñ Ò Ñ Ò Ø ÐÑ ÌËÁ Ò ÅË˹ÑÖ

Lisätiedot

x = [ x 1 x 2 x n (x i K) x = K (n) = {(x 1, x 2,...,x n ) : x i K} e 1 = (1, 0,..., 0) Ø, e 2 = (0, 1,..., 0) Ø,..., e n = (0, 0,...

x = [ x 1 x 2 x n (x i K) x = K (n) = {(x 1, x 2,...,x n ) : x i K} e 1 = (1, 0,..., 0) Ø, e 2 = (0, 1,..., 0) Ø,..., e n = (0, 0,... ¼¼ Ë Å ØÖ Ø ÓÖ Ì ÖÓ Î Ò ÙÓ Ù ¾º ØÓÙ Ó ÙÙØ ¾¼¼ Ë ÐØ ½ Ä Ò Ö Ð Ö ½º½ Å Ö ÒØ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º¾ È ÖÙ ÓÑ Ò ÙÙ º º º º º º º º º º º º º º º º º º º º º º º º ½º Å

Lisätiedot

À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç ØÓ ÙÐØ Ø»Ë Ø ÓÒ ÙÐØÝ Ä ØÓ ÁÒ Ø ØÙØ ÓÒ Ô ÖØÑ ÒØ Ì Ö ØØ Ö ÙØ ÓÖ ÇÐÐ ÇÖ ÖÚ ÌÝ Ò Ò

À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç ØÓ ÙÐØ Ø»Ë Ø ÓÒ ÙÐØÝ Ä ØÓ ÁÒ Ø ØÙØ ÓÒ Ô ÖØÑ ÒØ Ì Ö ØØ Ö ÙØ ÓÖ ÇÐÐ ÇÖ ÖÚ ÌÝ Ò Ò ÝÚ ÝÑ Ô Ú ÖÚÓ Ò ÖÚÓ Ø Ð Ã ÒÓØ Ó Ø Ò Ò ÙÖÓÚ Ö Ó Ò ØÝ ØØ Ø ÇÐÐ ÇÖ ÖÚ À Ð Ò ¾º º¾¼¼ À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ Ì ØÓ Ò ØØ ÐÝØ Ø Ò Ð ØÓ À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç ØÓ ÙÐØ

Lisätiedot

Ë ÐØ ½ ÂÓ ÒØÓ ½ ½º½ È ÖÙ ØØ Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ Ò ÖØ Ø Ö ÒÒ Ñ ÐÐ Ø º º º º º º º º º º º º º º

Ë ÐØ ½ ÂÓ ÒØÓ ½ ½º½ È ÖÙ ØØ Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ Ò ÖØ Ø Ö ÒÒ Ñ ÐÐ Ø º º º º º º º º º º º º º º Ê ÒØ Ò Ø Ð ÙÙ Ø ÓÖ ÐÙ ÒØÓÑÓÒ Ø Å Ö Ù ÌÙÓÑ Ð ϕ v N N Ë ÐØ ½ ÂÓ ÒØÓ ½ ½º½ È ÖÙ ØØ Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ Ò ÖØ Ø Ö ÒÒ Ñ ÐÐ Ø º º º º º º º º º º º º º

Lisätiedot

Ë ÐØ ½ ÂÓ ÒØÓ ½ ½º½ È ÖÙ ØØ Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ Ò ÖØ Ø Ö ÒÒ Ñ ÐÐ Ø º º º º º º º º º º º º º º

Ë ÐØ ½ ÂÓ ÒØÓ ½ ½º½ È ÖÙ ØØ Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ Ò ÖØ Ø Ö ÒÒ Ñ ÐÐ Ø º º º º º º º º º º º º º º Ê ÒØ Ò Ø Ð ÙÙ Ø ÓÖ ÐÙ ÒØÓÑÓÒ Ø Å Ö Ù ÌÙÓÑ Ð ϕ v N N Ë ÐØ ½ ÂÓ ÒØÓ ½ ½º½ È ÖÙ ØØ Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ Ò ÖØ Ø Ö ÒÒ Ñ ÐÐ Ø º º º º º º º º º º º º º

Lisätiedot

º F(+, + ) = 1 F(, ) = F(, y) = F(x, ) = 0 й

º F(+, + ) = 1 F(, ) = F(, y) = F(x, ) = 0 й ËÁË ÄÌ Ö ØØ Ý ÙÐÓØØ ÙÑ ½¼ º½ Ö ØØ ØÙÒÒ ÑÙÙØØÙ º º º º º º º º º º º º º º º º º º ½¼ º¾ ÖÒÓÙÐÐ Ò Ó Ø ÒÓÑ ÙÑ º º º º º º º º º º º º º º º ½½½ º¾º½  ÙÑ Ò ÝÑÑ ØÖ º º º º º º º º º º º º º º º º º º º ½½

Lisätiedot

ÄÇÄÁ ÇÈÌÁÅÇÁÆÌÁ ÈÇËÁÌÊÇÆÁÅÁËËÁÇÌÇÅÇÊÁ¹ÃÍÎÆÌÅÁËÆ ÄÁÁÌÌÎËË ÅÄÄÁÆÌÅÁËËË Ã ËÖÓÐÑ ÈÖÓ ÖÙ ¹ØÙØÐÑ ÌÑÑÙÙ ¾¼¼ ÌÍÊÍÆ ÄÁÇÈÁËÌÇ ÅÌÅÌÁÁÃÆ ÄÁÌÇË ¾¼¼½ ÌÍÊÃÍ ÌÍÊÍÆ ÄÁÇÈÁËÌÇ ÅØÑØÒ ÐØÓ ËÊÀÇÄÅ ÃÁË ÐÓÐ ÓÔØÑÓÒØ ÔÓ ØÖÓÒÑ ÓØÓÑÓÖ¹

Lisätiedot

f(x;n,θ) = θ x (1 θ) n x, x = 0,1,...,n; 0 θ 1. Θ = {θ 0 θ 1}. ˆθ = x n.

f(x;n,θ) = θ x (1 θ) n x, x = 0,1,...,n; 0 θ 1. Θ = {θ 0 θ 1}. ˆθ = x n. ËÁË ÄÌ Ú º º½ Å Ö ÓÚ Ò Ì Ý Ú Ò ÔÝ ØÐ Ø ÙÙÖØ Ò ÐÙ Ù¹ Ò Ð º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾ º º¾ Â Ò Ò Ò ÔÝ ØÐ º º º º º º º º º º º º º º º º º º º º ¾ º º ËØÓ Ø Ò Ò ÙÔÔ Ò Ñ Ò Ò º

Lisätiedot

M : S N { }, S : S N.

M : S N { }, S : S N. Æ ¹Ð ÒØ ÙÒ Ú Ö Ð ÙÙ Æ ËÙÙØ Ö Ò Ò ÔÖÓ Ö Ù Ñ Ø Ñ Ø ÌÙÖÙÒ ÝÐ ÓÔ ØÓ ¾¼¼ Ë ÐØ ÂÓ ÒØÓ ¾ ½ ÓÖÑ Ð Ø Ò ÐØ Ò Ø ÓÖ Ò ØØ Ø ØÙÐÓ ½º½ ÅÙÐØ ÓÙ ÓØ Ö Ð Ø ÓØ º º º º º º º º º º º º º º º º º º º º º º ½º¾ Ë Ò Ø Ð Ø ÑÓÖ

Lisätiedot

Barysentrinen koordinaattisysteemi sekä pisteen konjugaatio kolmion suhteen

Barysentrinen koordinaattisysteemi sekä pisteen konjugaatio kolmion suhteen HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta/Osasto Fakultet/Sektion Faculty Laitos Institution Department Matemaattis-luonnontieteellinen Tekijä Författare Author Jenni

Lisätiedot

Ì ÅÈ Ê Æ ÄÁÇÈÁËÌÇ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ÎÁÁÃÁÆÃÇËÃÁ Å ÌÌÁ ÂÖ ØÝ ÙÒ Ø ÓÐÐ Ø Ó ÓÒ ÐÙ Ø Ú ÐÙ Ø ÓØ Ä Ò ØØ ØÝ º Å Ø Ñ Ø À ÐÑ ÙÙ ¾¼¼ ÃÓÓ Ù Ø ÓÖ Ò Ø ÚÓ

Ì ÅÈ Ê Æ ÄÁÇÈÁËÌÇ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ÎÁÁÃÁÆÃÇËÃÁ Å ÌÌÁ ÂÖ ØÝ ÙÒ Ø ÓÐÐ Ø Ó ÓÒ ÐÙ Ø Ú ÐÙ Ø ÓØ Ä Ò ØØ ØÝ º Å Ø Ñ Ø À ÐÑ ÙÙ ¾¼¼ ÃÓÓ Ù Ø ÓÖ Ò Ø ÚÓ Å ØØ Î Ò Ó ÂÖ ØÝ ÙÒ Ø ÓÐÐ Ø Ó ÓÒ ÐÙ Ø Ú ÐÙ Ø ÓØ Ä Ò ØØ ØÝ Ì ÑÔ Ö Ò ÝÐ ÓÔ ØÓ À ÐÑ ÙÙ ¾¼¼ Ì ÅÈ Ê Æ ÄÁÇÈÁËÌÇ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ÎÁÁÃÁÆÃÇËÃÁ Å ÌÌÁ ÂÖ ØÝ ÙÒ Ø ÓÐÐ Ø Ó ÓÒ ÐÙ Ø Ú ÐÙ Ø ÓØ Ä Ò ØØ ØÝ º Å

Lisätiedot

Ì Ú Ø Ñ Ò Ó ÔÓÒ ÒØØ Ò Ô Ö Ò Ø ¹ Ú ÖÙÙ Ñ Ò ÓÚ Ù Ó Ó ÙÓ ÙÙ ¹ Ò ØÓÓÒº Ì ØÓØ Ø Ò ÔÖÓ Ö Ù ¹ØÙØ Ñ ÂÝÚ ÝÒ Ý ÓÔ ØÓ ½º Ó ÙÙØ ¾¼¼ º Ë ÚÙ ½ Ø º Ì ¹ Ú ÖÙÙ Ñ Ò Ý Ó

Ì Ú Ø Ñ Ò Ó ÔÓÒ ÒØØ Ò Ô Ö Ò Ø ¹ Ú ÖÙÙ Ñ Ò ÓÚ Ù Ó Ó ÙÓ ÙÙ ¹ Ò ØÓÓÒº Ì ØÓØ Ø Ò ÔÖÓ Ö Ù ¹ØÙØ Ñ ÂÝÚ ÝÒ Ý ÓÔ ØÓ ½º Ó ÙÙØ ¾¼¼ º Ë ÚÙ ½ Ø º Ì ¹ Ú ÖÙÙ Ñ Ò Ý Ó ÔÓÒ ÒØØ Ò Ô Ö Ò Ø ¹ Ú ÖÙÙ Ñ Ò ÓÚ Ù Ó Ó ÙÓ ÙÙ Ò ØÓÓÒ Ò Ó Ì ØÓØ Ø Ò ÔÖÓ Ö Ù ¹ØÙØ Ñ ÂÝÚ ÝÒ Ý ÓÔ ØÓ Å Ø Ñ Ø Ò Ø ØÓØ Ø Ò ØÓ ½º Ó ÙÙØ ¾¼¼ Ì Ú Ø Ñ Ò Ó ÔÓÒ ÒØØ Ò Ô Ö Ò Ø ¹ Ú ÖÙÙ Ñ Ò ÓÚ Ù Ó Ó ÙÓ ÙÙ ¹ Ò ØÓÓÒº Ì

Lisätiedot

ABTEKNILLINEN KORKEAKOULU TEKNISKA HÖGSKOLAN HELSINKI UNIVERSITY OF TECHNOLOGY

ABTEKNILLINEN KORKEAKOULU TEKNISKA HÖGSKOLAN HELSINKI UNIVERSITY OF TECHNOLOGY ÆÖÒÒ ÂÖÓ ÓÖÓÙÐÙ ÌÒÐÐÒÒ ABTEKNILLINEN KORKEAKOULU TEKNISKA HÖGSKOLAN HELSINKI UNIVERSITY OF TECHNOLOGY ÔÖÓÖ¹ ÔÓ ØÖÓÖ ¹ÚÖÒÐÝÝ ÐØØÑÐÐÒ ÐÑÒØØÑÒØÐÑÐÐ ÄØÓ ÔÖÙÖ ÓÖ º½½º¾¼¼ ÅØÑØÒ ÐØÓ Ë ÐØ ½ ÂÓÒØÓ ¾ ÑÐÐÒÒÙ ÄØØÖÒØÒ

Lisätiedot

̹ º ¼¼½ ÄÌÈ» à ÚØ ¾¼½¼ ÈÖ ØØ ÐÓ Ò Ñ ÒØØ Ø Ø ÙÐÙØ ¾ ½º Ì ÍÄÍË ÆÆ Ì ÃÎ ÆÌÌÇÊ ÁÄÄ ÅÙÓØÓ T xϕ(x) Ø E xϕ(x)µ ÓÐ Ú Ø ÒØ Ð Ò Ò ÓÐÑÙ T xϕ(x) E xϕ(x) ØÙÐ ÓØØ

̹ º ¼¼½ ÄÌÈ» à ÚØ ¾¼½¼ ÈÖ ØØ ÐÓ Ò Ñ ÒØØ Ø Ø ÙÐÙØ ¾ ½º Ì ÍÄÍË ÆÆ Ì ÃÎ ÆÌÌÇÊ ÁÄÄ ÅÙÓØÓ T xϕ(x) Ø E xϕ(x)µ ÓÐ Ú Ø ÒØ Ð Ò Ò ÓÐÑÙ T xϕ(x) E xϕ(x) ØÙÐ ÓØØ Ì¹ º ¼¼½ ÄÌÈ» à ÚØ ¾¼½¼ ÈÖ ØØ ÐÓ Ò Ñ ÒØØ Ø Ø ÙÐÙØ ½ ÄÙ ÒØÓ ÈÖ ØØ ÐÓ Ò Ñ ÒØØ Ø Ø ÙÐÙØ ½º Ì ÙÐÙÒÒ Ø Ú ÒØØÓÖ ÐÐ ¾º Ì ÙÐÙ Ò Ð ØØÝÚØ ÑÖ Ø ÐÑØ º Ç Ø ØÓ ØÙØ Ò Ð Ø Ñ Ò º ËÝØ Ñ ØØ Ò Ò Ø ÙÐÙ º Î Ø Ñ ÐÐ Ò ÑÙÓ ÓØ

Lisätiedot

ÚØ ØØ Ò ØÙÐ > ØÒÔØ ÑÝ ÐØ ÑÐ ØÐÐÒ Ö ØÝ Ò ½ ÌØÚÒ ØØÐÙ ØØÚÒ ÖØ ÑÒÒ ØØÓÓÒÐÐ ÐÐÝØØ ÓÔÚ ÐÓÖØÑ Í Ò ÑÐÓ ÝÐ ÐÐ Ø ÓÐÐ ÙÚÐØÙ ØÓÑÒØÓ À ØØÓÓÒÓÐÑ ÚÒ ØÓÑÒØÔÖØ ØÚÓØØÒ

ÚØ ØØ Ò ØÙÐ > ØÒÔØ ÑÝ ÐØ ÑÐ ØÐÐÒ Ö ØÝ Ò ½ ÌØÚÒ ØØÐÙ ØØÚÒ ÖØ ÑÒÒ ØØÓÓÒÐÐ ÐÐÝØØ ÓÔÚ ÐÓÖØÑ Í Ò ÑÐÓ ÝÐ ÐÐ Ø ÓÐÐ ÙÚÐØÙ ØÓÑÒØÓ À ØØÓÓÒÓÐÑ ÚÒ ØÓÑÒØÔÖØ ØÚÓØØÒ ØÒÐÐÒÒ ÝÐÓÔ ØÓ ÌÑÔÖÒ ÐØÓ ÅØÑØÒ ØØÓÓÒ ÓÐÐ ÖØØ ÎÓÓ ÝÑÔØÓÓØØÒÒ ÙÓÖØÙ ÊØÒ Ø ÑÒÒ ØØÓÓÒÐÐ ÎÐ Ù ÐÓÖØÑÒ ÑÐÑÒ ÒØØ ÎÐÑÖ ½ ÌØÚÒ ØØÐÙ ØÖÒ ÐÓÖØÑ ÈÖÓÖØØØÓÒÓ ÐÒÒÙÒØ¹Ø ÝÝÐÐ ØÒÚØÓ Î ÄÌ̹½¼¼ ÎÐ Ù ÐÓÖØÑÒ ÑÐÑÒ Ý Ý ¼½ ¼»½½

Lisätiedot

Ë ÐØ ½ ÂÓ ÒØÓ ½º½ Ð Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º¾ ËØ Ø ÓÒ Ö Ò Ò ÔÖÓ º º º º º º º º º º º º º º º º º º º º º º

Ë ÐØ ½ ÂÓ ÒØÓ ½º½ Ð Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º¾ ËØ Ø ÓÒ Ö Ò Ò ÔÖÓ º º º º º º º º º º º º º º º º º º º º º º Ö ¹ Ò ÐÝÝ ½¼ ÓÔ ÖØÓ ÄÙÓÑ Ì Ð ØÓØ ÁÒ ÓÖÑ Ø ÓØ Ø Ò Ý ¼½ Ì ÅÈ Ê Æ ÄÁÇÈÁËÌÇ ËÝ Ý ¾¼½ Ë ÐØ ½ ÂÓ ÒØÓ ½º½ Ð Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º¾ ËØ Ø ÓÒ Ö Ò Ò ÔÖÓ º º º º º º º

Lisätiedot

Ì ÃÆÁÄÄÁÆ Æ ÃÇÊÃ ÃÇÍÄÍ Ì ÃÆÁÄÄÁË Æ ËÁÁÃ Æ Â Å Ì Å ÌÁÁÃ Æ ÇË ËÌÇ Ì Ç ØÓ È Ò Ë ÚÙ Ò ÌÝ Ò Ò Ñ Ì ØÐ Ò Ò Ð ÈÖÓ ÙÙÖ Ò ÓÓ Ò Ñ ÌÝ Ò Ú ÐÚÓ ÌÝ Ò Ó ÂÙ Ó Ã ÒÒ Ì Ò

Ì ÃÆÁÄÄÁÆ Æ ÃÇÊÃ ÃÇÍÄÍ Ì ÃÆÁÄÄÁË Æ ËÁÁÃ Æ Â Å Ì Å ÌÁÁÃ Æ ÇË ËÌÇ Ì Ç ØÓ È Ò Ë ÚÙ Ò ÌÝ Ò Ò Ñ Ì ØÐ Ò Ò Ð ÈÖÓ ÙÙÖ Ò ÓÓ Ò Ñ ÌÝ Ò Ú ÐÚÓ ÌÝ Ò Ó ÂÙ Ó Ã ÒÒ Ì Ò Ì Ò ÐÐ Ò Ò ÓÖ ÓÙÐÙ Ì Ò ÐÐ Ò Ý Ò Ñ Ø Ñ Ø Ò Ó ØÓ Å Ø Ñ Ø Ò Ð ØÓ ÂÙ Ó Ã ÒÒ ÃÓÑÔÓ ØØ Ð Ñ Ò ØØ Ò Ò ÐÝÝ Ð Ñ ÒØØ Ñ Ò Ø ÐÑÐÐ ÔÐÓÑ ¹ Ò Ò Ö Ò ØÙØ ÒØÓ Ú ÖØ Ò Ø Ö Ø ØØ Ú Ø ØØÝ ÔÐÓÑ ØÝ ÔÓÓ ¾ º ÐÓ ÙÙØ ¾¼¼ ÌÝ Ò Ú ÐÚÓ

Lisätiedot

ONGELMA LASKENNALLINEN EI LASKENNALLINEN ONGELMA ONGELMA = RATKEAMATON RATKEAVA ONGELMA ONGELMA OSITTAIN RATKEAVA EI TEHOKASTA RATKAISUA

ONGELMA LASKENNALLINEN EI LASKENNALLINEN ONGELMA ONGELMA = RATKEAMATON RATKEAVA ONGELMA ONGELMA OSITTAIN RATKEAVA EI TEHOKASTA RATKAISUA Ô ÖÙ Ñ ÐÐ Ø Ä ÒÒ Ò ÚÐÐ ¾¼½¼ ÐÙ ÒÒÓØ ÖØ Ò Ñ Ø Ñ ØÒ Ô ÖÙ ØØغºº Â Ñ Ò ØÝÝÔÔ Ø ØØ ÐÙ Å Ø Ñ Ø ÖØØ µ Ñ Ø Ñ Ø º Ù Ò ÅÓØÛ Ò ÍÐÐÑ Ò ÁÒØÖÓ ÙØ ÓÒ ØÓ ÙØÓÑ Ø ÌÓÖÝ Ä Ò Ù ÀÓÔÖÓ Ø ÓÑÔÙØ Ø ÓÒº Ò ØØÓÒ ØØ ÐÝØØÒ ÔÓÐÐ Ò Ò

Lisätiedot

º F(+,+ ) = 1 F(, ) = F(,y) = F(x, ) = 0 й

º F(+,+ ) = 1 F(, ) = F(,y) = F(x, ) = 0 й Ú ËÁË ÄÌ ÅÓÒ ÙÐÓØ Ø ÙÑ Ø ½ º½ à ÙÐÓØØ Ø ÙÑ Ø º º º º º º º º º º º º º º º º º º º º º ½ º½º½ Ê ÙÒ ÙÑ Ø ÓÐÐ Ø ÙÑ Ø º º º º º º º º º ½ º½º¾ ÓÐÐ Ò Ó ÓØÙ ÖÚÓÒ ÓÑ Ò ÙÙ º º º º º º º º º ½ º½º À Ö Ö Ø Ñ ÐÐ

Lisätiedot

u(0,t) = u(l,t) = 0, t > 0

u(0,t) = u(l,t) = 0, t > 0 ÓÙÖ Ö¹ Ö Ø ¹ÑÙÙÒÒÓ Ø ÈÖÓ Ö Ù ¹ØÙØ ÐÑ Ì ÑÙ ÀÓÒ Ò Ò ½ ¾ ÁعËÙÓÑ Ò ÝÐ ÓÔ ØÓ Ý Ò Ñ Ø Ñ Ø Ò Ð ØÓ ¾ º ØÓÙ Ó ÙÙØ ¾¼½¾ Ì Ú Ø ÐÑ Ì ÈÖÓ Ö Ù¹ØÙØ ÐÑ Ø ÐÐÒ ÓÙÖ Ö¹ Ò ÐÝÝ Ò ÑÔ ØÙ¹ ÐÓ Ó Ø Ò ÓÚ ÐÐÙ º Ä Ø Ò Ð ÐÐ ÓÑÔÐ Ø

Lisätiedot

Šع½º½¼ ¼ Å Ø Ñ Ø Ò Ô ÖÙ ÙÖ Ä Á Ê ÆÌÁ ÄÁ ÀÌ Ä Ë ËÌ ÅÁÌ ÌÁÅÇ ÁÊÇÄ Â ÇÄ ÎÁ Æ Î ÆÄÁÆÆ 3 2.5 2 Ã Ø Ø Ü µ 2 Ü µ 2 Ü µ 3 Ü µ.5 Ø Ü µ 3 Ü µ.5 Ø «.5.5 2 2.5 3 3.5 4 4.5 5 Ü Ü ËÝ Ý ¾¼½¼ Á Ê ÆÌÁ ÄÁ ÀÌ Ä Ë ËÌ ÅÁÌ

Lisätiedot

¼ Ý Ú Ý ¾µ Ò ÑÜ Ü ¼µ ½¼ Ü ÚØØ ÖÚÐÐ Ý ÖÚÐÐ ØÒ ÙÒØÓÓÒ ÊÚÐÐ Ø Ò ÑÖØØÐ Ó Ò¹ÐÙ ØØ e Ó Ù ÚÒ ÒÒ Ò ÒÑ x ØÖÓØØ ÐÙ ØØ d ÚÒÒØÒ ß ÑÖØØÐÝ ÐØ 1 ¾¾ ÈÐÐ Ø ÑÖØØÐÝØ ¾¾

¼ Ý Ú Ý ¾µ Ò ÑÜ Ü ¼µ ½¼ Ü ÚØØ ÖÚÐÐ Ý ÖÚÐÐ ØÒ ÙÒØÓÓÒ ÊÚÐÐ Ø Ò ÑÖØØÐ Ó Ò¹ÐÙ ØØ e Ó Ù ÚÒ ÒÒ Ò ÒÑ x ØÖÓØØ ÐÙ ØØ d ÚÒÒØÒ ß ÑÖØØÐÝ ÐØ 1 ¾¾ ÈÐÐ Ø ÑÖØØÐÝØ ¾¾ ÅÙØØÒ ÓÐÑÓÒØÐØÒ ØÔÒ ÑÝ À ÐÐ ÐÐ ÐÐ ÑÖØØÐÝ ÓØ ÒÝÚØ ÚÒ Ø ÖÓØØ ËÐÐÓÒ ØØ ÑÓ ÓÚØØÒ ØÑÒ ÐÙ Ò ÖÚÓÓÒ ÆÑÒÒÒ Ú Ò ÔÙÓÐ ÓÒ ÑÓ ÔÐ Òѵ ÓØØ Ò ÒÑØØÝ ÖÚÓÒ ÑÙÙØØÙÒ ÖÙÖ Ú Ø ÑÙØÙÐÐÝ ÖÙÖ Úµ ÚÙÓÖÓØØÒ ØÓ Ò ÅÙ Ø ÓÐÑÓÒØÐ Ø ØÙØÙÒ

Lisätiedot