Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Ç ÐÑ ØÓ Ò ÑÓ ÙÐ Ö Ó ÒØ ½ ÄÔ Ð Ú Ø ÓÑ Ò ÙÙ Ø Ô Ø Ó ÐÑÓ ÒØ Ô Ø º½ Ä ØÓ Ó Ø Ð ØÓ Ó Ø ÑÖ ØØ ÐÝØ º º º º º º º º º º º º º º º º º º º¾

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Ç ÐÑ ØÓ Ò ÑÓ ÙÐ Ö Ó ÒØ ½ ÄÔ Ð Ú Ø ÓÑ Ò ÙÙ Ø Ô Ø Ó ÐÑÓ ÒØ Ô Ø º½ Ä ØÓ Ó Ø Ð ØÓ Ó Ø ÑÖ ØØ ÐÝØ º º º º º º º º º º º º º º º º º º º¾"

Transkriptio

1 Ô Ø Ó ÐÑÓ ÒØ ÐÔ Ð Ú Ò ÓÑ Ò ÙÙ Ò ÑÓ ÙÐ ¹ Ö Ó ÒØ Ì ÑÓ ÌÙÓÑ Ò Ò À Ð Ò ½º º¾¼¼ Ë Ñ Ò Ö Ø ÐÑ À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ Ì ØÓ Ò ØØ ÐÝØ Ø Ò Ð ØÓ

2 Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Ç ÐÑ ØÓ Ò ÑÓ ÙÐ Ö Ó ÒØ ½ ÄÔ Ð Ú Ø ÓÑ Ò ÙÙ Ø Ô Ø Ó ÐÑÓ ÒØ Ô Ø º½ Ä ØÓ Ó Ø Ð ØÓ Ó Ø ÑÖ ØØ ÐÝØ º º º º º º º º º º º º º º º º º º º¾ à ÓØØ Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º Ô Ø Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º Ô ØÂ Ò ØÓØ ÙØÙ Ø º º º º º º º º º º º º º º º º º º º º º º º º º Ô Ø Ó ÐÑÓ ÒÒ Ò ÐÙÓÒØ Ø ½¼ Ø ÒÚ ØÓ ½½

3 ½ ½ ÂÓ ÒØÓ Ô Ø Ó ÐÑÓ ÒØ ÓÒ ÚÙÓÒÒ ½ Ø ÐØÝ Ø Ò ÃÄÅ + ÓÒ Ø ÚÓ Ø ÓÒ Ô Ö ÒØ Ó ÐÑ ØÓ Ò ÑÓ ÙÐ Ö ÙÙØØ º Ë Ò ÑÓØ Ú Ø ÓÒ ÓÒ Ú ÒØÓ ØØ Ú Ò¹ ØÙÒ ÐÐ ÔÖÓ ÙÖ Ð ÐÐ Ø ÓÐ ÓÔ ÖÙ Ø ÐÐ Ð ÐÐ Ð ØÙØ Ó ÐÑ ØÓØ ÐØÚØ Ò ÓÑ Ò ÙÙ Ó Ò ØÓØ ÙØÙ ÓÒ ÙØÙÒÙØ Ö ÔÙÓÐ ÐÐ Ó ÐÑ ØÓ º Ç Ð¹ Ñ ØÓÒ ÝÐÐÔ ØØÚÝÝ ÝÑÑÖÖ ØØÚÝÝ ÙÙ ÐÐ Ò ÝØØ ÓÑ Ò ÙÙ Ø Ö ÚØ ÙÒ Ö ÓÒ ÐÑ Ö Ø Ú Ø ØÓØ ÙØÙ Ò Ó Ø ÓÚ Ø Ó ØØÙÒ Ø ÒÒ Ó ÐÑ ¹ ÓÓ ÃÄÅ + º ¾¾¼ º Ì Ø Ø Ø ÐÐÒ Ô Ø Ó ÐÑÓ ÒØ Ò Ø Ù Ø ÐÐ ÓÐ Ú ÐÔ Ð ¹ Ú Ò ÓÑ Ò ÙÙ Ò ÓÒ ÐÑ º Ä ÑÔ Ò Ñ Ö Ò Ô Ø Ð Ø Ø ÐÐÒ Ô Ø ÓÒ ÓÑ Ò ÙÙ Ú ÖØ ÐÐ Ò Ô Ø ÐØ Ò ÝÐ Ò ÓÑ Ò ÙÙ Òº ØÝ Ð ÑÓ ÙÐ Ö Ó ÒÒ Ò ØØ Ò Ú Ñ Ø Ñ Ò Ð Ò ØÓ Ø Ò ØØ Ð¹ Ô Ð Ú Ø ÓÑ Ò ÙÙ Ø ÑÙÓ Ó Ø Ú Ø Ø Ò ÝÐ Ø ÝØ ÓÐ Ú ÐÐ ÑÓ ÙÐ ¹ Ö Ó ÒØ Ñ Ò Ø ÐÑ ÐÐ º Ê Ø ÙÒ Ý Ò ÐÔ Ô Ø Ó ÐÑÓ ÒØ Ò Ø ÚÓ ØØ Øº ÌÑÒ Ð Ò Ø ÐÐÒ ÓÒ Ö ØØ Ò Ñ Ö Ò Ô Ø Ó ÐÑÓ ÒØ Ö Ø ÐÑ ¹ Ø ¹ Ð Ø Ô Øº ØÝ ÔØØÝÝ Ô Ø Ó ÐÑÓ ÒÒ Ò Ô ÖÙ ÐÙÓÒØ Ò Ø ÝØÝ ¹ Ò ÓØ Ú ÖÖ Ø Ò Ô ØÂ Ò Ô ÖØ Òº ¾ Ç ÐÑ ØÓ Ò ÑÓ ÙÐ Ö Ó ÒØ ÅÓ ÙÐ Ö Ó ÒØ ÓÒ Ò Ò ÝÐ Ø ÝÚ ÝØØÝ Ø Ò Ð Ó Ò Ó ÐÑ ØÓ¹ Ò ÑÓÒ ÑÙØ ÙÙ Ò ÐÐ ÒÒ º ÇÒÒ ØÙÒ Ò ÑÓ ÙÐ Ö Ó ÒÒ Ò Ý ÝØ ØÙ¹ Ú Ø Ó ÐÑ ØÓÒ Ð Ò Ö Ò Ö Ú º Ç ÐÑ ØÓÒ ØÝ Ú ÑÓ ÙÐ Ö Ó ÒØ Ñ ÓÐÐ Ø ØÝ ØÝ Ò Ñ Ò Ù ÐÐ Ö ÔÔÙÑ ØØÓÑ ÐÐ ØØ ÖÝ Ñ ÐÐ Ñ ¹ ÒÓÔ ÙØØ Ó ÐÑ ØÓÒ Ú ÐÑ ØÙÑ Ø È Ö ¾ º ½¼ º ÅÓ ÙÐ Ö ÙÙ Ø Ó ¹ ÐÑ ØÓØÙÓØØ Ø ÐÔÓ Ø ÑÙÙÒÒ ÐØ Ú Ò Ó Ý Ø ÑÓ ÙÙÐ ÚÓ Ò ÑÙÙØØ Ö Ð Ø Ò ÑÙ Ø ÑÓ ÙÙÐ Ø Ö ÔÔÙÑ ØØ º Ä Ó ÐÑ ØÓÒ ÝÑÑÖÖ Øع ÚÝÝ Ô Ö Ò Ó ÐÑ ØÓ ÓÒ Ñ ÓÐÐ Ø ØÙØ ÑÓ ÙÙÐ ÖÖ ÐÐ Ò Ñ Ô Ö ÒØ Ò ÝÐÐÔ ØØÚÝÝØغ È Ö ÑÔ ÝÑÑÖÖ ØØÚÝÝ ØÙÙ ÑÝ Ó Ó Ö Ø ÐÑÒ Ð ÑÑ ÙÙÒÒ ØØ ÐÙ È Ö ¾ º ½¼ º ÐÐ Ð Ò ØØÙ È ÖÒ Ò ÖØ Ð ÇÒ Ø Ö Ø Ö ÌÓ Í Ò ÓÑÔÓ¹ Ò ËÝ Ø Ñ ÒØÓ ÅÓ ÙÐ Ô ØÒ ØÖ Ò ÑÓ ÙÐ Ö ÙÙØØ ØØ Ð ÚÒ Ð Ø ¹ Ò Ú Ø ÓÐ Ó ÖØ Ð Ò Ö Ó ØÙ Ø ÐÐ ½ ¾ ÝÐ Ø ÝÚ ÝØØÝ ËØ ¼ º º È ÖÒ ØØ Ò ÓÖÑ Ø ÓÒ Ô ÐÓØØ Ñ Ò Ò ÑÓ ÙÐ Ö ÙÙ Ò Ö ¹

4 ¾ Ø Ö Òº ¹ÑÓ ÙÐ Ö ÐÐ Ó ÐÑ ØÓÒ Ó ØÙ ÐÐ ÓÒ ÐÙÓÒØ ÒÓÑ Ø ØØ Ý Ó ¹ ÐÑ ØÓÒ Ó Ú Ø Ý Ø Ú ØØ Ø ÐØ Ó ÐÑ ØÓÒ ÙÓÖ ØØ Ñ Ø ÓÒ ÔÖÓ¹ Ó ÒÒ º ÌÐÐ Ò Ó ØÙ Ò Ø Ù Ø ÐÐ ÓÐ Ú Ñ ÐÐ ÓÒ ÚÙÓ Ú Ó Ó ÙÚ Ø ÓÒ ÔÖÓ Ó ÒØ º Ç ÐÑ ØÓÒ Ó Ø ÙÚ ÙØÙÚ Ø ÙÓÖ Ò ØÑÒ ÚÙÓ Ú ÓÒ Ð Ñ ÒØ ÐÐ º ÅÓ ÙÐ Ö Ó ØÙ ÑÓ ÙÙÐ Ø ÚØ Ò Ú Ø ÔÖÓ Ó ÒÒ Ò Ú Ø Ú Ò ÙÙÒÒ ØØ ÐÙÖ Ø Ù º ÅÓ ÙÙÐ Ô ÐÓØØ Ö Ø ÐÑÒ ÑÙ ÐØ Ó ÐØ ÓÒ Ò ÙÙÒÒ ØØ ¹ ÐÙÓÒ ÐÑ Ò Ö Ø ÙÒ ÑÓ ÙÙÐ Ò Ö Ô ÒØ ÑÙÙÒ Ö Ø ÐÑÒ Ù Ø Ò ÓÒ Ð ØØÙ Ò Ò ØØ Ô Ð Ø ÙÐÓ Ô Ò Ñ ÓÐÐ ÑÑ Ò Ú Ò Ø ØÓ Ø ØÓ Ñ ÒÒ ¹ Ø Ò È Ö ¾ º ½¼ º ÆÝ Ý Ó ÐÑ ØÓØÙÓØ ÒÒÓ ÔÙ ÙØ Ò ÑÓÒ ÑÙØ ÙÙ Ò ÐÐ ÒÒ Ò Ý Ø Ý ¹ Ò Ó Ø Ò ÖÓØØ ÐÙ Ø ÓØ È ÖÒ Ò ØØÑ ÑÓ ÙÐ Ö Ó ÒÒ Ò Ö Ø Ö ÙÓÖ Ò ØÙ ËØ ¼ º º Ç ÐÑÓ ÒØ ÐØ Ò ØÝ ÓÒ Ò ØÚ ÑÓ ÙÐ Ö Ó ÒØ ØÙ Ú ÔÝÖ ÑÝ ÐÙÓ¹ ÙÙ ØÖ Ø ÓÑ Ò Ñ ÓØ Ú Ô ÙØØ Ú Ø Ó ÐÑÓ Ò ØØ Ð Ñ Ø Ø Ñ Ò Ó ÐÑ Ò ÙÓÖ ØÙ Ò Ú Ò Ò Ò Ö Ó ØØ Ñ Ò Ð Ò Ð Ù Ø Ø Ñй Ð Ò Ó ØØÙÚ Ø ¼¼ º ½ ¾ º ÃÓÒ Ð Ó ÐÑ Ð ÓÓ Ò ÐÓÔÙÐÐ Ò ÙÓÖ Ø ØØ Ú Ò Ó ÐÑ Ò ÚÐ ÐÐ ÓÒ Ø Ù Ú Ø ÚÙÙ º ÂÓ ÐÐ Ó ÐÑÓ ÒØ Ð Ò Ð Ù ÐÐ ÓÒ Ú ÙØÙ Ø ÑÐÐ Ò Ý Ó ÙÓÖ Ø ØØ Ú Ó ÐÑ Ó ØØÙÙ ÙÓÖ Ø ØØ Ú Ó ÐÑ Ú Ö Ø Ò Ð Ù Ò Ð ÝÝØ Ò ¼¼ º ½ º Ò ÑÑ Ò Ò Ó ÐÑÓ ÒØ ÐØ Ò Ñ ¹ Ò Ñ Ó ÝÐ ØØ ØÑÒ Ø Ù Ò Ú Ø ÚÙÙ Ò ÓÐ Ð Ó ÐÑ ¹ ØÖ Ø Óº Ð Ó ÐÑ Ø ÔÖÓ ÙÙÖ Ø ÙÒ Ø ÓØ ÐÔÓØØ Ú Ø Ó ÙÓÑ ØØ Ú Ø Ò Ó Ø Ò ÖÓØØ ÐÙ º Æ Ø ÝØØÑÐÐ Ó ÐÑ ØÓÒ ØØÑ Ò Ò ÚÓ Ø Ò Ñ Ö Ð Ó ÐÑ Ö ØÓÒ Ø Ý ÝÒØÚÒ ÓÚ ÐÐÙ Ó ÐÑ Ò Ð Ø Ñ Òº Ð Ó ÐÑ ÐÐ ÓÒ ÓÑ ÙØ ÙÖ ¹ Ô ÒØ Ò Ó Ô ÐÓØØ Ð Ó ÐÑ Ò ØÓØ ÙØÙ Ò È ÖÒ Ò Ö Ø Ö Ò ÑÙ Ø º È ÖÒ Ñ Ò Ø ÓÒ Ö ØØ Ò ÑÓ ÙÐ Ö Ó ÒØ Ñ Ò Ø ÐÑÒ Ø ØÓÖ ÒØ Ò ØÓ¹ Ø ÙØØ Ñ Ò Ø Ò ØØ Ø ØÓÖ ÒØ Ò Ò Ò ØÓØ ÙØÙ Ø ÙÓÖ Ò ØØ Ð ÚØ Ð Ó ÐÑ Ø Ó Ø Ø Ò Ñ Ò ÑÓ ÙÙÐ Ò Ò Ò ØÓØ ÙØÙ Ô ÐÓØ Ø Ò ØÖ ¹ ØÓ ØÙ Ò Ð Ó ÐÑ Ò Ø È Ö ¾ º ½¼ º È Ö Ø ØÙÒÒ Ø Ò ÒÝ ÝÒ Ô ¹ ÐÓ ÒØ Ò Ò ÚÙÐÐ ØÓØ ÙØ ØÙØ Ø ØÓÖ ÒØ Ø ØÖ Ø Ò Ø ØÓØÝÝÔÔ Ò ËØ ¼ º º ØÙ ÑÙÓ Ó Ø ÔÓ Ò ÑÝ ÓÐ ÓÔ ÖÙ Ø ÐÐ Ó ÐÑÓ ÒÒ ÐÐ Ó ¹ ØÖ Ø Ò Ø ØÓØÝÝÔÔ Ò ÓÒ Ð ØØÝ Ô Ö Òغ

5 ÄÔ Ð Ú Ø ÓÑ Ò ÙÙ Ø Ë ÔÖÓ ÙÖ Ð Ó ÐÑÓ ÒÒ ØØ Ø ÙÖ ÒÒ ÓÐ ÓÔ ÖÙ Ø Ó ¹ ÐÑÓ ÒÒ Ó ÐÑ ØÓÒ Ó ØÙ ÑÓ ÙÙÐ Ò Ô ÖÙ ØÙÙ Ó ÐÑ ØÓÒ Ñ Ò ØÓ ¹ Ñ ÒÒ ÐÐ Ò Ó Ò ÑÓ ÙÙÐ Ò ÓÒ Ô ÐÓ ØÙ Ó Ó Ö Ø ÐÑÒ Ó Ò ØÓ Ñ ÒÒ ÐÐ Ò Ò Ý ÃÄÅ + º ¾¾¾ º Î ÖÖ ØØÙÒ ÑÔ Ò Ó ÐÑÓ ÒØ Ô Ö ÑÓ Ò ÓÐ ÓÔ ¹ ÖÙ Ø Ò Ó ÐÑÓ ÒÒ Ò ØÙÒ ÓÒ Ô ØØÝ Ø ØØ ÙÒ Ò ÓÚ ÐÐÙ ÐÙ Ò ØÓ ÐÐ Ø ÓÒ ÐÑ Ø ØØ Ø ÓÒ ÐÙÓÒØ Ú Ñ ÐÐ ÒØ Ð Ò Ø Ò Ø Ö Ó Ñ Ò ÓÐ ÓÑ ÐÐ Ò ÚÙÐÐ ÃÄÅ + º ¾¾¼ º ÇÒ Ù Ø Ò Ò ÓÐ Ñ ÓÙ Ó ÓÒ ÐÑ Ó Ò Ú Ø Ñ Ø ÙÙÒÒ ØØ ÐÙÖ Ø ÙØ ÚØ ÓÐ Ð Ø ÑÓ ÙÐ Ö Ó Ø Ú ÓÐ Ó¹Ó ÐÑÓ ÒÒ Ò Ø Ö Ó Ñ ÐÐ Ñ Ò Ñ ÐÐ ÃÄÅ + º ¾¾¼ º ÌÐÐ Ø Ò ÙÙÒÒ ØØ ÐÙÖ Ø Ù Ò ØÓØ ØÙ Ô Ö ØÓÙØÙÙ Ó Ö ÑÓ ÙÙÐ Ø ÑÓ ÙÐ Ö Ó ÒÒ Ò ÙØ ØÝ Ò ÓÒ ÝÐÐÔ ØØÚÝÝ Ò ÝÑÑÖÖ Øع ÚÝÝ Ò Ù Ø Ò Ñ Ò Ø ØÒº Ý Ò ÖØ Ò Ñ Ö ØÐÐ Ø ÐÔ Ð Ú Ø ÓÑ Ò ÙÙ Ø ÖÓ Ùع Ø Ò ÓÒ ÖÒµ ÓÒ ÐÓ Ø ØÓ Ò ÖÑ Ò Ò Ö Ø ÐÑÒ Ö ØÓ Ñ ÒÒÓ Ø º ÇÐ Ø Ø Ò ØØ Ó ÐÑ ØÓÒ ÓÑÔÓÒ ÒØØ Ó Ø ÓÚ ÐÐÙ ÐÙ Ò ØÓ ÐÐ ØØ Ø Ó ¹ ÐÑ ØÓÒ Ý ÒØÓ Ñ ÒÒ ÐÐ ÙÙ ÓÒ ØÓØ ÙØ ØØÙ Ò Ò ÓÑÔÓÒ ÒØØ Ò Ø Ö Ó Ñ Ò ÓÔ ¹ Ö Ø Ó Ò º Ë Ñ ÐÐ Ó ÐÑ ØÓÐÐ ÓÒ Ý ÒØÓ Ñ ÒÒ ÐÐ ÙÙ Ò Ð Ø ØØÙ Ú Ø ÑÙ ØØ Ò ØÓ Ñ ÒÒÓ Ø ÓÒ Ø ÐÐ ÒÒ ØØ Ú ÐÓ Ø ØÓ Ý ÒÑÙ ÐÐ Ø Ú ÐÐ º Æ Ò ÐÔÓ Ø ØØ Ú Ø ÑÙ Ò ØÓØ ÙØØ Ñ Ò Ò ÐÐÝØØ ÐÓ Ø ØÓ Ò Ð ØØÝÚÒ Ó ÐÑ ¹ ÓÓ Ò Ð Ñ Ø Ù Ò Ö ÓÑÔÓÒ ÒØØ Òº ÌÐÐ Ò ÐÓ ØÓ Ñ ÒÒ ÐÐ ÙÙ ÓÐ ÑÓ ÙÐ Ö Ó ØÙ Ò ÑÙÙØØ Ñ Ò Ò ÚÓ Ú Ø ÑÙÙØÓ Ð Ò Ó Ò Ó ÐÑ ØÓ º ÅÙ Ø Ù Ò Ø ØØÝ Ñ Ö Ú Ø ÑÙ Ø ÓØ ÐÔ Ð Ú Ø Ô ÖÙ Ø ÓÒ ÑÓ ÙÙÐ ÓÒ Ú ÒØÙÒ ÓÐ ÓÑ ÐÐ ÓÚ Ø ÔÝ ÝÚÝÝ Ô Ö Ø Ò µ Ö ÒÒ ÙÙ¹ Ò ÐÐ ÒØ Ò Ð ØØÝÚØ Ú Ø ÑÙ Ø ÓÐ Ó Ò Ó ØØ ÐÙ ÙØ ØØÙ Ò Ö Ø Ð¹ Ñ Ò Ö ÓÐÑÙ Òº Ì ÔÝ ÝÚÝÝ ÐÐ Ø Ö Ó Ø Ø Ò Ø ØÓ ÐÐ Ò ØÓØ ÙØØ Ú Ò ÓÐ Ó ¹ Ò Ø Ð Ò ÐÝØØÑ Ø Ó ÐÑ Ò ÙÓÖ ØÙ ÖÖ Ø ØÓ Ò Ñ Ö Ø ÐÐ ÒØ Ñ Ð¹ Ð ÓÐ ÓØ Ø ØÓ ÒØ Ö Ø ÐÑÒ ÌÇÀËÅË º½½ º ÈÝ ÝÚÝÝ ÓÒ ÝÚ Ñ Ö ÐÔ Ð Ú Ø ÓÑ Ò ÙÙ Ø ÐÐ Ò Ú Ø ØÓØ ÙØ ØØÙÒ Ú Ø ÝÐ ÑÖ Ø Ò Ñ ØÓ Ò Ð Ñ Ø Ò Ø ØÓ ÐØ ÐÙÓ Ò Ò Ò Ò ÓÐ Ó Ò ¹ ÓÖ Ò ½ ÑÙÙØØ Ñ Ø º ÄÔ Ð Ú Ò ÓÑ Ò ÙÙ Ò ÓÒ ÐÑ ÚÓ Ò Ò ÙÓÖ Ò ÙÖ Ù Ò ¹ Ø ØØ Ú ÒØÙÒ Ø Ð Ø Ñ ÐÐ ÒÒÙ ÒÓØ Ñ ÓÐÐ Ø Ú Ø Ó ÐÑ ØÓÒ Ó ØÙ ¹ ½ ÓÖ ÓÒ Ñ ØÓ Ó ÐÙ Ø ÑÙÙØØ ÓÐ ÓÒ Ø Ð º

6 Ò ÑÓ ÙÙÐ Ò ÒÓ Ø Ò Ý Ò Ú ÐÐ Ø Ú Ò Ò ÙÐÑ Ò Ø ÙÐÓØØÙÚÙÙ Ò Ù ¹ Ø Ò ÌÇÀËÅË º ½½½ º Ç ØÙ Ó Ô ÖÙ ØÙÙ ÓÚ ÐÐÙ ÐÙ Ò ØØ Ò Ñ Ð¹ Ð ÒØ Ñ Ò ÑÓÒ Ø Ó ÐÑ ØÓÐØ Ú ØÙØ ÓÑ Ò ÙÙ Ø ÐÔ Ð Ú Ø ØÑÒ Ô ÖÙ ¹ Ø ÓÒ Ó ØÙ Ò ÐÐ Ò Ò Ô ÖÙ ÐÙÓÒÒ ÐÔ Ð Ú ÐÐ Ø Ú Ò Ó ØÙ Ò ÙÐÑ Òº Ì ÖÖ ² к ØØÚØ ÖØ Ð Ò ÌÇÀËÅË ØÖ Ø Ò Ñ ÐÐ Ò ÑÓÒ ÙÐÓØØ ¹ Ø Ò Ó Ø Ò ÖÓØØ ÐÙ Ø Ó Ñ ÓÐÐ Ø Ù ÑÔ Ò ÙÐÓØØÙÚÙÙØ Ò Ó ØØÙÚ Ò Ò Ó Ø Ò Ñ ÐÐ ÒØ Ñ Ò Ñ Ò Ø Ñ Ó ÐÑ ØÓ º Ô Ø Ó ÐÑÓ ÒØ ÔÙÓÐ Ø Ò Ø Ö Ó Ô Ö Ñ Ò Ó ÐÑÓ ÒØ Ð Ú ÐÑ Ø ØÝ ÐÙ Ó ÐÐ ÐÔ Ð Ú ÓÑ Ò ÙÙ ÝÖ Ø ØÒ ÓÒ Ö ØØ Ø ÑÓ ÙÐ Ö Ó ¹ Ô ÖÙ Ø ÓÒ ÑÓ ÙÙÐ ÓÒ Ù Ø Ò Ö ÔÔÙÑ ØØÓÑ ÐÐ Ó ØÙ Ø Ú ÐÐ ÌÇÀËÅË º ½½ º

7 Ô Ø Ó ÐÑÓ ÒØ Ô Ø Ó ÐÑÓ ÒØ ÓÒ ÖÓÜ Ò È ÐÓ ÐØÓÒ ØÙØ ÑÙ Ù Ø ØØÝ Ð Øݹ Ñ Ø Ô ÐÔ Ð Ú Ò ÓÑ Ò ÙÙ Ò ÑÓ ÙÐ Ö Ó ÒØ Òº Å Ò Ø ÐÑ Ø ÐØ Ò Ã Þ ¹ Ð ² Ð Ò ÖØ Ð Ô Ø¹ÇÖ ÒØ ÈÖÓ Ö ÑÑ Ò ÃÄÅ + º Ô Ø ÐÐ Ø Ö Ó Ø Ø Ò ÓÒÒ ØÙÒ Ø ÑÓ ÙÐ Ö Ó ØÙ ÐÔ Ð Ú ÓÑ Ò ÙÙØØ ÃÀÀ + ¼½ º ¾ º Ô Ø Ø ÚÓ Ò ÔÙ Ù Ò ÐÓ Ø ÓÑÔÓÒ ÒØØ Ò Ò ÑÙØØ Ô Ø Ø ÓÚ Ø ÙÙ Ô ÖÙ Ø ÓÒ ÓÑÔÓÒ ÒØØ Ó ØÙ Ò Ù Ø Ò ÐÔ Ð Ú Ñ Ò Ñ Ò Ó Ø Ò ÖÓØØ ÐÙÙÒ ÃÄÅ + º º Ã Þ Ð ² к ÖÓØØ Ð Ú Ø ÓÑÔÓÒ ÒØ Ò Ô Ø Ò ÙÖ Ú Ø ÃÄÅ + º¾¾ º Ë ¹ ÓÑÔÓÒ ÒØØ ØØ Ô Ø ÙÚ Ú Ø Ö Ø ÐÑÒ ØÓØ ÙØ ØØ Ú ÓÑ Ò ÙÙØØ Ø Ô ÖÖ Øغ ÃÓÑÔÓÒ ÒØØ ÚÓ Ò Ð Ø Ô ÐÓ ÔÖÓ ÙÙÖ ÔÓ ÐÐ ØÖ Ø ÓÑ ¹ Ò Ñ ÐÐ ÙØ Ò ÓÐ ÓÐÐ Ñ ØÓ ÐÐ ÔÖÓ ÙÙÖ ÐÐ Ø ÈÁ ÐÐ º Í Ò ÓÑÔÓÒ ÒØ Ø ÓÚ Ø Ö Ø ÐÑÒ ØÓ Ñ ÒÒ ÐÐ Ò Ó ØÙ Ò Ý Ø ÙØ Ò Ô Ò Ø Ð Ö ¹ Ò ÝØØ Ð ØØÝÑÒ Ú Ù Ð Ð Ñ ÒØØ Ø ÙÚ Ò ØØ ÐÝ ÙÓØ Ñ º Ô Ø ÚÓ Ð Ø Ô ÐÓ Ñº ØÖ Ø ÓÑ Ò Ñ ÐÐ º Ô Ø Ø ÚØ ÝÐ Ò ÓÐ Ö Ø ÐÑÒ ØÓ Ñ ÒÒ ÐÐ Ò Ó ØÙ Ò Ý Ø Ú Ò ÓÑ Ò ÙÙ ¹ ÓØ Ú ÙØØ Ú Ø ÓÑÔÓÒ ÒØØ Ò ÙÓÖ ØÙ Ý ÝÝÒ Ø Ñ ÒØ Ò Ý Ø ¹ Ñ ØØ Ø º Ñ Ö Ô Ø Ø ÓÒ Ö ÒÒ Ø Ò ÓÐ Ó Ò ÝÒ ÖÓÒ Ó ÒØ Ø ÑÙ Ø Ù Ò ÓÔØ ÑÓ ÒÒ Ò ÐÐ ÒØ º Ô Ø Ó ÐÑÓ ÒÒ Ò Ø ÚÓ Ø ÓÒ ØÙ Ô Ø Ò ÓÑÔÓÒ ÒØØ Ò ÖÓØØ Ñ Ø ØÓ Ø Ò Ø Ö Ó Ñ ÐÐ ØÖ Ø ÓÑ Ò Ñ ÓÐÐ Ò ÚÓ Ò Ð Ø ÐÑ Ø Ñ Ò Ñ ÓÐÐ Ò ÓÓ Ø Ø Ò Ý Ø Ò ÐÓÔÙÐÐ Ö Ø ÐÑ ÃÄÅ + º ¾¾ º Ç ÐÑÓ ÒØ ÐØ Ò Ò ÙÐÑ Ø Ô Ø Ó ÐÑÓ ÒØ Ð ÒØ Ô ÖÙ Ø ÓÒ ÓÑÔÓ¹ Ò ÒØØ ÐØ Ý ÐÐ Ø Ù ÑÑ ÐÐ Ô Ø Ð ÐÐ ÃÄÅ + º ¾¾ º ÐÐ ÐÐ ØÓ¹ Ø ÙØ Ø Ò ÓÑÔÓÒ ÒØ Ø Ò Ò Ò ÙÐÑ Ò ÑÙ Ø Ð ÑÑ ÐÐ Ô ¹ Ø Øº Ö ÐÐ Ò Ò Ô Ø ÔÙÒÓ Ú Ø ÓÑÔÓÒ ÒØØ Ò Ô Ø Ò ÓÓ Ø Ñ Ø Ý Ø Ò Ó ÓÒ Ö Ø ÐÑ º Í Ò ÔÙÒÓÒØ Ø Ô ØÙÙ ÒÒ Ø ÑÙØØ ÚÓ Ø Ô ØÙ ÑÝ ÙÓÖ ØÙ Ò º Ë ÙÖ Ú ÐÙÚÙ Ø ÐÐÒ Ô Ø Ð Ô ØÂ Ó ÝØØ ÓÑÔÓÒ ÒØØ Ð ¹ ÒÒ Â Ú ¹Ó ÐÑÓ ÒØ Ðغ Î Ô Ø ÓÒ ÙÙÒÒ Ø ÐØÙ ÝÐ ÝØØ Ô ¹ Ø Ð Ó Ð ÒØ Ú ÐÑ Ø ÓÑÔÓÒ ÒØØ ÐØ Ô Ø ¹ ØØ ÓÑÔÓÒ Òع

8 Ø Ð Ø ÚÓ Ú Ø ÓÐÐ ÓÐÐ ÓÚ ÐÐÙ ÐÙ Ó Ø º Ä Ñ Ò Ó ÐÑ ØÓÒ Ö Ô Ø Ø ÚÓ Ò ØÓØ ÙØØ Ö Ô Ø Ð ÐÐ ÌÇÀËÅË º½½ º Ô ØÂ Ô Ø ÓÒ Â Ú ¹ Ð Ò Ð ÒÒÓ ÓÒ ÙÐ Ð Ù ÙØØÙ Ø ÚÓ Ø ÓÒ ÓÐÐÙØ Ø Ö ÓØ ÝÐ ¹ ÝØØ Ò Ò Ô Ø Ô Ö Ñ Ò ÑÙ Ò Ò Ð Ó ÐÑÓ ÒØ ÝÑÔÖ Ø Ó Ò ÚÙÐÐ Ô Ø Ó ÐÑÓ ÒØ ÚÓ Ø Ò ÖÚ Ó ÑÔ Ö Ø ØÓ ÐÐ ÝØ ÃÀÀ + ¼½ º ¾ º ÃÝ ÓÐ Ô Ø Ó ÐÑÓ ÒÒ Ò ÓÐ ÑÙ Ò ØÝ ÒØÚ Ø ÑÖ ØØÚ ¹ Ø ÐÓÔÙÐÐ Ø ØÓØ ÙØÙ Ø ÃÀÀ + ¼½ º ¾ º Ì Ø Ø Ø ÐÐÒ Ò Ò ÓÙ Ó Ô ØÂ Ò ÓÑ Ò ÙÙ Ô Ø Ó ÐÑÓ ÒÒ Ò Ô Ö ØØ Ò ØØ Ò Ú ÒÒÓÐÐ Ø Ñ º ÇÐ ÐÐ Ò Ò ÓÒ ÐÑ ÝÐ ÝØØ Ô Ø Ð ÓÒ Ñ Ø Ò Ô Ø Ø ØÓØ ÙØØ Ú Ó ÐÑ ÓÓ Ò ÙÓÖ Ø ØØÙ ÐÙØÙ Ó Ú ÐÑ Ø Ó ÐÑ ÃÀÀ + ¼½ º ¾ º ÌØ Ú ÖØ Ò Ô Ø¹ Ð ÓÒ ÝÒ Ñ Ò ÐÔ Ð Ñ Ò Ñ ÐÐ ¾ º ÃÓÑÔÓÒ ÒØØ Ø ÓÒ Â Ú ¹ Ð Ø Ó ÐÑ Ø ÓÒ Ô Ø¹ Ð Ò Ú Ð ØØÙ ÓÙ Ó Ð ¹ ØÓ Ó Ø Ó Ò ÔÓ ÒØ µ ÓØ ÓÚ Ø Ø ÑÐÐ Ø ÑÖ Ø ÐØÝ Ó Ø Ó ÐÑ Ò ÙÓÖ ¹ ØÙ ÙØ Ò Ñ ØÓ Ò ÙØ Ù Ø Ñ ØÓ Ò ÒØÒ ÑÙÙØØ Ñ Ò Òº ÄÔ Ð Ñ Ò Ø Ö Ö ÒÒ ÐÑ Ø Ò Ð Ú ØØ Ñ ÐÐ Ý Ø Ò Ø Ù ÑÔ Ò ØÐÐ Ò Ð ¹ ØÓ Ó Ø Ò Ð ØÓ Ó Ø ÑÖ ØØ ÐÝÐÐ ÔÓ ÒØÙصº À ÐÙØØÙ Ò Ð ØÓ Ó Ø Ò ÚÓ Ð ØØ ÓØØ Ø Ú µ ÓØ ÓÚ Ø Ñ ØÓ Ò ÐØ ÑÓ ÙÐ Ö ØÓ Ñ ÒÒ ÐÐ Ý ¹ غ ÄÙÓ Ú Ø Ú Ø Ô Ø Ð Ô Ø Ø Ó Ò ÓÓØ Ò Ð ØÓ Ó Ø ÑÖ ØØ ÐÝØ ÓØØ Ø Ø Ú ÐÐ Â Ú ¹ Ð Ò ÒØع Ø Ñ ØÓ ØØ ÐÝ º Ô Ø ÓÒ ¹ Ô Ø ÓÑÔÓÒ ÒØØ ÐÙÓ µ Ú Ø Ú ÑÓ ÙÐ Ö Ò Ò Ý Ó ØÓØ ÙØØ ÐÔ Ð Ú Ò ÓÑ Ò ÙÙ Òº Ë ÙÖ Ú ØÙØÙ ØÙØ Ò Ø Ö ÑÑ Ò ÐÐ Ñ Ò ØØÙ Ò Ô ØÂ Ò Ý Ò ØØ Ò Ñ Ö Ò ÚÙÐÐ º º½ Ä ØÓ Ó Ø Ð ØÓ Ó Ø ÑÖ ØØ ÐÝØ Ô ØÂ Ø Ö Ó ÓÙ ÓÒ ÔÖ Ñ Ø Ú Ð ØÓ Ó Ø Ð Ù Ø ÔÖ Ñ Ø Ú ÔÓ ÒØÙØ ¹ Ò ØÓÖµ Ó Ò ÚÙÐÐ Ó ÐÑÓ Ú ØØ Ð ØÓ Ó Ø Ò Ø ÖÚ ØØ Ó Ò Ò ¾ Ô Ø ÐØ ÑÝ Ñ ÓÐÐ ÙÙ Ò Ø ØØ Ò ÐÔ Ð Ñ Ò ÓÒ ÚÙÐÐ ÓÑÔÓÒ Òع Ø Ø ÓÒ ÐÙÓ Ò ÚÓ Ð Ø ÙÙ ÓÔ Ö Ø ÓØ º

9 Ð ØÓ Ó Ø Ò ÙÓÖ ØÙ ÓÒØ Ø Ø Ú ÐÐ ÓÐ Ú Ò ÖÚÓ Ò ÙØ Ò Ñ ØÓ Ò ÙØ Ù¹ Ô Ö Ñ ØÖ Ò ÃÀÀ + ¼½ º ¾ º Ô Ø Ó ÐÑÓ ÚÓ Ð Ø ÓÑ Ð ØÓ Ó Ø Ñ¹ Ö ØØ ÐÝ ÓÓ Ø Ñ ÐÐ Ò Ð Ò ÔÖ Ñ Ø Ú Øº Ô ØÂ Ò ÑÑØ ÝÒ Ñ Ø Ð ØÓ Ó Ø Â Ú ¹ Ð Ò Ò Ø Ú Ø Ú Ø ÔÖ ¹ Ñ Ø Ú Ø Ð ØÓ Ó Ø Ð Ù Ø ÓÚ Ø Ñ ØÓ Ò Ø ÓÒ ØÖÙ ØÓÖ Ò ÙØ ÙÑ Ò Ò Ðе Ñ ØÓ Ò Ø ÓÒ ØÖÙ ØÓÖ Ò ÙÓÖ ØÙ Ü ÙØ ÓÒµ ÓÐ ÓÒ ÒØÒ ÐÙ Ñ Ò Ò Øµ ÓÐ ÓÒ ÒØÒ ØØ Ñ Ò Ò Øµ ÔÓ Ù ØØ Ð Ò ÙÓÖ ØÙ Ò Ð Öµº Ë ÙÖ Ú Ð ØÓ Ó Ø ÑÖ ØØ ÐÝ Ú ØØ Ò ÈÓ ÒعÐÙÓ Ò Ñ ØÓ Ò Ø Ø ÙÓÖ ØÙ Ó Ø Òº ÈÖ Ñ Ø Ú Ü ÙØ ÓÒ Ú Ø Ñ ØÓ Ò ÙÓÖ ØÙ Ò Ð ØÓ Ó Ø Ó¹ Ø ÙÓÖ Ø ØØ Ú Ò Ñ ØÓ Ò Ðк ÈÖ Ñ Ø Ú Ð Ù ÓÒ ÑÖ Ø ÐØÝ ¹ ÐÙØØÙ Ò Ñ ØÓ Ò ÙØ ÙÖ Ô ÒÒ Ø ØÝ ÐÐ Ø Ô ÐÙÙ ÖÚÓ¹ Ô Ö Ñ ØÖ ØÝÝÔÔ ¹ Ò Ò È Ð¼ ÃÀÀ + ¼½ º ¾ º Ü ÙØ ÓÒ ÚÓ ÈÓ Òغ Ø Òصµ Ü ÙØ ÓÒ ÚÓ ÈÓ Òغ Ø Òصµ Ä ØÓ Ó Ø ÑÖ ØØ ÐÝ ÔÖ Ñ Ø Ú Ø ÓÒ Ý Ø ØØÝ Ø ¹ÓÔ Ö ØØÓÖ ÐÐ º ÅÙÙØ Ð Ò ÓÔ Ö ØØÓÖ Ø ÓÚ Ø ²² Ò Ø Ó ÃÀÀ + ¼½ º º Ô Ø ØÙ ÑÝ Ö Ó Ø ØØÙ ÑÓÒØÙÒÒ ØÙ Ø ÓÒ ÚÙÐÐ ÙØ ÙÖ Ô ÒØÓ Ø ÖÚ Ø ÔÐ Ó Ó ÓÒ Ò ÃÀÀ + ¼½ º ¾ º Ü ÙØ ÓÒ ÈÓ Òغ ººµµ ÐÐ Ò Ò Ð ØÓ Ó Ø Ð Ù Ú ØØ Ò ÈÓ ÒعÐÙÓ Ò Ñ ØÓ Ò ÙÓÖ ØÙ Ó Ø Òº ¹ÔÖ Ñ Ø Ú Ò Ð ØÓ Ó Ø ÑÖ ØØ ÐÝÒ ÚÓ Ò Ñ Ø Ñ Ò Ð Ò Ø ÚÓ ÝØØ Ð Ù Ò ÙØ Ò ÔÖ Ñ Ø Ú Ø Ð ØÓ Ó Ø Ð Ù ØØ º ÔÓ ÒØÙØ ÓÓÖ Ò Ø Ò µ Ü ÙØ ÓÒ ÚÓ ÈÓ Òغ Ø Òصµ Ü ÙØ ÓÒ ÚÓ ÈÓ Òغ Ø Òصµ ÐÐ Ð ØÓ Ó Ø ÑÖ ØØ ÐÝÐÐ ÒÒ Ø Ò Ò Ñ ÓÓÖ Ò Ø Ò º

10 º¾ à ÓØØ Ø Ô Ø Ò ÓØØ Ø ÓÚ Ø ÐÙÓ Ò Ñ ØÓ ÐÐ Ò ÐÓ ØÓØ ÙØÙ Ò Ý Ø Ó Ò ÙÓÖ ØÙ ÝØ ØÒ ÐÙØØÙ Ð ØÓ Ó Ø ÑÖ ØØ ÐÝ Ú Ø Ú Ò Ð ØÓ Ó Ø Ò ÃÀÀ + ¼½ º º à ÓØ ÙÓÖ Ø Ø Ò Ó Ð ØÓ Ó Ø ÒÒ Ò ÓÖ ¹ ÓØØ Øµ Ò Ò Ð Ò Ø Öµ Ø Ò Ò ÙÓÖ ØÙ Ò ÑÓÐ ÑÑ Ò ÔÙÓÐ Ò ÖÓÙÒ µº ÐÐ Ó Ò Ñ ØÝÒ Ð ØÓ Ó Ø ÑÖ ØØ ÐÝÒ ÚÙÐÐ ÚÓ Ò Ø ÐÐ Ô Ø Ó ÙÓÖ Ø Ø Ò ÐÙØØÙ Ò Ð ØÓ Ó Ø Ò Ð Ò Ø Ö µ ÓÓÖ Ò Ø Ò µ ß Ò ØÖÙ Ð ÅÙÙØØÙ Ò ÖÚÓ Ø Ø Ò ØÖÙ Ò Ò Ð Ò ÙÒ ÈÓ ÒعØÝÝÔÔ Ò ÓÐ ÓÒ ÓÓÖ¹ Ò ØØ ÓÒ ÑÙÙØ ØØÙº º Ô Ø Ø Ä ØÓ Ó Ø ÑÖ ØØ ÐÝØ Ò Ò ÝØ ÝØÝÚØ ÓØØ Ø ÓÓØ Ò Ý Ø Ò Ô Ø º Ô Ø Ò ÚÓ Ò Ð Ð ØØ Ñ ØÓ Ò ÒØØ Ò ØØ ÐÝ Ú Ò Ù Ò Â Ú ¹ Ð Ò ÐÙÓ Ò Òº Ë ÙÖ Ú ÓÒ Ó ÓÒ Ò Ò Ô Ø Ò ØØ ÐÝ ÑÙ ÐØÙ Ð Ø Ø ÃÀÀ + ¼½ º µº Ô Ø ÚÓ Ø Ò ÝØØ ÙÚ Ò ØØ ÐÝÓ ÐÑ ØÓ Ø Ö Ø Ñ Ò ÓÒ Ó Ó Ò ÖÙÙ ÙÐÐ ÓÐ Ú ÙÚ Ó ÖØÝÒÝغ Ô Ø ÅÓÚ ÌÖ Ò ß»» Ø ØØ Ò Ò ÒØØ Ø Ø ÓÓÐ Ò Ð Ð»» Ø ØØ Ò Ò Ñ ØÓ Ø Ø ÓÓÐ Ò Ø Ø Ò Ð Ö µ ß ÓÓÐ Ò Ö ÙÐØ Ð Ð Ð Ö ØÙÖÒ Ö ÙÐØ Ð»» Ð ØÓ Ó Ø ÑÖ ØØ ÐÝ ÔÓ ÒØÙØ ÑÓÚ µ Ü ÙØ ÓÒ ÚÓ ÙÖ Ð Ñ Òغ ÒÖ ÒØ Òص

11 Ü ÙØ ÓÒ ÚÓ Ä Ò º ØȽ ÈÓ Òصµ Ü ÙØ ÓÒ ÚÓ Ä Ò º ØȾ ÈÓ Òصµ Ü ÙØ ÓÒ ÚÓ ÈÓ Òغ Ø Òصµ Ü ÙØ ÓÒ ÚÓ ÈÓ Òغ Ø Òصµ л» ÓØ Ø Ö µ ÑÓÚ µ ß Ð ØÖÙ Ð Ñ Ö Ò ÓÑÔÓÒ ÒØØ Ö ÙÚ Ó Ø Ñ ÐÐ ÒØ Ú ÐÙÓ ÐÔ Ð Ú ÓÑ Ò ÙÙ ÓÒ ÖÙÙ ÙÒ Ô Ú ØØÑ Ò ÐÐ ÒØ º Ô Ø ØÓØ ÙØØ ÓÑ Ò ÙÙ Ò Ð¹ Ñ Ñ ÐÐ ÐÔ Ð Ñ Ò Ø Ö Ò Ö ÒØ Ò Ð ØÓ Ó Ø ÑÖ ØØ ÐÝÐÐ ÑÓÚ Ýع ÑÐÐ Ò Ý Ò Ø Ö¹ ÓØØ Òº à ÓØØ Ò ÓÓ Ý Ò ÖØ Ø ÑÙÙØØ Ô Ø Ò ÐÐ Ø ÐÐÝÒ Ø ØØ Ò ÒØÒ Ð ÖÚÓÒº Ô Ø Ø Ö Ó ÑÝ Ø Ú Ð¹ Ð Ò Ø ØØ Ò Ñ ØÓ Ò Ø Ø Ò Ð Ö µ ÓÐÐ ÒØÒ ÖÚÓ ÚÓ Ò ÐÙ º º Ô ØÂ Ò ØÓØ ÙØÙ Ø Ô ØÂ Ò Ð ØÓ Ó Ø Ñ ÐÐ ÑÖ Ñ Ú Ô Ø ÓÓ ÓÑÔÓÒ ÒØØ ¹ ÓÓ ÔÙÒÓØ Ò Ý Ø Òº Ë ÚÓ Ø Ô ØÙ ÒÒ Ò ÒØÑ Ø ÔÖÓ ÓÖ ÐÐ Ò¹ Ò Ú ÒÒ Ú Ò Ð Ò Â Ú Ò Ø ÚÙ ÓÓ Ò Ø ÓÐÐ ÐÙÓ Ò Ð Ø Ñ Ò Ò Ø ÙÓÖ ØÙ Ò Ó Ó Ú ÖØÙ Ð ÓÒ Ò Ó Ò Ø ÝØØ Ò ÝÐ ÑÖ ÙÓ¹ Ö ØÙ Ý ÃÀÀ + ¼½ º ¾ º ÅÝ Ò Ò Ø Ò Ó Ò Ý Ø Ð Ñ Ò Ò ÓÒ Ñ ÓÐÐ Ø º ÃÝØÒÒ Ô ØÂ Ò ØÓØ ÙØÙ Ø ÓÚ Ø ÙÓÖ ØØ Ò Ø ÔÙÒÓÑ Ò ÐÙ ÒÒ Ò ÃÀÀ + ¼½ º ¾ ÑÝ ÑÑ Ú Ö Ó ÑÝ Ø ÚÙ ÓÓ Ò Ø Óй Ð ¼ º Ô Ø ÚÓ Ò ÐÙÓ Ø ÐÐ Ð Ð Ø Ó Ô Ø Ö Ø ÐÑ ¼¼ º º ÌÑ Ø Ö Ó ØØ ØØ Ô Ø ÝØØ Ô Ø Ò ÓÑÔÓÒ ÒØØ Ò ÔÙÒÓÒÒ ÝÚ ÓÑÔÓÒ ÒØØ Ð Ò Ó ÐÑ Ò ÒÒ ØØÝ ÝÒØ Ø Ø Ö ÒÒ ØØ º ÌÑ Ñ ÓÐÐ Ø Ô ØÂ Ò ÐÑ ÙÚÓ Ñ Ø Ð ØÓ Ó Ø ÑÖ ØØ ÐÝÐ Ù Ø Ó ÐÐ ÚÓ Ò ÔÓ Ñ Ð ØÓ Ó Ø ÓÑÔÓÒ ÒØØ Ø ÓÒ Ó ÐÑ Ø Ñ Ö ÑÓÒØÙÒÒ ØÙ ÐÐ º ÃÝØÒÒ Ô ØÂ Ò ÒØ ØÙÓØØ ÓØØ Ø Ø Ú ÐÐ Ñ ØÓ Ð Ð ØÓ Ó Ø Ú Ø Ú Ò Ó Ø Ò ÓÑÔÓÒ ÒØØ Ó ÐÑ ÝÐ ÑÖ Ð ØÓ Ó Ø Ñ ØÓ¹ ÓØ ÙØ ÙÚ Ø Ò Ø ÓØ Ñ ØÓ ÃÀÀ + ¼½ º º ÂÓØ ÙØ Ð ØÓ Ó ¹ Ø ÑÖ ØØ ÐÝØ Ú Ø Ú Ø Ð ÝÐ ÑÖ Ø Ò ÙÓÖ ØÙ Ø Ò Ø Ø Ò Ð Ñ Ø Ð ¹ ØÓ Ó Ø Ñ ØÓ Òº

12 ½¼ Ô Ø Ó ÐÑÓ ÒÒ Ò ÐÙÓÒØ Ø ÐÑ Ò Ö Ñ Ò ÓÚ Ø ØÙØ Ò Ø Ô Ø Ó ÐÑÓ ÒØ Ó ÐÑÓ ÒØ Ð Ò Ô Ö Ñ ¹ Ò ¼¼ º À Ò ÑÙ Ò Ô Ø Ó ÐÑÓ ÒØ Ù Ø Ú Ô ÙØÙÑ Ø ÑÔ Ò ÔÖÓ ÙÖ Ð Ø Ò Ó ÐÑÓ ÒØ ÐØ Ò Ö Ó ØÙ Ø ÓØ Ú Ø Ú Ø ØØ Ð Ò Ð Ù Ø ÙÖ Ú Ø ØÓ Ò ÔÓ ÑÑ ÐØ Ò Ô ÐÐ Ø ¼¼ º º Ô Ø Ô ÖÙ Ø Ó ¹ ÐÑÓ ÒÒ ÐÙØ Ò Ó ÐÑÓ ØÓØ ÙØÙ Ú Ð ØÙÐÐ Ò Ó ÐÐ ÐÑ Ø ÓØ Ó Ò Ú ÐÐ Ø ØÑ ØÓØ ÙØÙ ÙÓÖ Ø Ø Òº Ô Ø ÔÙÒÓ ÙÓÐ Ø Ø ØØ ÙÓ¹ Ö ØÙ Ø Ô ØÙÙ ÙÒ ØÓ ØÝØØÝݺ Ã Ø Ý ØØ Ò Ô Ø Ð Ò ÖÚ Ó ÒÒ ÓÒ Ñ Ò Ð ØÓ ÚÓ ÑÑ ÙÓ¹ Ö ØÙ ÐÐ ÐÑ Ø Ñ Ò Ð Ò Ò Ö Ô ÒØ Ô Ø ÐÐ ÓÒ Ù Ø Ô ÖÙ Ø ÓÒ Ó Ð¹ Ñ Ò ØÓ Ò Ñ Ø Ò Ô Ø Ò ÔÙÒÓÒØ Ø Ô ØÙÙ ¼¼ º º Ô ØÂ Ò Ø Ô Ù ÙÓÖ ØÙ ØÓ Ò ÐÑ Ñ Ò Ò Ø Ô ØÙÙ Ð ØÓ Ó Ø ÑÖ ØØ ¹ ÐÝ Ò ÚÙÐÐ ÔÓ Ñ Ñ ÐÐ ÓÑÔÓÒ ÒØØ Ó ÐÑ Ø ÐÙØÙØ Ð ØÓ Ó Øº ÈÙÒÓÑ Ò Ò Ø ÝØØ ÝÚ Ò Ô ÖÙ Ó ÐÑ Ò ÝÒØ Ø Ø ÒÒ ØØÝ Ö ÒÒ ØØ ¼¼ º º ËÙÓÖ ØÙ Ò ØÓ Ò ÐÑ Ù ÓÒ Ú ÒØ Ó ÒØ ÝÐ Ô ÖÙ Ó ÐÑ Ò Ö ÒØ Òº Ë Ò Ð ¹ ÐÑ Ò Ö Ñ Ò Ô ØÚØ Ô Ø Ó ÐÑÓ ÒÒ Ò ÓÐ ÐÐ Ò Ö Ø Ö Ò Ø ØØ Ò Ô Ø ÐÐ Ó ÐÑÓ ÐÐ ÖÒÐ Ò Ò ÚÐ ÒÔ ØÑØØ ÑÝÝ Ó Ð Ú ÓÙ Ò µ Ô Ø Ò Ù Ø Ò ¼¼ º º Ô ØÂ Ò Ø ÖÑ Ò Ö ØÝ Ø ÓÑÔÓÒ ÒØØ Ó ÐÑÓ Ò ØÙÐ ÚÓ ¹ Ö Ó ØØ Ó ÐÑ Ò ÚÐ ØØÑØØ Ô Ø ØÓØ ÙØÙ Ø ÓÐÐ Ò Ò Ú ØØ Ñ ØØ Ô Ø Ò ÓÓ Òº Ô Ø ØÑ ØÓØ ÙØÙÙ Ø Ò ØØ Ð ØÓ Ó Ø ÑÖ ØØ ÐÝØ ÓÚ Ø Ó Ô Ø Ð ØÓ Ó Ø Ñ Ö Ø Ô ÖÙ ÓÓ Ò º ÍÙ Ø Ð ØÝÑ Ø Ú Ø Ò ÙÓÐ Ñ ØØ Ô Ø Ó ÐÑÓ ÒØ ÓÒ Ù Ø Ò Ò ÐÐ Ò Ú ÒØÙÒ Ò Ô ÐÐ Ò Ö ÐÐ Ò ÑÔ Ö Ø Ú Ò Ó ÐÑÓ ÒØ ØÝÝÐ Ò Ð ÒÒÓ ¼¼ º º Ñ Ö ØÝ Ò ÒØ Ô ÖÙ Ø Ð ÙØ Ò ÐÓ Ó Ð¹ ÑÓ ÒØ Ð ÈÖÓÐÓ Ø ÖÚ Ô Ø Ó ÐÑÓ ÒØ Ò ØÓ º ÌÓ ÐØ Ø Ú ÐÐ Ø Ò Ó Ð¹ ÑÓ ÒØ ÓÒ ÐÑ Ò ÐÑ Ñ Ò Ò ØÝ Ò ÒØ ÔÓ ÐÐ Ö Ø ÐÑ ÐÐ ÓÒ Ú Ø Ò Ô Ø Ó ÐÑÓ ÒØ ØÝ ÒØ Ò ÑÙÙØ Ò ÝØØ ÐÔÓ Ø Ó ÐÑÓ ÒØ Ô Ö ¹ Ñ ÓÖÚ Ñ ØØ Ø Ó ÓÒ Ò ¼¼ º º ÌÓ Ò Ð Ò ÙÙ ÑÑ Ú Ö Ó Ð ØÓ Ó Ø ÚÓ Ò ÔÓ Ñ ÑÝ Â Ú ¹ Ð ÓÑÔÓ¹ Ò ÒØØ Ó ÐÑ ÓÐ Ú Ò ÒÒÓØ Ø Ó Ò ÚÙÐÐ Ô¼

13 ½½ Ø ÒÚ ØÓ ÄÔ Ð Ú Ò ÓÑ Ò ÙÙ Ò ØÓØ ÙØØ Ñ Ò Ò ÑÓ ÙÐ Ö Ø Ô Ö ÒØ ÐÐ ÔÖÓ Ù¹ Ö Ð ÐÐ Ø ÓÐ ÓÔ ÖÙ Ø ÐÐ Ð ÐÐ ÓÒ Ó Ó ØØ ÙØÙÒÙØ Ú º ÌÑ Ó Ø Ò ¹ Ó Ø Ò ÔÙÙØØ ÐÐ Ò ÖÓØØ ÐÙÙÒ Ò Ò Ó ÐØ º ÇÒ ÐÑ ÙÖ Ø ØØ Ú Ò¹ ØÙÒ Ò Ó ÐÑÓ ÒØ ÐØ Ò ØÖ Ø Ó¹ ÑÓ ÙÐ Ö Ó ÒØ Ñ Ò Ñ Ø Ñ ÓÐÐ Ø Ú Ø Ó ÐÑ ØÓÒ ÑÓ ÙÙÐ Ó ØÙ Ò ÒÓ Ø Ò Ý Ø Ò ÙÐÑ Ø ÑÙØØ Ö Ð Ø Ò Ó ÐÑ ØÓÓÒ ÐØÝÝ Ò ØÓ Ø Ò Ò Ö Ø Ò Ò ÙÐÑ Ò ØØÙÚ Ú ¹ Ø ÑÙ º Ô Ø Ó ÐÑÓ ÒØ ÓÒ Ó ÐÑÓ ÒØ Ô Ö Ñ Ó Ø Ö Ó Ñ Ò Ñ Ø Ó ÐÐ ÑÝ ÐÔ Ð Ú Ø ÓÑ Ò ÙÙ Ø ÚÓ Ò ØÓØ ÙØØ ÑÓ ÙÐ Ö Ø Ô Ø Ò º Ô ¹ Ø Ó ÐÑÓ ÒÒ Ô ÖÙ ¹ Ø ÓÑÔÓÒ ÒØØ Ø ÓÒ Ó ÐÑÓ ÒØ ÐØ Ð ÒÒ Ø Ò Ô ¹ Ø Ð Ðк ÄÔ Ð Ú Ø ÓÑ Ò ÙÙ Ø ØÓØ ÙØ Ø Ò Ô Ø Ò ÓØ Ö ØÝ Ò Ò ¹ Ô Ø ÔÙÒÓ ÔÙÒÓÓ Ý Ø Ò Ô ÖÙ Ø ÓÒ Ó ÐÑ Ò Ò ØÙÓØØ Ò Ó ÓÒ Ò Ö ¹ Ø ÐÑÒº Ô Ø Ó ÐÑÓ ÒØ Ð Ø ÚÓ Ú Ø ÓÐÐ Ó Ó ÓÚ ÐÐÙ ÐÙ Ó Ø Ø ÝÐ ÝØØ º ÌÙÒÒ ØÙ Ò ÝÐ ÝØØ Ò Ò Ô Ø Ð ÓÒ Ô ØÂ Ó Ð ÒØ Â Ú ¹Ó ÐÑÓ ÒØ ¹ ÐØ Ô Ø Ñ Ò Ñ ÐÐ º Ô Ø ÓÒ ÓÒ Ö ØØ Ò Ò Ñ Ö Ô Ø Ö Ø Ð¹ Ñ Ø Ó Ñ ÓÐÐ Ø Ô Ø Ò Ó ÐÑÓ Ñ Ò ÓÑ ØÓØ ÙØÙ Ý Ò ØÓ Ò ÐÑ Ñ Ò ÐÐ Ñ Ò Ô Ø Ò ÙÓÖ ØÙ Ó ØØÙÙ ÐÓÔÙÐÐ Ö Ø Ð¹ Ñ º

14 ½¾ Ä Ø Ø Ô¼ ¼ Ì Ô ØÂ Ú ÐÓÔÑ ÒØ Ã Ø Ú ÐÓÔ Ö³ ÆÓØ ÓÓ ÏÏÏ ¾¼¼ º ÍÊÄ ØØÔ»»ÛÛÛº Ð Ô ºÓÖ» Ô Ø» Ó»Ö Ð» ½ ÒÓØ ÓÓ» Ò Üº ØÑк ½º º¾¼¼ º Ò Ò Ô Ø ÏÏÏ ¾¼¼ º ÍÊÄ ØØÔ»»ÛÛÛº Ð Ô ºÓÖ» Ô Ø» Ó»Ö Ð» Ò º ØÑк ½º º¾¼¼ º ¼¼ ÐÑ Ò Êº º Ö Ñ Ò º Ⱥ Ô Ø¹ÇÖ ÒØ ÈÖÓ Ö Ñ¹ Ñ Ò ÉÙ ÒØ Ø ÓÒ Ò Ç Ð Ú ÓÙ Ò º Ì Ó Ì ÖÖ Èº Ø Ðº Ì Ç¼¼ ÍÊÄ ØØÔ»»ØÖ º ºÙØÛ ÒØ ºÒлÏÓÖ ÓÔ» ÇÇÈËÄ ¾¼¼¼»Ô Ô Ö» ÐÑ ÒºÔ º ½º º¾¼¼ º ÃÀÀ + ¼½ ÃÄÅ + È Ð¼ È Ö ¾ ËØ ¼ Ì Ç¼¼ Ã Þ Ð º À Ð Ð º ÀÙ ÙÒ Ò Âº Ã Ö Ø Ò Åº È ÐÑ Âº Ö ÛÓРϺ º Ò ÇÚ ÖÚ Û Ó Ô Øº ÇÇÈ ³¼½ ÈÖÓ Ò Ó Ø ½ Ø ÙÖÓÔ Ò ÓÒ Ö Ò ÓÒ Ç Ø¹ÇÖ ÒØ ÈÖÓ Ö ÑÑ Ò ÄÓÒ¹ ÓÒ Íà ¾¼¼½ ËÔÖ Ò Ö¹Î ÖÐ ÚÙØ ¾ º Ã Þ Ð º Ä ÑÔ Ò Âº Å Ò Ö º Å º ÄÓÔ º ÄÓ Ò Ø Ö Âº¹Åº ÁÖÛ Ò Âº Ô Ø¹ÇÖ ÒØ ÈÖÓ Ö ÑÑ Ò º Ì Ó ¹ ÈÖÓ Ò ÙÖÓÔ Ò ÓÒ Ö Ò ÓÒ Ç Ø¹ÇÖ ÒØ ÈÖÓ Ö Ñ¹ Ñ Ò Ø Åº Å Ø ÙÓ Ëº ØÓ Ñ ØØ Ø Ó ½¾ ½ ËÔÖ Ò Ö¹ Î ÖÐ ÖÐ Ò À Ð Ö Ò Æ Û ÓÖ ½ ÚÙØ ¾¾¼ ¾ ¾ ÍÊÄ Ø Öº ØºÔ Ùº Ù» ÖØ Ð» Þ Ð Ô ØÓÖ ÒØ º ØÑк È ÐÓ ÐØÓ Ê Ö ÒØ Ö ÖÓÜ ÓÖÔÓÖ Ø ÓÒ Ì Ô Ø ÈÖÓ Ö Ñ¹ Ñ Ò Ù ¾¼¼ º ÍÊÄ ØØÔ»»ÛÛÛº Ð Ô ºÓÖ» Ô Ø» Ó» Ö Ð»ÔÖÓ Ù»º ½º º¾¼¼ º È ÖÒ º ĺ ÇÒ Ø Ö Ø Ö ØÓ Ù Ò ÓÑÔÓ Ò Ý Ø Ñ ÒØÓ ÑÓ ÙÐ º ÓÑÑÙÒº Å ½ ½¾ ½ ¾µ ÚÙØ ½¼ ½¼ º ËØ Ñ ÒÒ º Ì Ô Ö ÓÜ Ð Ù Ó Ô Ø¹ÓÖ ÒØ ÔÖÓ Ö ÑÑ Ò º ËÁ ÈÄ Æ ÆÓغ ½ ½¼ ¾¼¼ µ ÚÙØ ½ º Ì ÖÖ Èº Ö Ñ Ò Äº Ö Åº Ç Ö Àº ØÓ Ñ ØØ Øº ÏÓÖ ÓÔ ÓÒ Ú Ò Ë Ô Ö Ø ÓÒ Ó ÓÒ ÖÒ ÇÇÈËÄ ¾¼¼¼µ ÐÓ ÙÙ ¾¼¼¼º

15 ½ ÌÇÀËÅË Ì ÖÖ Èº Ç Ö Àº À ÖÖ ÓÒ Ïº ËØ ÒÐ Ý Åº ËÙØØÓÒ Âº Æ Ö Ó Ô Ö Ø ÓÒ ÑÙÐØ ¹ Ñ Ò ÓÒ Ð Ô Ö Ø ÓÒ Ó ÓÒ ÖÒ ÚÙØ ½¼ ½½ º Á ÓÑÔÙØ Ö ËÓ ØÝ ÈÖ ÄÓ Ð Ñ ØÓ ÍË ½ º

ÍÐ ÓØ ÐÓ Ò Ô ÖØÓ ÃÙÒ Ô ÖÖ ØÒ Ð Ó ÙÐ ÓÒ ÝÑ ÓÒ Ò ØØ Ú Ñ ÐÐ Ñ ØÓ Ø ØÝÝÔ ÐÐ Ø Ú Ò Ð Ò ÙÙÖ ÓÚ ÐØÙ Ò Ö Ð Ò Ô ÖØÑ Ò Ñº Ó Ñ ÐÐ ÒÒ Ø Ò ½¼ Ü ½¼ Ñ ÐÙ ½¼ Ñ Ø Ö Ù

ÍÐ ÓØ ÐÓ Ò Ô ÖØÓ ÃÙÒ Ô ÖÖ ØÒ Ð Ó ÙÐ ÓÒ ÝÑ ÓÒ Ò ØØ Ú Ñ ÐÐ Ñ ØÓ Ø ØÝÝÔ ÐÐ Ø Ú Ò Ð Ò ÙÙÖ ÓÚ ÐØÙ Ò Ö Ð Ò Ô ÖØÑ Ò Ñº Ó Ñ ÐÐ ÒÒ Ø Ò ½¼ Ü ½¼ Ñ ÐÙ ½¼ Ñ Ø Ö Ù ØÙغ Ø Ò ÐÐ Ò Ò ÝÐ ÓÔ ØÓ Ì ÑÔ Ö Ò È Ð Ó ÐÑÓ ÒØ ÍÐ ÓØ ÐÓ Ò Ô ÖØÓ ÒØØ ÈÙ ÒØØ ºÔÙ Ç ÐÑ ØÓØ Ò ÍÐ ÓØ ÐÓ Ò Ô ÖØÓ ÃÙÒ Ô ÖÖ ØÒ Ð Ó ÙÐ ÓÒ ÝÑ ÓÒ Ò ØØ Ú Ñ ÐÐ Ñ ØÓ Ø ØÝÝÔ ÐÐ Ø Ú Ò Ð Ò ÙÙÖ ÓÚ ÐØÙ Ò Ö Ð Ò Ô ÖØÑ Ò Ñº

Lisätiedot

Ð ØÖÓÒ Ø Ñ ÙÚÐ Ò Ø Ì ÑÙ Ê ÒØ ¹ Ó À Ð Ò ¾ º ÐÓ ÙÙØ ½ Ë Ò ÙÔ Ò ÝÒÒ Ò Ñ Ò Ö À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ Ì ØÓ Ò ØØ ÐÝØ Ø Ò Ð ØÓ Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Å Ù Ö Ø ÐÑØ ¾ ¾º½ ÆÝ Ý Ø Ñ Ù Ö Ø ÐÑØ º º º º º º º º º º º º º º º º

Lisätiedot

Ð ØÖÓÒ Ò Ú Ø Ò Ô ÓÒ Ö Ø Ð ØÖÓÒ Ò Ò Ú Ð ÙÒ ÝÐ ÓÔ ØÓ ÖÑ Ò ØÙØ ÑÙ ¹ Ð ØÓ ½ ¼¹ÐÙÚÙÐÐ Ù Ø Ó ÐÙ Ð ØÖÓÒ Ô Ð ºËº ÓÙ Ð Ø ½ ¾ Ñ Ö Ú Ø Ö Ò Ñ Ò ÓÒ Ò ÚÙÓÖÓÚ ÙØÙ Ø

Ð ØÖÓÒ Ò Ú Ø Ò Ô ÓÒ Ö Ø Ð ØÖÓÒ Ò Ò Ú Ð ÙÒ ÝÐ ÓÔ ØÓ ÖÑ Ò ØÙØ ÑÙ ¹ Ð ØÓ ½ ¼¹ÐÙÚÙÐÐ Ù Ø Ó ÐÙ Ð ØÖÓÒ Ô Ð ºËº ÓÙ Ð Ø ½ ¾ Ñ Ö Ú Ø Ö Ò Ñ Ò ÓÒ Ò ÚÙÓÖÓÚ ÙØÙ Ø ØÙغ Ø Ò ÐÐ Ò Ò ÝÐ ÓÔ ØÓ Ì ÑÔ Ö Ò È Ð Ó ÐÑÓ ÒØ È Ð Ó ÐÑÓ ÒÒ Ò ØÓÖ ÒØØ ÈÙ ÒØØ ºÔÙ Ç ÐÑ ØÓØ Ò Ð ØÖÓÒ Ò Ú Ø Ò Ô ÓÒ Ö Ø Ð ØÖÓÒ Ò Ò Ú Ð ÙÒ ÝÐ ÓÔ ØÓ ÖÑ Ò ØÙØ ÑÙ ¹ Ð ØÓ ½ ¼¹ÐÙÚÙÐÐ Ù Ø Ó ÐÙ Ð ØÖÓÒ Ô Ð ºËº ÓÙ Ð

Lisätiedot

Kuvan piirto. Pelaaja. Maailman päivitys. Syötteen käsittely

Kuvan piirto. Pelaaja. Maailman päivitys. Syötteen käsittely ØÙغ Ø Ò ÐÐ Ò Ò ÝÐ ÓÔ ØÓ Ì ÑÔ Ö Ò È Ð Ó ÐÑÓ ÒØ È Ð Ó ÐÑ Ò Ö ÒÒ ÒØØ ÈÙ ÒØØ ºÔÙ Ç ÐÑ ØÓØ Ò Ò Ø ÐРؽ ؾ Ø È Ð Ó ÐÑ Ò Ô ÖÙ Ö ÒÒ Ì ØÓ ÓÒ Ô Ð Ò ÝØ Ñ Ò ÓÒ Ñ ÐÐ Ó Ø Ò ÙÚ ØØ ÐÐ Ø Ñ ÐÑ Ø ÚÓ ÓÐÐ Ú Ò Ý Ò ÖØ Ò Ò Ð

Lisätiedot

ÁÒ Ù Ø Ú Ø ØÝÝÔ Ø º Ñ Ö ÒÖ ÔÙÙÒ ÑÖ Ø ÐÑ Ú ØØ Ø Ò ÒÖ ÔÙÙ ÓÒ Ó Ó ØÝ Ø ÓÐÑÙ Ó ÓÒ Ð Ó ÓÒ Ú Ò Ó Ð ÔÙÙ ÓÚ Ø ÑÝ ÒÖ ÔÙ Ø º Ë ÚÓ Ò Ö Ó ØØ ÙÓÖ Ò Ø Ò ÖÝÌÖ ÑÔØÝ Æ

ÁÒ Ù Ø Ú Ø ØÝÝÔ Ø º Ñ Ö ÒÖ ÔÙÙÒ ÑÖ Ø ÐÑ Ú ØØ Ø Ò ÒÖ ÔÙÙ ÓÒ Ó Ó ØÝ Ø ÓÐÑÙ Ó ÓÒ Ð Ó ÓÒ Ú Ò Ó Ð ÔÙÙ ÓÚ Ø ÑÝ ÒÖ ÔÙ Ø º Ë ÚÓ Ò Ö Ó ØØ ÙÓÖ Ò Ø Ò ÖÝÌÖ ÑÔØÝ Æ ÁÒ Ù Ø Ú Ø ØÝÝÔ Ø º º ÁÒ Ù Ø Ú Ø ØÝÝÔ Ø Ø ¹ÑÖ ØØ ÐÝ º¾µ ÚÓ Ú Ø Ø ÑÝ Ø Ò ÑÖ Ø ÐØÚ Æ Ñ ÒØÝ ÑÝ ³ ³¹Ñ Ö Ò Ó ÐÐ ÔÙÓÐ ÐÐ º Ë Ò ÓÐ ÐÐ ØØÝ ØÝÔ ¹ÐÝ ÒØ º½µº ¾ ÁÒ Ù Ø Ú Ø ØÝÝÔ Ø º Ñ Ö ÒÖ ÔÙÙÒ ÑÖ Ø ÐÑ Ú ØØ Ø Ò ÒÖ

Lisätiedot

À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç ØÓ ÙÐØ Ø»Ë Ø ÓÒ ÙÐØÝ Ä ØÓ ÁÒ Ø ØÙØ ÓÒ Ô ÖØÑ ÒØ Å Ø Ñ ØØ ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò Ì Ö

À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç ØÓ ÙÐØ Ø»Ë Ø ÓÒ ÙÐØÝ Ä ØÓ ÁÒ Ø ØÙØ ÓÒ Ô ÖØÑ ÒØ Å Ø Ñ ØØ ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò Ì Ö ÝÚ ÝÑ Ô Ú ÖÚÓ Ò ÖÚÓ Ø Ð Ä Ù ÓÑÔÓÒ ÒØ Ø Ã Ö Ì ÑÓÒ Ò À Ð Ò º º¾¼¼ Ç ÐÑ ØÓØÙÓØ ÒØÓ Ø ØÓ ÓÒ Ô Ð Ø ¹ Ñ Ò Ö À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ Ì ØÓ Ò ØØ ÐÝØ Ø Ò Ð ØÓ À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ

Lisätiedot

Ì Ð Ú Ø ÚÙÙ ÐÙÓ Ø Á ÅÖ Ø ÐÑ ÇÐ ÓÓÒ : Æ Ê ÙÒ Ø Óº Ì Ð Ú Ø ÚÙÙ ÐÙÓ Ø ËÈ ( (Ò)) ÆËÈ ( (Ò)) ÑÖ Ø ÐÐÒ ÙÖ Ú Ø ËÈ ( (Ò)) ÓÒ Ò Ò ÐØ Ò Ä ÓÙ Ó ÓØ ÚÓ Ò ØÙÒÒ Ø Ø

Ì Ð Ú Ø ÚÙÙ ÐÙÓ Ø Á ÅÖ Ø ÐÑ ÇÐ ÓÓÒ : Æ Ê ÙÒ Ø Óº Ì Ð Ú Ø ÚÙÙ ÐÙÓ Ø ËÈ ( (Ò)) ÆËÈ ( (Ò)) ÑÖ Ø ÐÐÒ ÙÖ Ú Ø ËÈ ( (Ò)) ÓÒ Ò Ò ÐØ Ò Ä ÓÙ Ó ÓØ ÚÓ Ò ØÙÒÒ Ø Ø Ì Ð Ú Ø ÚÙÙ Á ÅÖ Ø ÐÑ ÇÐ ÓÓÒ Å Ø ÖÑ Ò Ø Ò Ò ÌÙÖ Ò Ò ÓÒ Ó ÔÝ ØÝÝ ÐÐ Ý ØØ Ðк Å Ò Ø Ð Ú Ø ÚÙÙ ÓÒ ÙÒ Ø Ó : Æ Æ Ñ (Ò) ÓÒ Å Ò Ð Ñ Ò ÑÙ Ø Ô Ó Ò Ñ Ñ ÐÙ ÙÑÖ ÙÒ Ø Ö Ø ÐÐ Ò Ò Ò Ô ØÙ Ý ØØ Øº ÂÓ Å Ò Ø Ð Ú Ø ÑÙ ÓÒ

Lisätiedot

ÓÑ ØÖ Ò Ø Ò Ø ØÓÖ ÒØ Ø Ã ÙÖ Ú Ø ÐØÚØ Ø ØÓÖ ÒØ Ø Ô ÖÙ ØÙÚ Ø Ñ ÒØÝÝÔ¹ Ô Ò Ò ÖÓØ ÐÐ Ò Ú ÖÙÙ Ø Ó Ó Ò ÐÐ ÓÒ Ô Ò ÑÔ Ó Ò Ò ÐÐ Ú Ð Ô Ò ÑÔ Ó Ò º ÒÑ Ö Ø ØÒ Ö Ö

ÓÑ ØÖ Ò Ø Ò Ø ØÓÖ ÒØ Ø Ã ÙÖ Ú Ø ÐØÚØ Ø ØÓÖ ÒØ Ø Ô ÖÙ ØÙÚ Ø Ñ ÒØÝÝÔ¹ Ô Ò Ò ÖÓØ ÐÐ Ò Ú ÖÙÙ Ø Ó Ó Ò ÐÐ ÓÒ Ô Ò ÑÔ Ó Ò Ò ÐÐ Ú Ð Ô Ò ÑÔ Ó Ò º ÒÑ Ö Ø ØÒ Ö Ö ØÙغ Ø Ò ÐÐ Ò Ò ÝÐ ÓÔ ØÓ Ì ÑÔ Ö Ò È Ð Ó ÐÑÓ ÒØ È Ð Ó ÐÑÓ ÒÒ Ý ÝÐÐ Ø ØÓÖ ÒØ Ø ÒØØ ÈÙ ÒØØ ºÔÙ Ç ÐÑ ØÓØ Ò ÓÑ ØÖ Ò Ø Ò Ø ØÓÖ ÒØ Ø Ã ÙÖ Ú Ø ÐØÚØ Ø ØÓÖ ÒØ Ø Ô ÖÙ ØÙÚ Ø Ñ ÒØÝÝÔ¹ Ô Ò Ò ÖÓØ ÐÐ Ò Ú ÖÙÙ Ø Ó Ó Ò ÐÐ

Lisätiedot

Å Ø Ñ ØØ ¹ÙÓÒÒÓÒØ Ø Ò Ò Ì Ö ØØ Ö ÙØ ÓÖ Á Å Ö Ò Ò ÌÝ Ò Ò Ñ Ö Ø Ø Ø Ø Ì Ø Ì ØÓ Ò ØØ ÝØ Ø Ò ØÓ Ò ËÖ ÔØ ¹Ô Ó Ñ ÇÔÔ Ò ÄÖÓÑÒ ËÙ Ø Ì ØÓ Ò ØØ ÝØ ÌÝ Ò Ö Ø Ø ÖØ

Å Ø Ñ ØØ ¹ÙÓÒÒÓÒØ Ø Ò Ò Ì Ö ØØ Ö ÙØ ÓÖ Á Å Ö Ò Ò ÌÝ Ò Ò Ñ Ö Ø Ø Ø Ø Ì Ø Ì ØÓ Ò ØØ ÝØ Ø Ò ØÓ Ò ËÖ ÔØ ¹Ô Ó Ñ ÇÔÔ Ò ÄÖÓÑÒ ËÙ Ø Ì ØÓ Ò ØØ ÝØ ÌÝ Ò Ö Ø Ø ÖØ Ò ËÖ ÔØ ¹Ô Ó Ñ Á Å Ö Ò Ò À Ò ½½º º¾¼¼ Ç Ñ ØÓØÙÓØ ÒØÓ Ø ØÓ ÓÒ Ô Ø ¹ Ñ Ò Ö À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ Ì ØÓ Ò ØØ ÝØ Ø Ò ØÓ Å Ø Ñ ØØ ¹ÙÓÒÒÓÒØ Ø Ò Ò Ì Ö ØØ Ö ÙØ ÓÖ Á Å Ö Ò Ò ÌÝ Ò Ò Ñ Ö Ø Ø Ø Ø Ì Ø Ì ØÓ Ò ØØ ÝØ Ø Ò

Lisätiedot

{(x, y) x {1,2,3,... }, y {2,4,6,...,10}, x < y}.

{(x, y) x {1,2,3,... }, y {2,4,6,...,10}, x < y}. Ä Ø ÓÓ Ø Ø º º Ä Ø ÓÓ Ø Ø Å Ø Ñ Ø ÓØ ÑÖ ØØ Ð ÚØ Ù Ò ÓÙ Ó ÑÔÐ ØØ ÐÐ ÒÓØ Ø ÓÐÐ Ò ÙØ Ò {(x, y) x {1,2,3,... }, y {2,4,6,...,10}, x < y}. À ÐÐ Ø Ö Ó Ú Ø Ú Ò ÒÓØ Ø ÓÒ Ð ØÓ ÐÐ Ò Ú ØÓ ØÓ Ò ÝÒØ Ò Ø Ú ÐÐ ÐÐ Ð Ø

Lisätiedot

p q = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 + (z 1 z 2 ) 2. x 1 y 1 z 1 x 2 y 2 z 2

p q = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 + (z 1 z 2 ) 2. x 1 y 1 z 1 x 2 y 2 z 2 º ÅÓÒ ÙÐÓØØ Ø Ö ÒØ Ð Ð ÒØ º½ Â Ø ÙÚÙÙ Ó ØØ Ö Ú Ø Ø Ù Ò ÑÙÙØØÙ Ò ÙÒ Ø Ó Ò Ö ÒØ Ð Ð ÒØ ÐÑÔ Ø Ð ÓÒ Ò Ô Ò ÙÒ Ø Ó T(x, y, z.t) ÄÑÔ Ø Ð Ö ÒØØ ÐÑÓ ØØ Ñ Ò ÙÙÒØ Ò ÐÑÔ Ø Ð Ú ÚÓ Ñ ÑÑ Ò Ù Ò Ð ÐÑÔ Ø Ð Ö ÒØØ ½½ ÃÓÓÖ

Lisätiedot

Symmetriatasot. y x. Lämmittimet

Symmetriatasot. y x. Lämmittimet Ì Ò ÐÐ Ò Ò ÓÖ ÓÙÐÙ ¹ÖÝ ÑĐ» ËÓÚ ÐÐ ØÙÒ Ø ÖÑÓ ÝÒ Ñ Ò Ð ÓÖ ØÓÖ Ó ÅÍÁËÌÁÇ ÆÓ»Ì ÊÅǹ ¹¾¼¼¼ ÔÚÑ ½¼º Ñ Ð ÙÙØ ¾¼¼¼ ÇÌËÁÃÃÇ Ø Ú ÒعØÙÐÓ ÐÑ Ð ØØ Ò ¹Ñ ÐÐ ÒÒÙ Ò ÖØ Ø ØÙØ ØÙÐÓ ÐÑ Ð Ø Ñ ÐÐ Ø Ä ÌÁ ̵ ÂÙ Ú Ó Ð ¹ÂÙÙ Ð

Lisätiedot

È Ú Ö Ù ÆÈ ÁÁ Ë ÑÓ Ò Ó Ò Ý ÝÑÝ ÚÙØ ØØ Ò ØÝ Ø ÙÒ ËØ Ô Ò ÓÓ Ä ÓÒ Ä Ú Ò ØØ Ð ÚØ ÆȹØÝ ÐÐ ÝÝ Ò ØØ Òº µ º Ù Ø ÙÙØ ¾¼¼ ¾»

È Ú Ö Ù ÆÈ ÁÁ Ë ÑÓ Ò Ó Ò Ý ÝÑÝ ÚÙØ ØØ Ò ØÝ Ø ÙÒ ËØ Ô Ò ÓÓ Ä ÓÒ Ä Ú Ò ØØ Ð ÚØ ÆȹØÝ ÐÐ ÝÝ Ò ØØ Òº µ º Ù Ø ÙÙØ ¾¼¼ ¾» È Ú Ö Ù ÆÈ Á à РÐÙÓ Ø È ÆÈ ÒÝØØÚØ ØÝ Ò Ö Ð ÐØ Ë ÐÚ Ø È ÆȺ µ È ÓÒ Ð ÐÙÓ Ó Ð ÓÒ ÙÙÐÙÑ Ò Ò Ð Ò ÚÓ Ò Ö Ø Ø ÔÓÐÝÒÓÑ Ø ÖÑ Ò Ø ÐÐ ÌÙÖ Ò Ò ÓÒ ÐÐ º µ ÆÈ ÓÒ Ð ÐÙÓ Ó Ð ÓÒ ÙÙÐÙÑ Ò Ò Ð Ò ÚÓ Ò Ú Ö Ó ÔÓÐÝÒÓÑ Ð Ð ÓÒ

Lisätiedot

Ì ØÓØÙÖÚ Ò ÓØØ ÐÙØ Á Ì ØÓØÙÖÚ ÓÒ Ð º Ë ÙÖ Ú Ð Ø ÓÒ ÐÙ Ø ÐØÙ Ø ØÓØÙÖÚ Ò Ö Ó ¹ ÐÙ Ø º Â ÓØØ ÐÙ ÓÒ Ñ Ð Ó ÝÐ Ò Ò Ø ØÒ ÝÐ Ø ØÓØÙÖÚ Ò ÓÔÔ Ö Ó º À ÐÐ ÒÒÓÐÐ Ò

Ì ØÓØÙÖÚ Ò ÓØØ ÐÙØ Á Ì ØÓØÙÖÚ ÓÒ Ð º Ë ÙÖ Ú Ð Ø ÓÒ ÐÙ Ø ÐØÙ Ø ØÓØÙÖÚ Ò Ö Ó ¹ ÐÙ Ø º  ÓØØ ÐÙ ÓÒ Ñ Ð Ó ÝÐ Ò Ò Ø ØÒ ÝÐ Ø ØÓØÙÖÚ Ò ÓÔÔ Ö Ó º À ÐÐ ÒÒÓÐÐ Ò ÌÁ ÌÇÌÍÊÎ Ó Á ̺ à ÖÚ ËÝÝ ÙÙ ¾¼¼ ̺ à ÖÚ µ ÌÁ ÌÇÌÍÊÎ Ó Á ËÝÝ ÙÙ ¾¼¼ ½» ½ Ì ØÓØÙÖÚ Ò ÓØØ ÐÙØ Á Ì ØÓØÙÖÚ ÓÒ Ð º Ë ÙÖ Ú Ð Ø ÓÒ ÐÙ Ø ÐØÙ Ø ØÓØÙÖÚ Ò Ö Ó ¹ ÐÙ Ø º  ÓØØ ÐÙ ÓÒ Ñ Ð Ó ÝÐ Ò Ò Ø ØÒ ÝÐ Ø ØÓØÙÖÚ Ò

Lisätiedot

Ë Ø ÐÓ Ò Ô ÖØÓ Á ÔÖÓ Ó ÒØ ÃÙÒ Ð ÙØ Ò ÓÒ Ò Ö ÒÒÙ Ò ÐÐ ÓÒ ÝÐ Ò ÖÖ ÐÐ Ò Ú Ò Ô Ò Ó Ö ÒÒÙ Ò Ø ÐÓ Ø Ò ÝÚ Ñ ÐÐ ÓÒ Ù Ø ÐÐ Ò ÙÙÖ ÑÖ Ò Ø Ø ÓÐÙ Ö µ Ã ÙÐÓØØ Ò Ò Ñ

Ë Ø ÐÓ Ò Ô ÖØÓ Á ÔÖÓ Ó ÒØ ÃÙÒ Ð ÙØ Ò ÓÒ Ò Ö ÒÒÙ Ò ÐÐ ÓÒ ÝÐ Ò ÖÖ ÐÐ Ò Ú Ò Ô Ò Ó Ö ÒÒÙ Ò Ø ÐÓ Ø Ò ÝÚ Ñ ÐÐ ÓÒ Ù Ø ÐÐ Ò ÙÙÖ ÑÖ Ò Ø Ø ÓÐÙ Ö µ à ÙÐÓØØ Ò Ò Ñ ØÙغ Ø Ò ÐÐ Ò Ò ÝÐ ÓÔ ØÓ Ì ÑÔ Ö Ò È Ð Ó ÐÑÓ ÒØ Ë Ø ÐÓ Ò Ô ÖØÓ Ò ÝÚÝÝ Ð ÒØ ÒØØ ÈÙ ÒØØ ºÔÙ Ç ÐÑ ØÓØ Ò Ë Ø ÐÓ Ò Ô ÖØÓ Á ÔÖÓ Ó ÒØ ÃÙÒ Ð ÙØ Ò ÓÒ Ò Ö ÒÒÙ Ò ÐÐ ÓÒ ÝÐ Ò ÖÖ ÐÐ Ò Ú Ò Ô Ò Ó Ö ÒÒÙ Ò Ø ÐÓ Ø Ò ÝÚ Ñ

Lisätiedot

Ì ÂÙ Ò Ä ÑÑ Ö Ø Ý Ø ÓØ ÈÙ Ð Ò ¼ ¼½¾ ½ ÔÓ Ø ÒÙÐ º ÌÝ Ò Ò Ñ ÅÓ Ð ÓÚ ÐÐÙ Ø Ò ÖÖ ØØÚÝÝ ØÓØ ÙØÙ Ò ØÖ Ø ÓØ Ó Ì ØÐ Ò Ò Ð ÈÓÖØ Ð ØÝ Ó ÅÓ Ð ÔÔÐ Ø ÓÒ Ò ÁÑÔÐ Ñ Ò

Ì ÂÙ Ò Ä ÑÑ Ö Ø Ý Ø ÓØ ÈÙ Ð Ò ¼ ¼½¾ ½ ÔÓ Ø ÒÙÐ º ÌÝ Ò Ò Ñ ÅÓ Ð ÓÚ ÐÐÙ Ø Ò ÖÖ ØØÚÝÝ ØÓØ ÙØÙ Ò ØÖ Ø ÓØ Ó Ì ØÐ Ò Ò Ð ÈÓÖØ Ð ØÝ Ó ÅÓ Ð ÔÔÐ Ø ÓÒ Ò ÁÑÔÐ Ñ Ò ÂÙ Ò Ä ÑÑ Ö ÅÓ Ð ÓÚ ÐÐÙ Ø Ò ÖÖ ØØÚÝÝ ØÓØ ÙØÙ Ò ØÖ Ø ÓØ Ó Ì ØÓØ Ò Ò Ó ÐÑ ØÓØ Ò µ ÔÖÓ Ö Ù ¹ØÙØ ÐÑ ½º ÐÓ ÙÙØ ¾¼¼ ÂÝÚ ÝÐÒ ÝÐ ÓÔ ØÓ Ì ØÓØ Ò Ò Ð ØÓ ÂÝÚ ÝÐ Ì ÂÙ Ò Ä ÑÑ Ö Ø Ý Ø ÓØ ÈÙ Ð Ò ¼ ¼½¾ ½ ÔÓ Ø ÒÙÐ º ÌÝ

Lisätiedot

ÂÙÐ Ò Ú Ñ Ò Ò Ö ØÖÙ ØÙÙÖ Ø ÇÒ ØÖ Ý Ø ØÓÑ Ò ÙÐ Ò Ò Ú Ò Ò ØÓ ÐÐ Ò Ò ÐØ ÐÙÓØ ØØ Ú Ø ØÓ Ò º ÃÓ Ò Ð Ö ÓÒ ½ Ò ÑÑ Ò ÓØØ ÒÙØ Ú ÖÑ ÒØ Ø Ó ÓÒ ÙÐ Ò Ò Ú Ò Ò ÐØ Ð

ÂÙÐ Ò Ú Ñ Ò Ò Ö ØÖÙ ØÙÙÖ Ø ÇÒ ØÖ Ý Ø ØÓÑ Ò ÙÐ Ò Ò Ú Ò Ò ØÓ ÐÐ Ò Ò ÐØ ÐÙÓØ ØØ Ú Ø ØÓ Ò º ÃÓ Ò Ð Ö ÓÒ ½ Ò ÑÑ Ò ÓØØ ÒÙØ Ú ÖÑ ÒØ Ø Ó ÓÒ ÙÐ Ò Ò Ú Ò Ò ÐØ Ð ÌÁ ÌÇÌÍÊÎ ÇË ÁÁÁ ÂÙÐ Ò Ú Ñ Ò Ò Ö ØÖÙ ØÙÙÖ Ì ÑÓ Ã ÖÚ ¾º½½º¾¼¼ Ì ÑÓ Ã ÖÚ µ ÌÁ ÌÇÌÍÊÎ ÇË ÁÁÁ ÂÙÐ Ò Ú Ñ Ò Ò Ö ØÖÙ ØÙÙÖ ¾º½½º¾¼¼ ½» ÂÙÐ Ò Ú Ñ Ò Ò Ö ØÖÙ ØÙÙÖ Ø ÇÒ ØÖ Ý Ø ØÓÑ Ò ÙÐ Ò Ò Ú Ò Ò ØÓ ÐÐ Ò Ò ÐØ ÐÙÓØ

Lisätiedot

A c t a U n i v e r s i t a t i s T a m p e r e n s i s 1061

A c t a U n i v e r s i t a t i s T a m p e r e n s i s 1061 JORMA JOUTSENLAHTI Lukiolaisen tehtäväorientoituneen matemaattisen ajattelun piirteitä 1990-luvun pitkän matematiikan opiskelijoiden matemaattisen osaamisen ja uskomusten ilmentämänä AKATEEMINEN VÄITÖSKIRJA

Lisätiedot

:: γ1. g 1. :: γ2. g 2

:: γ1. g 1. :: γ2. g 2 ÌÝÝÔÔ Ú ØØ Ø ¹ Ý ÝÑÝ Ø º º¾ Ò ÑÙÙØØÙ Ò Ý ÝÑÝ Ð Ø x g Ò e? :: α Ö Ø Ø Ò ÓÐ ÐÐ Ø ÑÓ Ò Ô Ö Ñ ØÖ ØØ ÑÒ ÙÒ Ø ÓÒ ÑÙØØ À ÐÐ ÝÐ Ø Ò ÐÐ ÑÙÙØØÙ Ó ÐÐ ÐÑ ÒØÙ ØÝÝÔÔ ÐÙÓ Ð Ó º Ë Ø ÑÙØ ÑÑ Ò ÑÓÒ Ý ÝÑÝ Ð Ø p g Ò e? ::

Lisätiedot

À Ö Ö Ð Ù Ø ÅÖ Ø ÐÑ ÙÒ Ø Ó : Æ Æ Ñ (Ò) = O(ÐÓ Ò) ÓÒ Ø Ð ÓÒ ØÖÙÓ ØÙÚ Ó ÐÐ Ò Ò ÙÒ Ø Ó Ó ÙÚ Ñ Ö ÓÒÓÒ ½ Ò (Ò) Ò ÒÖ ØÝ ÐÐ ÓÒ Ð ØØ Ú Ø Ð O( (Ò))º Ä Ù Å Ø Ø

À Ö Ö Ð Ù Ø ÅÖ Ø ÐÑ ÙÒ Ø Ó : Æ Æ Ñ (Ò) = O(ÐÓ Ò) ÓÒ Ø Ð ÓÒ ØÖÙÓ ØÙÚ Ó ÐÐ Ò Ò ÙÒ Ø Ó Ó ÙÚ Ñ Ö ÓÒÓÒ ½ Ò (Ò) Ò ÒÖ ØÝ ÐÐ ÓÒ Ð ØØ Ú Ø Ð O( (Ò))º Ä Ù Å Ø Ø Ì ÔÙÑ ØØÓÑÙÙ Ì Ó Ø ÐÐÒ ÓÒ ÐÑ ÓØ ÓÚ Ø Ô Ö ØØ Ö Ø Ú ÑÙØØ Ó Ò Ö Ø Ù Ú Ø Ò Ò Ô Ð ÓÒ Ø Ø Ð ØØ Ö Ø Ù ÓÐ ÝØÒÒ ÐÚÓÐÐ Ò Òº Í ÑÑ Ø ÓÐ ØØ Ú Ø ØØ ÆȹØÝ ÐÐ Ø ÔÖÓ Ð Ñ Ø ÓÚ Ø Ø ÔÙÑ ØØÓÑ ÒØÖ Ø Ð µ ÑÙØØ ØØ ÓÐ ØÓ Ø ØØÙº

Lisätiedot

À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç ØÓ ÙÐØ Ø»Ë Ø ÓÒ ÙÐØÝ Ä ØÓ ÁÒ Ø ØÙØ ÓÒ Ô ÖØÑ ÒØ Å Ø Ñ ØØ ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò Ì Ö

À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç ØÓ ÙÐØ Ø»Ë Ø ÓÒ ÙÐØÝ Ä ØÓ ÁÒ Ø ØÙØ ÓÒ Ô ÖØÑ ÒØ Å Ø Ñ ØØ ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò Ì Ö ÝÚ ÝÑ Ô Ú ÖÚÓ Ò ÖÚÓ Ø Ð ÈÓÐÙÒ Ø ÒØ Ù Ò ÒØ Ò ÝÑÔÖ Ø Ô Ð È Ä ÓÒ Ò À Ð Ò º º¾¼¼ ÄÙùØÙØ ÐÑ À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ Ì ØÓ Ò ØØ ÐÝØ Ø Ò Ð ØÓ À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç

Lisätiedot

d 00 = 0, d i0 = i, 1 i m, d 0j

d 00 = 0, d i0 = i, 1 i m, d 0j ¾º¾º ÁÌÇÁÆÌÁ Ì ÁË Æ Ä Ëà ÅÁÆ Æ ¾ º ÇÔ Ö Ø Ó ÓÒÓ ÌÌÈÈÈÌÄÌÅÈÈ Ò Ù Ø¹Öݹ¹ Ò¹¹¹Ø Ö Ø º ÇÔ Ö Ø Ó Ò ÐÙ ØØ ÐÓ Ò Ù ØÖÝ d ǫ ÒØ ÖÝ ǫ e ÒÙ ØÖÝ u ǫ ÒØ Ö Ý y s Ò ØÖÝ s ǫ ÒØ Ö ǫ t ÒØÖÝ ǫ e ÒØ Ö Ø ¾º¾ ØÓ ÒØ Ø ÝÝ Ò Ð

Lisätiedot

Ë ÐØ ½ Ð Ø Ê Ø ¾ ¾ Ê Ò ÝÒØ ØÝ ÒØ ÐÝÒ ÐÓ ØØ Ñ Ò Ò ¾º½ Ç Ò ÝØØ Ê¹ ØÙÒÒÓÒ Ò º º º º º º º º º º º º º º º º ¾º¾ Ä Ô Ø Ø Ò ØÓØ º º º º º º º º º º º º º º

Ë ÐØ ½ Ð Ø Ê Ø ¾ ¾ Ê Ò ÝÒØ ØÝ ÒØ ÐÝÒ ÐÓ ØØ Ñ Ò Ò ¾º½ Ç Ò ÝØØ Ê¹ ØÙÒÒÓÒ Ò º º º º º º º º º º º º º º º º ¾º¾ Ä Ô Ø Ø Ò ØÓØ º º º º º º º º º º º º º º ÂÓ ÒØÓ Ñ ØÖ Ò Ð Ò Ö Ø Ò Ñ ÐÐ Ò ØØ ÐÝÝÒ Ê¹Ó ÐÑ ØÓÐÐ ÒÒ Ç Ö Ò Ò Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò ÐÓ Ó Ò Ð ØÓ Ì ÑÔ Ö Ò ÝÐ ÓÔ ØÓ ÐÓ ÙÙ ¾¼¼ Ë ÐØ ½ Ð Ø Ê Ø ¾ ¾ Ê Ò ÝÒØ ØÝ ÒØ ÐÝÒ ÐÓ ØØ Ñ Ò Ò ¾º½ Ç Ò ÝØØ Ê¹ ØÙÒÒÓÒ Ò º º

Lisätiedot

ÂÓ ÒØÓ ½ Ì ØÓ Ò ØØ ÐÝØ ÓÖ Ø ÒÒÓ ØÙÒ ÐÐ ÙÖ ØØ Ð Ö Ð Ø Ð ÒØ Ñ ÐÐ º ØÝ Ó Ø ÚÙÙØ Ø Òºµ Ç ÐÑÓ ÒÒ Ø ÒÒÓ ØÙÒ ÐÐ ØØ Ð Ö Ð Ø Ó ÐÑÓ ÒØ ¹ Ó ÐÑ Ò ÙÙÒÒ ØØ ÐÙØ Ô º

ÂÓ ÒØÓ ½ Ì ØÓ Ò ØØ ÐÝØ ÓÖ Ø ÒÒÓ ØÙÒ ÐÐ ÙÖ ØØ Ð Ö Ð Ø Ð ÒØ Ñ ÐÐ º ØÝ Ó Ø ÚÙÙØ Ø Òºµ Ç ÐÑÓ ÒÒ Ø ÒÒÓ ØÙÒ ÐÐ ØØ Ð Ö Ð Ø Ó ÐÑÓ ÒØ ¹ Ó ÐÑ Ò ÙÙÒÒ ØØ ÐÙØ Ô º ÂÓ ÒØÓ ½ ½ ÂÓ ÒØÓ ÃÙÖ ÐÐ ØÙØÙ ØÙØ Ò Ô ÖÙ Ø Ò ÙÒ Ø ÓÒ Ð Ø Ó ÐÑÓ ÒÒ Ø Ö ØÝ Ø Ñ Ø Ò ÖÓ ØÙØÙ Ø Ø Ð Ô ÖÙ Ø Ø Ó ÐÑÓ ÒÒ Ø Ó ÐÑÓ ÒØ Ð Ø À ÐÐ ÓÐÐ ÓÒ Ô Ó Ó ÐÑÓ ÙÒ Ø ÓÒ Ð Ø º ½ ÂÓ ÒØÓ ½ Ì ØÓ Ò ØØ ÐÝØ ÓÖ Ø ÒÒÓ ØÙÒ

Lisätiedot

Ç Ø ØÙØ ÐÑ Ò Ð Ø Ó ÐÐ Ã Ö ¹ÂÓÙ Ó Ê Ì ÑÔ Ö Ò ÝÐ ÓÔ ØÓ ÁÒ ÓÖÑ Ø ÓØ Ø Ò Ý»Ø Ó Ø ÚØ ÈÖÓ Ö Ù ¹ØÙØ ÐÑ Ç Å ÖØØ Ì Ò Ö ¾ º½º¾¼½½ Ì ÑÔ Ö Ò ÝÐ ÓÔ ØÓ ÁÒ ÓÖÑ Ø ÓØ Ø Ò Ý»Ø Ó Ø ÚØ Ã Ö ¹ÂÓÙ Ó Ê Ç Ø ØÙØ ÐÑ Ò Ð Ø Ó ÐÐ

Lisätiedot

3D piirron liukuhihna (3D Graphics Pipeline) Sovellus/mallinnus Geometrian käsittely Rasterointi/piirto

3D piirron liukuhihna (3D Graphics Pipeline) Sovellus/mallinnus Geometrian käsittely Rasterointi/piirto ØÙغ Ø Ò ÐÐ Ò Ò ÝÐ ÓÔ ØÓ Ì ÑÔ Ö Ò È Ð Ó ÐÑÓ ÒØ Ö Ò Ô ÖØÓ ÒØØ ÈÙ ÒØØ ºÔÙ Ç ÐÑ ØÓØ Ò ¹ Ö Ò Ô ÖØÑ Ò Ò ÙÚ Ø Ò Ù Ò Ð Ù Ù Ò Ò Ô Ô Ð Ò µ ÚÙÐÐ Ö Ð Ù Ù Ò Ö Ø ØÓ ÙÐ Ð Ù Ù Ò Ò Ö Ú Ò ÙØØ ÒÒ Ò Ù Ò Ô ÖÖ ØÒ ÖÙÙ ÙÐÐ Ö

Lisätiedot

À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç ØÓ ÙÐØ Ø»Ë Ø ÓÒ ÙÐØÝ Ä ØÓ ÁÒ Ø ØÙØ ÓÒ Ô ÖØÑ ÒØ Å Ø Ñ ØØ ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò Ì Ö

À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç ØÓ ÙÐØ Ø»Ë Ø ÓÒ ÙÐØÝ Ä ØÓ ÁÒ Ø ØÙØ ÓÒ Ô ÖØÑ ÒØ Å Ø Ñ ØØ ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò Ì Ö Ø ÝØØ Ø Ò ØØ Ò ÙÚ Ù ÐÓ Ô ÖÙ Ø Ò Ò Ñ¹ Ö ØØ ÐÝ Û È ØÖ Ä Ò Ö Ò À Ð Ò ¾ º º¾¼¼ ÈÖÓ Ö Ù ¹ØÙØ ÐÑ À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ Ì ØÓ Ò ØØ ÐÝØ Ø Ò Ð ØÓ À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç

Lisätiedot

F n (a) = 1 n {i : 1 i n, x i a}, P n (a,b) = F n (b) F n (a). P n (a,b) = 1 n {i : 1 i n, a < x i b}.

F n (a) = 1 n {i : 1 i n, x i a}, P n (a,b) = F n (b) F n (a). P n (a,b) = 1 n {i : 1 i n, a < x i b}. Ë ÐØ ½ ÂÓ ÒØÓ ½ ½º½ ÌÓ ÒÒ ÝÝ Ø Ð ØÓØ º º º º º º º º º º º º º º º º º º ½ ½º¾ À Ú ØÙØ Ö Ú Ò Ø ÑÔ Ö Ø ÙÑ Ø º º º º º º º º º º º ½ ½º ÌÓ ÒÒ ÝÝ Ñ ÐÐ Ø º º º º º º º º º º º º º º º º º º º º º º º ½º º½

Lisätiedot

el. konsentraatio p puolella : n p = N c e (E cp E F ) el. konsentraatio n puolella : n n = N c e (E cn E F ) n n n p = e (Ecp Ecn) V 0 = kt q ln (

el. konsentraatio p puolella : n p = N c e (E cp E F ) el. konsentraatio n puolella : n n = N c e (E cn E F ) n n n p = e (Ecp Ecn) V 0 = kt q ln ( ÈÙÓÐ Ó ÓÑÔÓÒ ÒØØ Ò Ô ÖÙ Ø Ø À Ì Øº ½º È ÖÖ ÔÒ¹ÔÙÓÐ Ó Ð ØÓ Ò Ò Ö ÚÝ Ñ ÐÐ ÙÒ ÙÐ Ó Ò Ò ÒØØ ÓÒ ÒÓÐÐ º ÂÓ ÓÒØ Ø ÔÓØ ÒØ Ð Ò V 0 Ý ØÐ µ ÃÙÚ Ò ÚÙÐÐ µ Ù ÓÚ ÖØ Ý ØÐ Ø Ô¹ Ò¹ØÝÝÔ Ø Ò Ñ Ø Ö Ð Ò Ò Ö Ø ÓØ Ô¹ÔÙÓÐ ÐÐ ÙÙÖ

Lisätiedot

Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Ý ÒØØ Ð Ò Ò ÓÒ Ò Ù ÓÒ ÐÑ ¾ ¾º½ ÅÖ Ø ÐÑ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾ ¾º¾ Ý ÒØØ Ð Ø Ò ÒÖ Ð Ò ÓÒ Ð

Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Ý ÒØØ Ð Ò Ò ÓÒ Ò Ù ÓÒ ÐÑ ¾ ¾º½ ÅÖ Ø ÐÑ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾ ¾º¾ Ý ÒØØ Ð Ø Ò ÒÖ Ð Ò ÓÒ Ð Ý ÒØØ Ð Ø ÒÖ Ð Ø ÒØØ Ì Ò À Ð Ò ¾ º½¼º¾¼¼ ÌÙØ ÐÑ À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ Ì ØÓ Ò ØØ ÐÝØ Ø Ò Ð ØÓ Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Ý ÒØØ Ð Ò Ò ÓÒ Ò Ù ÓÒ ÐÑ ¾ ¾º½ ÅÖ Ø ÐÑ º º º º º º º º º º º º º º º º º º º º º º º º º º º

Lisätiedot

Referenced. Object. StateSet. Node. Geode

Referenced. Object. StateSet. Node. Geode ÇÔ ÒË Ò Ö Ô ¹Ó Ø Ì ÑÓºÌÓ Ú Ò ÒØѺ Ùغ ÌÑ Ó ÙÑ ÒØØ ÓÒ ØÝ Ò Ø Ô Ú Ø ØÒ Ø ÖÔ Ò ÑÙ Òº ½ Ø ÇÔ ÒË Ò Ö Ô ÇË µ ÓÒ ÇÔ Ò Ä Ò Ô Ö ÒÒ ØØÙ ¹ÙÓ Ö¹ ØÓ Ó ÓÒ Ú Ô Ø Ø Ú Ó ØÓ Ñ ÑÓÒ ÝÑÔÖ Ø º ÇË Ó¹ ÙÑ ÒØÓ ØÙ ÓÜÝ Ò¹Ó Ñ ØÓÒ

Lisätiedot

ÌÍÊÍÆ ÄÁÇÈÁËÌÇ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ÃÇÀÇ Ì ÊÇ ÇÔØ ÑÓ ÒØ ÐÙ ÓÐ ÐÐ ÈÖÓ Ö Ù ¹ØÙØ ÐÑ º º Å Ø Ñ Ø ÐÓ ÙÙ ¾¼½ ÇÔØ ÑÓ ÒØ ÓÒ ÓÚ ÐÐ ØÙÒ Ñ Ø Ñ Ø Ò Ó ¹ ÐÙ Ó

ÌÍÊÍÆ ÄÁÇÈÁËÌÇ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ÃÇÀÇ Ì ÊÇ ÇÔØ ÑÓ ÒØ ÐÙ ÓÐ ÐÐ ÈÖÓ Ö Ù ¹ØÙØ ÐÑ º º Å Ø Ñ Ø ÐÓ ÙÙ ¾¼½ ÇÔØ ÑÓ ÒØ ÓÒ ÓÚ ÐÐ ØÙÒ Ñ Ø Ñ Ø Ò Ó ¹ ÐÙ Ó ÇÔØ ÑÓ ÒØ ÐÙ ÓÐ ÐÐ ÈÖÓ Ö Ù¹ØÙØ ÐÑ Ì ÖÓ ÃÓ Ó Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ÌÙÖÙÒ Ð ÓÔ ØÓ ½ º ÐÓ ÙÙØ ¾¼½ ÌÍÊÍÆ ÄÁÇÈÁËÌÇ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ÃÇÀÇ Ì ÊÇ ÇÔØ ÑÓ ÒØ ÐÙ ÓÐ ÐÐ ÈÖÓ Ö Ù ¹ØÙØ ÐÑ º º Å Ø Ñ Ø ÐÓ

Lisätiedot

Ð Ù Ò Ø ÌÑ ÔÐÓÑ ØÝ ÓÒ Ø Ó Ì ÑÔ Ö Ò Ø Ò ÐÐ Ò ÝÐ ÓÔ ØÓÒ Å Ø Ñ Ø Ò Ð ØÓ Ò ÀÝÔ ÖÑ Ð ÓÖ ØÓÖ ÓÒ Ñ Ø Ñ Ø Ò ÓÔ ØÙ Ò ØØÑ ØÙع ÑÙ ÐÐ º ÌÝ Ý ØÝÚØ Ø Ò ÒÒÓ Ø Ú Ø Ø

Ð Ù Ò Ø ÌÑ ÔÐÓÑ ØÝ ÓÒ Ø Ó Ì ÑÔ Ö Ò Ø Ò ÐÐ Ò ÝÐ ÓÔ ØÓÒ Å Ø Ñ Ø Ò Ð ØÓ Ò ÀÝÔ ÖÑ Ð ÓÖ ØÓÖ ÓÒ Ñ Ø Ñ Ø Ò ÓÔ ØÙ Ò ØØÑ ØÙع ÑÙ ÐÐ º ÌÝ Ý ØÝÚØ Ø Ò ÒÒÓ Ø Ú Ø Ø Ä Æ Ä ÍÃÃÇÆ Æ Å Ø Ñ Ø Ò Ô ÖÙ Ø ØÓØ Ø Ò Ú Ö Ø Ö Ø ÐÙ ÓÔ ÒØÓ¹ Ñ Ò ØÝ Ò Ú ÙØØ Ú Ò Ø Ò Ò ÐÝ Ó ÒØ ÁÈÄÇÅÁÌ ÝÚ ÝØØÝ Ì Ò ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ó ØÓÒ ÙÚÓ ØÓÒ Ó ÓÙ º½½º¾¼¼ º Ì Ö Ø Ø ÔÖÓ ÓÖ Ë ÔÔÓ ÈÓ ÓÐ Ò Ò ØÙØ Å ÀÙ ÓÐ

Lisätiedot

ÄÙ ÙØ ÓÖ Ë Ô Ö ÒØ ÐÐ Ò ÝÑÑ ØÖ Ò Ð Ù Ò ØØ ÙÐ Ò Ú Ñ Ò Ð Ù Ò Ý Ø Ý Ø ÖÚ Ø Ò Ø ØÓ ÑÓ ÙÐÓ Ö ØÑ Ø Ø Ö ÐÐ Ø ÙÒÒ Ø º Ì ÐÙÚÙ ÐÙÓ Ò Ø Ù Ò Ò ÐÙ Ò ØÖ ÑÔ Ò ØØ Òº Ø

ÄÙ ÙØ ÓÖ Ë Ô Ö ÒØ ÐÐ Ò ÝÑÑ ØÖ Ò Ð Ù Ò ØØ ÙÐ Ò Ú Ñ Ò Ð Ù Ò Ý Ø Ý Ø ÖÚ Ø Ò Ø ØÓ ÑÓ ÙÐÓ Ö ØÑ Ø Ø Ö ÐÐ Ø ÙÒÒ Ø º Ì ÐÙÚÙ ÐÙÓ Ò Ø Ù Ò Ò ÐÙ Ò ØÖ ÑÔ Ò ØØ Òº Ø ÃÖÝÔØÓ Ö Ò Ô ÖÙ Ø Ø Ìº à ÖÚ Ë ÔØ Ñ Ö ¾¼¼ ̺ à ÖÚ µ ÃÖÝÔØÓ Ö Ò Ô ÖÙ Ø Ø Ë ÔØ Ñ Ö ¾¼¼ ½» ½½ ÄÙ ÙØ ÓÖ Ë Ô Ö ÒØ ÐÐ Ò ÝÑÑ ØÖ Ò Ð Ù Ò ØØ ÙÐ Ò Ú Ñ Ò Ð Ù Ò Ý Ø Ý Ø ÖÚ Ø Ò Ø ØÓ ÑÓ ÙÐÓ Ö ØÑ Ø Ø Ö ÐÐ Ø ÙÒÒ Ø º Ì

Lisätiedot

Ì Å ÈÙÐ Ò Ò Ø Ý Ø ÓØ Ñ ºÔÙÐ Ò Ò ÝÙº ÌÝ Ò Ò Ñ ÙØÓÑ Ø Ó ØÙ Ý Ø Ø Ù ÆÍÒ Ø¹Ø Ø Ù ÝÑÔÖ Ø Ì ØÐ Ò Ò Ð ÙØÓÑ Ø ÍÒ Ø Ì Ø Ò Ò ÆÍÒ Ø Ì Ø Ò ÒÚ ÖÓÒÑ ÒØ ÌÝ Ì ØÓØ Ò Ò

Ì Å ÈÙÐ Ò Ò Ø Ý Ø ÓØ Ñ ºÔÙÐ Ò Ò ÝÙº ÌÝ Ò Ò Ñ ÙØÓÑ Ø Ó ØÙ Ý Ø Ø Ù ÆÍÒ Ø¹Ø Ø Ù ÝÑÔÖ Ø Ì ØÐ Ò Ò Ð ÙØÓÑ Ø ÍÒ Ø Ì Ø Ò Ò ÆÍÒ Ø Ì Ø Ò ÒÚ ÖÓÒÑ ÒØ ÌÝ Ì ØÓØ Ò Ò Å ÈÙÐ Ò Ò ÙØÓÑ Ø Ó ØÙ Ý Ø Ø Ù ÆÍÒ Ø¹Ø Ø Ù ÝÑÔÖ Ø Ì ØÓØ Ò Ò Ò Ø ÒØÙØ ÐÑ ¾ º ÐÑ ÙÙØ ¾¼¼ ÂÝÚ ÝÐÒ ÝÐ ÓÔ ØÓ Ì ØÓØ Ò Ò Ð ØÓ ÂÝÚ ÝÐ Ì Å ÈÙÐ Ò Ò Ø Ý Ø ÓØ Ñ ºÔÙÐ Ò Ò ÝÙº ÌÝ Ò Ò Ñ ÙØÓÑ Ø Ó ØÙ Ý Ø Ø Ù ÆÍÒ Ø¹Ø Ø Ù

Lisätiedot

A B P(A B) = P(A B) P(K) = 4 ( 52 5) =

A B P(A B) = P(A B) P(K) = 4 ( 52 5) = ËÁË ÄÌ ¾º º½ ÀÝÔ Ö ÓÑ ØÖ Ò Ò ÙÑ º º º º º º º º º º º º º º º ¾º º¾ Ì Ö ØÙ ÓØ ÒØ Ø ÓÐÐ ÙÙ º º º º º º º º º º º º º º ¾º ÇØ ÒØ Ô Ð ÙØØ Ò º º º º º º º º º º º º º º º º º º º º º º º º ¾º ÒÓÑ ÙÑ º º º

Lisätiedot

È ÌÀÇƹÇÀ ÄÅÇÁÆÆÁÆ ËÇÎ ÄÄÍÃËÁ Å ÌÊÁÁËÁÄ Ëà ÆÌ Æ ÌÁÄ ËÌÇÌÁ Ì Ë Æ Â ÆÍÅ ÊÁË Æ Å Ì Å ÌÁÁÃÃ Æ ÄÍÃÁÇÄ ÁËÁÄÄ Ì Ò Ï ÐÐ Ö ¹Ä Ò ÈÖÓ Ö Ù ¹ØÙØ ÐÑ Å ÖÖ ÙÙ ¾¼¼ Å Ì Å ÌÁÁÃ Æ Ä ÁÌÇË ÌÍÊÍÆ ÄÁÇÈÁËÌÇ ÌÍÊÍÆ ÄÁÇÈÁËÌÇ Å

Lisätiedot

Aktiivisten DNA-muutosten seulonta riippuvuusmalleilla Elektroniikan, tietoliikenteen ja automaation tiedekunta

Aktiivisten DNA-muutosten seulonta riippuvuusmalleilla Elektroniikan, tietoliikenteen ja automaation tiedekunta ÇÐÐ ¹È ÀÙÓÚ Ð Ò Ò Aktiivisten DNA-muutosten seulonta riippuvuusmalleilla Elektroniikan, tietoliikenteen ja automaation tiedekunta ÔÐÓÑ ØÝ Ó ÓÒ Ø ØØÝ ÓÔ ÒÒÝØØ Ò Ø Ö Ø ØØ Ú ÔÐÓÑ ¹ Ò Ò Ö Ò ØÙØ ÒØÓ Ú ÖØ Ò

Lisätiedot

Ruuhkanhallinta-algoritmien toiminta haasteellisissa tietoverkoissa Elektroniikan, tietoliikenteen ja automaation tiedekunta

Ruuhkanhallinta-algoritmien toiminta haasteellisissa tietoverkoissa Elektroniikan, tietoliikenteen ja automaation tiedekunta Ä ÊÓÔÔÓÒ Ò Ruuhkanhallinta-algoritmien toiminta haasteellisissa tietoverkoissa Elektroniikan, tietoliikenteen ja automaation tiedekunta ÔÐÓÑ ØÝ Ó ÓÒ Ø ØØÝ ÓÔ ÒÒÝØØ Ò Ø Ö Ø ØØ Ú ÔÐÓÑ ¹ Ò Ò Ö Ò ØÙØ ÒØÓ Ú

Lisätiedot

ÁÁ Ì Ö Ø Ó ÌÙÖÙÒ Ò Ì Ö Ø ÝÚ ÝØØÝ ÄÙÓÒÒÓÒØ Ø Ò ÝÑÔÖ Ø Ø Ò Ò Ø ÙÒÒ Ò Ø ÙÒØ Ò ÙÚÓ ØÓÒ Ó ÓÙ ½ º¼ º¾¼¼

ÁÁ Ì Ö Ø Ó ÌÙÖÙÒ Ò Ì Ö Ø ÝÚ ÝØØÝ ÄÙÓÒÒÓÒØ Ø Ò ÝÑÔÖ Ø Ø Ò Ò Ø ÙÒÒ Ò Ø ÙÒØ Ò ÙÚÓ ØÓÒ Ó ÓÙ ½ º¼ º¾¼¼ Å Ð Ë Ú Ð ÂÓ ÒØÓ Ð Ø ÓÖ Òº ØÖ ÙØ Ú Ø Ð Ø ÔÐÓÑ ØÝ ÁÁ Ì Ö Ø Ó ÌÙÖÙÒ Ò Ì Ö Ø ÝÚ ÝØØÝ ÄÙÓÒÒÓÒØ Ø Ò ÝÑÔÖ Ø Ø Ò Ò Ø ÙÒÒ Ò Ø ÙÒØ Ò ÙÚÓ ØÓÒ Ó ÓÙ ½ º¼ º¾¼¼ ÁÁÁ ÌÁÁÎÁËÌ ÄÅ Ì ÅÈ Ê Æ Ì ÃÆÁÄÄÁÆ Æ ÄÁÇÈÁËÌÇ Ì Ò ¹ ÐÙÓÒÒÓÒØ

Lisätiedot

F n (a) = 1 n { i : 1 i n, x i a }, P n (a, b) = F n (b) F n (a). P n (a, b) = 1 n { i : 1 i n, a < x i b }.

F n (a) = 1 n { i : 1 i n, x i a }, P n (a, b) = F n (b) F n (a). P n (a, b) = 1 n { i : 1 i n, a < x i b }. Ë ÐØ ½ ÂÓ ÒØÓ ½ ½º½ ÌÓ ÒÒ ÝÝ Ø Ð ØÓØ º º º º º º º º º º º º º º º º º º ½ ½º¾ À Ú ØÙØ Ö Ú Ò Ø ÑÔ Ö Ø ÙÑ Ø º º º º º º º º º º º ½ ½º ÌÓ ÒÒ ÝÝ Ñ ÐÐ Ø º º º º º º º º º º º º º º º º º º º º º º º ½º º½

Lisätiedot

À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç ØÓ ÙÐØ Ø»Ë Ø ÓÒ ÙÐØÝ Ä ØÓ ÁÒ Ø ØÙØ ÓÒ Ô ÖØÑ ÒØ Ì Ö ØØ Ö ÙØ ÓÖ ÇÐÐ ÇÖ ÖÚ ÌÝ Ò Ò

À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç ØÓ ÙÐØ Ø»Ë Ø ÓÒ ÙÐØÝ Ä ØÓ ÁÒ Ø ØÙØ ÓÒ Ô ÖØÑ ÒØ Ì Ö ØØ Ö ÙØ ÓÖ ÇÐÐ ÇÖ ÖÚ ÌÝ Ò Ò ÝÚ ÝÑ Ô Ú ÖÚÓ Ò ÖÚÓ Ø Ð Ã ÒÓØ Ó Ø Ò Ò ÙÖÓÚ Ö Ó Ò ØÝ ØØ Ø ÇÐÐ ÇÖ ÖÚ À Ð Ò ¾º º¾¼¼ À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ Ì ØÓ Ò ØØ ÐÝØ Ø Ò Ð ØÓ À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç ØÓ ÙÐØ

Lisätiedot

À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç ØÓ ÙÐØ Ø»Ë Ø ÓÒ ÙÐØÝ Ä ØÓ ÁÒ Ø ØÙØ ÓÒ Ô ÖØÑ ÒØ Å Ø Ñ ØØ ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò Ì Ö

À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç ØÓ ÙÐØ Ø»Ë Ø ÓÒ ÙÐØÝ Ä ØÓ ÁÒ Ø ØÙØ ÓÒ Ô ÖØÑ ÒØ Å Ø Ñ ØØ ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò Ì Ö ÁÖÖÐ Ø Ò Ò ¹ Ö ÑÓÓØØÓÖ Â ÒÒ Ä Ù Ö Ò Ò À Ð Ò ¾ º º¾¼¼ Ç ÐÑ ØÓØÙÓØ ÒØÓ Ø ØÓ ÓÒ Ô Ð Ø Ñ Ò Ö À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ Ì ØÓ Ò ØØ ÐÝØ Ø Ò Ð ØÓ À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ À ÄËÁÆ ÇÊË ÍÆÁÎ ÊËÁÌ Ì ÍÆÁÎ ÊËÁÌ Ç À ÄËÁÆÃÁ Ì ÙÒØ»Ç

Lisätiedot

ÁÁ ÌÁÁÎÁËÌ ÄÅ Ì ÅÈ Ê Æ Ì ÃÆÁÄÄÁÆ Æ ÄÁÇÈÁËÌÇ Ì Ò ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò ÓÙÐÙØÙ Ó ÐÑ ÄÌÁÇ ËÍÎÁ È Ö ÒÑ ÐÐ ¾¼¼ ¾¼¼ Ø Ô ØÙÒ Ò Ð ÒÒ ÓÒÒ ØØÓÑÙÙ ¹ Ò Ò ÐÝ Ó ÒØ Ý Ú

ÁÁ ÌÁÁÎÁËÌ ÄÅ Ì ÅÈ Ê Æ Ì ÃÆÁÄÄÁÆ Æ ÄÁÇÈÁËÌÇ Ì Ò ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò ÓÙÐÙØÙ Ó ÐÑ ÄÌÁÇ ËÍÎÁ È Ö ÒÑ ÐÐ ¾¼¼ ¾¼¼ Ø Ô ØÙÒ Ò Ð ÒÒ ÓÒÒ ØØÓÑÙÙ ¹ Ò Ò ÐÝ Ó ÒØ Ý Ú ËÍÎÁ ÄÌÁÇ ÈÁÊà ÆÅ ÄÄ ¾¼¼ ¾¼¼ Ì È ÀÌÍÆ Á Æ ÄÁÁà ÆÆ ¹ ÇÆÆ ÌÌÇÅÍÍÃËÁ Æ Æ Ä ËÇÁÆÌÁ ËÎ ÊÃÃÇÂ Æ ÎÍÄÄ ÔÐÓÑ ØÝ Ì Ö Ø Ð ÓÔ ØÓÒÐ ØÓÖ Ó ÌÙÖÙÒ Ò Ì Ö Ø ÝÚ ÝØØÝ ÄÙÓÒÒÓÒØ Ø Ò ÝÑÔÖ Ø Ø Ò Ò Ø ÙÒÒ Ò Ø ÙÒØ Ò ÙÚÓ ØÓÒ Ó ÓÙ

Lisätiedot

ÌÍÊÍÆ ÄÁÇÈÁËÌÇ Å Ø Ñ Ø Ò Ð ØÓ ÃÍÄ ÊÁÁÃà ÔÝ ØÐ Ø ÈÖÓ Ö Ù ¹ØÙØ ÐÑ º ¾ Ð Ø º Å Ø Ñ Ø ÀÙ Ø ÙÙ ¾¼¼ ÌÙØ ÐÑ Ò Ò ÓÒ ÔÝ ØРغ Ì Ö Ó ØÙ Ò ÓÒ Ø Ö Ø ÐÐ Ö Ð ÔÝ ¹ Ø

ÌÍÊÍÆ ÄÁÇÈÁËÌÇ Å Ø Ñ Ø Ò Ð ØÓ ÃÍÄ ÊÁÁÃà ÔÝ ØÐ Ø ÈÖÓ Ö Ù ¹ØÙØ ÐÑ º ¾ Ð Ø º Å Ø Ñ Ø ÀÙ Ø ÙÙ ¾¼¼ ÌÙØ ÐÑ Ò Ò ÓÒ ÔÝ ØРغ Ì Ö Ó ØÙ Ò ÓÒ Ø Ö Ø ÐÐ Ö Ð ÔÝ ¹ Ø È ÀÌ Ä Ì Ê ÙÐ ÈÖÓ Ö Ù ¹ØÙØ ÐÑ ÀÙ Ø ÙÙ ¾¼¼ Å Ì Å ÌÁÁÃ Æ Ä ÁÌÇË ÌÍÊÍÆ ÄÁÇÈÁËÌÇ ÌÍÊÍÆ ÄÁÇÈÁËÌÇ Å Ø Ñ Ø Ò Ð ØÓ ÃÍÄ ÊÁÁÃà ÔÝ ØÐ Ø ÈÖÓ Ö Ù ¹ØÙØ ÐÑ º ¾ Ð Ø º Å Ø Ñ Ø ÀÙ Ø ÙÙ ¾¼¼ ÌÙØ ÐÑ Ò Ò ÓÒ ÔÝ ØРغ Ì Ö Ó ØÙ

Lisätiedot

ÌÑ ØÙØ ÐÑ ØØ Ð Ð Ô Ò ÐÙ Ù ØØ Ò ØØÝÑ Ø ØØÑ Øº ÐÙ ¹ ØØ Ð ÑÑ Ñ Ø Ñ ØØ Ø Ñ ÐÐ Ó Ò ÚÙÐÐ Ñ Ø Ñ Ø Ò ÓÔÔ Ñ ÐÐ ÚÐØØÑØØ ÑØ ÐÙÓÒÒÓÐÐ Ø ÐÙÚÙØ ÚÓ Ò ÓÒ ØÖÙÓ ÓÐÑ Ô Ý

ÌÑ ØÙØ ÐÑ ØØ Ð Ð Ô Ò ÐÙ Ù ØØ Ò ØØÝÑ Ø ØØÑ Øº ÐÙ ¹ ØØ Ð ÑÑ Ñ Ø Ñ ØØ Ø Ñ ÐÐ Ó Ò ÚÙÐÐ Ñ Ø Ñ Ø Ò ÓÔÔ Ñ ÐÐ ÚÐØØÑØØ ÑØ ÐÙÓÒÒÓÐÐ Ø ÐÙÚÙØ ÚÓ Ò ÓÒ ØÖÙÓ ÓÐÑ Ô Ý Ä Ô Ò ÐÙ Ù ØØ Ò ØØÑ Ò Ò Ð Ñ Ô Ð Ò ÚÙÐÐ Î ÐÐ Ã ÒÒÙÒ Ò Å Ø Ñ Ø Ò ÔÖÓ Ö Ù ¹ØÙØ ÐÑ ÂÝÚ ÝÐÒ ÝÐ ÓÔ ØÓ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ËÝ Ý ¾¼¼ ÌÑ ØÙØ ÐÑ ØØ Ð Ð Ô Ò ÐÙ Ù ØØ Ò ØØÝÑ Ø ØØÑ Øº ÐÙ ¹ ØØ Ð ÑÑ Ñ Ø Ñ ØØ Ø

Lisätiedot

Ì ÓÚ Ö ÓØ Ð Ò Ã ÐÐÙÒ Å Ø Ñ Ø Ò ÈÖÓ Ö Ù¹ØÙØ ÐÑ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ÂÝÚ ÝÐÒ ÝÐ ÓÔ ØÓ ËÝ Ý ¾¼¼ Ë ÐØ ÂÓ ÒØÓ ½ ½ À ØÓÖ ¾ Î Ö ÓØ ÓÖ ¾º½ Î Ö ÓÒ ÚÖ ØÝ º º º º º º º º º º º º º º º º º º º º º º º º º

Lisätiedot

ËÁË ÄÌ ¾º º½ ÀÝÔ Ö ÓÑ ØÖ Ò Ò ÙÑ º º º º º º º º º º º º º º º ¾º º¾ Ì Ö ØÙ ÓØ ÒØ Ø ÓÐÐ ÙÙ º º º º º º º º º º º º º º ¾º ÇØ ÒØ Ô Ð ÙØØ Ò º º º º º º º

ËÁË ÄÌ ¾º º½ ÀÝÔ Ö ÓÑ ØÖ Ò Ò ÙÑ º º º º º º º º º º º º º º º ¾º º¾ Ì Ö ØÙ ÓØ ÒØ Ø ÓÐÐ ÙÙ º º º º º º º º º º º º º º ¾º ÇØ ÒØ Ô Ð ÙØØ Ò º º º º º º º Ë ÐØ ½ ÂÓ ÒØÓ ½ ½º½ ÌÓ ÒÒ ÝÝ Ø Ð ØÓØ º º º º º º º º º º º º º º º º º º ½ ½º¾ À Ú ØÙØ Ö Ú Ò Ø ÑÔ Ö Ø ÙÑ Ø º º º º º º º º º º º ½ ½º ÌÓ ÒÒ ÝÝ Ñ ÐÐ Ø º º º º º º º º º º º º º º º º º º º º º º º ½º º½

Lisätiedot

à ÑÖ Ò ÙÙ Ò ÙÒØÓÐ Ò Ò ÓÖ ÓØ ÓÒ ÓÖ ÓÑ Ö Ò Ð Ò ÑÖÝØÝÑ Ò Ò ËÁË ÄÌ ËÁË ÄÌ Ë ÐØ ½ ÂÓ ÒØÓ ½º½ ÌÙØ ÑÙ Ý ÝÑÝ ØÙØ ÐÑ Ò Ö ÒÒ º º º º º º º º º º º º º º º º º ½º¾ ÙÒØÓÐ Ò Ñ Ö Ò Ø ËÙÓÑ º º º º º º º º º º º º º

Lisätiedot

Hajasijoitettujen päätelaitteiden ohjelmistojen etähallintaratkaisu Elektroniikan, tietoliikenteen ja automaation tiedekunta

Hajasijoitettujen päätelaitteiden ohjelmistojen etähallintaratkaisu Elektroniikan, tietoliikenteen ja automaation tiedekunta È Ä Ø Hajasijoitettujen päätelaitteiden ohjelmistojen etähallintaratkaisu Elektroniikan, tietoliikenteen ja automaation tiedekunta ÔÐÓÑ ØÝ Ó ÓÒ Ø ØØÝ ÓÔ ÒÒÝØØ Ò Ø Ö Ø ØØ Ú ÔÐÓÑ ¹ Ò Ò Ö Ò ØÙØ ÒØÓ Ú ÖØ Ò

Lisätiedot

Ð Ø Ù ÁÈË Ò ÁÈË ÓÒ ÁÈ¹Ú Ö ÓÔÖÓØÓ ÓÐÐ Ò Ð ÒÒÙ Ñ ÐÐ Ø ØÒ ÁÈ¹Ô ØØ Ò ÙÖ Ñ Ò Ò ÑÙÙÒØ Ñ Ò Òº ÁÈË ÓÒ ÝÒØÝÒÝØ ÙÙ Ò ÁÈÚ ¹ÔÖÓØÓ ÓÐÐ Ò Ý Ø Ý ÁÈÚ ÓÒ Ò ÁÈË Ò ÐÙÓÒØ

Ð Ø Ù ÁÈË Ò ÁÈË ÓÒ ÁÈ¹Ú Ö ÓÔÖÓØÓ ÓÐÐ Ò Ð ÒÒÙ Ñ ÐÐ Ø ØÒ ÁÈ¹Ô ØØ Ò ÙÖ Ñ Ò Ò ÑÙÙÒØ Ñ Ò Òº ÁÈË ÓÒ ÝÒØÝÒÝØ ÙÙ Ò ÁÈÚ ¹ÔÖÓØÓ ÓÐÐ Ò Ý Ø Ý ÁÈÚ ÓÒ Ò ÁÈË Ò ÐÙÓÒØ ÌÁ ÌÇÌÍÊÎ ÇË ÁÎ ÁÈË Ì ÑÓ Ã ÖÚ º½¾º¾¼¼ Ì ÑÓ Ã ÖÚ µ ÌÁ ÌÇÌÍÊÎ ÇË ÁÎ ÁÈË º½¾º¾¼¼ ½» Ð Ø Ù ÁÈË Ò ÁÈË ÓÒ ÁÈ¹Ú Ö ÓÔÖÓØÓ ÓÐÐ Ò Ð ÒÒÙ Ñ ÐÐ Ø ØÒ ÁÈ¹Ô ØØ Ò ÙÖ Ñ Ò Ò ÑÙÙÒØ Ñ Ò Òº ÁÈË ÓÒ ÝÒØÝÒÝØ ÙÙ Ò ÁÈÚ ¹ÔÖÓØÓ ÓÐÐ

Lisätiedot

(a,b)(c,d) = (ac bd,ad + bc).

(a,b)(c,d) = (ac bd,ad + bc). ÃÓÑÔÐ ÐÙÚÙ Ø ½ ½º ÂÓ ÒØÓ ØÐ ÐÐ x + 1 = 0 ÓÐ Ö Ø Ù Ö Ð ÐÙ Ù Ò ÓÙ Ó Ó Ó Ò Ö Ð ÐÙ¹ ÚÙÒ ØÓ Ò Ò ÔÓØ Ò ÓÒ ÔÓ Ø Ú Ò Òº ÂÓØØ ØÐÐ Ý ØÐ ÐÐ Ø Ò Ö Ø Ù Ñ Ò ØÝØÝÝ Ð ÒØ Ö Ð ÐÙ Ù Ò ÓÙ Ó Ð ÑÐÐ Ò ÙÙ Ð Ó Ñ Ö ØÒ Ø¹ Ø ØÓ Ø

Lisätiedot

λ (i,j) (i 1,j) = µ R j, i = 1,... N B, j = 0,... N R λ (i,j) (i,j 1) = µ B i, i = 0,... N B, j = 1,... N R λ (i,j) (k,l) = 0, muulloin.

λ (i,j) (i 1,j) = µ R j, i = 1,... N B, j = 0,... N R λ (i,j) (i,j 1) = µ B i, i = 0,... N B, j = 1,... N R λ (i,j) (k,l) = 0, muulloin. Šع¾º½¼ ËÓÚ ÐÐ ØÙÒ Ñ Ø Ñ Ø Ò Ö Ó ØÝ Ø ¾¼¼ ¹¼¾¹½¾ Ì Ø ÐÙÒ Ñ ÐÐ ÒÒÙ Ø Å Ö ÓÚ Ò Ø ÙÐÐ Ì Ò ÐÐ Ò Ò ÓÖ ÓÙÐÙ Ì Ò ÐÐ Ò Ý Ò Ñ Ø Ñ Ø Ò Ó ØÓ ËÝ Ø Ñ Ò ÐÝÝ Ò Ð ÓÖ ØÓÖ Ó Ä ÙÖ ÂÙ Ò Ã Ò ¼¼ È Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Ì Ø ÐÙÑ

Lisätiedot

Ì Ê ÑÓ È Ø Ò Ò Ø Ý Ø ÓØ Ö Ô Ø Òº ÝÙº ÌÝ Ò Ò Ñ ÃÝØ ØØÚÝÝ ÙÙÒÒ ØØ ÐÙ Ó Ò Ó ÐÑ ØÓÔÖÓ Ì ØÐ Ò Ò Ð Í Ð ØÝ Ò Ò Ò Ó ØÛ Ö ÔÖÓ ÌÝ Ì ØÓØ Ò Ò ÔÖÓ Ö Ù ¹ØÙØ ÐÑ Ë ÚÙ

Ì Ê ÑÓ È Ø Ò Ò Ø Ý Ø ÓØ Ö Ô Ø Òº ÝÙº ÌÝ Ò Ò Ñ ÃÝØ ØØÚÝÝ ÙÙÒÒ ØØ ÐÙ Ó Ò Ó ÐÑ ØÓÔÖÓ Ì ØÐ Ò Ò Ð Í Ð ØÝ Ò Ò Ò Ó ØÛ Ö ÔÖÓ ÌÝ Ì ØÓØ Ò Ò ÔÖÓ Ö Ù ¹ØÙØ ÐÑ Ë ÚÙ Ê ÑÓ È Ø Ò Ò ÃÝØ ØØÚÝÝ ÙÙÒÒ ØØ ÐÙ Ó Ò Ó ÐÑ ØÓÔÖÓ Ì ØÓØ Ò Ò ÔÖÓ Ö Ù ¹ØÙØ ÐÑ ¾ º ÓÙÐÙ ÙÙØ ¾¼¼ ÂÝÚ ÝÐÒ ÝÐ ÓÔ ØÓ Ì ØÓØ Ò Ò Ð ØÓ ÂÝÚ ÝÐ Ì Ê ÑÓ È Ø Ò Ò Ø Ý Ø ÓØ Ö Ô Ø Òº ÝÙº ÌÝ Ò Ò Ñ ÃÝØ ØØÚÝÝ ÙÙÒÒ ØØ ÐÙ Ó Ò

Lisätiedot

a b = abº Z Q R C + : N N N, +(m,n) = m + n ( Ð (m,n) m + n), : N N N, (m,n) = m n (= mn) ( Ð (m,n) mn). A B (A,B) A Bº

a b = abº Z Q R C + : N N N, +(m,n) = m + n ( Ð (m,n) m + n), : N N N, (m,n) = m n (= mn) ( Ð (m,n) mn). A B (A,B) A Bº ÄÙ Ù ÐÙ Ø ÂÙ Ä Ö ÂÓÙÒ È Ö ÓÒ Ò ÄÙ ÐÐ ÌÑ ÑÓÒ Ø Ô ÖÙ ØÙÙ ÂÓÙÒ È Ö Ó Ò ÚÙÓ Ò ¾¼¼ ¾¼¼ ÂÙ Ä Ö Ò ÚÙÓÒÒ ¾¼¼ Ô ØÑ Ò ÄÙ Ù Ð٠ع ÙÖ Ò ÐÙ ÒØÓ Òº ÅÓÒ Ø Ò Ò Ò Ñ Ø ¹ Ö Ð ÓÒ Ø Ö Ó Ø ØØÙ Ú ÓÒ Ñ ØØ ÐÐ ÐÙ ÒØÓ ÙÖ ÐÐ Ð ÑÙ

Lisätiedot

ËÚÝØÝ Ò µ ÓÒ Ñ Ò ÔÑÖ Ò Ò Ø ÖÑ ÓÒ ÝØØ Ø ØÓ ÓÒ Ö ÓÒ ÐÓ ØÓÒÒÙØ Ñ Ð Ó Ù Ò Ò Ð ÙÔ Ö Ø Ñ Ö ØÝ Ø Ã ØØ ÐÐ Ø Ö Ó Ø Ø Ò ÒÝ ÝÒ Ø Ò Ó Ø Ó ÐÐ Ð Ø Ò ÚÖ Ú Ð ØÙ Ø ÔÔ

ËÚÝØÝ Ò µ ÓÒ Ñ Ò ÔÑÖ Ò Ò Ø ÖÑ ÓÒ ÝØØ Ø ØÓ ÓÒ Ö ÓÒ ÐÓ ØÓÒÒÙØ Ñ Ð Ó Ù Ò Ò Ð ÙÔ Ö Ø Ñ Ö ØÝ Ø Ã ØØ ÐÐ Ø Ö Ó Ø Ø Ò ÒÝ ÝÒ Ø Ò Ó Ø Ó ÐÐ Ð Ø Ò ÚÖ Ú Ð ØÙ Ø ÔÔ ØÙغ Ø Ò ÐÐ Ò Ò ÝÐ ÓÔ ØÓ Ì ÑÔ Ö Ò È Ð Ó ÐÑÓ ÒØ Ë Ò ² Ö Ø ÒØØ ÈÙ ÒØØ ºÔÙ Ç ÐÑ ØÓØ Ò ËÚÝØÝ Ò µ ÓÒ Ñ Ò ÔÑÖ Ò Ò Ø ÖÑ ÓÒ ÝØØ Ø ØÓ ÓÒ Ö ÓÒ ÐÓ ØÓÒÒÙØ Ñ Ð Ó Ù Ò Ò Ð ÙÔ Ö Ø Ñ Ö ØÝ Ø Ã ØØ ÐÐ Ø Ö Ó Ø Ø Ò ÒÝ ÝÒ Ø

Lisätiedot

139/ /11034 = 0.58

139/ /11034 = 0.58 Ú ËÁË ÄÌ ÅÓÒ ÙÐÓØ Ø ÙÑ Ø ½ º½ à ÙÐÓØØ Ø ÙÑ Ø º º º º º º º º º º º º º º º º º º º º º ½ º½º½ Ê ÙÒ ÙÑ Ø ÓÐÐ Ø ÙÑ Ø º º º º º º º º º ½ º½º¾ ÓÐÐ Ò Ó ÓØÙ ÖÚÓÒ ÓÑ Ò ÙÙ º º º º º º º º º ½ º½º À Ö Ö Ø Ñ ÐÐ

Lisätiedot

Ì ÑÔ Ö Ò ÝÐ ÓÔ ØÓ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ÆÁ Å Ä ÊÇ ÓÙÖ Ö¹ÑÙÙÒÒÓ Ø ÈÖÓ Ö Ù ¹ØÙØ ÐÑ º Å Ø Ñ Ø ÀÙ Ø ÙÙ ¾¼¼ Ì Ú Ø ÐÑ ÌÙØ ÐÑ Ò Ò ÓÒ ÓÙÖ Ö¹ÑÙÙÒÒÓ Ò ØØ Ð

Ì ÑÔ Ö Ò ÝÐ ÓÔ ØÓ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ÆÁ Å Ä ÊÇ ÓÙÖ Ö¹ÑÙÙÒÒÓ Ø ÈÖÓ Ö Ù ¹ØÙØ ÐÑ º Å Ø Ñ Ø ÀÙ Ø ÙÙ ¾¼¼ Ì Ú Ø ÐÑ ÌÙØ ÐÑ Ò Ò ÓÒ ÓÙÖ Ö¹ÑÙÙÒÒÓ Ò ØØ Ð Ì ÅÈ Ê Æ ÄÁÇÈÁËÌÇ ÈÖÓ Ö Ù ¹ØÙØ ÐÑ ÖÓ Æ Ñ Ð ÓÙÖ Ö¹ÑÙÙÒÒÓ Ø Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ Å Ø Ñ Ø ÀÙ Ø ÙÙ ¾¼¼ Ì ÑÔ Ö Ò ÝÐ ÓÔ ØÓ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ÆÁ Å Ä ÊÇ ÓÙÖ Ö¹ÑÙÙÒÒÓ Ø ÈÖÓ Ö Ù ¹ØÙØ ÐÑ º Å Ø Ñ Ø

Lisätiedot

Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Ì Ø ÐÙÑ ÐÐ ÒÒÙ ½ ¾º½ Ì Ø ÐÙÑ ÐÐ ÒÒÙ Ò ØÓÖ º º º º º º º º º º º º º º º º º º ¾ ¾º¾ ËØÓ Ø Ò Ò Ø Ø ÐÙÑ ÐÐ ÒÒÙ º º º º º º º º º º º º

Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Ì Ø ÐÙÑ ÐÐ ÒÒÙ ½ ¾º½ Ì Ø ÐÙÑ ÐÐ ÒÒÙ Ò ØÓÖ º º º º º º º º º º º º º º º º º º ¾ ¾º¾ ËØÓ Ø Ò Ò Ø Ø ÐÙÑ ÐÐ ÒÒÙ º º º º º º º º º º º º Šع¾º ½¼ ËÓÚ ÐÐ ØÙÒ Ñ Ø Ñ Ø Ò Ö Ó ØÝ Ø º½º¾¼¼ Ì Ø ÐÙÒ ÑÙÐÓ ÒØ ÑÔÙÑ Ø ÖÚ Ò Ö Ø ÐÑ Ò Ù Ø ÒÒÙ Ø Ó ÙÙ Ì Ò ÐÐ Ò Ò ÓÖ ÓÙÐÙ Ì Ò ÐÐ Ò Ý Ò Ñ Ø Ñ Ø Ò Ó ØÓ ËÝ Ø Ñ Ò ÐÝÝ Ò Ð ÓÖ ØÓÖ Ó Â ÒÒ Ä ØÓÒ Ò ¼¾ Ë ÐØ ½ ÂÓ ÒØÓ

Lisätiedot

ÁÁ ÌÁÁÎÁËÌ ÄÅ Ì ÅÈ Ê Æ Ì ÃÆÁÄÄÁÆ Æ ÄÁÇÈÁËÌÇ Ì Ò ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò ÓÙÐÙØÙ Ó ÐÑ ÆÌÌÁ¹ÁÄ ÊÁ È ÊÌ Æ Æ ÁÐÑ ØÓÒÑÙÓ Ù Ñ Ö ÙÓÐ Ò Ø Ó ÐÐ Ú Ù¹ ØÙ Ø Ñ Ö ÐÐ Ò ÙÑ

ÁÁ ÌÁÁÎÁËÌ ÄÅ Ì ÅÈ Ê Æ Ì ÃÆÁÄÄÁÆ Æ ÄÁÇÈÁËÌÇ Ì Ò ¹ÐÙÓÒÒÓÒØ Ø ÐÐ Ò Ò ÓÙÐÙØÙ Ó ÐÑ ÆÌÌÁ¹ÁÄ ÊÁ È ÊÌ Æ Æ ÁÐÑ ØÓÒÑÙÓ Ù Ñ Ö ÙÓÐ Ò Ø Ó ÐÐ Ú Ù¹ ØÙ Ø Ñ Ö ÐÐ Ò ÙÑ ÆÌÌÁ¹ÁÄ ÊÁ È ÊÌ Æ Æ ÁÄÅ ËÌÇÆÅÍÇÃà ÍË Å ÊÁËÍÇÄ ÁÆ ÃÌÁÇÁÄÄ Î ÁÃÍÌÍÃË Ì Å Ê ÄÄÁËÁÁÆ ÃÍÅÈÍà ÊÊÇËÈÁÄÎÁÁÆ Â Å È ÄÄÇÆ Ë Ì ÁÄ Ì Ë Ë Æ ÔÐÓÑ ØÝ Ì Ö Ø ÂÝÖ Å Ð Ì Ö Ø ÝÚ ÝØØÝ ÄÙÓÒÒÓÒØ Ø Ò ÝÑÔÖ Ø Ø Ò Ò Ø ÙÒØ Ò ÙÚÓ

Lisätiedot

T 2. f T (x)e i2π k T x dx. c k e i2π k T x = x dx. c k e i2π k T x = k Z. f T (x) =

T 2. f T (x)e i2π k T x dx. c k e i2π k T x = x dx. c k e i2π k T x = k Z. f T (x) = º ÓÙÖÖ¹ÑÙÙÒÒÓ ÓÙÖÖ Ò ÒØÖÐ Ð Ù ¹ ÓÐÐ Ò ÙÒ Ø ÓÒ f(x) PC(R) º½ ÓÙÖÖ¹ Ò ÐÝÝ º ÒÐ Òµ ÅÖ Ø ÐÐÒ T ¹ ÓÐÐ Ò Ò ÙÒ Ø Ó f T (x) = f(x), T 2 < x < T 2, ÃÓÑÔÐ Ò Ò ÓÙÖÖ¹ÖÖÓ Ò c k = 1 T T 2 T 2 f T (x)e i2π k T x dx.

Lisätiedot

1, x 0; 0, x < 0. ε(x) = p i ε(x i).

1, x 0; 0, x < 0. ε(x) = p i ε(x i). ËÁË ÄÌ Ö ØØ Ý ÙÐÓØØ ÙÑ ½½½ º½ Ö ØØ ØÙÒÒ ÑÙÙØØÙ º º º º º º º º º º º º º º º º º º ½½½ º¾ ÖÒÓÙÐÐ Ò Ó Ø ÒÓÑ ÙÑ º º º º º º º º º º º º º º º ½½ º¾º½  ÙÑ Ò ÝÑÑ ØÖ º º º º º º º º º º º º º º º º º º º ½½

Lisätiedot

½µ newstate := 0. µ state := goto[state,p i [j]] µ state := 0;j := 0. µ j := j + 1 µ newstate := newstate + 1

½µ newstate := 0. µ state := goto[state,p i [j]] µ state := 0;j := 0. µ j := j + 1 µ newstate := newstate + 1 ½º º Àǹ ÇÊ ËÁ ù Ä ÇÊÁÌÅÁ ½ à ÖÔ Ê Ò Ø Ö Ø Ð Ú Ø ÑÝ ÙÒ Ú Ö Ð Ò ÙØÙ Ò Ô ÖÙ ØÙÚ Ú Ö Ó Ø Ð ÓÖ ØÑ Ø Î Ð Ø Ò q ØÙÒÒ Ø ÐÙ Ù ÓÙ Ó Ø Qº Q Ò ÐÙÚÙØ ÚÓ Ú Ø ÓÐÐ Ô Ò Ò Ò Ò Ø ÖÚ Ø ÓÐÐ Ð ÙÐÙ Ù º ÎÖÒ Ø ÑÝ Ò ØÓ ÒÒ ÝÝ

Lisätiedot

Ì ÃÆÁÄÄÁÆ Æ ÃÇÊÃ ÃÇÍÄÍ Ì Å Ó Î Ø ÁÈÄÇÅÁÌ Æ ÌÁÁÎÁËÌ ÄÅ ÌÝ Ò Ò Ñ Î Ö ÚÖÓÓØØÓÖ Ò ÓÒ Ò Ò ÐÝÝ È ÚÑÖ º Ñ ÖÖ ÙÙØ ¾¼¼ Ë ÚÙÑÖ ¾ Ç ØÓ Ë ¹ Ø ØÓÐ ÒÒ Ø Ò Ò Ó ØÓ ÈÖ

Ì ÃÆÁÄÄÁÆ Æ ÃÇÊÃ ÃÇÍÄÍ Ì Å Ó Î Ø ÁÈÄÇÅÁÌ Æ ÌÁÁÎÁËÌ ÄÅ ÌÝ Ò Ò Ñ Î Ö ÚÖÓÓØØÓÖ Ò ÓÒ Ò Ò ÐÝÝ È ÚÑÖ º Ñ ÖÖ ÙÙØ ¾¼¼ Ë ÚÙÑÖ ¾ Ç ØÓ Ë ¹ Ø ØÓÐ ÒÒ Ø Ò Ò Ó ØÓ ÈÖ Ì ÃÆÁÄÄÁÆ Æ ÃÇÊÃ ÃÇÍÄÍ Ë ¹ Ø ØÓÐ ÒÒ Ø Ò Ò Ó ØÓ Å Ó Î Ø Î Ö ÚÖÓÓØØÓÖ Ò ÓÒ Ò Ò ÐÝÝ ÔÐÓÑ ØÝ Ó ÓÒ Ø ØØÝ ÓÔ ÒÒÝØØ Ò Ø Ö Ø ØØ Ú ÔÐÓÑ ¹ Ò Ò Ö Ò ØÙØ ÒØÓ Ú ÖØ Òº ÔÓÓ º Ñ ÖÖ ÙÙØ ¾¼¼ ÌÝ Ò Ú ÐÚÓ ÈÖÓ ÓÖ ÒØ ÖÓ Ö Ó ÌÝ

Lisätiedot

Ä ÖÓ Ò ÒØÝÑ Ò Ò Ù Ø Ð Ó Ò Ô ÐÐÓÒ Ñ ØØ Ú Ë ÖÔ È Ý Ò Ò ÈÖÓ Ö Ù ØÙØ ÐÑ ÇÙÐÙÒ ÝÐ ÓÔ ØÓ ÓÐÓ Ò Ð ØÓ ÌÓÙ Ó ÙÙ ¾¼¼ Ë ÐØ ½ ÂÓ ÒØÓ ½ ½º½ Ä ÖÓ Ò Ö ÒØ Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾

Lisätiedot

y t = X t β + u t, u t NID(0, 1) t = 1, 2,..., n ½µ

y t = X t β + u t, u t NID(0, 1) t = 1, 2,..., n ½µ ÇÊ Ê ÈÊÇ ÁÌ Â Â ÄÃ È ÄÄǹÇÌÌ ÄÍÆ Å ÄÄÁÆÌ ÅÁÆ Æ Ê Ò ÓÑ Î Ö Ð ½º Ò ÙÙØ ¾¼¼ ËÁË ÄÌ ½ Ë ÐØ ½ ÂÓ ÒØÓ ¾ ¾ ÇÖ Ö ÔÖÓ Ø ¾º½ Å ÐÐ Ò ÑÖ ØØ ÐÝ º º º º º º º º º º º º º º º º º º º º º º º º º Â Ð Ô ÐÐÓ¹ÓØØ ÐÙÒ Ò

Lisätiedot

Ì ÂÝÖ Ä Ò Ò Ø Ý Ø ÓØ ÝÖ Ðº ÝÙº ÌÝ Ò Ò Ñ Å Ñ ØØ Ø Ð ÓÖ ØÑ Ø Ì ØÐ Ò Ò Ð ÇÒ Å Ñ Ø Ð ÓÖ Ø Ñ ÌÝ Ì ØÓØ Ò Ò ÔÖÓ Ö Ù ¹ØÙØ ÐÑ Ë ÚÙÑÖ Ì Ú Ø ÐÑ Å Ñ ØØ Ø Ð ÓÖ ØÑ

Ì ÂÝÖ Ä Ò Ò Ø Ý Ø ÓØ ÝÖ Ðº ÝÙº ÌÝ Ò Ò Ñ Å Ñ ØØ Ø Ð ÓÖ ØÑ Ø Ì ØÐ Ò Ò Ð ÇÒ Å Ñ Ø Ð ÓÖ Ø Ñ ÌÝ Ì ØÓØ Ò Ò ÔÖÓ Ö Ù ¹ØÙØ ÐÑ Ë ÚÙÑÖ Ì Ú Ø ÐÑ Å Ñ ØØ Ø Ð ÓÖ ØÑ ÂÝÖ Ä Ò Ò Å Ñ ØØ Ø Ð ÓÖ ØÑ Ø Ì ØÓØ Ò Ò ÔÖÓ Ö Ù ¹ØÙØ ÐÑ ½ º ÙÙØ ¾¼¼ ÂÝÚ ÝÐÒ ÝÐ ÓÔ ØÓ Ì ØÓØ Ò Ò Ð ØÓ ÂÝÚ ÝÐ Ì ÂÝÖ Ä Ò Ò Ø Ý Ø ÓØ ÝÖ Ðº ÝÙº ÌÝ Ò Ò Ñ Å Ñ ØØ Ø Ð ÓÖ ØÑ Ø Ì ØÐ Ò Ò Ð ÇÒ Å Ñ Ø Ð ÓÖ Ø Ñ ÌÝ Ì ØÓØ

Lisätiedot

x 1 x 2 x n u 1 + v 1 u 2 + v 2 u n + v n λu 1 λu 2 λu n

x 1 x 2 x n u 1 + v 1 u 2 + v 2 u n + v n λu 1 λu 2 λu n ÇÈÌÁÅÇÁÆÆÁÆ È ÊÍËÌ Ì Ã Ó ÊÙÓØ Ð Ò Ò ¾ º ÝÝ ÙÙØ ¾¼¼ ¾ ÂÓ ÒØÓ ÃÙÖ Ò Ø ÚÓ ØØ Ò ÓÒ ØÙØÙ ØÙØØ Ø Ú ÐÐ ÑÔ Ò ÓÔØ ÑÓ ÒØ ¹ Ð ÓÖ ØÑ Ò Ò Ò ÝØØ Ò ÓÚ ÐÐÙØÙ º ÃÙÖ Ñ Ø Ö Ð ÒØÙÙ Ò Ð Ò Ö Ó Òº ÐÙ ÐÝ Ý Ø ÖÖ Ø Ò Ñ ØÖ Ð Ö Ø

Lisätiedot

ÂÝÚ ÝÐÒ ÝÐ ÓÔ ØÓ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ÃÁÆÆÍÆ Æ ÌÇÈÁ Ê ÒÒÙ Ø Ò Ø Ò ÓÐÓ Ø Ò ÐÑ ØÓÐÐ Ø Ò Ø Ò Ú ÙØÙ ÙÒØÓ Ò ÐÑ Ò Ö ÓÒÔ ØÓ ÙÙØ Òº ÈÖÓ Ö Ù ¹ØÙØ ÐÑ º ½

ÂÝÚ ÝÐÒ ÝÐ ÓÔ ØÓ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ÃÁÆÆÍÆ Æ ÌÇÈÁ Ê ÒÒÙ Ø Ò Ø Ò ÓÐÓ Ø Ò ÐÑ ØÓÐÐ Ø Ò Ø Ò Ú ÙØÙ ÙÒØÓ Ò ÐÑ Ò Ö ÓÒÔ ØÓ ÙÙØ Òº ÈÖÓ Ö Ù ¹ØÙØ ÐÑ º ½ Ê Ã ÆÆÍËÌ ÃÆÁËÌ Æ ÇÄÇ ÁËÌ Æ Â ÁÄÅ ËÌÇÄÄÁËÌ Æ Ì ÃÁ Á Æ Î ÁÃÍÌÍË ËÍÆÌÇÂ Æ ËÁË ÁÄÅ Æ Ê ÇÆÈÁÌÇÁËÍÍÌ Æ ÌÓÔ Ã ÒÒÙÒ Ò Ì Ð ØÓØ Ø Ò ÔÖÓ Ö Ù ¹ØÙØ ÐÑ ÂÝÚ ÝÐÒ ÝÐ ÓÔ ØÓ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ¾¼¼ ÂÝÚ ÝÐÒ ÝÐ ÓÔ

Lisätiedot

º F(+, + ) = 1 F(, ) = F(, y) = F(x, ) = 0 й

º F(+, + ) = 1 F(, ) = F(, y) = F(x, ) = 0 й ËÁË ÄÌ Ö ØØ Ý ÙÐÓØØ ÙÑ ½¼ º½ Ö ØØ ØÙÒÒ ÑÙÙØØÙ º º º º º º º º º º º º º º º º º º ½¼ º¾ ÖÒÓÙÐÐ Ò Ó Ø ÒÓÑ ÙÑ º º º º º º º º º º º º º º º ½½½ º¾º½  ÙÑ Ò ÝÑÑ ØÖ º º º º º º º º º º º º º º º º º º º ½½

Lisätiedot

(xy)z = x(yz) λx = xλ = x.

(xy)z = x(yz) λx = xλ = x. ÄÙ Ù ½ ÐÙ ÌÑ ÑÓÒ Ø ÓÒ Ø Ö Ó Ø ØØÙ ÝØ ØØÚ Ì ÑÔ Ö Ò ÝÐ ÓÔ ØÓÒ Ø ØÓ Ò ØØ Ðݹ Ø Ø Ò Ð ØÓ Ò ÓÔ ÒØÓ ÓÐÐ ÙØÓÑ Ø Øº ÅÓÒ Ø Ô ÖÙ ØÙÙ ÙÖ Ú Ò Ð Ø Ò Åº º À ÖÖ ÓÒ ÁÒØÖÓ ÙØ ÓÒ ØÓ ÓÖÑ Ð Ä Ò Ù Ì ÓÖݺ ÓÒ¹Ï Ð Ý ½ º º º

Lisätiedot

arvostelija Elliptisen käyrän salauksen perusteita Mikko Alakunnas Helsinki HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos

arvostelija Elliptisen käyrän salauksen perusteita Mikko Alakunnas Helsinki HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos hyväksymispäivä arvosana arvostelija Elliptisen käyrän salauksen perusteita Mikko Alakunnas Helsinki 12.4.2007 HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET

Lisätiedot

x (t) = f(x(t)) u B δ (p) = ϕ t (v) = p, v B d (p) = lim e t AT e t A dt W =

x (t) = f(x(t)) u B δ (p) = ϕ t (v) = p, v B d (p) = lim e t AT e t A dt W = Á Ê ÆÌÁ ÄÁ ÀÌ Ä Ë ËÌ ÅÁÌ º Ì Ô ÒÓÔ Ø Ø Ø Ð ÙÙ Ì ÐÙÚÙ Ø ÑÑ Ö ÒØ Ð Ý ØÐ Ò Ø Ô ÒÓÖ Ø Ù Ò Ø Ð ÙÙ Ø Ö Ø ÐÙ¹ ÒÝØ ÔÐ Ò Ö ÐÐ Ý Ø Ñ ÐÐ º ÌÐÐ ÓÚ Ø Ñ Ö ÐÙÖ Ý Ø Ñ ÐÐ Ô ÐÐ Ò ÔÝ ØÝ ÙÓÖ Ò Ó Ó Ð Ø ÝÐ Ô Ò ÓÐ Ú ÐÙÖ º ÂÓ

Lisätiedot

x = [ x 1 x 2 x n (x i K) x = K (n) = {(x 1, x 2,...,x n ) : x i K} e 1 = (1, 0,..., 0) Ø, e 2 = (0, 1,..., 0) Ø,..., e n = (0, 0,...

x = [ x 1 x 2 x n (x i K) x = K (n) = {(x 1, x 2,...,x n ) : x i K} e 1 = (1, 0,..., 0) Ø, e 2 = (0, 1,..., 0) Ø,..., e n = (0, 0,... ¼¼ Ë Å ØÖ Ø ÓÖ Ì ÖÓ Î Ò ÙÓ Ù ¾º ØÓÙ Ó ÙÙØ ¾¼¼ Ë ÐØ ½ Ä Ò Ö Ð Ö ½º½ Å Ö ÒØ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º¾ È ÖÙ ÓÑ Ò ÙÙ º º º º º º º º º º º º º º º º º º º º º º º º ½º Å

Lisätiedot

x α 1... x (v ṽ)φdx = 0

x α 1... x (v ṽ)φdx = 0 Ð Ñ ÒØØ Ñ Ò Ø ÐÑ ÐÐ ÔØ ÐÐ ÓÒ ÐÑ ÐÐ ÈÖÓ Ö Ù ¹ØÙØ ÐÑ Ì ÑÙ ÅÙ ØÓÒ Ò ½ ½ ÁعËÙÓÑ Ò ÝÐ ÓÔ ØÓ ÄÙÓÒÒÓÒØ Ø Ò Ñ Ø Ø Ø Ò Ø ÙÒØ Ý Ò Ñ Ø Ñ Ø Ò Ð ØÓ ½ º ØÓÙ Ó ÙÙØ ¾¼½¾ Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ Ð Ñ ÒØØ Ñ Ò Ø ÐÑÒ ÙÒ Ø Ó Ú ÖÙÙ

Lisätiedot

f(x) =, x = 0,1,...,100. P(T 20) = P( X 50 20) 0.

f(x) =, x = 0,1,...,100. P(T 20) = P( X 50 20) 0. Ú ËÁË ÄÌ ½¾º ËÙ Ø ÐÐ Ø Ò Ó ÙÙ Ò ÐÙÓØØ ÑÙ ÚÐ Ø º º º º º º º º º º º º º º ¾ ½¾º ÇØÓ Ó Ó º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¼ ½¾º Å Ò Ò ÙÑ Ø Ú Ô ÐÙÓØØ ÑÙ ÚÐ º º º º º º º º º º

Lisätiedot

Erkki Mäkinen ja Timo Poranen. Algoritmit

Erkki Mäkinen ja Timo Poranen. Algoritmit Erkki Mäkinen ja Timo Poranen Algoritmit INFORMAATIOTIETEIDEN YKSIKKÖ TAMPEREEN YLIOPISTO INFORMAATIOTIETEIDEN YKSIKÖN RAPORTTEJA 1/2011 TAMPERE 2011 TAMPEREEN YLIOPISTO INFORMAATIOTIETEIDEN YKSIKKÖ INFORMAATIOTIETEIDEN

Lisätiedot

C A B, A D B A B E. A B C, A C B Ø B A C.

C A B, A D B A B E. A B C, A C B Ø B A C. Ù Ð Ò ÝÔ Ö ÓÐ Ò ÓÑ ØÖ Ò Ñ ÐÐ Ö Ë ÐÑ Ð ÈÖÓ Ö Ù ØÙØ ÐÑ ÂÝÚ ÝÐÒ ÝÐ ÓÔ ØÓ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ Ã ÚØ ¾¼¼ Ë ÐØ ½ ÂÓ ÒØÓ ½ ¾ À Ð ÖØ Ò ÓÓÑ Ö Ø ÐÑ ¾ ¾º½ À Ð ÖØ Ò Ò Ò ÓÓÑ Ø º º º º º º º º º º º º º º º º

Lisätiedot

P F [L θ U] P F [L θ U] 1 α, 0 < α < 1,

P F [L θ U] P F [L θ U] 1 α, 0 < α < 1, ËÁË ÄÌ º º½ º º¾ º º º º Ú Å Ö ÓÚ Ò Ì Ý Ú Ò ÔÝ ØÐ Ø ÙÙÖØ Ò ÐÙ Ù¹ Ò Ð º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾ Â Ò Ò Ò ÔÝ ØÐ º º º º º º º º º º º º º º º º º º º º ¾ ËØÓ Ø Ò Ò ÙÔÔ Ò Ñ Ò

Lisätiedot

f(x;n,θ) = θ x (1 θ) n x, x = 0,1,...,n; 0 θ 1. Θ = {θ 0 θ 1}. ˆθ = x n.

f(x;n,θ) = θ x (1 θ) n x, x = 0,1,...,n; 0 θ 1. Θ = {θ 0 θ 1}. ˆθ = x n. ËÁË ÄÌ Ú º º½ Å Ö ÓÚ Ò Ì Ý Ú Ò ÔÝ ØÐ Ø ÙÙÖØ Ò ÐÙ Ù¹ Ò Ð º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾ º º¾ Â Ò Ò Ò ÔÝ ØÐ º º º º º º º º º º º º º º º º º º º º ¾ º º ËØÓ Ø Ò Ò ÙÔÔ Ò Ñ Ò Ò º

Lisätiedot

284 = º Î Ø Ú Ø. A = kanta korkeus. A 1/2suunn = kanta+kanta 2

284 = º Î Ø Ú Ø. A = kanta korkeus. A 1/2suunn = kanta+kanta 2 ÈÝØ ÓÖ Ò Ð Ù ÈÝØ ÓÖ Ò ÓÐÑ ÓØ ÈÖÓ Ö Ù¹ØÙØ ÐÑ ÒÓ¹Ã Ö Ò ½ Å Ø Ñ Ø Ò Ý Ò Ð ØÓ ÁعËÙÓÑ Ò ÝÐ ÓÔ ØÓ º ÐÓ ÙÙØ ¾¼½¾ Ë ÐØ ½ ÂÓ ÒØÓ ½ ½º½ ÈÝØ ÓÖ º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ ÈÝØ ÓÖ

Lisätiedot

Ë ÐØ ½ ÂÓ ÒØÓ ½ ½º½ È ÖÙ ØØ Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ Ò ÖØ Ø Ö ÒÒ Ñ ÐÐ Ø º º º º º º º º º º º º º º

Ë ÐØ ½ ÂÓ ÒØÓ ½ ½º½ È ÖÙ ØØ Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ Ò ÖØ Ø Ö ÒÒ Ñ ÐÐ Ø º º º º º º º º º º º º º º Ê ÒØ Ò Ø Ð ÙÙ Ø ÓÖ ÐÙ ÒØÓÑÓÒ Ø Å Ö Ù ÌÙÓÑ Ð ϕ v N N Ë ÐØ ½ ÂÓ ÒØÓ ½ ½º½ È ÖÙ ØØ Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ Ò ÖØ Ø Ö ÒÒ Ñ ÐÐ Ø º º º º º º º º º º º º º

Lisätiedot

ÂÝÖ Ë Ö Ò Ò ÌÝ Ò Ò Ñ Ö Ø Ø Ø Ø Ð Ì ØÐ ÂÙÐ Ò Ú Ñ Ò Ñ Ò Ø ÐÑ ÌËÁ Ò ÅË˹ÑÖ ØÝ ÇÔÔ Ò ÄÖÓÑÒ ËÙ Ø ÌÝ Ò Ð Ö Ø Ø ÖØ Ä Ú Ð ØÙÑ ÅÓÒØ Ò Ý Ö Ë ÚÙÑÖ Ë Ó ÒØ Ð ÆÙÑ Ö

ÂÝÖ Ë Ö Ò Ò ÌÝ Ò Ò Ñ Ö Ø Ø Ø Ø Ð Ì ØÐ ÂÙÐ Ò Ú Ñ Ò Ñ Ò Ø ÐÑ ÌËÁ Ò ÅË˹ÑÖ ØÝ ÇÔÔ Ò ÄÖÓÑÒ ËÙ Ø ÌÝ Ò Ð Ö Ø Ø ÖØ Ä Ú Ð ØÙÑ ÅÓÒØ Ò Ý Ö Ë ÚÙÑÖ Ë Ó ÒØ Ð ÆÙÑ Ö ÝÚ ÝÑ Ô Ú ÖÚÓ Ò ÖÚÓ Ø Ð ÂÙÐ Ò Ú Ñ Ò Ñ Ò Ø ÐÑ ÌËÁ Ò ÅË˹ÑÖ ØÝ ÂÝÖ Ë Ö Ò Ò À Ð Ò ½ º º¾¼¼ À ÄËÁÆ ÁÆ ÄÁÇÈÁËÌÇ Ì ØÓ Ò ØØ ÐÝØ Ø Ò Ð ØÓ ÂÝÖ Ë Ö Ò Ò ÌÝ Ò Ò Ñ Ö Ø Ø Ø Ø Ð Ì ØÐ ÂÙÐ Ò Ú Ñ Ò Ñ Ò Ø ÐÑ ÌËÁ Ò ÅË˹ÑÖ

Lisätiedot

Ë ÐØ ½ ÂÓ ÒØÓ ½ ½º½ È ÖÙ ØØ Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ Ò ÖØ Ø Ö ÒÒ Ñ ÐÐ Ø º º º º º º º º º º º º º º

Ë ÐØ ½ ÂÓ ÒØÓ ½ ½º½ È ÖÙ ØØ Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ Ò ÖØ Ø Ö ÒÒ Ñ ÐÐ Ø º º º º º º º º º º º º º º Ê ÒØ Ò Ø Ð ÙÙ Ø ÓÖ ÐÙ ÒØÓÑÓÒ Ø Å Ö Ù ÌÙÓÑ Ð ϕ v N N Ë ÐØ ½ ÂÓ ÒØÓ ½ ½º½ È ÖÙ ØØ Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ Ò ÖØ Ø Ö ÒÒ Ñ ÐÐ Ø º º º º º º º º º º º º º

Lisätiedot

ABTEKNILLINEN KORKEAKOULU TEKNISKA HÖGSKOLAN HELSINKI UNIVERSITY OF TECHNOLOGY

ABTEKNILLINEN KORKEAKOULU TEKNISKA HÖGSKOLAN HELSINKI UNIVERSITY OF TECHNOLOGY ÆÖÒÒ ÂÖÓ ÓÖÓÙÐÙ ÌÒÐÐÒÒ ABTEKNILLINEN KORKEAKOULU TEKNISKA HÖGSKOLAN HELSINKI UNIVERSITY OF TECHNOLOGY ÔÖÓÖ¹ ÔÓ ØÖÓÖ ¹ÚÖÒÐÝÝ ÐØØÑÐÐÒ ÐÑÒØØÑÒØÐÑÐÐ ÄØÓ ÔÖÙÖ ÓÖ º½½º¾¼¼ ÅØÑØÒ ÐØÓ Ë ÐØ ½ ÂÓÒØÓ ¾ ÑÐÐÒÒÙ ÄØØÖÒØÒ

Lisätiedot

Ì Ú Ø Ñ Ò Ó ÔÓÒ ÒØØ Ò Ô Ö Ò Ø ¹ Ú ÖÙÙ Ñ Ò ÓÚ Ù Ó Ó ÙÓ ÙÙ ¹ Ò ØÓÓÒº Ì ØÓØ Ø Ò ÔÖÓ Ö Ù ¹ØÙØ Ñ ÂÝÚ ÝÒ Ý ÓÔ ØÓ ½º Ó ÙÙØ ¾¼¼ º Ë ÚÙ ½ Ø º Ì ¹ Ú ÖÙÙ Ñ Ò Ý Ó

Ì Ú Ø Ñ Ò Ó ÔÓÒ ÒØØ Ò Ô Ö Ò Ø ¹ Ú ÖÙÙ Ñ Ò ÓÚ Ù Ó Ó ÙÓ ÙÙ ¹ Ò ØÓÓÒº Ì ØÓØ Ø Ò ÔÖÓ Ö Ù ¹ØÙØ Ñ ÂÝÚ ÝÒ Ý ÓÔ ØÓ ½º Ó ÙÙØ ¾¼¼ º Ë ÚÙ ½ Ø º Ì ¹ Ú ÖÙÙ Ñ Ò Ý Ó ÔÓÒ ÒØØ Ò Ô Ö Ò Ø ¹ Ú ÖÙÙ Ñ Ò ÓÚ Ù Ó Ó ÙÓ ÙÙ Ò ØÓÓÒ Ò Ó Ì ØÓØ Ø Ò ÔÖÓ Ö Ù ¹ØÙØ Ñ ÂÝÚ ÝÒ Ý ÓÔ ØÓ Å Ø Ñ Ø Ò Ø ØÓØ Ø Ò ØÓ ½º Ó ÙÙØ ¾¼¼ Ì Ú Ø Ñ Ò Ó ÔÓÒ ÒØØ Ò Ô Ö Ò Ø ¹ Ú ÖÙÙ Ñ Ò ÓÚ Ù Ó Ó ÙÓ ÙÙ ¹ Ò ØÓÓÒº Ì

Lisätiedot

Ì ÃÆÁÄÄÁÆ Æ ÃÇÊÃ ÃÇÍÄÍ Ì ÃÆÁÄÄÁË Æ ËÁÁÃ Æ Â Å Ì Å ÌÁÁÃ Æ ÇË ËÌÇ Ì Ç ØÓ È Ò Ë ÚÙ Ò ÌÝ Ò Ò Ñ Ì ØÐ Ò Ò Ð ÈÖÓ ÙÙÖ Ò ÓÓ Ò Ñ ÌÝ Ò Ú ÐÚÓ ÌÝ Ò Ó ÂÙ Ó Ã ÒÒ Ì Ò

Ì ÃÆÁÄÄÁÆ Æ ÃÇÊÃ ÃÇÍÄÍ Ì ÃÆÁÄÄÁË Æ ËÁÁÃ Æ Â Å Ì Å ÌÁÁÃ Æ ÇË ËÌÇ Ì Ç ØÓ È Ò Ë ÚÙ Ò ÌÝ Ò Ò Ñ Ì ØÐ Ò Ò Ð ÈÖÓ ÙÙÖ Ò ÓÓ Ò Ñ ÌÝ Ò Ú ÐÚÓ ÌÝ Ò Ó ÂÙ Ó Ã ÒÒ Ì Ò Ì Ò ÐÐ Ò Ò ÓÖ ÓÙÐÙ Ì Ò ÐÐ Ò Ý Ò Ñ Ø Ñ Ø Ò Ó ØÓ Å Ø Ñ Ø Ò Ð ØÓ ÂÙ Ó Ã ÒÒ ÃÓÑÔÓ ØØ Ð Ñ Ò ØØ Ò Ò ÐÝÝ Ð Ñ ÒØØ Ñ Ò Ø ÐÑÐÐ ÔÐÓÑ ¹ Ò Ò Ö Ò ØÙØ ÒØÓ Ú ÖØ Ò Ø Ö Ø ØØ Ú Ø ØØÝ ÔÐÓÑ ØÝ ÔÓÓ ¾ º ÐÓ ÙÙØ ¾¼¼ ÌÝ Ò Ú ÐÚÓ

Lisätiedot

M Pv + q = 0, M = EIκ = EIv, (EIv ) + Pv = q. v(x) = Asin kx + B cos kx + Cx + D + v p. P kr = π2 EI L n

M Pv + q = 0, M = EIκ = EIv, (EIv ) + Pv = q. v(x) = Asin kx + B cos kx + Cx + D + v p. P kr = π2 EI L n ÄÙ Ù ½ ËØ Ð Ù Ú Ó Ó ÐÑ ½º½ ÈÙÖ Ø ØØÙ Ø ÚÙØ ØØÙ ÙÚ Ì Ô ÒÓ ÓØ Q v + q =, M = Q, ½º½µ ÑÑÓ ÐÐ ÙÚ ÐÐ M v + q =, M = EIκ = EIv, (EIv ) + v = q. ½º¾µ ½º µ ½º µ EI = Ú Ó ÆÙÖ Ù ÚÓ Ñ v (4) + k v = q EI, k = EI,

Lisätiedot

º F(+,+ ) = 1 F(, ) = F(,y) = F(x, ) = 0 й

º F(+,+ ) = 1 F(, ) = F(,y) = F(x, ) = 0 й Ú ËÁË ÄÌ ÅÓÒ ÙÐÓØ Ø ÙÑ Ø ½ º½ à ÙÐÓØØ Ø ÙÑ Ø º º º º º º º º º º º º º º º º º º º º º ½ º½º½ Ê ÙÒ ÙÑ Ø ÓÐÐ Ø ÙÑ Ø º º º º º º º º º ½ º½º¾ ÓÐÐ Ò Ó ÓØÙ ÖÚÓÒ ÓÑ Ò ÙÙ º º º º º º º º º ½ º½º À Ö Ö Ø Ñ ÐÐ

Lisätiedot

ONGELMA LASKENNALLINEN EI LASKENNALLINEN ONGELMA ONGELMA = RATKEAMATON RATKEAVA ONGELMA ONGELMA OSITTAIN RATKEAVA EI TEHOKASTA RATKAISUA

ONGELMA LASKENNALLINEN EI LASKENNALLINEN ONGELMA ONGELMA = RATKEAMATON RATKEAVA ONGELMA ONGELMA OSITTAIN RATKEAVA EI TEHOKASTA RATKAISUA Ô ÖÙ Ñ ÐÐ Ø Ä ÒÒ Ò ÚÐÐ ¾¼½¼ ÐÙ ÒÒÓØ ÖØ Ò Ñ Ø Ñ ØÒ Ô ÖÙ ØØغºº Â Ñ Ò ØÝÝÔÔ Ø ØØ ÐÙ Å Ø Ñ Ø ÖØØ µ Ñ Ø Ñ Ø º Ù Ò ÅÓØÛ Ò ÍÐÐÑ Ò ÁÒØÖÓ ÙØ ÓÒ ØÓ ÙØÓÑ Ø ÌÓÖÝ Ä Ò Ù ÀÓÔÖÓ Ø ÓÑÔÙØ Ø ÓÒº Ò ØØÓÒ ØØ ÐÝØØÒ ÔÓÐÐ Ò Ò

Lisätiedot

M : S N { }, S : S N.

M : S N { }, S : S N. Æ ¹Ð ÒØ ÙÒ Ú Ö Ð ÙÙ Æ ËÙÙØ Ö Ò Ò ÔÖÓ Ö Ù Ñ Ø Ñ Ø ÌÙÖÙÒ ÝÐ ÓÔ ØÓ ¾¼¼ Ë ÐØ ÂÓ ÒØÓ ¾ ½ ÓÖÑ Ð Ø Ò ÐØ Ò Ø ÓÖ Ò ØØ Ø ØÙÐÓ ½º½ ÅÙÐØ ÓÙ ÓØ Ö Ð Ø ÓØ º º º º º º º º º º º º º º º º º º º º º º ½º¾ Ë Ò Ø Ð Ø ÑÓÖ

Lisätiedot

Ì ÅÈ Ê Æ ÄÁÇÈÁËÌÇ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ÎÁÁÃÁÆÃÇËÃÁ Å ÌÌÁ ÂÖ ØÝ ÙÒ Ø ÓÐÐ Ø Ó ÓÒ ÐÙ Ø Ú ÐÙ Ø ÓØ Ä Ò ØØ ØÝ º Å Ø Ñ Ø À ÐÑ ÙÙ ¾¼¼ ÃÓÓ Ù Ø ÓÖ Ò Ø ÚÓ

Ì ÅÈ Ê Æ ÄÁÇÈÁËÌÇ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ÎÁÁÃÁÆÃÇËÃÁ Å ÌÌÁ ÂÖ ØÝ ÙÒ Ø ÓÐÐ Ø Ó ÓÒ ÐÙ Ø Ú ÐÙ Ø ÓØ Ä Ò ØØ ØÝ º Å Ø Ñ Ø À ÐÑ ÙÙ ¾¼¼ ÃÓÓ Ù Ø ÓÖ Ò Ø ÚÓ Å ØØ Î Ò Ó ÂÖ ØÝ ÙÒ Ø ÓÐÐ Ø Ó ÓÒ ÐÙ Ø Ú ÐÙ Ø ÓØ Ä Ò ØØ ØÝ Ì ÑÔ Ö Ò ÝÐ ÓÔ ØÓ À ÐÑ ÙÙ ¾¼¼ Ì ÅÈ Ê Æ ÄÁÇÈÁËÌÇ Å Ø Ñ Ø Ò Ø Ð ØÓØ Ø Ò Ð ØÓ ÎÁÁÃÁÆÃÇËÃÁ Å ÌÌÁ ÂÖ ØÝ ÙÒ Ø ÓÐÐ Ø Ó ÓÒ ÐÙ Ø Ú ÐÙ Ø ÓØ Ä Ò ØØ ØÝ º Å

Lisätiedot

Ë ÐØ ½ ÂÓ ÒØÓ ½º½ Ð Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º¾ ËØ Ø ÓÒ Ö Ò Ò ÔÖÓ º º º º º º º º º º º º º º º º º º º º º º

Ë ÐØ ½ ÂÓ ÒØÓ ½º½ Ð Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º¾ ËØ Ø ÓÒ Ö Ò Ò ÔÖÓ º º º º º º º º º º º º º º º º º º º º º º Ö ¹ Ò ÐÝÝ ½¼ ÓÔ ÖØÓ ÄÙÓÑ Ì Ð ØÓØ ÁÒ ÓÖÑ Ø ÓØ Ø Ò Ý ¼½ Ì ÅÈ Ê Æ ÄÁÇÈÁËÌÇ ËÝ Ý ¾¼½ Ë ÐØ ½ ÂÓ ÒØÓ ½º½ Ð Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º¾ ËØ Ø ÓÒ Ö Ò Ò ÔÖÓ º º º º º º º

Lisätiedot

Barysentrinen koordinaattisysteemi sekä pisteen konjugaatio kolmion suhteen

Barysentrinen koordinaattisysteemi sekä pisteen konjugaatio kolmion suhteen HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta/Osasto Fakultet/Sektion Faculty Laitos Institution Department Matemaattis-luonnontieteellinen Tekijä Författare Author Jenni

Lisätiedot

̹ º ¼¼½ ÄÌÈ» à ÚØ ¾¼½¼ ÈÖ ØØ ÐÓ Ò Ñ ÒØØ Ø Ø ÙÐÙØ ¾ ½º Ì ÍÄÍË ÆÆ Ì ÃÎ ÆÌÌÇÊ ÁÄÄ ÅÙÓØÓ T xϕ(x) Ø E xϕ(x)µ ÓÐ Ú Ø ÒØ Ð Ò Ò ÓÐÑÙ T xϕ(x) E xϕ(x) ØÙÐ ÓØØ

̹ º ¼¼½ ÄÌÈ» à ÚØ ¾¼½¼ ÈÖ ØØ ÐÓ Ò Ñ ÒØØ Ø Ø ÙÐÙØ ¾ ½º Ì ÍÄÍË ÆÆ Ì ÃÎ ÆÌÌÇÊ ÁÄÄ ÅÙÓØÓ T xϕ(x) Ø E xϕ(x)µ ÓÐ Ú Ø ÒØ Ð Ò Ò ÓÐÑÙ T xϕ(x) E xϕ(x) ØÙÐ ÓØØ Ì¹ º ¼¼½ ÄÌÈ» à ÚØ ¾¼½¼ ÈÖ ØØ ÐÓ Ò Ñ ÒØØ Ø Ø ÙÐÙØ ½ ÄÙ ÒØÓ ÈÖ ØØ ÐÓ Ò Ñ ÒØØ Ø Ø ÙÐÙØ ½º Ì ÙÐÙÒÒ Ø Ú ÒØØÓÖ ÐÐ ¾º Ì ÙÐÙ Ò Ð ØØÝÚØ ÑÖ Ø ÐÑØ º Ç Ø ØÓ ØÙØ Ò Ð Ø Ñ Ò º ËÝØ Ñ ØØ Ò Ò Ø ÙÐÙ º Î Ø Ñ ÐÐ Ò ÑÙÓ ÓØ

Lisätiedot

ÄÇÄÁ ÇÈÌÁÅÇÁÆÌÁ ÈÇËÁÌÊÇÆÁÅÁËËÁÇÌÇÅÇÊÁ¹ÃÍÎÆÌÅÁËÆ ÄÁÁÌÌÎËË ÅÄÄÁÆÌÅÁËËË Ã ËÖÓÐÑ ÈÖÓ ÖÙ ¹ØÙØÐÑ ÌÑÑÙÙ ¾¼¼ ÌÍÊÍÆ ÄÁÇÈÁËÌÇ ÅÌÅÌÁÁÃÆ ÄÁÌÇË ¾¼¼½ ÌÍÊÃÍ ÌÍÊÍÆ ÄÁÇÈÁËÌÇ ÅØÑØÒ ÐØÓ ËÊÀÇÄÅ ÃÁË ÐÓÐ ÓÔØÑÓÒØ ÔÓ ØÖÓÒÑ ÓØÓÑÓÖ¹

Lisätiedot

a(z) = k 0 1 z k = k 0 2 k z k = k 0 z k = (1 + z) n. k

a(z) = k 0 1 z k = k 0 2 k z k = k 0 z k = (1 + z) n. k ̹ º ¾¼½ Ö Ø Ø Ö ÒØ Ø Ò ÖÓ Ú Ø ÙÒ Ø ÓØ È ÇÖÔÓÒ Ò Ì Ò ÐÐ Ò Ò ÓÖ ÓÙÐÙ Ì ØÓ Ò ØØ ÐÝØ Ø Ò Ð ØÓ ÄÙ ÐÐ ÌÑÒ ÑÓÒ Ø Ô ÖÙ ØÙÙ ÝÝ ÐÙ Ù Ù Ò ¾¼¼½ ÑÙ Ø ÒÔ ÒÓ Ò Ì Ò ÐÐ Ò ÓÖ ÓÙÐÙÒ Ì ØÓ Ò ØØ ÐÝØ ÓÖ Ò Ð ÓÖ ØÓÖ ÓÒ ÙÖ ÐØ

Lisätiedot

ÚØ ØØ Ò ØÙÐ > ØÒÔØ ÑÝ ÐØ ÑÐ ØÐÐÒ Ö ØÝ Ò ½ ÌØÚÒ ØØÐÙ ØØÚÒ ÖØ ÑÒÒ ØØÓÓÒÐÐ ÐÐÝØØ ÓÔÚ ÐÓÖØÑ Í Ò ÑÐÓ ÝÐ ÐÐ Ø ÓÐÐ ÙÚÐØÙ ØÓÑÒØÓ À ØØÓÓÒÓÐÑ ÚÒ ØÓÑÒØÔÖØ ØÚÓØØÒ

ÚØ ØØ Ò ØÙÐ > ØÒÔØ ÑÝ ÐØ ÑÐ ØÐÐÒ Ö ØÝ Ò ½ ÌØÚÒ ØØÐÙ ØØÚÒ ÖØ ÑÒÒ ØØÓÓÒÐÐ ÐÐÝØØ ÓÔÚ ÐÓÖØÑ Í Ò ÑÐÓ ÝÐ ÐÐ Ø ÓÐÐ ÙÚÐØÙ ØÓÑÒØÓ À ØØÓÓÒÓÐÑ ÚÒ ØÓÑÒØÔÖØ ØÚÓØØÒ ØÒÐÐÒÒ ÝÐÓÔ ØÓ ÌÑÔÖÒ ÐØÓ ÅØÑØÒ ØØÓÓÒ ÓÐÐ ÖØØ ÎÓÓ ÝÑÔØÓÓØØÒÒ ÙÓÖØÙ ÊØÒ Ø ÑÒÒ ØØÓÓÒÐÐ ÎÐ Ù ÐÓÖØÑÒ ÑÐÑÒ ÒØØ ÎÐÑÖ ½ ÌØÚÒ ØØÐÙ ØÖÒ ÐÓÖØÑ ÈÖÓÖØØØÓÒÓ ÐÒÒÙÒØ¹Ø ÝÝÐÐ ØÒÚØÓ Î ÄÌ̹½¼¼ ÎÐ Ù ÐÓÖØÑÒ ÑÐÑÒ Ý Ý ¼½ ¼»½½

Lisätiedot

u(0,t) = u(l,t) = 0, t > 0

u(0,t) = u(l,t) = 0, t > 0 ÓÙÖ Ö¹ Ö Ø ¹ÑÙÙÒÒÓ Ø ÈÖÓ Ö Ù ¹ØÙØ ÐÑ Ì ÑÙ ÀÓÒ Ò Ò ½ ¾ ÁعËÙÓÑ Ò ÝÐ ÓÔ ØÓ Ý Ò Ñ Ø Ñ Ø Ò Ð ØÓ ¾ º ØÓÙ Ó ÙÙØ ¾¼½¾ Ì Ú Ø ÐÑ Ì ÈÖÓ Ö Ù¹ØÙØ ÐÑ Ø ÐÐÒ ÓÙÖ Ö¹ Ò ÐÝÝ Ò ÑÔ ØÙ¹ ÐÓ Ó Ø Ò ÓÚ ÐÐÙ º Ä Ø Ò Ð ÐÐ ÓÑÔÐ Ø

Lisätiedot

Šع½º½¼ ¼ Å Ø Ñ Ø Ò Ô ÖÙ ÙÖ Ä Á Ê ÆÌÁ ÄÁ ÀÌ Ä Ë ËÌ ÅÁÌ ÌÁÅÇ ÁÊÇÄ Â ÇÄ ÎÁ Æ Î ÆÄÁÆÆ 3 2.5 2 Ã Ø Ø Ü µ 2 Ü µ 2 Ü µ 3 Ü µ.5 Ø Ü µ 3 Ü µ.5 Ø «.5.5 2 2.5 3 3.5 4 4.5 5 Ü Ü ËÝ Ý ¾¼½¼ Á Ê ÆÌÁ ÄÁ ÀÌ Ä Ë ËÌ ÅÁÌ

Lisätiedot